Sample records for tablet comprising indomethacin-peg-hpmc

  1. Production of extended release mini-tablets using directly compressible grades of HPMC.

    PubMed

    Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R

    2013-11-01

    Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.

  2. Evaluation of matrix type mucoadhesive tablets containing indomethacin for buccal application.

    PubMed

    Ikeuchi-Takahashi, Yuri; Sasatsu, Masanaho; Onishi, Hiraku

    2013-09-10

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to systemic side effects. To avoid these side effects and treat local lesions effectively, a matrix type mucoadhesive tablet was developed. A mixture of hard fat, ethylcellulose (EC) and polyethylene glycol (PEG) was used as a matrix base, and indomethacin (IMC) was used as the principal agent. In tablets consisting of hard fat, EC and IMC, the drug release was sustained. In tablets consisting of hard fat, EC, considerable amounts of PEG and IMC, the drug release was relatively increased and IMC existed as the molecular phase or in an amorphous state. The in vitro adhesive force of the tablets consisting of hard fat, EC, considerable amounts of PEG and IMC was significantly increased as compared with the tablets consisting of hard fat and IMC. A significantly high tissue concentration and significantly low plasma concentration were observed after buccal administration of this matrix type mucoadhesive tablet as compared with that after oral administration of IMC. Thus, the matrix type mucoadhesive tablet has good potential as a preparation for the treatment of pain due to oral aphtha. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Release of theophylline and carbamazepine from matrix tablets--consequences of HPMC chemical heterogeneity.

    PubMed

    Viridén, Anna; Abrahmsén-Alami, Susanna; Wittgren, Bengt; Larsson, Anette

    2011-08-01

    The release of theophylline and carbamazepine from matrix tablets composed of microcrystalline cellulose, lactose and hydroxypropyl methylcellulose (HPMC) was studied. The aim was to investigate the effect of different substituent heterogeneities of HPMC on the drug release from matrix tablets composed of either 35% or 45% HPMC. The release of the poorly soluble carbamazepine was considerably affected by the HPMC heterogeneity, and the time difference at 80% drug release was more than 12h between the formulations of different HPMC batches. This was explained by slower polymer erosion of the heterogeneous HPMC and the fact that carbamazepine was mainly released by erosion. In addition, results from magnetic resonance imaging showed that the rate of water transport into the tablets was similar. This explained the comparable results of the release of the sparingly soluble theophylline from the two formulations even though the polymer erosion and the swelling of the tablets were considerably different. Thus, it can be concluded that the drug release was highly affected by the substituent heterogeneity, especially in the case of carbamazepine, which was released mainly by erosion. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.

    PubMed

    Li, JinZhi; Zhao, LiJie; Lin, Xiao; Shen, Lan; Feng, Yi

    2017-11-01

    Many commonly used tablet fillers are not suitable for direct compaction process due to insufficient properties, mainly of flowability and compactability. This work therefore aimed to use co-spray drying with HPMC as a platform to improve direct compaction properties of various tablet fillers. Starch, calcium hydrogen phosphate dihydrate (DCPD), and mannitol were chosen as a representative of three types of commonly used fillers (i.e. organic macromolecules, water-insoluble inorganic salts, and water-soluble small molecular carbohydrates), respectively. The five-level central composite design-response surface methodology was used (i) to investigate the effects of HPMC level and solid content of the feed on various powder, tableting, and tablet properties of composite excipients, and (ii) to optimize the composition. The results showed that the impacts of the two factors on various properties of composite excipients showed great similarity, despite of significantly different primary properties of the parent fillers, and the HPMC level was the main contributor to the majority of the impacts. An increase in HPMC level significantly improved tablet tensile strength and various tableting parameters. For all the three fillers, their optimized composite excipients provided by the established models showed excellent performances as predicted. The platform suggested is confirmed to be effective and promising.

  5. Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets.

    PubMed

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-11-01

    The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.

  6. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    PubMed

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.

  7. Development of gastro intestinal sustained release tablet formulation containing acryl-EZE and pH-dependent swelling HPMC K 15 M.

    PubMed

    Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel

    2012-05-01

    The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.

  8. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.

    PubMed

    Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj

    2004-01-01

    The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate

  9. Effect of precipitation inhibitors on indomethacin supersaturation maintenance: mechanisms and modeling.

    PubMed

    Patel, Dhaval D; Anderson, Bradley D

    2014-05-05

    This study quantitatively explores the mechanisms underpinning the effects of model pharmaceutical polymeric precipitation inhibitors (PPIs) on the crystal growth and, in turn, maintenance of supersaturation of indomethacin, a model poorly water-soluble drug. A recently developed second-derivative UV spectroscopy method and a first-order empirical crystal growth model were used to determine indomethacin crystal growth rates in the presence of model PPIs. All three model PPIs including HP-β-CD, PVP, and HPMC inhibited indomethacin crystal growth at both high and low degrees of supersaturation (S). The bulk viscosity changes in the presence of model PPIs could not explain their crystal growth inhibitory effects. At 0.05% w/w, PVP (133-fold) and HPMC (28-fold) were better crystal growth inhibitors than HP-β-CD at high S. The inhibitory effect of HP-β-CD on the bulk diffusion-controlled indomethacin crystal growth at high S was successfully modeled using reactive diffusion layer theory, which assumes reversible complexation in the diffusion layer. Although HP-β-CD only modestly inhibited indomethacin crystal growth at either high S (∼15%) or low S (∼2-fold), the crystal growth inhibitory effects of PVP and HPMC were more dramatic, particularly at high S (0.05% w/w). The superior crystal growth inhibitory effects of PVP and HPMC as compared with HP-β-CD at high S were attributed to a change in the indomethacin crystal growth rate-limiting step from bulk diffusion to surface integration. Indomethacin crystal growth inhibitory effects of all three model PPIs at low S were attributed to retardation of the rate of surface integration of indomethacin, a phenomenon that may reflect the adsorption of PPIs onto the growing crystal surface. The quantitative approaches outlined in this study should be useful in future studies to develop tools to predict supersaturation maintenance effects of PPIs.

  10. Continuous twin screw granulation of controlled release formulations with various HPMC grades.

    PubMed

    Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2016-09-25

    HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Relationship between diffusivity of water molecules inside hydrating tablets and their drug release behavior elucidated by magnetic resonance imaging.

    PubMed

    Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo

    2012-01-01

    We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.

  12. Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat® Protect.

    PubMed

    Petry, Ina; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Leopold, Claudia S

    2017-10-01

    A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization. Tablets containing either a physical mixture of crystalline indomethacin and arginine or co-amorphous indomethacin-arginine were coated with a water soluble polyvinyl alcohol-polyethylene glycol graft copolymer (Kollicoat® Protect) and stored at 23°C/0% RH and 23°C/75% RH. The solid state properties of the coated tablets were analyzed by XRPD and FTIR and the drug release behavior was tested for up to 4h in phosphate buffer pH 4.5. The results showed that the co-amorphous formulation did not recrystallize during the coating process or during storage at both storage conditions for up to three months, which confirmed the high physical stability of this co-amorphous system. Furthermore, the applied coating could partially inhibit recrystallization of indomethacin during drug release testing, as coated tablets reached a higher level of supersaturation compared to the respective uncoated formulations and showed a lower decrease of the dissolved indomethacin concentration upon precipitation. Thus, the applied coating enhanced the AUC of the dissolution curve of the co-amorphous tablets by about 30%. In conclusion, coatings might improve the bioavailability of co-amorphous formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.

    PubMed

    Barmpalexis, Panagiotis; Kachrimanis, Kyriakos; Georgarakis, Emanouil

    2011-01-01

    The present study investigates the use of nimodipine-polyethylene glycol solid dispersions for the development of effervescent controlled release floating tablet formulations. The physical state of the dispersed nimodipine in the polymer matrix was characterized by differential scanning calorimetry, powder X-ray diffraction, FT-IR spectroscopy and polarized light microscopy, and the mixture proportions of polyethylene glycol (PEG), polyvinyl-pyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC), effervescent agents (EFF) and nimodipine were optimized in relation to drug release (% release at 60 min, and time at which the 90% of the drug was dissolved) and floating properties (tablet's floating strength and duration), employing a 25-run D-optimal mixture design combined with artificial neural networks (ANNs) and genetic programming (GP). It was found that nimodipine exists as mod I microcrystals in the solid dispersions and is stable for at least a three-month period. The tablets showed good floating properties and controlled release profiles, with drug release proceeding via the concomitant operation of swelling and erosion of the polymer matrix. ANNs and GP both proved to be efficient tools in the optimization of the tablet formulation, and the global optimum formulation suggested by the GP equations consisted of PEG=9%, PVP=30%, HPMC=36%, EFF=11%, nimodipine=14%. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets

    PubMed Central

    Kim, Ju-Young; Lee, Sung-Hoon; Park, Chun-Woong; Rhee, Yun-Seok; Kim, Dong-Wook; Park, Junsang; Lee, Moonseok; Seo, Jeong-Woong; Park, Eun-Seok

    2015-01-01

    The aim of present study was to design oxycodone once-a-day controlled-release (CR) tablets and to perform in vitro/in vivo characterizations. Release profiles to achieve desired plasma concentration versus time curves were established by using simulation software and reported pharmacokinetic parameters of the drug. Hydroxypropyl methylcellulose (HPMC) 100,000 mPa·s was used as a release modifier because the polymer was found to be resistant to changes in conditions of the release study, including rotation speed of paddle and ion strength. The burst release of the drug from the CR tablets could be suppressed by applying an additional HPMC layer as a physical barrier. Finally, the oxycodone once-a-day tablet was comprised of two layers, an inert HPMC layer and a CR layer containing drug and HPMC. Commercial products, either 10 mg bis in die (bid [twice a day]) or once-a-day CR tablets (20 mg) were administered to healthy volunteers, and calculated pharmacokinetic parameters indicated bioequivalence of the two different treatments. The findings of the present study emphasize the potential of oxycodone once-a-day CR tablets for improved patient compliance, safety, and efficacy, which could help researchers to develop new CR dosage forms of oxycodone. PMID:25678774

  15. Continuous manufacturing of extended release tablets via powder mixing and direct compression.

    PubMed

    Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Forsberg, Peter; Fransson, Magnus; Wikström, Håkan; Folestad, Staffan; Lakio, Satu; Tajarobi, Pirjo; Abrahmsén-Alami, Susanna

    2015-11-10

    The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Magnetic resonance imaging and image analysis for assessment of HPMC matrix tablets structural evolution in USP Apparatus 4.

    PubMed

    Kulinowski, Piotr; Dorożyński, Przemysław; Młynarczyk, Anna; Węglarz, Władysław P

    2011-05-01

    The purpose of the study was to present a methodology for the processing of Magnetic Resonance Imaging (MRI) data for the quantification of the dosage form matrix evolution during drug dissolution. The results of the study were verified by comparison with other approaches presented in literature. A commercially available, HPMC-based quetiapine fumarate tablet was studied with a 4.7T MR system. Imaging was performed inside an MRI probe-head coupled with a flow-through cell for 12 h in circulating water. The images were segmented into three regions using threshold-based segmentation algorithms due to trimodal structure of the image intensity histograms. Temporal evolution of dry glassy, swollen glassy and gel regions was monitored. The characteristic features were observed: initial high expansion rate of the swollen glassy and gel layers due to initial water uptake, dry glassy core disappearance and maximum area of swollen glassy region at 4 h, and subsequent gel layer thickness increase at the expense of swollen glassy layer. The temporal evolution of an HPMC-based tablet by means of noninvasive MRI integrated with USP Apparatus 4 was found to be consistent with both the theoretical model based on polymer disentanglement concentration and experimental VIS/FTIR studies.

  17. Development of Polyethylene Glycol and Hard Fat-Based Mucoadhesive Tablets Containing Various Types of Polyvinyl Alcohols as Mucoadhesive Polymers for Buccal Application.

    PubMed

    Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Onishi, Hiraku

    2017-06-01

    Topical drug application has the advantage of avoiding systemic side effects. We attempted to develop a long-acting matrix-type tablet containing indomethacin (IM) with low physical stimulus and potent mucoadhesive force to treat pain caused by oral aphtha. A mixture of polyethylene glycol (PEG) and hard fat was used as the tablet base. Ethylcellulose was added to the base in an attempt to control drug release. Tablets with PEG as a base were also prepared for comparison. Polyvinyl alcohols (PVAs) with various degrees of saponification were added to increase the mucoadhesive force. From the optical microscopic observations, formulations using PEG and hard fat exhibit PEG/hard fat dispersions caused by the stabilizing effects of PVA. Although the tablets using PEG and hard fat showed sufficient adhesiveness and sustained drug release, those using PEG as the base did not. Drug release was controlled by the amount of hard fat and the saponification degree of PVA. The drug release rate was most increased in a tablet containing PVA with an intermediate degree of saponification, PEG and hard fat. From differential scanning calorimetry and powder X-ray diffraction, IM was considered to exist in the molecular phase. From the results of buccal administration of tablets to rats, highest tissue concentrations were observed in the tablet containing PVA with the intermediate degree of saponification using PEG and hard fat, and the plasma concentrations were sufficiently low in comparison.

  18. Chemoinformetrical evaluation of dissolution property of indomethacin tablets by near-infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Tanabe, Hideaki; Osaki, Kazuo; Otsuka, Kuniko; Ozaki, Yukihiro

    2007-04-01

    The purpose of this study was to use near-infrared spectrometry (NIR) with chemoinformetrics to predict the change of dissolution properties in indomethacin (IMC) tablets during the manufacturing process. A comparative evaluation of the dissolution properties of the tablets was performed by the diffused reflectance (DRNIR) and transmittance (TNIR) NIR spectroscopic methods. Various kinds of IMC tablets (200 mg) were obtained from a powder (20 mg of IMC, 18 mg of microcrystalline cellulose, 160 mg of lactose, and 2 mg of magnesium stearate) under various compression pressures (60-398 MPa). Dissolution tests were performed in phosphate buffer, and the time required for 75% dissolution (T75) and mean dissolution time (MDT) were calculated. DRNIR and TNIR spectra were recorded, and the both NIR spectra used to establish a calibration model for predicting the dissolution properties by principal component regression analysis (PCR). The T75 and MDT increased as the compression pressure increased, since tablet porosity decreased with increasing pressure. Intensity of the DRNIR spectra of the compressed tablets decreased as the compression pressure increased. However, the intensity of TNIR spectra increased along with the pressure. The calibration models used to evaluate the dissolution properties of tablets were established by using PCR based on both DRNIR and TNIR spectra of the tablets. The multiple correlation coefficients of the relationship between the actual and predictive T75 by the DRNIR and TNIR methods were 0.831 and 0.962, respectively. It is possible to predict the dissolution properties of pharmaceutical preparations using both DRNIR and TNIR chemoinformetric methods. The TNIR method was more accurate for predictions of the dissolution behavior of tablets than the DRNIR method. (c) 2007 Wiley-Liss, Inc.

  19. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry.

    PubMed

    Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-01-05

    Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in

  20. [Preparation of ondansetron hydrochloride osmotic pump tablets and their in vitro drug release].

    PubMed

    Zheng, Hang-sheng; Bi, Dian-zhou

    2005-12-01

    To prepare ondansetron hydrochloride osmotic pump tablets (OND-OPT) and investigate their in vitro drug release behavior. OND-OPT were prepared with a single punch press and pan coating technique. Osmotic active agents and plasticizer of coating film were chosen by drug release tests. The effects of the number, position and direction of drug release orifice on release behavior were investigated. The relation between drug release duration and thickness of coating film, PEG content of coating film and size of drug release orifice was established by uniform design experiment. The surface morphological change of coating film before and after drug release test was observed by scanning electron microscopy. The osmotic pumping release mechanism of OND-OPT was confirmed by drug release test with high osmotic pressure medium. Lactose-mannitol (1:2) was chosen as osmotic active agents and PEG400 as plasticizer of coating film. The direction of drug release orifice had great effect on the drug release of OND-OPT without HPMC, and had no effect on the drug release of OND-OPT with HPMC. The OND-OPT with one drug release orifice at the centre of the coating film on one surface of tablet released their drug with little fluctuation. The drug release duration of OND-OPT correlated with thickness of coating film and PEG content of coating film, and didn't correlate significantly with the size of drug release orifice. OND-OPT released their drug with osmotic pumping mechanism predominantly. OND-OPT are able to realize ideal controlled drug release.

  1. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets.

    PubMed

    Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M

    2002-04-01

    The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.

  2. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    PubMed

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.

    PubMed

    Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu

    2004-08-16

    An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.

  4. Does the performance of wet granulation and tablet hardness affect the drug dissolution profile of carvedilol in matrix tablets?

    PubMed

    Košir, Darjan; Ojsteršek, Tadej; Vrečer, Franc

    2018-06-14

    Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.

  5. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    PubMed

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  6. Effects of food on a gastrically degraded drug: azithromycin fast-dissolving gelatin capsules and HPMC capsules.

    PubMed

    Curatolo, William; Liu, Ping; Johnson, Barbara A; Hausberger, Angela; Quan, Ernest; Vendola, Thomas; Vatsaraj, Neha; Foulds, George; Vincent, John; Chandra, Richa

    2011-07-01

    Commercial azithromycin gelatin capsules (Zithromax®) are known to be bioequivalent to commercial azithromycin tablets (Zithromax®) when dosed in the fasted state. These capsules exhibit a reduced bioavailability when dosed in the fed state, while tablets do not. This gelatin capsule negative food effect was previously proposed to be due to slow and/or delayed capsule disintegration in the fed stomach, resulting in extended exposure of the drug to gastric acid, leading to degradation to des-cladinose-azithromycin (DCA). Azithromycin gelatin capsules were formulated with "superdisintegrants" to provide fast-dissolving capsules, and HPMC capsule shells were substituted for gelatin capsule shells, in an effort to eliminate the food effect. Healthy volunteers were dosed with these dosage forms under fasted and fed conditions; pharmacokinetics were evaluated. DCA pharmacokinetics were also evaluated for the HPMC capsule subjects. In vitro disintegration of azithromycin HPMC capsules in media containing food was evaluated and compared with commercial tablets and commercial gelatin capsules. When the two fast-dissolving capsule formulations were dosed to fed subjects, the azithromycin AUC was 38.9% and 52.1% lower than after fasted-state dosing. When HPMC capsules were dosed to fed subjects, the azithromycin AUC was 65.5% lower than after fasted-state dosing. For HPMC capsules, the absolute fasting-state to fed-state decrease in azithromycin AUC (on a molar basis) was similar to the increase in DCA AUC. In vitro capsule disintegration studies revealed extended disintegration times for commercial azithromycin gelatin capsules and HPMC capsules in media containing the liquid foods milk and Ensure®. Interaction of azithromycin gelatin and HPMC capsules with food results in slowed disintegration in vitro and decreased bioavailability in vivo. Concurrent measurement of serum azithromycin and the acid-degradation product DCA demonstrates that the loss of azithromycin

  7. Study of controlled-release floating tablets of dipyridamole using the dry-coated method.

    PubMed

    Chen, Kai; Wen, Haoyang; Yang, Feifei; Yu, Yibin; Gai, Xiumei; Wang, Haiying; Li, Pingfei; Pan, Weisan; Yang, Xinggang

    2018-01-01

    Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80 mg HPMC K4M in the core tablet, 80 mg HPMC E15 in core tablet and 40 mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12 h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8 h.

  8. Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and Poloxamer 188 polymer: An assessment on mechanism of drug release.

    PubMed

    Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef

    2018-01-01

    In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.

  9. Formulation and Characterization of Oral Mucoadhesive Chlorhexidine Tablets Using Cordia myxa Mucilage.

    PubMed

    Moghimipour, Eskandar; Aghel, Nasrin; Adelpour, Akram

    2012-01-01

    The dilution and rapid elimination of topically applied drugs due to the flushing action of saliva is a major difficulty in the effort to eradicate infections of oral cavity. Utilization a proper delivery system for incorporation of drugs has a major impact on drug delivery and such a system should be formulated for prolonged drug retention in oral cavity. The aim of the present study was the use of mucilage of Cordia myxa as a mucoadhesive material in production of chlorhexidine buccal tablets and its substitution for synthetic polymers such as HPMC. The influence of mucilage concentration on the physicochemical responses (hardness, friability, disintegration time, dissolution, swelling, and muco-adhesiveness strength) was studied and swelling of mucilage and HPMC were compared. The evaluated responses included pharmacopoeial characteristics of tablets, the force needed to separate tablets from mucosa, and the amount of water absorbed by tablets. In comparison to HPMC, the rise of mucilage concentration in the formulations increased disintegration time, drug dissolution rate, and reduced MDT. Also, compared to 30% HPMC, muco-adhesiveness strength of buccal tablets containing 20% mucilage was significantly higher. It can be concluded that the presence of Cordia myxa powdered mucilage may significantly affect the tablet characteristics, and increasing in muco-adhesiveness may be achieved by using 20% w/w mucilage.

  10. Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.

    PubMed

    Fayed, Mohamed H; Mahrous, Gamal M; Ibrahim, Mohamed A; Sakr, Adel

    2013-01-01

    The objective of this study was to evaluate the potential of Carbopol(®) 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC(®) K15M) and Eudragit(®) L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P<0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P<0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P<0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P<0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P<0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.

  11. Formulation and Characterization of Oral Mucoadhesive Chlorhexidine Tablets Using Cordia myxa Mucilage

    PubMed Central

    Moghimipour, Eskandar; Aghel, Nasrin; Adelpour, Akram

    2012-01-01

    Background The dilution and rapid elimination of topically applied drugs due to the flushing action of saliva is a major difficulty in the effort to eradicate infections of oral cavity. Utilization a proper delivery system for incorporation of drugs has a major impact on drug delivery and such a system should be formulated for prolonged drug retention in oral cavity. Objectives The aim of the present study was the use of mucilage of Cordia myxa as a mucoadhesive material in production of chlorhexidine buccal tablets and its substitution for synthetic polymers such as HPMC. Materials and Methods The influence of mucilage concentration on the physicochemical responses (hardness, friability, disintegration time, dissolution, swelling, and muco-adhesiveness strength) was studied and swelling of mucilage and HPMC were compared. The evaluated responses included pharmacopoeial characteristics of tablets, the force needed to separate tablets from mucosa, and the amount of water absorbed by tablets. Results In comparison to HPMC, the rise of mucilage concentration in the formulations increased disintegration time, drug dissolution rate, and reduced MDT. Also, compared to 30% HPMC, muco-adhesiveness strength of buccal tablets containing 20% mucilage was significantly higher. Conclusions It can be concluded that the presence of Cordia myxa powdered mucilage may significantly affect the tablet characteristics, and increasing in muco-adhesiveness may be achieved by using 20% w/w mucilage. PMID:24624170

  12. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties.

    PubMed

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-11-01

    Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.

  14. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    PubMed

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Roller compaction of hydrophilic extended release tablets-combined effects of processing variables and drug/matrix former particle size.

    PubMed

    Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna

    2015-04-01

    The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).

  16. Development of an ANN optimized mucoadhesive buccal tablet containing flurbiprofen and lidocaine for dental pain.

    PubMed

    Hussain, Amjad; Syed, Muhammad Ali; Abbas, Nasir; Hanif, Sana; Arshad, Muhammad Sohail; Bukhari, Nadeem Irfan; Hussain, Khalid; Akhlaq, Muhammad; Ahmad, Zeeshan

    2016-06-01

    A novel mucoadhesive buccal tablet containing flurbiprofen (FLB) and lidocaine HCl (LID) was prepared to relieve dental pain. Tablet formulations (F1-F9) were prepared using variable quantities of mucoadhesive agents, hydroxypropyl methyl cellulose (HPMC) and sodium alginate (SA). The formulations were evaluated for their physicochemical properties, mucoadhesive strength and mucoadhesion time, swellability index and in vitro release of active agents. Release of both drugs depended on the relative ratio of HPMC:SA. However, mucoadhesive strength and mucoadhesion time were better in formulations, containing higher proportions of HPMC compared to SA. An artificial neural network (ANN) approach was applied to optimise formulations based on known effective parameters (i.e., mucoadhesive strength, mucoadhesion time and drug release), which proved valuable. This study indicates that an effective buccal tablet formulation of flurbiprofen and lidocaine can be prepared via an optimized ANN approach.

  17. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited

  18. Potential of carrageenans to protect drugs from polymorphic transformation.

    PubMed

    Schmidt, Andrea G; Wartewig, Siegfried; Picker, Katharina M

    2003-07-01

    Carrageenans were analysed in mixture with polymorphic drugs to test their potential for minimising polymorphic or pseudopolymorphic transitions, which are induced by the tableting process. The kappa-carrageenans Gelcarin GP-812 NF and Gelcarin GP-911 NF and the iota-carrageenan Gelcarin GP-379 NF were tested in comparison to the well-known tableting excipients microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), and dicalcium phosphate dihydrate (DCPD). Amorphous indomethacin was chosen as model drug since its well-known recrystallisation behaviour can be mechanically stimulated. Further on, theophylline monohydrate was used. Its dehydration is induced by tableting. Pure materials and mixtures containing 20% (w/w) drug were compressed up to different maximum relative densities. The data obtained during tableting were analysed by three-dimensional (3D) modelling. Afterwards tablets were broken and examined by Fourier transform Raman spectroscopy in order to determine the degree of transformation inside the tablet. For quantitative interpretation, the intensities of representative bands were used. Thermal analysis was used additionally. Using 3D modelling a decrease of plastic deformation can be noticed in the order HPMC>MCC>carrageenans, whereas DCPD represents an exception because of brittle fracture. Best hindrance of polymorphic transformation showed the carrageenans, the hindrance was slightly worse for HPMC. MCC and DCPD could not hinder transformation. A complete protection of the amorphous form could not be achieved. For theophylline monohydrate, the results were similar.

  19. Controlled-release tablet formulation of isoniazid.

    PubMed

    Jain, N K; Kulkarni, K; Talwar, N

    1992-04-01

    Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.

  20. Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy.

    PubMed

    Okeke, Obinna C; Boateng, Joshua S

    2016-10-01

    Smoking cessation is of current topical interest due to the significant negative health and economic impact in many countries. This study aimed to develop buccal films and wafers comprising HPMC and sodium alginate (SA) for potential use in nicotine replacement therapy via the buccal mucosa, as a cheap but effective alternative to currently used nicotine patch and chewing gum. The formulations were characterised using texture analyser (tensile and hardness, mucoadhesion), scanning electron microscopy, X-ray diffractometry, attenuated total reflection-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC) and swelling capacity. Drug loaded films and wafers were characterised for content uniformity (HPLC) whilst the drug loaded wafers only were further characterised for in vitro drug dissolution. SA modified and improved the functional properties of HPMC at optimum ratio of HPMC: SA of 1.25: 0.75. Generally, both films and wafers (blank and drug loaded) were amorphous in nature which impacted on swelling and mucoadhesive performance. HPMC-SA composite wafers showed a porous internal morphology with higher mucoadhesion, swelling index and drug loading capacity compared to the HPMC-SA composite films which were non-porous. The study demonstrates the potential use of composite HPMC-SA wafers in the buccal delivery nicotine. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Study on preparation of phenols gastric floating tablet].

    PubMed

    Zhai, Xiao-Ling; Ni, Jian; Gu, Yu-Long

    2008-01-01

    To study the preparation of phenols gastric floating tablet. The tablets which were prepared using Eudragit IV, HPMC(K4M), MCC101 and Octadecanol as excipients were evaluated by vitro floatation and releasing performance. The pressure of preparationg was also study to select the optimal preparation. The tablets were successfully prepared in which the drug, Eudragit IV, Octadecanol were 31% respectively,and MCC101 was 7%. And 3-4 kg was found to be the eligible pressure. The study was found to be effective in the process of phenols gastric floating tablet.

  2. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-04-01

    An understanding of the rheological behaviour of polymer melt suspensions is crucial in pharmaceutical manufacturing, especially when processed by spray congealing or melt extruding. However, a detailed comparison of the viscosities at each and every temperature and concentration between the various grades of adjuvants in the formulation will be tedious and time-consuming. Therefore, the statistical method, principal component analysis (PCA), was explored in this study. The composite formulations comprising polyethylene glycol (PEG) 3350 and hydroxypropyl methylcellulose (HPMC) of ten different grades (K100 LV, K4M, K15M, K100M, E15 LV, E50 LV, E4M, F50 LV, F4M and Methocel VLV) at various concentrations were prepared and their viscosities at different temperatures determined. Surface plots showed that concentration of HPMC had a greater effect on the viscosity compared to temperature. Particle size and size distribution of HPMC played an important role in the viscosity of melt suspensions. Smaller particles led to a greater viscosity than larger particles. PCA was used to evaluate formulations of different viscosities. The complex viscosity profiles of the various formulations containing HPMC were successfully classified into three clusters of low, moderate and high viscosity. Formulations within each group showed similar viscosities despite differences in grade or concentration of HPMC. Formulations in the low viscosity cluster were found to be sprayable. PCA was able to differentiate the complex viscosity profiles of different formulations containing HPMC in an efficient and time-saving manner and provided an excellent visualisation of the data.

  3. Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet.

    PubMed

    Cho, Jung Hyun; Kim, Yong-Il; Kim, Dong-Wuk; Yousaf, Abid Mehmood; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2014-04-11

    The goal of this research was to develop a novel prolonged release tablet bioequivalent to the commercial sustained release capsule. A number of tacrolimus-loaded fast-dissolving solid dispersions containing various amounts of DOSS were prepared using the spray drying technique. Their solubility, dissolution and pharmacokinetics in rats were studied. DOSS increased drug solubility and dissolution in the solid dispersions. Compared with the drug powder, the solubility, dissolution and bioavailability of tacrolimus with the fast-dissolving solid dispersion containing tacrolimus/HP-β-CD/DOSS in the weight ratio of 5:40:4 were boosted by approximately 700-, 30- and 2-fold, respectively. Several tablet formulations were accomplished with this solid dispersion in combination with various ratios of HPMC/ethylcellulose. The release behaviour and pharmacokinetic studies in beagle dogs were assessed compared with the commercial prolonged release capsule. A decrease in HPMC/ethylcellulose ratios reduced the dissolution of tacrolimus from the tablets. Particularly, the tacrolimus-loaded prolonged release tablet consisting of fast-dissolving tacrolimus solid dispersion, HPMC, ethylcellulose and talc at the weight ratio of 20:66:112:2 exhibited a dissolution profile similar to that produced by the commercial prolonged release capsule. Furthermore, there were no significant differences in the AUC, Cmax, Tmax and MRT values between them in beagle dogs. Consequently, this tacrolimus-loaded prolonged release tablet might be bioequivalent to the tacrolimus-loaded commercial capsule. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria

    2012-09-01

    Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.

  5. Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study.

    PubMed

    Caccavo, Diego; Lamberti, Gaetano; Barba, Anna Angela; Abrahmsén-Alami, Susanna; Viridén, Anna; Larsson, Anette

    2017-08-07

    The purpose of this study was to investigate the hydration behavior of two matrix formulations containing the cellulose derivative hydroxypropyl methylcellulose (HPMC). The two HPMC batches investigated had different substitution pattern along the backbone; the first one is referred to as heterogeneous and the second as homogenous. The release of both the drug molecule theophylline and the polymer was determined. Additionally, the water concentrations at different positions in the swollen gel layers were determined by Magnetic Resonance Imaging. The experimental data was compared to predicted values obtained by the extension of a mechanistic Fickian based model. The hydration of tablets containing the more homogenous HPMC batch showed a gradual water concentration gradient in the gel layer and could be well predicted. The hydration process for the more heterogeneous batch showed a very abrupt step change in the water concentration in the gel layer and could not be well predicted. Based on the comparison between the experimental and predicted data this study suggests, for the first time, that formulations with HPMC of different heterogeneities form gels in different ways. The homogeneous HPMC batch exhibits a water sorption behavior ascribable to a Ficḱs law for the diffusion process whereas the more heterogeneous HPMC batches does not. This conclusion is important in the future development of simulation models and in the understanding of drug release mechanism from hydrophilic matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier.

    PubMed

    Hardy, I J; Cook, W G; Melia, C D

    2006-03-27

    The compression and compaction properties of plasticised high molecular weight USP2208 HPMC were investigated with the aim of improving tablet formation in HPMC matrices. Experiments were conducted on binary polymer-plasticiser mixtures containing 17 wt.% plasticiser, and on a model hydrophilic matrix formulation. A selection of common plasticisers, propylene glycol (PG) glycerol (GLY), dibutyl sebacate (DBS) and triacetin (TRI), were chosen to provide a range of plasticisation efficiencies. T(g) values of binary mixtures determined by Dynamic Mechanical Thermal Analysis (DMTA) were in rank order PG>GLY>DBS>TRI>unplasticised HPMC. Mean yield pressure, strain rate sensitivity (SRS) and plastic compaction energy were measured during the compression process, and matrix properties were monitored by tensile strength and axial expansion post-compression. Compression of HPMC:PG binary mixtures resulted in a marked reduction in mean yield pressure and a significant increase in SRS, suggesting a classical plasticisation of HPMC analogous to that produced by water. The effect of PG was also reflected in matrix properties. At compression pressures below 70 MPa, compacts had greater tensile strength than those from native polymer, and over the range 35 and 70 MPa, lower plastic compaction values showed that less energy was required to produce the compacts. Axial expansion was also reduced. Above 70 MPa tensile strength was limited to 3 MPa. These results suggest a useful improvement of HPMC compaction and matrix properties by PG plasticisation, with lowering of T(g) resulting in improved deformation and internal bonding. These effects were also detectable in the model formulation containing a minimal polymer content for an HPMC matrix. Other plasticisers were largely ineffective, matrix strength was poor and axial expansion high. The hydrophobic plasticisers (DBS, TRI) reduced yield pressure substantially, but were poor plasticisers and showed compaction mechanisms that could

  7. Modulation of active pharmaceutical material release from a novel 'tablet in capsule system' containing an effervescent blend.

    PubMed

    Gohel, Mukesh C; Sumitra G, Manhapra

    2002-02-19

    The objective of the present study was to obtain programmed drug delivery from hard gelatin capsules containing a hydrophilic plug (HPMC or guar gum). The significance of factors such as type of plug (powder or tablet), plug thickness and the formulation of fill material on the release pattern of diltiazem HCl, a model drug, was investigated. The body portion of the hard gelatin capsules was cross-linked by the combined effect of formaldehyde and heat treatment. A linear relationship was observed between weight of HPMC K15M and log % drug released at 4 h from the capsules containing the plug in powder form. In order to accelerate the drug release after a lag time of 4 h, addition of an effervescent blend, NaHCO(3) and citric acid, in the capsules was found to be essential. The plugs of HPMC in tablet form, with or without a water soluble adjuvant (NaCl or lactose) were used for obtaining immediate drug release after the lag time. Sodium chloride did not cause significant influence on drug release whereas lactose favourably affected the drug release. The capsules containing HPMC K15M tablet plug (200 mg) and 35 mg effervescent blend in body portion of the capsule met the selection criteria of less than 10% drug release in 4 h and immediate drug release thereafter. It is further shown that the drug release was also dependant on the type of swellable hydrophilic agent (HPMC or guar gum) and molecular weight of HPMC (K15M or 20 cPs). The results reveal that programmed drug delivery can be obtained from hard gelatin capsules by systemic formulation approach.

  8. Interaction between fed gastric media (Ensure Plus®) and different hypromellose based caffeine controlled release tablets: comparison and mechanistic study of caffeine release in fed and fasted media versus water using the USP dissolution apparatus 3.

    PubMed

    Franek, Frans; Holm, Per; Larsen, Frank; Steffansen, Bente

    2014-01-30

    The aim of the study was to investigate caffeine release in fed and fasted state media from three controlled release matrix tablets containing different HPMC viscosity grades. The biorelevant in vitro dissolution methods utilize the USP 3 dissolution apparatus and biorelevant media to simulate fed and fasted gastro-intestinal dissolution conditions. The effect of tablet reciprocation rate (dip speed) in dissolution media (10 and 15 dips per minute) and media (water, fed and fasted) on caffeine release rate from - and erosion rate of - 100, 4000 and 15,000 mPa s HPMC viscosity tablets was investigated using factorial designed experiments. Furthermore, the mechanism of release in Ensure Plus(®), a nutrition drink similar in composition to the FDA standard meal, was investigated by studying tablet swelling using texture analysis. Altering dip speed has negligible effect on release and erosion rates. Using fasted media instead of water slightly decreases caffeine release from 100 and 4000 mPa s HPMC viscosity tablets as well as erosion rates, while 15,000 mPa s tablets remain unaffected. Fed compared to fasted media decreases caffeine release rate, and the food effect is greater for the 100 mPa s viscosity tablets compared to the 4000 and 15,000 mPa s viscosity tablets. The investigation using texture analysis indicates that Ensure Plus(®) becomes rate-limiting for caffeine release from HPMC tablets by forming a hydrophobic barrier around the tablets. The barrier decreases tablet water permeation, which decreases erosion rate in 100 mPa s viscosity tablets, swelling in 15,000 mPa s viscosity tablets and caffeine release from both tablets. This observed interaction between Ensure Plus(®) and the HPMC tablets may translate into decreased drug release rate in the fed stomach, which may decrease the amount of drug available for absorption in the small intestine and thus reduce systemic drug exposure and maximum plasma concentration. Copyright © 2013 Elsevier B.V. All

  9. Biopharmaceutical evaluation of time-controlled press-coated tablets containing polymers to adjust drug release.

    PubMed

    Halsas, M; Ervasti, P; Veski, P; Jürjenson, H; Marvola, M

    1998-01-01

    This paper deals with press-coated modified release tablets in which the drug dose is situated in the core or is divided between the core and the coat. The coat contains polymer (sodium alginate or hydroxypropylmethyl cellulose, HPMC) to control drug release. The main objective was to investigate how the pharmacokinetic profile of the model drug could be modified by altering the proportion of the drug between the core and the coat. The effect of the amount of the polymer in the coat was also studied. Bioavailability tests were carried out on healthy volunteers. In the absorption curves of the tablets containing 50%, 67% and 80% of the drug in the core and 180 mg HPMC in the coat a bimodal profile was observed. No bimodal release pattern in the in vitro dissolution studies was found. If the whole dose was incorporated in the core the absorption curve has only one clear t(max) value at about 10 h. Doubling the amount of HPMC in the coat dramatically decreased drug absorption. It was concluded that, if a slightly reduced t(max)-value was required, the viscosity grade of HPMC used should be lowered.

  10. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    PubMed

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  11. Formulation and In Vitro, In Vivo Evaluation of Effervescent Floating Sustained-Release Imatinib Mesylate Tablet

    PubMed Central

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    Introduction Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. Methodology Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. Results and Discussion Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent

  12. Formulation and evaluation of different floating tablets containing metronidazole to target stomach.

    PubMed

    Loh, Zhiao C; Elkordy, Amal A

    2015-01-01

    The purpose of this study is to formulate and develop tablets dosage form containing Metronidazole which has swelling and floating properties as a gastroretentive controlled-release drug delivery system to improve drug bioavailability. Fifteen different formulations of effervescence-forming floating systems were designed using HPMC K15M, xanthan gum, co-povidone, Eudragit® RL PO, pluronic® F-127 and/or polypropylene foam powder as swelling agents and sodium bicarbonate with/ without citric acid as gas-forming agents at different compositions. Six out of these 15 formulations which have satisfactory tablet floating behaviour were further studied with the incorporation of Metronidazole. The tablets were evaluated based on tablet physicochemical properties, floating behaviour, swelling ability and drug dissolution studies which were carried out using 0.1M HCl at 37°C for 8 hours. Furthermore, evaluation of the powder mixtures using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscope (SEM) were investigated. Most of the tablets show good physicochemical properties except for F11 which contains pluronic® F-127 as its release-retarding matrix-forming polymer. Other formulations show high swelling capacity, ability to float for at least 8 hours in vitro and have sustained drug release characteristics. Data obtained indicated that F3 which contains HPMC (12.5%w/w), xanthan gum (25%w/w), co-povidone (12.5%w/w) and sodium bicarbonate (31.7%w/w) is a suitable formulation with short floating lag time, good floating behaviour and sustained drug release for at least 8 hours in vitro with a zero order kinetic. Combinations of HPMC K15M and xanthan gum as swelling agents show synergistic effect in retarding drug release and are suitable in providing the most sustained drug release system.

  13. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    PubMed

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions.

  14. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.

    PubMed

    Hiremath, Praveen S; Saha, Ranendra N

    2008-01-01

    The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.

  15. Development and optimization of buspirone oral osmotic pump tablet

    PubMed Central

    Derakhshandeh, K.; berenji, M. Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794

  16. Development and optimization of buspirone oral osmotic pump tablet.

    PubMed

    Derakhshandeh, K; Berenji, M Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.

  17. Development, evaluation and pharmacokinetics of time-dependent ketorolac tromethamine tablets.

    PubMed

    Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy

    2013-01-01

    The present study was intended to develop a time-dependent colon-targeted compression-coated tablets of ketorolac tromethamine (KTM) using hydroxypropyl methylcellulose (HPMC) that release the drug slowly but completely in the colonic region by retarding the drug releases in stomach and small intestine. KTM core tablets were prepared by direct compression method and were compression coated with HPMC. The formulation is optimized based on the in vitro drug release studies and further evaluated by X-ray imaging technique in healthy humans to ensure the colonic delivery. To prove these results, in vivo pharmacokinetic studies in human volunteers were designed to study the in vitro-in vivo correlation. From the in vitro dissolution study, optimized formulation F3 showed negligible drug release (6.75 ± 0.49%) in the initial lag period followed by slow release (97.47 ± 0.93%) for 24 h which clearly indicates that the drug is delivered to the colon. The X-ray imaging studies showed that the tablets reached the colon without disintegrating in upper gastrointestinal system. From the pharmacokinetic evaluation, the immediate-release tablets producing peak plasma concentration (C(max)) was 4482.74 ng/ml at 2 h T(max) and colon-targeted tablets showed C(max) = 3562.67 ng/ml at 10 h T(max). The area under the curve for the immediate-release and compression-coated tablets was 10595.14 and 18796.70 ng h/ml and the mean resident time was 3.82 and 10.75 h, respectively. Thus, the compression-coated tablets based on time-dependent approach were preferred for colon-targeted delivery of ketorolac.

  18. Design of sustained release tablet containing fucoidan.

    PubMed

    Tran, Thao Truong-Dinh; Ngo, Dai Kieu-Phuong; Vo, Toi Van; Tran, Phuong Ha-Lien

    2015-01-01

    The study introduced a new therapeutic agent, fucoidan, which can offer potential medical treatments including anti-inflammatory and anti-coagulant activities, as well as anti-proliferative effects on cancer cells. Fucoidan was included in sustained release formulations expected for an effective plasma drug concentration for approximately 24 h. The matrices based on the two polymers hydroxypropyl methycellulose (HPMC) and polyethylene oxide (PEO) were prepared with various ratios between the polymers and fucoidan. The dissolution profiles of various matrix tablets performed in enzyme-free simulated intestinal fluid (pH 6.8) for 24 h indicated a higher potential of PEO-based matrix tablets in sustaining release of fucoidan. The swelling and erosion of the tablets were also characterized to elucidate the difference among those dissolution profiles.

  19. Release of indomethacin from ultrasound dry granules containing lactose-based excipients.

    PubMed

    Cavallari, Cristina; Albertini, Beatrice; Rodriguez, Lorenzo; Rabasco, Antonio M; Fini, Adamo

    2005-01-20

    Physical mixtures were prepared containing indomethacin and beta-lactose and alpha-lactose-based excipients (Ludipress and Cellactose). The mixtures were compacted with the aid of ultrasound, obtaining tablets, which were milled and sieved. Granules thus obtained were examined by optical microscopy and differential scanning calorimetry. The intense yellow color of the granules and the absence of indomethacin peak in thermograms suggest important modifications of indomethacin physical state; the drug thus modified appears to be spread on the excipient particle surface as a thin film, giving a lustrous appearance. No influence of ultrasound was observed on phase transition concerning lactose; only loss of water was important under high energy ultrasound. Dissolution profiles suggest an increased release of the drug from the systems treated with ultrasound at high energy, with respect to a traditional compaction; while no difference could be evidenced among the three excipients that, however, appear all suitable for this ultrasound-aided direct compression process.

  20. Preparation and evaluation of novel metronidazole sustained release and floating matrix tablets.

    PubMed

    Asnaashari, Solmaz; Khoei, Nazaninossadat Seyed; Zarrintan, Mohammad Hosein; Adibkia, Khosro; Javadzadeh, Yousef

    2011-08-01

    In the present study, metronidazole was used for preparing floating dosage forms that are designed to retain in the stomach for a long time and have developed as a drug delivery system for better eradication of Helicobacter Pylori in peptic ulcer diseases. For this means, various formulations were designed using multi-factorial design. HPMC, psyllium and carbopol in different concentrations were used as floating agents, and sodium bicarbonate was added as a gas-forming agent. Hardness, friability, drug loading, floating ability and release profiles as well as kinetics of release were assessed. Formulations containing HPMC as filler showed prolonged lag times for buoyancy. Adding psyllium to these formulations had reduced relative lag times. Overall, selected formulations were able to float immediately and showed buoyancy for at least 8?h. Meanwhile, sustained profiles of drug release were also obtained. Kinetically, among the 10 assessed models, the release pattern of metronidazole from the tablets fitted best to Power law, Weibull and Higuchi models in respect overall to mean percentage error values of 3.8, 4.73 and 5.77, respectively, for calcium carbonate-based tablets and, 2.95, 6.39 and 3.9, respectively, for calcium silicate-based tablets. In general, these systems can float in the gastric condition and control the drug release from the tablets.

  1. Polymorphic Transformation of Indomethacin during Hot Melt Extrusion Granulation: Process and Dissolution Control.

    PubMed

    Xu, Ting; Nahar, Kajalajit; Dave, Rutesh; Bates, Simon; Morris, Kenneth

    2018-05-10

    To study and elucidate the effect of the intensity and duration of processing stresses on the possible solid-state changes during a hot melt extrusion granulation process. Blends of α-indomethacin and PEG 3350 (w/w 4:1) were granulated using various screw sizes/designs on the melt extruder under different temperature regimes. Differential Scanning Calorimetry and X-ray Powder Diffraction were employed for characterization. The dissolution behavior of the pure polymorphs and the resulting granules was determined using in-situ fiber optic UV testing system. An XRPD quantitation method using Excel full pattern fitting was developed to determine the concentration of each constituent (amorphous, α and γ indomethacin and PEG) in samples collected from each functioning zone and in granules. Analysis of in-process samples and granules revealed that higher temperature (≥130°C) and shear stress accelerated the process induced phase transitions from amorphous and/or the α form to γ indomethacin during heating stage. However, rapid cooling resulted in an increased percentage of the α form allowing isolation of the meta-stable form. By determining the conditions that either prevent or facilitate process induced transformations of IMC polymorphs during melt granulation, a design space was developed to control the polymorph present in the resulting granules. This represents the conditions necessary to balance the thermodynamic relationships between the polymorphs of the IMC system and the kinetics of the possible transformations as a function of the processing stresses.

  2. Same-day 2-L PEG-citrate-simethicone plus bisacodyl vs split 4-L PEG: Bowel cleansing for late-morning colonoscopy.

    PubMed

    de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano

    2013-09-16

    To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. Same-day PEG-CS is feasible, effective

  3. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.

    PubMed

    Kollamaram, Gayathri; Hopkins, Simon C; Glowacki, Bartek A; Croker, Denise M; Walker, Gavin M

    2018-03-30

    Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity. Paracetamol ink crystallized exclusively into form II when printed on a smooth polyethylene terephthalate substrate, and exclusively into form I when in sufficient proximity to the rough surface of the HPMC substrate to be influenced by confinement in pores and chemical interactions. The relative standard deviation in the strength of the dosage forms was <4% in all cases, for doses as low as 0.8 mg, demonstrating the accuracy and reproducibility associated with electromagnetic inkjet technology. Good adhesion of indomethacin on HPMC was achieved using a suspension ink with hydroxypropyl cellulose, but not on an alternative polyethylene terephthalate substrate, emphasising the need to tailor the binder to the substrate. Future work will focus on lower-dose drugs, for which dosing flexibility and fixed dose combinations are of particular interest. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A novel automated alternating current biosusceptometry method to characterization of controlled-release magnetic floating tablets of metronidazole.

    PubMed

    Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo

    2014-08-01

    Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).

  5. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  6. Optimization of propranolol HCl release kinetics from press coated sustained release tablets.

    PubMed

    Ali, Adel Ahmed; Ali, Ahmed Mahmoud

    2013-01-01

    Press-coated sustained release tablets offer a valuable, cheap and easy manufacture alternative to the highly expensive, multi-step manufacture and filling of coated beads. In this study, propranolol HCl press-coated tablets were prepared using hydroxylpropylmethylcellulose (HPMC) as tablet coating material together with carbopol 971P and compressol as release modifiers. The prepared formulations were optimized for zero-order release using artificial neural network program (INForm, Intelligensys Ltd, North Yorkshire, UK). Typical zero-order release kinetics with extended release profile for more than 12 h was obtained. The most important variables considered by the program in optimizing formulations were type and proportion of polymer mixture in the coat layer and distribution ratio of drug between core and coat. The key elements found were; incorporation of 31-38 % of the drug in the coat, fixing the amount of polymer in coat to be not less than 50 % of coat layer. Optimum zero-order release kinetics (linear regression r2 = 0.997 and Peppas model n value > 0.80) were obtained when 2.5-10 % carbopol and 25-42.5% compressol were incorporated into the 50 % HPMC coat layer.

  7. Same-day 2-L PEG-citrate-simethicone plus bisacodyl vs split 4-L PEG: Bowel cleansing for late-morning colonoscopy

    PubMed Central

    de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano

    2013-01-01

    AIM: To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. METHODS: Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. RESULTS: A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. CONCLUSION: Same

  8. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

    PubMed Central

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2012-01-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836

  9. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    PubMed

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  10. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion.

    PubMed

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-08-01

    Sodium lauryl sulfate (SLS), as an effective surfactant, is often used as a solubilizer and/or wetting agent in various dosage forms for the purpose of improving the solubility and dissolution of lipophilic, poorly water-soluble drugs. This study aims to understand the impact of SLS on the solution behavior and bioavailability of hypromellose acetate succinate (HPMC-AS)-based posaconazole (PSZ) ASDs, and to identify the underlying mechanisms governing the optimal oral bioavailability of ASDs when surfactants such as SLS are used in combination. Fluorescence spectroscopy and optical microscopy showed that "oil-out" or "liquid-liquid phase separation (LLPS)" occurred in the supersaturated PSZ solution once drug concentration surpassed ∼12 μg/mL, which caused the formation of drug-rich oily droplets with initial size of ∼300-400 nm. Although FT-IR study demonstrated the existence of specific interactions between PSZ and HPMC-AS in the solid state, predissolved HPMC-AS was unable to delay LLPS of the supersaturated PSZ solution and PSZ-rich amorphous precipitates with ∼16-18% HPMC-AS were formed within 10 min. The coprecipitated HPMC-AS was found to be able to significantly delay the crystallization of PSZ in the PSZ-rich amorphous phase from less than 10 min to more than 4 h, yet coexistent SLS was able to negate this crystallization inhibition effect of HPMC-AS in the PSZ-rich amorphous precipitates and cause fast PSZ crystallization within 30 min. 2D-NOESY and the CMC/CAC results demonstrated that SLS could assemble around HPMC-AS and competitively interact with HPMC-AS in the solution, thus prevent HPMC-AS from acting as an effective crystallization inhibitor. In a crossover dog PK study, this finding was found to be correlating well with the in vivo bioavailability of PSZ ASDs formulated with or without SLS. The SLS containing PSZ ASD formulation demonstrated an in vivo bioavailability ∼30% of that without SLS, despite the apparently better in vitro

  12. [Study on sustained release preparations of Epimedium component].

    PubMed

    Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin

    2015-04-01

    The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.

  13. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    PubMed

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  14. Investigation of water mobility and diffusivity in hydrating micronized low-substituted hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and hydroxypropyl cellulose matrix tablets by magnetic resonance imaging (MRI).

    PubMed

    Kojima, Masazumi; Nakagami, Hiroaki

    2002-12-01

    The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.

  15. Comparison of Corneal Riboflavin Gradients Using Dextran and HPMC Solutions.

    PubMed

    Ehmke, Tobias; Seiler, Theo G; Fischinger, Isaak; Ripken, Tammo; Heisterkamp, Alexander; Frueh, Beatrice E

    2016-12-01

    To determine the riboflavin concentration gradient in the anterior corneal stroma when using hydroxypropyl methylcellulose (HPMC) or dextran as the carrier agent. Four different groups of porcine corneas (5 each) were compared regarding the riboflavin concentration in the anterior stroma. Prior to all experiments, stable hydration conditions were established for the corresponding solution. The dextran groups were treated with 0.1% riboflavin in 20% dextran for 10 and 30 minutes and the HPMC groups with 0.1% riboflavin in 1.1% HPMC for 10 and 30 minutes. After imbibition, nonlinear microscopy and consecutive image analysis were used to determine two-photon fluorescence intensities. To determine the riboflavin concentration, corneas were saturated and measured a second time by two-photon microscopy. With this measurement, a proper correction for absorption and scattering could be performed. Ultraviolet-A (UVA) transmission was measured after the application time for each group. Riboflavin concentration decreased with increasing depth and increased with longer application times in all groups. Comparing the dextran for 30 minutes and HPMC for 10 minutes groups, a significantly higher stromal riboflavin concentration was found within the most anterior 70 µm in the dextran group for 30 minutes, whereas deeper than 260 µm HPMC-assisted imbibition for 10 minutes yielded higher concentrations. In dextran-treated corneas, values obtained from pachymetry were substantially reduced, whereas HPMC-assisted imbibition led to a decent swelling. UVA transmission values were higher in dextran-assisted imbibition than in HPMC-assisted imbibition. Stromal riboflavin gradients are similar when applied in dextran for 30 minutes and HPMC for 10 minutes. When using HPMC solutions, a shallower cross-linked volume is expected due to a higher corneal hydration. [J Refract Surg. 2016;32(12):798-802.]. Copyright 2016, SLACK Incorporated.

  16. Dual release and molecular mechanism of bilayered aceclofenac tablet using polymer mixture.

    PubMed

    Van Nguyen, Hien; Nguyen, Van Hong; Lee, Beom-Jin

    2016-12-30

    The objectives of the present study were to develop a controlled-release bilayered tablet of aceclofenac (AFN) 200mg with dual release and to gain a mechanistic understanding of the enhanced sustained release capability achieved by utilizing a binary mixture of the sustained release materials. Different formulations of the sustained-release layer were formulated by employing hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) as the major retarding polymers. The in vitro dissolution studies of AFN bilayered tablets were carried out in intestinal fluid (pH 6.8 buffer). The mechanism of the synergistic rate-retarding effect of the polymer mixture containing HPC and carbomer was elucidated by the rate of swelling and erosion in intestinal fluid and the molecular interactions in the polymer network. The optimized bilayered tablets had similar in vitro dissolution profiles to the marketed tablet Clanza ® CR based on the similarity factor (f2) in combination with their satisfactory micromeritic, physicochemical properties, and stability profiles. Drug release from HPMC-based matrix was controlled by non-Fickian transport, while drug release from HPC-based matrix was solely governed by drug diffusion. The swelling and erosion data exhibited a dramatic increase of water uptake and a reduction of weight loss in the polymer mixture-loaded tablet. Fourier transform infrared (FTIR) spectra revealed strong hydrogen bonding between HPC and carbomer in the polymer mixture. Regarding spatial distribution of polymers in the polymer mixture-loaded tablet, carbomer was found to be the main component of the gel layer during the first 2h of the hydration process, which was responsible for retarding drug release at initial stage. This process was then followed by a gradual transition of HPC from the glassy core to the gel layer for further increasing gel strength. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development and in vivo evaluation of an oral insulin-PEG delivery system.

    PubMed

    Calceti, P; Salmaso, S; Walker, G; Bernkop-Schnürch, A

    2004-07-01

    Insulin-monomethoxypoly(ethylene glycol) derivatives were obtained by preparation of mono- and di-terbutyl carbonate insulin derivatives, reaction of available protein amino groups with activated 750 Da PEG and, finally, amino group de-protection. This procedure allowed for obtaining high yield of insulin-1PEG and insulin-2PEG. In vivo studies carried out by subcutaneous injection into diabetic mice demonstrated that the two bioconjugates maintained the native biological activity. In vitro, PEGylation was found to enhance the hormone stability towards proteases. After 1 h incubation with elastase, native insulin, insulin-1PEG and insulin-2PEG undergo about 70, 30 and 10% degradation, respectively, while in the presence of pepsin protein degradation was 100, 70 and 50%, respectively. The attachment of low molecular weight PEG did not significantly (P >0.05) alter insulin permeation behavior across the intestinal mucosa. Insulin-1PEG was formulated into mucoadhesive tablets constituted by the thiolated polymer poly(acrylic acid)-cysteine. The therapeutic agent was sustained released from these tablets within 5 h. In vivo, by oral administration to diabetic mice, the glucose levels were found to decrease of about 40% since the third hour from administration and the biological activity was maintained up to 30 h. According to these results, the combination of PEGylated insulin with a thiolated polymer used as drug carrier matrix might be a promising strategy for oral insulin administration.

  18. Development of an osmotic pump system for controlled delivery of diclofenac sodium.

    PubMed

    Emara, L H; Taha, N F; Badr, R M; Mursi, N M

    2012-10-01

    Based on an elementary osmotic pump, controlled release systems of diclofenac sodium (DS) were designed to deliver the drug in a zero-order release pattern. Osmotic pump tablets containing 100 mg DS were prepared and coated with either semipermeable (SPM) or microporous (PM) membranes. The tablet coats were composed of hydrophobic triacetin (TA) or hydrophilic polyethylene glycol 400 (PEG 400) incorporated in cellulose acetate (CA) solution, for SPM and PM, respectively. Variable tablet core compositions such as swelling polymers (PEO and HPMC) and osmotic agents (lactose, NaCl, and KCl) were studied. An optimized, sensitive and well controlled in vitro release design, based on the flow-through cell (FTC), was utilized to discriminate between preparations. The results revealed that the presence of PEG 400 in the coating membrane accelerated the drug release rate, while TA suppressed the release rate of DS. In the case of SPM, the amount of DS released was inversely proportional to the membrane thickness, where 5% (w/w) weight gain gave a higher DS release rate than 10% (w/w). Results of different tablet core compositions revealed that the release rate of DS decreased as PEO molecular weight increased. HPMC K15M showed the lowest DS release rate. The presence of lactose, KCl, or NaCl pronouncedly affected DS release rate depending on polymer type in the core. Scanning electron microscopy (SEM) confirmed formation of pores in the membrane that accounts for faster DS release rate. These results revealed that DS could be formulated as an osmotic pump system with a prolonged, zero-order release pattern.

  19. Formulation of Indomethacin Colon Targeted Delivery Systems Using Polysaccharides as Carriers by Applying Liquisolid Technique

    PubMed Central

    Elkhodairy, Kadria A.; Elsaghir, Hanna A.; Al-Subayiel, Amal M.

    2014-01-01

    The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1 : 3, 1 : 1, and 3 : 1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1 : 9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345

  20. Design and In-vitro Evaluation of Sustained Release Floating Tablets of Metformin HCl Based on Effervescence and Swelling

    PubMed Central

    Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar

    2016-01-01

    An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147

  1. Matrix-mini-tablets of lornoxicam for targeting early morning peak symptoms of rheumatoid arthritis

    PubMed Central

    Mohd, Abdul Hadi; Raghavendra Rao, Nidagurthi Guggilla; Avanapu, Srinivasa Rao

    2014-01-01

    Objective(s): The aim of present research was to develop matrix-mini-tablets of lornoxicam filled in capsule for targeting early morning peak symptoms of rheumatoid arthritis. Materials and Methods: Matrix-mini-tablets of lornoxicam were prepared by direct compression method using microsomal enzyme dependent and pH-sensitive polymers which were further filled into an empty HPMC capsule. To assess the compatibility, FT-IR and DSC studies for pure drug, polymers and their physical mixture were performed. The formulated batches were subjected to physicochemical studies, estimation of drug content, in vitro drug release, drug release kinetics, and stability studies. Results: When FTIR and DSC studies were performed it was found that there was no interaction between lornoxicam and polymers which used. All the physicochemical properties of prepared matrix-mini-tablets were found to be in normal limits. The percentage of drug content was found to be 99.60±0.07%. Our optimized matrix mini-tablets-filled-capsule formulation F30 released lornoxicam after a lag time of 5.02±0.92 hr, 95.48±0.65 % at the end of 8 hr and 99.90±0.83 % at the end of 12 hr. Stability was also found for this formulation as per the guidelines of International Conference on Harmonisation of Technical Requirements of Pharmaceuticals for Human Use. Conclusion: A novel colon targeted delivery system of lornoxicam was successfully developed by filling matrix-mini-tablets into an empty HPMC capsule shell for targeting early morning peak symptoms of rheumatoid arthritis. PMID:24967065

  2. Gastroprotective effects of the isopropanol extract of Artemisia princeps and its gastroretentive floating tablets on gastric mucosal injury.

    PubMed

    Kim, Joo-Il; Park, Sang-Wook; Lim, Jhong-Jae; Sohn, Se-Il; Shin, Ji-Su; Park, Sang Cheol; Jang, Young Pyo; Chung, Eun Kyoung; Lee, Hong-Woo; Lee, Kyung-Tae

    2017-12-20

    In this study, we investigated the gastroprotective effect of an isopropanol extract from the aerial parts of Artemisia princeps (IPAP) and developed a gastroretentive floating tablet of IPAP (IPAP-FR) for maximized local gastroprotective effects. Pre-treatment with IPAP ameliorated the gastric mucosal hemorrhagic lesions in ethanol/HCl- or indomethacin- treated rats. IPAP decreased mucosal hemorrhage of gastric ulcers induced by ethanol or indomethacin plus pyloric ligation in rats. The optimized floating tablet, IPAP-FR, floated on medium surface with more sustained eupatilin release compared to the non-floating control tablet. X-ray photographs in beagle dogs showed that IPAPFR was retained for > 2 h in the stomach. In the ethanol-induced gastric ulcer rat model, the gastric hemorrhagic lesion was improved more substantially with IPAP-FR compared to the non-floating control tablet. Based on these data, our data suggest that IPAP-FR has an improved therapeutic potential for the treatment of gastric ulcer.

  3. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    PubMed

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and

  4. Effects of loxoprofen sodium, a newly synthesized non-steroidal anti-inflammatory drug, and indomethacin on gastric mucosal haemodynamics in the human.

    PubMed

    Kawano, S; Tsuji, S; Hayashi, N; Takei, Y; Nagano, K; Fusamoto, H; Kamada, T

    1995-01-01

    Non-steroidal anti-inflammatory drugs (NSAID) are, and have been, frequently used for alleviation of pain in patients; however, they are known to cause gastric mucosal injury in experimental animals and in humans. A decrease in the gastric mucosal blood flow also plays an important role in the aetiology of acute gastric mucosal injury, as we previously reported. This study investigated the effect of a newly synthesized NSAID, loxoprofen sodium (sodium 2[p-2 oxocyclopentylmethyl) phenyl]propionate dihydrate, on gastric mucosal haemodynamics using a reflectance spectrophotometry system. Both single and cross-over methods were used in five volunteer subjects. Loxoprofen sodium 60 mg (one tablet) or indomethacin 25 mg (one tablet), was diluted in 10 mL water at 25 degrees C and sprayed on the gastric mucosa via a polyethylene tube inserted into the biopsy channel of an endoscope. After drug administration, reflectance spectra were taken every 5 min for 30 min. The indices of mucosal haemoglobin content (IHb) and oxygen saturation of haemoglobin (ISO2) were determined by the method previously reported by the authors. Indomethacin administration produced a significant decrease in both IHb and ISO2 values, indication ischaemia. Loxoprofen sodium, however, showed no significant differences in either of the parameters. Haemorrhagic erosions were evident after indomethacin administration, but none were found after loxoprofen sodium administration. The conclusion reached on the basis of this evidence is that one-time topical application of loxoprofen sodium is safer than indomethacin.

  5. Formulation and characterization of cetylpyridinium chloride bioadhesive tablets.

    PubMed

    Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Kelidari, Hamidreza; Lashkari, Maryam

    2014-12-01

    Bioadhesive polymers play an important role in biomedical and drug delivery applications. The aim of this study is to develop a sustained- release tablet for local application of Cetylpyridinium Chloride (CPC). This delivery system would supply the drug at an effective level for a long period of time, and thereby overcome the problem of the short retention time of CPC and could be used for buccal delivery as a topical anti-infective agent. CPC bioadhesive tablets were directly prepared using 7 mm flat-faced punches on a hydraulic press. The materials for each tablet were weighted, introduced into the die and compacted at constant compression pressure. The dissolution tests were performed to the rotation paddle method and the bioadhesive strength of the tablets were measured. The results showed that as the concentration of polymer increased, the drug release rate was decreased. Also the type and ratio of polymers altered the release kinetic of Cetylpyridinium Chloride from investigated tablets. The bioadhesion strength increased with increasing the concentration of polymer and maximum bioadhesion strength was observed with HPMC K100M. The selected formulation of CPC bioadhesive tablet can be used as a suitable preparation for continuous release of CPC with appropriate bioadhesion strength.

  6. Application of mixture experimental design in the formulation and optimization of matrix tablets containing carbomer and hydroxy-propylmethylcellulose.

    PubMed

    Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila

    2009-12-01

    Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.

  7. Indomethacin Enhances Brown Fat Activity.

    PubMed

    Hao, Lei; Kearns, Jamie; Scott, Sheyenne; Wu, Dayong; Kodani, Sean D; Morisseau, Christophe; Hammock, Bruce D; Sun, Xiaocun; Zhao, Ling; Wang, Shu

    2018-06-01

    Indomethacin, a nonsteroidal anti-inflammatory drug, has been shown to induce white adipocyte differentiation; however, its roles in brown adipocyte differentiation and activation in brown adipose tissue (BAT) and obesity are unknown. To address this issue, we treated mouse brown preadipocytes with different doses of indomethacin, and delivered indomethacin to interscapular BAT (iBAT) of obese mice using implanted osmotic pumps. Indomethacin dose dependently increased brown preadipocyte differentiation and upregulated both mRNA and protein expression of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor (PPAR) γ coactivator 1-alpha. The mechanistic study showed that indomethacin significantly activated the reporter driven by the PPAR response element, indicating that indomethacin may work as a PPAR γ agonist in this cell line. Consistently, indomethacin significantly decreased iBAT mass and fasting blood glucose levels in high-fat diet-induced obesity (DIO) mice. Histologic analysis showed that brown adipocytes of indomethacin-treated mice contained smaller lipid droplets compared with control mice, suggesting that indomethacin alleviated the whitening of BAT induced by the high-fat diet. Moreover, indomethacin significantly increased UCP1 mRNA expression in iBAT. Taken together, this study indicates that indomethacin can promote mouse brown adipocyte differentiation, and might increase brown fat and glucose oxidation capacity in DIO mice. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions

    PubMed Central

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J.; Harris, Michael T.

    2016-01-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API. PMID:27041744

  9. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J; Harris, Michael T

    2015-12-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API.

  10. Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films

    NASA Astrophysics Data System (ADS)

    Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.

    2018-04-01

    In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.

  11. The antipyretic effect of indomethacin.

    PubMed Central

    Clark, W G; Cumby, H R

    1975-01-01

    1. Several possible mechanisms of the antipyretic action of indomethacin administered cat. 2. Indomethacin did not decrease bacterial endotoxin-induced release of endogenous pyrogen in vivo. 3. Indomethacin (5-40 mug/kg) inhibited the pyrogenic effect of peripherally or centrally administered leucocytic progen. A dose of 10 mug/kg caused a parallel shift to the right of the log dose-response curve for I.V. leucocytic pyrogen and reduced the potency of the pyrogen at least 50%. 4. Incubation of leucocytic pyrogen with indomethacin did not alter its pyrogenic potency. 5. Indomethacin exerted only a slight non-dose-related hypothermic effect in afebrile animals. 6. Indomethacin (up to 1 mg/kg) did not diminish the hyperthermic response to intraventricular administration of prostaglandin E1. 7. This pattern of activity indicates that indomethacin acts centrally to inhibit an effect of leucocytic pyrogen. PMID:1151840

  12. Biocompatible interpolymer complex matrix tablets - an oral sustained release class-III antidiabetic drug

    NASA Astrophysics Data System (ADS)

    Ershadul Haque, S. K.; Sheela, A.

    2017-11-01

    Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.

  13. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions.

    PubMed

    Sakai, Toshiro; Hirai, Daiki; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-05

    The effects of tablet preparation and subsequent film coating with amorphous solid dispersion (ASD) particles that were composed of a drug with poor water solubility and hydrophilic polymers were investigated. ASD particles were prepared with a drug and vinylpyrrolidone-vinyl acetate copolymer (PVPVA) or polyvinylpyrrolidone (PVP) at a weight ratio of 1:1 or 1:2 using a melt extrusion technique. Tablets were prepared by conventional direct compression followed by pan coating. A mathematical model based on the Noyes-Whitney equation assuming that stable crystals precipitated at the changeable surface area of the solid-liquid interface used to estimate drug dissolution kinetics in a non-sink dissolution condition. All the ASD particles showed a maximum dissolution concentration approximately ten times higher than that of the crystalline drug. The ASD particles with PVPVA showed higher precipitation rate with lower polymer ratio, while PVP did not precipitate within 960 min regardless of the polymer ratio, suggesting the ASD particles of 1:1 drug:PVPVA (ASD-1) were the most unstable among the ASD particles considered. The dissolution of a core tablet with ASD-1 showed less supersaturation and a much higher precipitation rate than those of ASD-1 particles. However, a film-coated tablet or core tablet with a trace amount of hydroxypropylmethylcellulose (HPMC) showed a similar dissolution profile to that of the ASD-1 particles, indicating HPMC had a remarkable precipitation inhibition effect. Overall, these results suggest that tablet preparation with ASD may adversely affect the maintenance of supersaturation; however, this effect can be mitigated by adding an appropriate precipitation inhibitor to the formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preparation and evaluation of HPMC-based pirfenidone solution in vivo.

    PubMed

    Yang, Mei; Yang, Yang-Fan; Lei, Ming; Ye, Cheng-Tian; Zhao, Chun-Shun; Xu, Jian-Gang; Wu, Kai-Li; Yu, Min-Bin

    2017-01-01

    Pirfenidone (PFD) has exhibited therapeutic potential in the treatment of cell proliferative disorders. The previously developed 0.5% water-based PFD eye drops by our team exhibited antiscarring effectiveness and ocular safety but with a limit of short half-life and poor bioavailability. To increase bioavailability of the water-based PFD eye drops, we prepared a viscous solution by adding hydroxypropyl methylcellulose (HPMC, F4M), which acted as a viscosity-enhancer. Subsequently, we compared the HPMC-based PFD solution with the water-based PFD eye drops. PFD solution with 1% HPMC (w/v) was prepared, and the viscosities at different shear rates were measured to investigate its rheology. PFD concentrations in the tear, aqueous humor, conjunctiva, cornea, and sclerae of New Zealand rabbits were detected at different time points with high-performance liquid chromatography (HPLC) following single instillation of the 0.5% PFD (w/v) water-based eye drops or HPMC-based solution. Compared with the 0.5% water-based PFD eye drops, the HPMC-based solution increased the PFD levels in tears and prolonged the residence time from 10 to more than 20 min (p < .01). Consequently, the concentrations of PFD in aqueous humor, conjunctiva, cornea, and sclera were elevated to varying degrees until 90 min after topical administration. The developed formulation possesses a same readily administration and simple preparation as the PFD eye drops; however, the HPMC-based solution exhibited the higher bioavailability.

  15. Prolonged release matrix tablet of pyridostigmine bromide: formulation and optimization using statistical methods.

    PubMed

    Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen

    2012-07-01

    The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.

  16. A Novel Multilayered Multidisk Oral Tablet for Chronotherapeutic Drug Delivery

    PubMed Central

    Khan, Zaheeda; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Pillay, Viness

    2013-01-01

    A Multilayered Multidisk Tablet (MLMDT) comprising two drug-loaded disks enveloped by three drug-free barrier layers was developed for use in chronotherapeutic disorders, employing two model drugs, theophylline and diltiazem HCl. The MLMDT was designed to achieve two pulses of drug release separated by a lag phase. The polymer disk comprised hydroxyethylcellulose (HEC) and ethylcellulose (EC) granulated using an aqueous dispersion of EC. The polymeric barrier layers constituted a combination of pectin/Avicel (PBL) (1st barrier layer) and hydroxypropylmethylcellulose (HPMC) (HBL1 and HBL2) as the 2nd and 3rd barrier layers, respectively. Sodium bicarbonate was incorporated into the diltiazem-containing formulation for delayed drug release. Erosion and swelling studies confirmed the manner in which the drug was released with theophylline formulations exhibiting a maximum swelling of 97% and diltiazem containing formulations with a maximum swelling of 119%. FTIR spectra displayed no interactions between drugs and polymers. Molecular mechanics simulations were undertaken to predict the possible orientation of the polymer morphologies most likely affecting the MLMDT performance. The MLMDT provided two pulses of drug release, separated by a lag phase, and additionally it displayed desirable friability, hardness, and uniformity of mass indicating a stable formulation that may be a desirable candidate for chronotherapeutic drug delivery. PMID:24024200

  17. Formulation and evaluation of floating matrix tablet of stavudine

    PubMed Central

    Prajapati, Pankaj H; Nakum, Vijay V; Patel, Chhagan N

    2012-01-01

    Background/Aim: The purpose of the study was to prolong the gastric residence time of stavudine by designing its floating tablets and to study the influence of different polymers on its release rate. Materials and Methods: The floating mix matrix tablets of stavudine were prepared by melt granulation method. Beeswax was used as hydrophobic meltable material. Hydroxypropyl methylcellulose (HPMC), sodium bicarbonate, and ethyl cellulose were used as matrixing agent, gas generating agent, and floating enhancer, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, and in vitro drug release. The drug- polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infared (FT-IR). Results: The floating lag time of all the formulations was within the prescribed limit (<3 min). All the formulations showed good matrix integrity and retarded the release of drug for 12 h except the formulation F5.The concentration of beeswax (X1), HPMC K4M (X2), and ethyl cellulose (X3) were selected as independent variables and drug release values at 1 (Q1), at 6 (Q6) and at 12 h (Q12) as dependent variables. Formulation F7 was selected as an optimum formulation as it showed more similarity in dissolution profile with theoretical profile (similarity factor, f2 = 70.91). The dissolution of batch F7 can be described by zero-order kinetics (R2 =0.9936) with anomalous (non-Fickian) diffusion as the release mechanism (n=0.545). There was no difference observed in release profile after temperature sensitivity study at 40°C/75% relative humidity (RH) for 1 month. Conclusion: It can be concluded from this study that the combined mix matrix system containing hydrophobic and hydrophilic polymer minimized the burst release of drug from the tablet and achieved a drug release by zero

  18. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Role of cellulose ether polymers on ibuprofen release from matrix tablets.

    PubMed

    Vueba, M L; Batista de Carvalho, L A E; Veiga, F; Sousa, J J; Pina, Maria Eugénia

    2005-08-01

    Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and beta-cyclodextrin (beta-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE(20 h)), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models-Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.

  20. Development of orally disintegrating tablets comprising controlled-release multiparticulate beads

    PubMed Central

    2012-01-01

    Melperone is an atypical antipsychotic agent that has shown a wide spectrum of neuroleptic properties, particularly effective in the treatment of senile dementia and Parkinson’s-associated psychosis, and is marketed in Europe as an immediate-release (IR) tablet and syrup. An orally disintegrating tablet (ODT) dosage form would be advantageous for patients who experience difficulty in swallowing large tablets or capsules or those who experience dysphagia. Controlled-release (CR) capsule and ODT formulations containing melperone HCl were developed with target in vitro release profiles suitable for a once-daily dosing regimen. Both dosage forms allow for the convenient production of dose-proportional multiple strengths. Two ODT formulations exhibiting fast and medium release profiles and one medium release profile capsule formulation (each 50 mg) were tested in vivo using IR syrup as the reference. The two medium release formulations were shown to be bioequivalent to each other and are suitable for once-daily dosing. Based on the analytical and organoleptic test results, as well as the blend uniformity and in-process compression data at various compression forces using coated beads produced at one-tenth (1/10) commercial scale, both formulations in the form of CR capsules and CR ODTs have shown suitability for progression into further clinical development. PMID:22356215

  1. Can NO-indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers?

    PubMed

    Pereira-Leite, Catarina; Nunes, Cláudia; Bozelli, José C; Schreier, Shirley; Kamma-Lorger, Christina S; Cuccovia, Iolanda M; Reis, Salette

    2018-05-23

    Nitric oxide (NO)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) have been developed to overcome the gastrointestinal and cardiovascular toxicity of NSAIDs, by chemically associating a NO-releasing moiety with commercial NSAIDs. Since increasing evidence supports that NSAIDs toxicity is related to their topical actions in membrane lipids, this work aims to evaluate the impact of adding a NO-releasing moiety to parent NSAIDs regarding their effect on lipid bilayers. Thus, the interactions of NO-indomethacin and indomethacin (parent drug) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers were described herein at pH 3.0 and 7.4. Diverse experimental techniques were combined to characterize the partitioning and location of drugs in DMPC bilayers, and to analyze their effect on the lipid phase transition and the bilayer structure and dynamics. The partitioning of NO-indomethacin into DMPC bilayers was similar to that of charged indomethacin and smaller than that of neutral indomethacin. Both drugs were found to insert the DMPC bilayer and the membrane location of indomethacin was pH-dependent. NO-indomethacin and indomethacin induced a decrease of the main phase transition temperature of DMPC. The effect of these drugs on the bilayer structure and dynamics was dependent on diverse factors, namely drug ionization state, drug:lipid molar ratio, temperature and lipid phase. It is noteworthy that NO-indomethacin induced more pronounced alterations in the biophysical properties of DMPC bilayers than indomethacin, considering equivalent membrane concentrations. Such modifications may have in vivo implications, particularly in the gastric mucosa, where NO-NSAIDs-induced changes in the protective properties of phospholipid layers may contribute to the occurrence of adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A New Extrudable Form of Hypromellose: AFFINISOL™ HPMC HME.

    PubMed

    Huang, Siyuan; O'Donnell, Kevin P; Keen, Justin M; Rickard, Mark A; McGinity, James W; Williams, Robert O

    2016-02-01

    Hypromellose is a hydrophilic polymer widely used in immediate- and modified-release oral pharmaceutical dosage forms. However, currently available grades of hypromellose are difficult, if not impossible, to process by hot melt extrusion (HME) because of their high glass transition temperature, high melt viscosity, and low degradation temperature. To overcome these challenges, a modified grade of hypromellose, AFFINISOL™ HPMC HME, was recently introduced. It has a significantly lower glass transition temperature and melt viscosity as compared to other available grades of hypromellose. The objective of this paper is to assess the extrudability and performance of AFFINISOL™ HPMC HME (100LV and 4M) as compared to other widely used polymers in HME, including HPMC 2910 100cP (the currently available hypromellose), Soluplus®, Kollidon® VA 64, and EUDRAGIT® E PO. Formulations containing polymer and carbamazepine (CBZ) were extruded on a co-rotating 16-mm twin-screw extruder, and the effect of temperature, screw speed, and feed rate was investigated. The performance of the solid dispersions was evaluated based on Flory-Huggins modeling and characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and dissolution. All formulations extruded well except for HPMC 2910 100cP, which resulted in over-torqueing the extruder (machine overloading because the motor cannot provide efficient energy to rotate the shaft). Among the HME extrudates, only the EUDRAGIT® E PO formulation was crystalline as confirmed by DSC, XRD, and Raman, which agreed with predictions from Flory-Huggins modeling. Dissolution testing was conducted under both sink and non-sink conditions. Sink dissolution testing in neutral media revealed that amorphous CBZ in the HME extrudates completely dissolved within 15 min, which was much more rapid than the time for complete dissolution of bulk CBZ (60 min) and

  3. The preparation and characterization of silk fibroin blended with low molecular weight hydroxypropyl methylcellulose (HPMC)

    NASA Astrophysics Data System (ADS)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Sangappa, Y.

    2018-04-01

    In this work, the structure and optical properties of Silk Fibroin (SF), lower molecular weight Hydroxypropyl Methylcellulose (HPMC(L)) and its blend film of SF-HPMC(L) were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron Microscope (SEM) and UV-Visible spectroscopy (UV-Vis). The results indicates that the homogeneous miscible blend of SF-HPMC(L) has lower crystallite size and lower optical band gap compared to virgin SF and HPMC(L). FTIR study confirms the presence of both SF and HPMC(L) molecules in the prepared blend films.

  4. Single Layer Extended Release Two-in-One Guaifenesin Matrix Tablet: Formulation Method, Optimization, Release Kinetics Evaluation and Its Comparison with Mucinex® Using Box-Behnken Design.

    PubMed

    Morovati, Amirhosein; Ghaffari, Alireza; Erfani Jabarian, Lale; Mehramizi, Ali

    2017-01-01

    Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex ® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release "%" in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X 1 : Cetyl alcohol, X 2 : Starch 1500 ® , X 3 : HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X 1 : 37.10, X 2 : 2, X 3 : 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500 ® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too.

  5. Influence of polymeric subcoats on the drug release properties of tablets powder-coated with pre-plasticized Eudragit L 100-55.

    PubMed

    Sauer, Dorothea; Watts, Alan B; Coots, Lonique B; Zheng, Weijia C; McGinity, James W

    2009-02-09

    The aim of the study was to investigate the properties of sodium valproate tablets that were dry powder-coated with pre-plasticized Eudragit L 100-55. Polyethylene glycol 3350 (PEG 3350) was used as primer to facilitate initial coating powder adhesion. Solubility parameters were employed to determine the wetting properties of the PEG 3350 primer. Additional PEG 3350 within the powder coating formulation was required to enable powder adhesion to the tablet cores. The application of a subcoat of either Eudragit E PO or Eudragit RL PO facilitated adhesion of the enteric polymer to the tablet cores and reduced the amount PEG 3350 required in the coating formulation. Since reduction of the PEG 3350 content produced less water-vapor permeable films, the enteric coating level necessary to control the drug release was decreased. PEG 3350 and Methocel K4M were incorporated in both Eudragit E PO and Eudragit RL PO subcoating formulations as pore forming agents. The influence of the pore forming excipients on physicochemical properties of free powder-cast films was investigated. The miscibility of the PEG 3350 and Methocel K4M in the film coating was correlated with their ability to function as pore forming agent.

  6. Optimization of tenofovir release from mucoadhesive vaginal tablets by polymer combination to prevent sexual transmission of HIV.

    PubMed

    Notario-Pérez, Fernando; Cazorla-Luna, Raúl; Martín-Illana, Araceli; Ruiz-Caro, Roberto; Tamayo, Aitana; Rubio, Juan; Veiga, María-Dolores

    2018-01-01

    The use of sustained-release mucoadhesive vaginal tablets of antiretroviral drugs as microbicidal formulations can be an effective strategy for reducing the sexual transmission of HIV from men to women, which is a main problem particularly in low- and middle-income countries. Different polymers (hydroxypropylmethyl cellulose (HPMC), chitosan, guar gum and Eudragit ® RS) have proven some good features for this purpose. At this work, these polymers have been combined in pairs in different proportions to enhance the advantages offered by each one individually. The in vitro release of tenofovir from the matrices, ex vivo mucoadhesive capacity (evaluated on vaginal mucosa) and the degree of swelling in simulated vaginal fluid have been assessed. A multimodal pore size distribution is observed in porosimetry studies -carried out with swelling witnesses-, due to the contribution of polymers with different swelling behaviour to the pore formation, and it is corroborated by scanning electron microscopy. X-ray diffraction technique confirms the changes in crystallinity of the formulation after swelling. We can report that the combination of HPMC and chitosan in the same formulation may be useful for the prevention of sexual transmission of HIV, since tablets can be obtained that remain adhered to the vaginal mucosa for 96h, so the drug is released in a sustained manner for 72h. When the formulation contains more chitosan than HPMC the swelling is moderate, making it more comfortable for women to apply. Copyright © 2017. Published by Elsevier Ltd.

  7. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    PubMed Central

    Shi, Shih-Chen; Su, Chieh-Chang

    2016-01-01

    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives. PMID:28773733

  9. 76 FR 51037 - Determination That Halflytely and Bisacodyl Tablets Bowel Prep Kit (Containing Two Bisacodyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... determined that Halflytely and Bisacodyl Tablets Bowel Prep Kit (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and two bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...

  10. Development and evaluation of natural gum-based extended release matrix tablets of two model drugs of different water solubilities by direct compression.

    PubMed

    Ofori-Kwakye, Kwabena; Mfoafo, Kwadwo Amanor; Kipo, Samuel Lugrie; Kuntworbe, Noble; Boakye-Gyasi, Mariam El

    2016-01-01

    The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct

  11. Single Layer Extended Release Two-in-One Guaifenesin Matrix Tablet: Formulation Method, Optimization, Release Kinetics Evaluation and Its Comparison with Mucinex® Using Box-Behnken Design

    PubMed Central

    Morovati, Amirhosein; Ghaffari, Alireza; Erfani jabarian, Lale; Mehramizi, Ali

    2017-01-01

    Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release “%” in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X1: Cetyl alcohol, X2: Starch 1500®, X3: HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X1: 37.10, X2: 2, X3: 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too. PMID:29552045

  12. Indomethacin

    MedlinePlus

    ... the joints), and ankylosing spondylitis (arthritis that mainly affects the spine). Indomethacin is also used to treat pain in the shoulder caused by bursitis (inflammation of a fluid-filled sac ...

  13. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments.

    PubMed

    Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D

    2017-05-01

    Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.

  14. Native and microwave-modified Terminalia mantaly gums as sustained-release and bioadhesive excipients in naproxen matrix tablet formulations.

    PubMed

    Odeniyi, Michael Ayodele; Oyedokun, Babatunde Mukhtar; Bamiro, Oluyemisi Adebowale

    2017-01-01

    Hydrophilic polymers provide a means of sustaining drug delivery. Native gums may be limited in function, but modification may improve their activity. The aim of the study was to evaluate native and modified forms of Terminalia mantaly gum for their sustained-release and bioadhesive properties. The native gum (NTM) was modified by microwave irradiation for 20 seconds (MTM20) and 60 seconds (MTM60) and characterized using microscopy, Fourier transform infrared spectroscopy (FTIR) and packing properties. The effects of the thermally induced molecular reorientation were determined. Tablet formulations of naproxen were produced by direct compression. The mechanical, bioadhesive and release properties of the formulations were determined. Irradiation of NTM improved the gum's flow properties, resulting in Carr's Index and Hausner's ratios lower than 16% and 1.25, respectively. Swelling studies showed that MTM20 and MTM60 had lower water absorption capacity and swelling index values, while packing properties improved upon irradiation, as depicted by lower tapped density values. FTIR spectra of samples showed that the irradiated gums were distinct from the native gums and did not interact with naproxen sodium. The gum's mechanical properties improved with MTM20 and MTM60 and sustained-release action of up 12 h was obtained. Inclusion of hydroxypropyl methylcellulose (HPMC) in the tablet formulations proved critical for bioadhesion. Microwave irradiation of native Terminalia mantaly gum improved the flow, mechanical and sustained-release properties of Naproxen tablets, and the addition of HPMC increased bioadhesion properties. The tablet properties of the native gum were significantly improved after 20 s of microwave irradiation.

  15. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  16. 75 FR 13292 - Determination That HalfLytely and Bisacodyl Tablets Bowel Prep Kit (Containing 4 Bisacodyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... determined that HALFLYTELY AND BISACODYL TABLETS BOWEL PREP KIT (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and 4 bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...

  17. HPMC reinforced with different cellulose nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  18. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Korang-Yeboah, Maxwell; Yang, Yang; Siddiqui, Akhtar; Shakleya, Diaa; Khan, Mansoor A; Cruz, Celia; Ashraf, Muhammad

    2017-01-30

    The objective of the present investigation was to understand the effects of excipients and curing process on the abuse deterrent properties (ADP) of Polyox™ based directly compressible abuse deterrent tablet formulations (ADFs). The excipients investigated were lactose (monohydrate or anhydrous), microcrystalline cellulose and hydroxypropyl methylcellulose. The ADPs studied were tablet crush resistance or hardness, particle size distribution following mechanical manipulation, drug extraction in water and alcohol, syringeability and injectability. Other non-ADPs such as surface morphology and tablet dissolution were also studied. It was found that presence of 50% or more of water soluble or swellable excipient in the ADF tablets significantly affected the tablet hardness, particle size distribution following mechanical manipulation and drug extraction while small amount (5%) of excipients had either minimal or no effect on ADPs of these tablets. Addition of high molecular weight HPMC (K 100M) affected syringeability and injectability of ADF. Curing process was found to affect ADPs (hardness, particle size distribution, drug extraction and syringeability and injectability) when compared with uncured tablet. In conclusion, addition of large amount of excipients, especially water soluble ones in Polyox™ based ADF tablets increase the risk of abuse by various routes of administration. Published by Elsevier B.V.

  19. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl

    PubMed Central

    El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A

    2017-01-01

    To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the Cmax of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The tmax was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action. PMID:28435220

  20. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl.

    PubMed

    El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A

    2017-01-01

    To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.

  1. Effect of bioadhesion on initial in vitro buoyancy of effervescent floating matrix tablets of ciprofloxacin HCL

    PubMed Central

    Negi, Jeetendra Singh; Trivedi, Abhinav; Khanduri, Praveen; Negi, Vandana; Kasliwal, Nikhil

    2011-01-01

    The purpose of this study was to investigate effect of bioadhesion on the initial in vitro buoyancy behaviour of effervescent matrix tablets of ciprofloxacin HCl (CIPRO). Tablets were prepared by direct compression using HPMC K4M and Carbopol 971P as hydrophilic-controlled release polymers, sodium bicarbonate (NaHCO3) as gas-generating agent, polyplasdone XL, Explotab and Ac-Di-Sol as swelling agents. Tablets were evaluated for normal and modified initial in vitro floating behavior, floating duration, swelling behavior and in vitro drug release studies. A modified buoyancy lag time for tablets was determined in order to include the effect of bioadhesion on initial buoyancy. The initial buoyancy was found depended on bioadhesion ability of tablets. The lowest modified buoyancy lag time of 20 seconds was obtained for Formulation F7 having both NaHCO3 and polyplasdone XL. The floating duration was also found dependent on concentration of NaHCO3 and swelling agents. The drug release of F7 was also sustained up to 12-hr duration with anomalous drug transport mechanism. PMID:22171304

  2. Chitosan-incorporated different nanocomposite HPMC films for food preservation

    NASA Astrophysics Data System (ADS)

    Shanmuga Priya, D.; Suriyaprabha, R.; Yuvakkumar, R.; Rajendran, V.

    2014-02-01

    Chitosan nanoparticles were synthesized by cross-linking with sodium tripolyphosphate (TPP) using ionic gelation method and casted into hydroxypropyl methylcellulose (HPMC) films. XRD, FTIR, and UV-Vis spectra showed the corresponding phase, characteristic peaks of CS-TPP functional groups, and transmittance of the films, respectively. Oleic acid, TiO2, neem powder, and Ag of equal ratio were added as an additive to the optimized 1 wt% of chitosan-HPMC films and studied for its mechanical, solubility, thermal, structural, and antimicrobial property. The better physio-chemical and biological properties are achieved in the films incorporated with TiO2 and neem. The characterized films were directly tested for the preservation of grape and plums and for their decay index. Polyphenol oxidase and peroxidase activity of the preserved fruits showed that grape and plums remained unchanged, respectively, for 10 days and for 3 weeks. This study reveals that shelf life of the grape using TiO2- and neem-doped CS-HPMC films was extended up to 10 days with good sensory and textural qualities compared with other films.

  3. [Study on preparation and release mechanism of effervescent osmotic pump tablet of compound Danshen].

    PubMed

    Xue, Li'an; Li, Yuanbo; Guo, Dandan; Yin, Jianhua; Liu, Yanchun; Hou, Shixiang

    2009-04-01

    To prepare effervescent osmotic pump tablet (EOPTs) according to the rhythm of coronary heart disease based on efficacy material and the mechanism of compound Danshen and to study the mechanism of drug released of that tablets. Since compound Danshen consist of compounds with polyphenolic groups or carboxyl groups, such as phenolic acids, flavonoids, and triterpenoids that they were acidic. EOPTs were prepared from tablet cores which containing NaHCO3 as effervescent, NaCL and manitol as osmotic agents, HPMC as retarding agents coating with CA membrane. And study the mechanism of drug released according to the change of tablet osmotic pressure. The results of in vitro experiments showed that no difference was observed among the profiles of Danshensu, protocatechuic aldehyde, ginsenoside Rg1, Rb1, notoginsenoside R1 release EOPTs. The drug was completely released from the device with a zero-order release rate over 12 h. EOPTs are Successfully obtained EOPT which the drug is released from the device over 12 h and the release mechanism of EOPTs is explained.

  4. Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: in vitro and in vivo evaluation.

    PubMed

    El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A

    2014-12-01

    This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.

  5. Improved hydroxypropyl methylcellulose (HPMC) films through incorporation of amylose-sodium palmitate inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Polymer film blends of hydroxypropyl methylcellulose (HPMC) and amylose-sodium palmitate inclusion complexes (Na-Palm) were produced with no plasticizer, and were observed to have improved physical and gas barrier properties as compared with pure HPMC. The crystalline amylose helices incorporating t...

  6. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethyl cellulose matrix tablets in situ.

    PubMed

    Kulinowski, Piotr; Młynarczyk, Anna; Dorożyński, Przemysław; Jasiński, Krzysztof; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P

    2012-12-01

    To resolve contradictions found in morphology of hydrating hydroxypropylmethyl cellulose (HPMC) matrix as studied using Magnetic Resonance Imaging (MRI) techniques. Until now, two approaches were used in the literature: either two or three regions that differ in physicochemical properties were identified. Multiparametric, spatially and temporally resolved T(2) MR relaxometry in situ was applied to study the hydration progress in HPMC matrix tablets using a 11.7 T MRI system. Two spin-echo based pulse sequences-one of them designed to specifically study short T(2) signals-were used. Two components in the T(2) decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T(2) values, were obtained. Based on the data, five different regions and their temporal evolution were identified: dry glassy, hydrated solid like, two interface layers and gel layer. The regions were found to be separated by four evolving fronts identified as penetration, full hydration, total gelification and apparent erosion. The MRI results showed morphological details of the hydrating HPMC matrices matching compound theoretical models. The proposed method will allow for adequate evaluation of controlled release polymeric matrix systems loaded with drug substances of different solubility.

  7. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    PubMed

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    PubMed

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  9. Development and Characterization of Novel Floating-Mucoadhesive Tablets Bearing Venlafaxine Hydrochloride.

    PubMed

    Misra, Raghvendra; Bhardwaj, Peeyush

    2016-01-01

    The present investigation is concerned about the development of floating bioadhesive drug delivery system of venlafaxine hydrochloride which after oral administration exhibits a unique combination of floating and bioadhesion to prolong gastric residence time and increase drug bioavailability within the stomach. The floating bioadhesive tablets were prepared by the wet granulation method using different ratios of hydroxypropyl methyl cellulose (HPMC K4MCR) and Carbopol 934PNF as polymers. Sodium bicarbonate (NaHCO3) and citric acid were used as gas (CO2) generating agents. Tablets were characterized for floating properties, in vitro drug release, detachment force, and swelling index. The concentration of hydroxypropyl methyl cellulose and Carbopol 934PNF significantly affects the in vitro drug release, floating properties, detachment force, and swelling properties of the tablets. The optimized formulation showed the floating lag time 72 ± 2.49 seconds and duration of floating 24.50 ± 0.74 hr. The in vitro release studies and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. Different drug release kinetics models were also applied. The in vitro drug release from tablets was sufficiently sustained (more than 18 hr) and the Fickian transports of the drug from the tablets were confirmed. The radiological evidence suggests that the tablets remained buoyant and altered position in the stomach of albino rabbit and mean gastric residence time was prolonged (more than > 6 hr).

  10. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications.

    PubMed

    Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir

    2012-10-01

    To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.

  11. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    PubMed

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.

    PubMed

    Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun

    2005-04-27

    Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.

  13. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    NASA Astrophysics Data System (ADS)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  14. Continuous direct compression as manufacturing platform for sustained release tablets.

    PubMed

    Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2017-03-15

    This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of

  15. Topical HPMC/S-Nitrosoglutathione Solution Decreases Inflammation and Bone Resorption in Experimental Periodontal Disease in Rats

    PubMed Central

    Martins, Conceição S.; Leitão, Renata F. C.; Costa, Deiziane V. S.; Melo, Iracema M.; Santos, Glaylton S.; Lima, Vilma; Baldim, Victor; Wong, Deysi V. T.; Bonfim, Luana E.; Melo, Cíntia B.; Brito, Gerly A. C.

    2016-01-01

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1β levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease. PMID:27116554

  16. Topical HPMC/S-Nitrosoglutathione Solution Decreases Inflammation and Bone Resorption in Experimental Periodontal Disease in Rats.

    PubMed

    Martins, Conceição S; Leitão, Renata F C; Costa, Deiziane V S; Melo, Iracema M; Santos, Glaylton S; Lima, Vilma; Baldim, Victor; Wong, Deysi V T; Bonfim, Luana E; Melo, Cíntia B; G de Oliveira, Marcelo; Brito, Gerly A C

    2016-01-01

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1β levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease.

  17. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    PubMed

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  18. Designing an extended release waxy matrix tablet containing nicardipine–hydroxy propyl β cyclodextrin complex

    PubMed Central

    Al-Zein, Hind; Sakeer, Khalil; Alanazi, Fars K.

    2011-01-01

    Aim The current study aimed to prepare a sustained release tablet for a drug which has poor solubility in alkaline medium using complexation with cyclodextrin. Nicardipine hydrochloride (NC) a weak basic drug was chosen as a model drug for this study. Method Firstly the most suitable binary system NC-HPβCD was selected in order to improve drug solubility in the intestinal media and then embedding the complexed drug into a plastic matrix, by fusion method, consists of glycerol monostearate (GMS) as an inert waxy substance and polyethylene glycol 4000 (PEG4000) as a channeling agent, after that the final solid dispersion [(NC:HPβCD):GMS:PEG4000] which was prepared at different ratios was mixed with other excipients, avicel PH101, lactose, and talc, to get a tablet owning dissolution profile complying with the FDA and USP requirements for the extended release solid dosage forms. Results Infrared spectroscopy (IR), differential scanning colorimetry (DSC), polarized microscopy and X-ray diffractometry proved that the coevaporation technique was effective in preparing amorphous cyclodextrin complexes with NC and trapping of NC within the HPβCD cavity by dissolving both in ethanol and evaporate the solvent using a rotavapor at 65 °C. Dissolution profile of NC enhanced significantly in pH 6.8 from NC:HPβCD inclusion complex prepared by the rotavapor (t-test Student p < 0.05). The release of NC from tablet containing [(NC:HPβCD):GMS:PEG4000] [(1):0.75:0.5] (w/w/w) solid dispersion (F8) was complying with the FDA dissolution requirements for extended release dosage forms, and studying the kinetics of the release showed that the diffusional contribution is the major factor controlling the drug release from that formula. Conclusion The prepared waxy matrix tablet containing NC complexes with CD shows promising results as extended release tablets. PMID:23960765

  19. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  20. Influence of water-soluble channeling agents on the release of diclofenac sodium from Irvingia malayana wax matrix tablets.

    PubMed

    Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat

    2017-05-01

    Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).

  1. Design, development and evaluation of clopidogrel bisulfate floating tablets.

    PubMed

    Rao, K Rama Koteswara; Lakshmi, K Rajya

    2014-01-01

    The objective of the present work was to formulate and to characterize a floating drug delivery system for clopidogrel bisulphate to improve bioavailability and to minimize the side effects of the drug such as gastric bleeding and drug resistance development. Clopidogrel floating tablets were prepared by direct compression technique by the use of three polymers xanthan gum, hydroxypropyl methylcellulose (HPMC) K15M and HPMC K4M in different concentrations (20%, 25% and 30% w/w). Sodium bicarbonate (15% w/w) and microcrystalline cellulose (30% w/w) were used as gas generating agent and diluent respectively. Studies were carried out on floating behavior and influence of type of polymer on drug release rate. All the formulations were subjected to various quality control and in-vitro dissolution studies in 0.1 N hydrochloric acid (1.2 pH) and corresponding dissolution data were fitted to popular release kinetic equations in order to evaluate release mechanisms and kinetics. All the clopidogrel floating formulations followed first order kinetics, Higuchi drug release kinetics with diffusion as the dominant mechanism of drug release. As per Korsmeyer-Peppas equation, the release exponent "n" ranged 0.452-0.654 indicating that drug release from all the formulations was by non-Fickian diffusion mechanism. The drug release rate of clopidogrel was found to be affected by the type and concentration of the polymer used in the formulation (P < 0.05). As the concentration of the polymer was increased, the drug release was found to be retarded. Based on the results, clopidogrel floating tablets prepared by employing xanthan gum at concentration 25% w/w (formulation F2) was the best formulation with desired in-vitro floating time and drug dissolution.

  2. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  3. Development of theophylline sustained release dosage form based on Kollidon SR.

    PubMed

    Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir

    2002-01-01

    Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.

  4. Indomethacin induced avascular necrosis of head of femur

    PubMed Central

    Prathapkumar, K; Smith, I; Attara, G

    2000-01-01

    Chemically induced avascular necrosis of bone is a well documented entity. Indomethacin is one of the causes of this condition but is often difficult to recognise. Review of the literature shows that only one case of indomethacin induced avascular necrosis has been reported in the English language between 1966 and the present.
The case of a young healthy man, who developed avascular necrosis of head of femur after prolonged administration of indomethacin, is reported here.


Keywords: indomethacin; avascular necrosis PMID:10964124

  5. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes.

    PubMed

    Fearon, Amanda D; Stokes, Grace Y

    2017-11-22

    Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.

  6. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings.

    PubMed

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy

    2015-07-06

    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  7. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index.

    PubMed

    Chakraborty, Mousumi; Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Gane, Patrick A C; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2017-06-15

    The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated. Both pharmaceutical sets were compressed with one of the most commonly used excipients, namely microcrystalline cellulose (MCC) and drug Indomethacin. The optical compressibility clearly correlates with the skeletal bulk modulus determined by mercury porosimetry and the recently proposed terahertz lumped structural parameter calculated from terahertz measurements. This lumped structural parameter can be used to analyse the pattern of arrangement of excipient and drug particles in porous pharmaceutical tablets. Therefore, we propose that the optical compressibility can serve as a quality parameter of a pharmaceutical tablet corresponding with the skeletal bulk modulus of the porous tablet, which is related to structural arrangement of the powder particles in the tablet. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.

    PubMed

    Dahlberg, Carina; Fureby, Anna; Schuleit, Michael; Dvinskikh, Sergey V; Furó, István

    2007-09-26

    The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.

  9. HPMC (hydroxypropyl methylcellulose) as a fat replacer improves the physical properties of low-fat tofu.

    PubMed

    Shin, Woo-Kyoung; Wicker, Louise; Kim, Yookyung

    2017-08-01

    The effect of the addition of hydroxypropyl methylcellulose (HPMC) on the textural properties of low-fat tofu was investigated. Three fat levels (240, 100 and 30 g kg -1 ) were used to make tofu, which were identified as C (full-fat tofu), L1 and L2. HPMC (5 g kg -1 ) was added to soymilk to prepare control and low-fat tofu, designated as CH, L1H and L2H. Soymilk with a lower fat level had a lower viscosity: 143 (C), 100 (L1) and 42 (L2) cP. The addition of HPMC increased the viscosity of all types of soymilk, particularly in L2H (107 cP). With fat reduction, tofu syneresis increased from 19% (C) to 29% (L2), although syneresis of L2H recovered to 19%, which is similar to high-fat control tofu. Decreased fat resulted in a lower firmness in L2 (0.67 N) compared to control (0.78 N). Firmness increased to 1.08 N in L2H tofu, whereas the firmness of CH tofu was 0.63 N. All types of tofu showed a denser, well-connected and cross-linking structure when HPMC was added, especially in L2H tofu. HPMC improved the texture of the low-fat tofu by creating a harder texture and reducing syneresis. HPMC is an effective fat replacer for lower fat soymilk. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract.

    PubMed

    Akhtar, Muhammad Javeed; Jacquot, Muriel; Jasniewski, Jordane; Jacquot, Charlotte; Imran, Muhammad; Jamshidian, Majid; Paris, Cédric; Desobry, Stéphane

    2012-08-01

    The aims of this work were to functionalize edible hydroxypropyl methylcellulose (HPMC) films with natural coloring biomolecules having antioxidant capacity and to study their photo-aging stability in the films. HPMC films containing a natural red color compound (NRC) at the level of 1, 2, 3 or 4% (v/v) were prepared by a casting method. A slight degradation of films color was observed after 20 days of continuous light exposure. The antioxidant activity of NRC incorporated films was stable during different steps of film formation and 20 days of dark storage. On the other hand, antioxidant activity of samples stored under light was significantly affected after 20 days. FTIR (Fourier Transformed Infrared) spectroscopy was used to characterize the new phenolic polymeric structures and to study the photo-degradation of films. The results showed a good polymerization phenomenon between NRC and HPMC in polymer matrix giving a natural color to the films. NRC showed an ability to protect pure HPMC films against photo-degradation. This phenomenon was directly proportional to the concentration of NRC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The effect of pH, buffer capacity and ionic strength on quetiapine fumarate release from matrix tablets prepared using two different polymeric blends.

    PubMed

    Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman

    2017-08-01

    The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.

  12. Taro corms mucilage/HPMC based transdermal patch: an efficient device for delivery of diltiazem hydrochloride.

    PubMed

    Sarkar, Gunjan; Saha, Nayan Ranjan; Roy, Indranil; Bhattacharyya, Amartya; Bose, Madhura; Mishra, Roshnara; Rana, Dipak; Bhattacharjee, Debashis; Chattopadhyay, Dipankar

    2014-05-01

    The aim of this work is to examine the effectiveness of mucilage/hydroxypropylmethylcellulose (HPMC) based transdermal patch (matrix type) as a drug delivery device. We have successfully extracted mucilage from Colocasia esculenta (Taro) corms and prepared diltiazem hydrochloride incorporated mucilage/HPMC based transdermal patches using various wt% of mucilage by the solvent evaporation technique. Characterization of both mucilage and transdermal patches has been done by several techniques such as Molisch's test, organoleptic evaluation of mucilage, mechanical, morphological and thermal analysis of transdermal patches. Skin irritation test is studied on hairless Albino rat skin showing that transdermal patches are apparently free of potentially hazardous skin irritation. Fourier transform infrared analysis shows that there is no interaction between drug, mucilage and HPMC while scanning electron microscopy shows the surface morphology of transdermal patches. In vitro drug release time of mucilage-HPMC based transdermal patches is prolonged with increasing mucilage concentration in the formulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of press-coated, floating-pulsatile drug delivery of lisinopril.

    PubMed

    Jagdale, Swati C; Suryawanshi, Vishnu M; Pandya, Sudhir V; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2014-01-01

    Lisinopril is an angiotensin-converting enzyme (ACE) inhibitor, primarily used for the treatment of hypertension, congestive heart failure, and heart attack. It belongs to BCS class III having a half-life of 12 hrs and 25% bioavailability. The purpose of the present work was to develop a press-coated, floating-pulsatile drug delivery system. The core tablet was formulated using the super-disintegrants crosprovidone and croscarmellose sodium. A press-coated tablet (barrier layer) contained the polymer carrageenan, xanthan gum, HPMC K4M, and HPMC K15M. The buoyant layer was optimized with HPMC K100M, sodium bicarbonate, and citric acid. The tablets were evaluated for physical characteristics, floating lag time, swelling index, FTIR, DSC, and in vitro and in vivo behavior. The 5% superdisintgrant showed good results. The FTIR and DSC study predicted no chemical interactions between the drug and excipients. The formulation containing xanthan gum showed drug retaining abilities, but failed to float. The tablet containing HPMC K15M showed a high swelling index. The lag time for the tablet coated with 200 mg carrageenan was 3±0.1 hrs with 99.99±1.5% drug release; with 140 mg HPMC K4M, the lag time was 3±0.1 hrs with 99.71±1.2% drug release; and with 120 mg HPMC K15M, the lag time was 3±0.2 hrs with 99.98±1.7% drug release. The release mechanism of the tablet followed the Korsmeyer-Peppas equation and a first-order release pattern. Floating and lag time behavior have shown good in vitro and in vivo correlations.

  15. Development of Press-Coated, Floating-Pulsatile Drug Delivery of Lisinopril

    PubMed Central

    Jagdale, Swati C.; Suryawanshi, Vishnu M.; Pandya, Sudhir V.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2014-01-01

    Lisinopril is an angiotensin-converting enzyme (ACE) inhibitor, primarily used for the treatment of hypertension, congestive heart failure, and heart attack. It belongs to BCS class III having a half-life of 12 hrs and 25% bioavailability. The purpose of the present work was to develop a press-coated, floating-pulsatile drug delivery system. The core tablet was formulated using the super-disintegrants crosprovidone and croscarmellose sodium. A press-coated tablet (barrier layer) contained the polymer carrageenan, xanthan gum, HPMC K4M, and HPMC K15M. The buoyant layer was optimized with HPMC K100M, sodium bicarbonate, and citric acid. The tablets were evaluated for physical characteristics, floating lag time, swelling index, FTIR, DSC, and in vitro and in vivo behavior. The 5% superdisintgrant showed good results. The FTIR and DSC study predicted no chemical interactions between the drug and excipients. The formulation containing xanthan gum showed drug retaining abilities, but failed to float. The tablet containing HPMC K15M showed a high swelling index. The lag time for the tablet coated with 200 mg carrageenan was 3±0.1 hrs with 99.99±1.5% drug release; with 140 mg HPMC K4M, the lag time was 3±0.1 hrs with 99.71±1.2% drug release; and with 120 mg HPMC K15M, the lag time was 3±0.2 hrs with 99.98±1.7% drug release. The release mechanism of the tablet followed the Korsmeyer-Peppas equation and a first-order release pattern. Floating and lag time behavior have shown good in vitro and in vivo correlations. PMID:24959410

  16. Adaptation of rat gastric tissue against indomethacin toxicity.

    PubMed

    Polat, Beyzagul; Suleyman, Halis; Alp, Hamit Hakan

    2010-06-07

    Indomethacin is used in the treatment of inflammatory diseases. But the drug toxicity limits its usage. This study investigated whether adaptation occurred after various dosages of repeated (chronic) indomethacin in rats to the gastro-toxic effects of indomethacin. It also examined whether the adaptation was related to oxidant-antioxidant mechanisms and oxidative DNA damage in gastric tissue. To illuminate the adaptation mechanism in the gastric tissue of rats given various dosages of chronic indomethacin, the levels of oxidants and antioxidants (GSH, MDA, NO, SOD and MPO), activities of COX-1 and COX-2 enzymes and oxidative DNA damage (8-OHd Gua/10(5) Gua) were measured. Results were compared to 25-mg/kg single-dose indomethacin group, and the role of oxidant and antioxidant parameters and oxidative DNA damage in the adaptation mechanism was evaluated. The average ulcer areas of gastric tissue of the 0.5-, 1-, 2-, 3-, 4-, and 5-mg/kg dosages of chronic indomethacin given to rats were 19.5+/-3.7, 12.5+/-3.3, 10+/-5.2, 4.5+/-3.6, 8.6+/-2.4, and 9.5+/-2.1mm(2), respectively. This rate was measured as 21.3+/-2.6mm(2) in the single-dose indomethacin group. Consequently, after various dosages of repeated (chronic) indomethacin administration in rats, it was observed that a clear adaptation developed against gastric damage and that gastric damage was reduced. The best adaptation was observed in the gastric tissue of the 3-mg/kg chronic indomethacin group. In parallel with the damage reduction, the oxidant parameters (MDA and MPO) and oxidative DNA damage (8-OHd Gua/10(5) Gua) were reduced, and the antioxidant parameters (GSH, NO and SOD) were increased. There is no relation between COX enzymes and adaptation mechanism. This circumstance shows that not COX-1 and COX-2 enzymes, oxidant and antioxidant parameters may play a role in the adaptation mechanism. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  18. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery.

    PubMed

    Shah, Sunny; Patel, Romik; Soniwala, Moinuddin; Chavda, Jayant

    2015-01-01

    The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job's plot. The prepared complex showed significantly better dissolution efficiency (p < 0.05) compared to pure drug, which could be due to the formation of inclusion complex as revealed from FTIR and DSC studies. Continuous dissolution-absorption studies revealed that absorption of drug from valsartan β cyclodextrin complex was significantly higher (p < 0.05) compared to pure drug, in second part press-coated tablets of valsartan β cyclodextrin complex were subsequently prepared and application of the Plackett-Burman screening design revealed that HPMC K4M and EC showed significant effect on lag time. A 3(2) full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6 h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180 mg of coating and revealed a close agreement between observed and predicted value (R(2 )= 0.9694).

  19. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets.

    PubMed

    Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.

  20. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets

    PubMed Central

    Ullah, Majeed; Ullah, Hanif; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301

  1. Comparison of the Efficacy and Safety of Sodium Phosphate Tablets and Polyethylene Glycol Solution for Bowel Cleansing in Healthy Korean Adults

    PubMed Central

    Lee, Seung-Hwa; Kim, Kwang-Min; Seo, Sang-Wook; Kang, Joon-Koo; Lee, Eun-Hye; Lee, Dong-Ryul

    2014-01-01

    Purpose Bowel cleansing is generally regarded as time-consuming and unpleasant among patients. Patients commonly state that bowel preparation provokes more discomfort than the actual colonoscopic examination. The purpose of this study was to compare two regimens of sodium phosphate (NaP) tablets versus polyethylene glycol (PEG) solution for bowel preparation in healthy Korean adults. Materials and Methods This was a single center, prospective, open-label, investigator-blinded, randomized, controlled-pilot study. A total of 62 healthy Korean subjects were randomly assigned to two groups (NaP vs. PEG). Efficacy, safety, and patient-related outcomes, as well as procedural parameters, were evaluated. Results Although there were no significant differences in total Ottawa bowel quality score, fluid scores and the rate of adequate bowel preparation were significantly better in the NaP group than the PEG group. Additionally, the NaP group showed better results regarding patient tolerance, satisfaction, preference, and rate of adverse events than the PEG group. Significant fluctuations in specific serum electrolytes were common and of a greater magnitude in the NaP group than the PEG group. However, these abnormalities were transient and did not result in serious complications and side effects. Conclusion In this study, NaP tablets were shown to be an effective, well-tolerated, and acceptable regimen for bowel preparation. Also, our study suggests that NaP tablets may be safe and can be used as a bowel cleansing agent in healthy adults undergoing elective colonoscopy. Further multicenter, large scale studies are needed to confirm these findings. PMID:25323890

  2. Zero-order release and bioavailability enhancement of poorly water soluble Vinpocetine from self-nanoemulsifying osmotic pump tablet.

    PubMed

    El-Zahaby, Sally A; AbouGhaly, Mohamed H H; Abdelbary, Ghada A; El-Gazayerly, Omaima N

    2017-06-08

    Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5 mg VNP composed of Maisine™ 35-1, Transcutol ® HP, and Cremophor ® EL was adsorbed on the solid carrier Aeroperl ® . S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel ® , HPMC-K4M, PVP-K30, and Lubripharm ® ), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 3 2 *2 1 full factorial design was adopted. The independent variables were: type of coating material (X 1 ), concentration of coating solution (X 2 ), and number of drills (X 3 ). The dependent variables included % release at 2 h (Y 1 ), at 4 h (Y 2 ), and at 8 h (Y 3 ). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry ® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.

  3. Indomethacin-antihistamine combination for gastric ulceration control

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Danellis, J. V. (Inventor)

    1981-01-01

    An anti-inflammatory and analgesic composition containing indomethacin and an H sub 1 or an H sub 2 histamine receptor antagonist in an amount sufficient to reduce gastric distress caused by the indomethacin is described. Usable antagonists include pyrilamine, promethazine, metiamide and cimetidine.

  4. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both

  5. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed Central

    van Wijck, Kim; Bessems, Babs AFM; van Eijk, Hans MH; Buurman, Wim A; Dejong, Cornelis HC; Lenaerts, Kaatje

    2012-01-01

    Background Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Methods Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Results Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Conclusion Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man

  6. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  7. Design of a novel bilayered gastric mucoadhesive system for localized and unidirectional release of lamotrigine

    PubMed Central

    Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.

    2012-01-01

    Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID

  8. Formulation and evaluation of bucco-adhesive tablets of sumatriptan succinate

    PubMed Central

    Prasanna, R Indira; Anitha, P; Chetty, C Madhusudhana

    2011-01-01

    Background: A novel aspiration in treatment of migraine, to provide greater therapeutic effect, overcome the side effects by complex therapeutic regimen and to improve patient compliance upon administering bucco-adhesive tablet formulations of sumatriptan succinate which have not been tested literally. Materials and Methods: This study was designed to develop a bucco-adhesive tablet containing sumatriptan succinate using blends of different bio-adhesive polymeric combinations such as hydroxy propyl methyl cellulose K4M, sodium carboxy methyl cellulose, and Carbopol 934P with a backing layer of ethyl cellulose by a direct compression technique. Tablets were subjected to physico-chemical parameters, swelling index, surface pH, ex vivo bioadhesive force, in vitro drug release, ex vivo drug permeation, and stability in saliva. Results: Good results were obtained in all the evaluated parameters. The drug release of all formulation follows zero-order kinetics by a diffusion mechanism type. Stability studies in human saliva, ex vivo buccal permeation studies by using sheep and porcine buccal mucosa were carried out for the optimized formulation (S4 CP:HPMC 3:1). Conclusion: The developed buccal drug delivery system containing sumatriptan succinate might be the alternative routes available to bypass the first pass metabolism and might be a milestone in the therapy of migraine and among all formulations S4 shows good controlled release results correlated with ex vivo permeation studies. PMID:23071941

  9. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system.

    PubMed

    Brouwers, Joachim; Anneveld, Bart; Goudappel, Gert-Jan; Duchateau, Guus; Annaert, Pieter; Augustijns, Patrick; Zeijdner, Evelijn

    2011-02-01

    In the present study, we demonstrated the value of two advanced tools, the TNO gastric and small Intestinal Model (TIM-1) and magnetic resonance imaging (MRI), for the in vitro evaluation of food-dependent disintegration of immediate release fosamprenavir tablets. Upon introduction of a tablet with the nutritional drink Scandishake Mix® in the stomach compartment of TIM-1, simulating the fed state, disintegration and fosamprenavir dissolution were significantly postponed compared to the fasted state (lag time 80 ± 23 min). This resulted in a lag in the appearance of bioaccessible fosamprenavir (<5% during the first 2h), even though the nutritional state did not significantly alter the cumulative bioaccessibility after 5h. These results were in agreement with the previously observed postprandial delay in gastric fosamprenavir tablet disintegration and subsequent amprenavir absorption in healthy volunteers. Therefore, TIM-1 can be used in tablet development to identify food-induced disintegration issues causing unexpected clinical behavior. From a mechanistic perspective, we applied MRI to illustrate impaired water ingress in fosamprenavir tablets immersed in the nutritional drink compared to simulated gastric fluid. This effect may be attributed to both competition between nutritional components and the tablet for the available water (indicated by reduced rotational and translational diffusion) as well as the possible formation of a food-dependent precipitation layer on the HPMC-coated tablet. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Optimization of metformin HCl 500 mg sustained release matrix tablets using Artificial Neural Network (ANN) based on Multilayer Perceptrons (MLP) model.

    PubMed

    Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar

    2008-02-01

    The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.

  11. Preparation and Optimization of Immediate Release/Sustained Release Bilayered Tablets of Loxoprofen Using Box-Behnken Design.

    PubMed

    Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-05-01

    The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.

  12. A potential nitrergic mechanism of action for indomethacin, but not of other COX inhibitors: relevance to indomethacin-sensitive headaches.

    PubMed

    Summ, Oliver; Andreou, Anna P; Akerman, Simon; Goadsby, Peter J

    2010-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) that act as cyclo-oxygenase (COX) inhibitors are commonly used in the treatment of a range of headache disorders, although their mechanism of action is unclear. Indomethacin is of particular interest given its very special effect in some primary headaches. Here the in vivo technique of intravital microscopy in rats has been utilised as a model of trigeminovascular nociception to study the potential mechanism of action of indomethacin. Dural vascular changes were produced using electrical (neurogenic) dural vasodilation (NDV), calcitonin gene-related peptide (CGRP) induced dural vasodilation and nitric oxide (NO) induced dural vasodilation using NO donors. In each of these settings the effect of intravenously administered indomethacin (5 mg kg(-1)), naproxen (30 mg kg(-1)) and ibuprofen (30 mg kg(-1)) was tested. All of the tested drugs significantly inhibited NDV (between 30 and 52%). Whilst none of them was able to inhibit CGRP-induced dural vasodilation, only indomethacin reduced NO induced dural vasodilation (35 ± 7%, 10 min post administration). We conclude NSAIDs inhibit release of CGRP after NDV without an effect on CGRP directly. Further we describe a differentiating effect of indomethacin inhibiting nitric oxide induced dural vasodilation that is potentially relevant to understanding its unique action in disorders such as paroxysmal hemicrania and hemicrania continua.

  13. Bidirectional interactions between indomethacin and the murine intestinal microbiota

    PubMed Central

    Liang, Xue; Bittinger, Kyle; Li, Xuanwen; Abernethy, Darrell R; Bushman, Frederic D; FitzGerald, Garret A

    2015-01-01

    The vertebrate gut microbiota have been implicated in the metabolism of xenobiotic compounds, motivating studies of microbe-driven metabolism of clinically important drugs. Here, we studied interactions between the microbiota and indomethacin, a nonsteroidal anti-inflammatory drug (NSAID) that inhibits cyclooxygenases (COX) -1 and -2. Indomethacin was tested in both acute and chronic exposure models in mice at clinically relevant doses, which suppressed production of COX-1- and COX-2-derived prostaglandins and caused small intestinal (SI) damage. Deep sequencing analysis showed that indomethacin exposure was associated with alterations in the structure of the intestinal microbiota in both dosing models. Perturbation of the intestinal microbiome by antibiotic treatment altered indomethacin pharmacokinetics and pharmacodynamics, which is probably the result of reduced bacterial β-glucuronidase activity. Humans show considerable inter-individual differences in their microbiota and their responses to indomethacin — thus, the drug-microbe interactions described here provide candidate mediators of individualized drug responses. DOI: http://dx.doi.org/10.7554/eLife.08973.001 PMID:26701907

  14. Tumor suppressive action of indomethacin is NK-cell-independent.

    PubMed

    Cvetkovska, E; Asea, A; Hellstrand, K; Edström, S

    1997-01-01

    This study was undertaken to determine whether NK-cells constitute a necessary mediator for the suppression of tumor growth by indomethacin. C57Bl mice with a methylcholantrene (MCG 101) tumor were studied. Indomethacin treatment was provided by daily subcutaneous injections (1 microgram/g body weight). NK-cells were depleted by treatment with a monoclonal antibody to NK1.1. Consecutive indomethacin injections prolonged survival in tumor bearing animals. Indomethacin was equally effective in animals with intact NK-cells as in NK-cell-depleted animals. Further, the MCG cells were apparently insensitive to the lytic activity of NK-cells in vivo. Thus, the clearance of intravenously injected MCG cells from lungs was not affected by depletion of NK-cells in vivo; in contrast, the corresponding clearance of NK-cell-sensitive YAC-1 lymphoma cells was strikingly reduced by the depletion of NK-cells. Our data suggest that NK cells are not a necessary mediator for the suppression of tumor growth by indomethacin.

  15. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  16. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  17. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging.

    PubMed

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-05-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Evaluation of the ease of taking mini-tablets compared with other tablet formulations in healthy volunteers.

    PubMed

    Hayakawa, Yoshiyuki; Uchida, Shinya; Namiki, Noriyuki

    2016-03-10

    "Mini-tablets" (MTs) are tablets of diameter≤3mm and have been widely studied and developed. However, reports comparing MTs with other tablet formulations are few. We wished to evaluate the ease of taking a MT quantitatively in comparison with an orally disintegrating mini-tablet (ODMT), conventional tablet (CT) and conventional orally disintegrating tablet (ODT). Four types of tablets were prepared. We prepared tablets of two diameters (3mm for MTs and ODMTs vs. 8mm for CTs and ODTs) and two formulations (MTs and CTs vs. ODMTs and ODTs). Our randomized crossover trial in 18 healthy volunteers (8 men and 10 women; mean age, 22.5years) indicated that the visual analog scale (VAS) score for the ease and amount of water required for intake of MTs was significantly lower than those of CTs. An ODMT required the least amount of water and smallest VAS score for the ease of taking a tablet. Our results showed that the advantage of MTs with regard to the ease of taking and decreased amount of water required was exerted for a unit of dosing comprising <5 tablets. These data suggested the usefulness of MTs and the importance of the number of MTs for comfortable consumption by patients. Copyright © 2015. Published by Elsevier B.V.

  19. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites.

    PubMed

    Krishnamurthy, N; Ngam, C R; Berdis, A J; Montano, M M

    2011-11-24

    We have previously reported that the expression of antioxidative stress enzymes is upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor β (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'-5' non-processive exonuclease that degrades both single-stranded and double-stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2, indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation (ChIP) assays also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus, our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention.

  20. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites

    PubMed Central

    Krishnamurthy, Nirmala; Ngam, Caitlyn R.; Berdis, Anthony J.; Montano, Monica M.

    2011-01-01

    We have previously reported that the expression of antioxidative stress enzymes are upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor beta (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'–5' non-processive exonuclease that degrades both single stranded and double stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2 indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation assays (ChIP) also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT-treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention. PMID:21602889

  1. Randomised clinical trial: low-volume bowel preparation for colonoscopy - a comparison between two different PEG-based formulations.

    PubMed

    Repici, A; Cestari, R; Annese, V; Biscaglia, G; Vitetta, E; Minelli, L; Trallori, G; Orselli, S; Andriulli, A; Hassan, C

    2012-10-01

    Low-volume bowel preparations with polyethylene glycol (PEG) have been shown to provide an equivalent cleansing with improved tolerability as compared with standard PEG bowel preparation for colonoscopy. A new iso-osmotic sulphate-free formulation of PEG-Citrate-Simethicone (PEG-CS) in combination with bisacodyl has been recently developed. To compare the quality of bowel cleansing with PEG-CS with bisacodyl vs. PEG-Ascorbate (PEG-ASC) in adult out-patients undergoing colonoscopy. Randomised, observer-blind, parallel group study in adult out-patients undergoing colonoscopy in five Italian centres. Both preparations were taken the evening before the procedure. Subjects were instructed to take 2-4 tablets of 5 mg bisacodyl at 16:00 hours and 2 L of PEG-CS at 20:00 hours or 2 L of PEG-ASC plus 1 L of additional water the day before colonoscopy. Bowel cleansing was evaluated according to the Boston Bowel Preparation Scale (≥6 scores were considered as 'clinical success'), and mucosal visibility according to a 3-point scale. Tolerability, acceptability and compliance were also evaluated. Four hundred and eight patients were randomly allocated to PEG-CS and bisacodyl (n = 204, male patient 48%, mean age 59.1 years) or PEG-ASC (n = 204, male patient 51%, age 59.4 years). In the planned per-protocol analysis, the rate of successful preparation was 79.1% following PEG-CS with bisacodyl, and 70% following PEG-ASC (P < 0.05). Mucosal visibility was evaluated as optimal in 56.1% in the PEG-CS and bisacodyl and 46.3% in the PEG-ASC group (P < 0.05). There were no serious adverse events (AE) in each of the two experimental groups. Two subjects in the PEG-ASC group discontinued the study because of AE. Polyethylene glycol-Citrate-Simethicone in combination with bisacodyl was more effective for bowel cleansing than PEG-ASC for out-patient colonoscopy. Tolerability, safety, acceptability and compliance of the two low-volume bowel preparations were similar. © 2012

  2. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal.

    PubMed

    Li, Mingzhong; Qiu, Shi; Lu, Yan; Wang, Ke; Lai, Xiaojun; Rehan, Mohammad

    2014-09-01

    The aim of this work was to investigate the influence of hydroxypropyl methylcellulose (HPMC) on the phase transformation and release profile of carbamazepine-nicotinamide (CBZ-NIC) cocrystal in solution and in sustained release matrix tablets. The polymorphic transitions of the CBZ-NIC cocrystal and its crystalline properties were examined by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy, and scanning electron microscopy (SEM). The apparent CBZ solubility and dissolution rate of CBZ-NIC cocrystal were constant in different concentrations of HPMC solutions. In a lower percentage of HPMC in the matrix tablets, the CBZ release profile of the CBZ-NIC cocrystal was nonlinear and declined over time. With an increased HPMC content in the tablets, the CBZ-NIC cocrystal formulation showed a significantly higher CBZ release rate in comparison with the other two formulations of CBZ III and the physical mixture. Because of a significantly improved dissolution rate of the CBZ-NIC cocrystal, the rate of CBZ entering into solution is significantly faster than the rate of formation of the CBZ-HPMC soluble complex in solution, leading to a higher supersaturation level of CBZ and subsequently precipitation of CBZ dihydrate.

  3. Indomethacin is a Placental Vasodilator in the Dog

    PubMed Central

    Gerber, John G.; Branch, Robert A.; Hubbard, Walter C.; Nies, Alan S.

    1978-01-01

    The effect of 8 mg/kg of indomethacin on uterine blood flow, prostaglandin production, and intraamniotic fluid pressure was examined in late pregnant dogs. Uterine blood flow was measured with 15 μm radiolabeled microspheres. Because we found that a significant percentage of the microspheres shunted through the placental circulation into the lungs, we calculated placental blood flow by adding the shunted microspheres through the placenta to the nonshunted microspheres in the placenta. Total uterine blood flow significantly increased from 271±69 ml/min during control period to 371±72 ml/min (P < 0.01) 30 min after indomethacin. This increase was attributable to the change in blood flow to the placental circulation (222±58 to 325±63 ml/min; P < 0.01). Associated with these hemodynamic changes we found an almost complete suppression of uterine prostaglandin E2 production (1,654±305 to 51±25 pg/ml; P < 0.01) as measured by gas chromatography-mass spectrometry. In addition, we found that indomethacin treatment resulted in uterine relaxation as measured by intraamniotic fluid pressure changes (11.2±1.3 mm Hg to 8.5±1.2 mm Hg; P < 0.001). We conclude that indomethacin causes an increase in placental blood flow without any change in flow to the rest of the uterus, and that this dose of the drug inhibits greater than 95% of uterine prostaglandin production. In addition, indomethacin is responsible for uterine relaxation. The increase in placental blood flow after indomethacin is probably a result of uterine relaxation, which is secondary to prostaglandin synthesis inhibition. PMID:659627

  4. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  5. Half doses of PEG-ES and senna vs. high-dose senna for bowel cleansing before colonoscopy: a randomized, investigator-blinded trial.

    PubMed

    Amato, Arnaldo; Radaelli, Franco; Paggi, Silvia; Terruzzi, Vittorio

    2010-03-01

    Patients' compliance with and tolerance of large-volume polyethylene glycol electrolyte solution (PEG-ES) have prompted continuous investigation with alternative forms of cleansing. High-dose senna is superior to PEG-ES for the quality of bowel cleansing, patient compliance, and tolerance, but its acceptance may be influenced by the incidence of abdominal pain. We hypothesized that a combination of half doses of PEG-ES and senna could minimize the incidence of abdominal pain without affecting the quality of bowel preparation. This randomized, investigator-blinded trial has been conducted on consecutive outpatients scheduled for elective colonoscopy at a single community-based hospital. Patients were randomly assigned to receive either 12 tablets of 12 mg senna and 2 l of PEG-ES (half-dose group, HDG) or 24 tablets of senna divided in two doses (senna group, SG) the day before colonoscopy. The main outcome measures were the quality of colon cleansing (Aronchick scoring scale) and the incidence of preparation-related abdominal pain. Secondary outcome measures were patients' compliance with the cleansing regimen, overall tolerability, prevalence of predefined side effects, and quality of right colon cleansing. A total of 296 patients were enrolled (HDG=151 and SG=145). Overall cleansing was excellent to good in 90.1 and 88.3% patients in HDG and SG, respectively (P=0.62). Preparation-related moderate-to-severe abdominal pain was reported by 6% patients in HDG and 15.2% in SG (P=0.009). No significant differences were observed for secondary outcomes. The regimen combining half doses of PEG-ES and senna provides high-quality bowel preparation and acceptable patient tolerance, with less abdominal pain compared with high-dose senna.

  6. Transdermal permeation of trimetazidine from nerodilol-based HPMC gel drug reservoir system across rat epidermis.

    PubMed

    Krishnaiah, Yellela S; Al-Saidan, Saleh M

    2008-01-01

    To study the in vitro transdermal permeation of trimetazidine from hydroxypropylmethyl cellulose (HPMC) gel drug reservoir system using nerodilol as a penetration enhancer. An HPMC gel containing selected concentrations of nerodilol (0, 2, 4 or 5% w/v) and 2.5% w/v of trimetazidine was prepared, and subjected to in vitro permeation studies across rat epidermis. The amount of trimetazidine permeated at different time intervals (1, 2, 4, 8, 12, 18 and 24 h) was estimated, and the data were analyzed to calculate various permeation parameters. There was an increase in the amount of trimetazidine (8,719.7 +/- 153.3 microg/cm(2))permeated across the rat epidermis up to 24 h (Q(24)) with an increase in nerodilol concentration (5% w/v) in HPMC gel drug reservoir. However, no significant difference (p > 0.05) was observed in the amount of drug permeated (Q(24)) with 5% w/v of nerodilol when compared to that obtained with 4% w/v of nerodilol (8,484.5 +/- 165.8 microg/cm(2)). Nerodilol, at a concentration of 4% w/v enhanced the flux of trimetazidine across rat epidermis by about 1.96 times when compared to control. The HPMC gel drug reservoir containing 4% w/v of nerodilol showed optimal transdermal permeation of trimetazidine. (c) 2007 S. Karger AG, Basel.

  7. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    PubMed

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  8. Enteric coated magnetic HPMC capsules evaluated in human gastrointestinal tract by AC biosusceptometry.

    PubMed

    Corá, Luciana A; Romeiro, Fernando G; Paixão, Fabiano C; Américo, Madileine F; Oliveira, Ricardo B; Baffa, Oswaldo; Miranda, José Ricardo A

    2006-08-01

    To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process. HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t50) was quantified from 50% increase of pixels in the imaging area. In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t50) calculated for in vitro was 25+/-5 min and for in vivo was 13+/-5 min. In vivo also were determined mean values for GRT (55+/-19 min), SITT (185+/-82 min) and OCTT (240+/-88 min). AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.

  9. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    PubMed

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  10. Predictors of successful closure of patent ductus arteriosus with indomethacin.

    PubMed

    Ahamed, M F; Verma, P; Lee, S; Vega, M; Wang, D; Kim, M; Fuloria, M

    2015-09-01

    To determine whether platelet counts can predict the likelihood of successful closure of patent ductus arteriosus (PDA) with indomethacin. This was a retrospective cohort study of infants <32 weeks' gestational age (GA) and birth weight <1500 g with PDA. Clinical characteristics between infants who achieved ductal closure with indomethacin and those who failed were compared. Multivariable logistic regression was used to identify predictors of successful ductal closure. In infants with hemodynamically significant PDA, older GA (odds ratio=1.54; 95% confidence interval: 1.12 to 2.13), male gender (odds ratio=3.02; 95% confidence interval: 1.08 to 8.49) and higher platelet count (odds ratio=1.5; 95% confidence interval: 1.04 to 2.17) prior to indomethacin treatment were associated with successful ductal closure with indomethacin. Older GA, male gender and higher platelet count at time of treatment of hemodynamically significant PDA are predictors of successful ductal closure with indomethacin.

  11. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2015-03-30

    This study aimed to prepare and characterize the collagen/HPMC blend film (1/1). Thermogravimetric analysis and differential scanning calorimetry were used to investigate the thermal properties of the film. Both thermal decomposition temperature and denaturation temperature of the blend film were higher than those of the collagen film due to the intermolecular hydrogen bonding interaction between collagen and HPMC, which was demonstrated by Fourier transform infrared spectroscopy. Additionally, the morphologies, mechanical properties and hydrophilicity of films were examined. The blend film exhibited a more homogeneous and compact structure compared with that of the collagen film, as observed from scanning electron microscopy and atomic force microscopy. The tensile strength, ultimate elongation and hydrophilicity of the blend film were superior to those of the pure collagen film. Furthermore, the introduction of polyethylene glycol 1500 had almost no influence on the thermal properties of the blend film but obviously improved its stretch-ability and smoothness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Production and assessing release of imipramine and magnesium from tablets].

    PubMed

    Kasperek, Regina; Zimmer, Łukasz; Szalast-Pietrzak, Agnieszka; Marzec, Zbigniew; Poleszak, Ewa

    2014-01-01

    In the pharmaceutical technology there is a trend to produce tablets composed of several medicinal substances to increase therapeutic effect and reduce the frequency of drug administration. In the literature there are reports concerning pharmacological studies in which a potentiation of the effects has been observed after a co-administration of antidepressant imipramine and magnesium. Currently, there is no formulation on the market comprising imipramine and magnesium, therefore, it was decided to produce uncoated tablets. In order to prepare the tablets by direct compression, it was necessary to select suitable excipients. The aim of the study was to elaborate the composition and to prepare the tablets with imipramine and magnesium, as well as to assess the quality of the tablets by physical characteristics and by the release study of the active substances. In order to prepare the tablets, compositions of different polymers and other excipients were added. The tablets were produced by direct compression method in a tablet press. Physical properties of the obtained tablets and the release of the active substances into an acidic medium in a paddle apparatus were tested. The contents of imipramine and magnesium were determined by different methods: spectrophotometrically and atomic absorption spectrometry, respectively. The composition of excipients necessary to produce tablets comprising imipramine and magnesium was established. All of prepared tablets were in compliance with the pharmacopoeial requirements. The release tests showed that above 80% of imipramine was released within 20-35 min and 80-76% of magnesium up to 45 min from the composed tablets and one-ingredient tablets, respectively. The compositions of excipients for tablets consisting of imipramine and magnesium were presented. The active substances were released within 45 min in the acidic medium, and the administration of these substances in the composed tablets did not affect pharmaceutical

  13. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    PubMed

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  14. Synthesis of PEG-rich PLGA-PEG-PLGA for the PLGA-PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keishi; Maeda, Tomoki; Hotta, Atsushi

    Poly (D,L-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly (D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) possesses moderate biocompatibility originating from the relatively shorter PEG block in its polymeric molecule. For the maximum utilization of the highly biocompatible PEG block, the PEG block should be relatively longer, and thus the PEG/PLGA ratio, the molecular weight ratio of PEG and PLGA, should be higher. In addition, for the wider use of PLGA-PEG-PLGA in the biological fields, the aqueous PLGA-PEG-PLGA solution should transfer from sol to gel states in response to the increase in temperature. It was reported, however, through the previous researches, that the PLGA-PEG-PLGA solution with a high PEG/PLGA ratio (above 0.5) would not exhibit thermoresponsive sol-gel transitions. In this work, PLGA-PEG-PLGAs with higher PEG/PLGA ratios were synthesized and the laponite, an inorganic nanoparticle, was added to the solutions to realize the thermoresponsive sol-gel transition. It was found that the PLGA-PEG-PLGA with the high PEG/PLGA ratio of 3.0 could exhibit the thermoresponsive sol-gel transition by adding laponite at 1.25 weight percent. The physical characteristics of the gel were also studied by the dynamic mechanical analysis (DMA) This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  15. Formulation and Evaluation of Multilayered Tablets of Pioglitazone Hydrochloride and Metformin Hydrochloride

    PubMed Central

    Chowdary, Y. Ankamma; Raparla, Ramakrishna; Madhuri, Muramshetty

    2014-01-01

    In the treatment of type 2 diabetes mellitus a continuous therapy is required which is a more complex one. As in these patients there may be a defect in both insulin secretion and insulin action exists. Hence, the treatment depends on the pathophysiology and the disease state. In the present study, multilayered tablets of pioglitazone hydrochloride 15 mg and metformin hydrochloride 500 mg were prepared in an attempt for combination therapy for the treatment of type 2 diabetes mellitus. Pioglitazone HCl was formulated as immediate release layer to show immediate action by direct compression method using combination of superdisintegrants, namely, crospovidone and avicel PH 102. Crospovidone at 20% concentration showed good drug release profile at 2 hrs. Metformin HCl was formulated as controlled release layer to prolong the drug action by incorporating hydrophilic polymers such as HPMC K4M by direct compression method and guar gum by wet granulation method in order to sustain the drug release from the tablets and maintain its integrity so as to provide a suitable formulation. The multilayered tablets were prepared after carrying out the optimization of immediate release layer and were evaluated for various precompression and postcompression parameters. Formulation F13 showed 99.97% of pioglitazone release at 2 hrs in 0.1 N HCl and metformin showed 98.81% drug release at 10 hrs of dissolution in 6.8 pH phosphate buffer. The developed formulation is equivalent to innovator product in view of in vitro drug release profile. The results of all these evaluation tests are within the standards. The procedure followed for the formulation of these tablets was found to be reproducible and all the formulations were stable after accelerated stability studies. Hence, multilayered tablets of pioglitazone HCl and metformin HCl can be a better alternative way to conventional dosage forms. PMID:26556204

  16. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    PubMed

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  17. Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets.

    PubMed

    Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit

    2004-02-12

    The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.

  18. Preparation of delayed release tablet dosage forms by compression coating: effect of coating material on theophylline release.

    PubMed

    El-Malah, Yasser; Nazzal, Sami

    2010-06-01

    In this study, compression-coated tablets were prepared and examined by real-time swelling/erosion analysis and dissolution studies. Of the coating materials, PVP showed no swelling behavior and had no impact on theophylline release. Polyox(®) exhibited swelling behavior of an entangled polymer, which was reflected in its > 14-hour delayed-release profile. Hydroxypropyl methylcellulose (HPMC), which revealed the characteristics of a disentangled polymer, caused a 2-h delay in theophylline release. Based on preliminary texture analysis data, Polyox(®)/PVP blends were used as coating materials to manipulate the onset of drug release from the compression-coated tablets. Of the blends, at a 1:1 ratio, for example, resulted in a burst release after 10 h, which demonstrated the feasibility of preparing delayed release dosage forms by compression coating. Furthermore, it was feasible to predict the dissolution behavior of polymers from their swelling/erosion data, which were generated from texture analysis.

  19. Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder.

    PubMed

    Ghosh, Indrajit; Snyder, Jennifer; Vippagunta, Radha; Alvine, Marilyn; Vakil, Ronak; Tong, Wei-Qin; Vippagunta, Sudha

    2011-10-31

    Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced

  20. Influence of ethylene oxide exposure on the extraction of indomethacin from dimethicone polymeric rods.

    PubMed

    Hurst, P R; Peplow, P V; von Dadelszen, P

    1982-05-01

    Dimethicone polymeric rods were made to contain 0.3, 2.0, or 3.3% by weight of indomethacin. For each different loading of indomethacin, some of the rods were treated with ethylene oxide at 55 degrees for 1 hr, while others were not exposed to the gas. Treated and untreated rods were sliced, placed in ethanol to extract the indomethacin, and the concentrations of indomethacin in the extracts determined by fluorometry and high-performance liquid chromatography (HPLC). After ethylene oxide treatment, the quantity of indomethacin in the extracts was significantly reduced in rods containing 0.3 and 2.0% indomethacin. For the rods containing 3.3% indomethacin, the recovery of the drug from treated rods was not significantly different from those not exposed.

  1. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    PubMed

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in

  2. Solid Dispersion of Curcumin as Polymeric Films for Bioenhancement and Improved Therapy of Rheumatoid Arthritis.

    PubMed

    Mande, Prashant P; Bachhav, Sagar S; Devarajan, Padma V

    2016-08-01

    The aim of our study was development of advanced third generation Curcumin self microemulsifying composition solid dispersion (Cur SMEC-SD) with high drug loading, improved stability, rapid in-vitro dissolution and enhanced bioavailability for improved therapy of rheumatoid arthritis. The Cur SMEC-SD comprising polymers (KollidonVA64[KVA], Eudragits, HPMC and Soluplus) and self microemulsifying composition of surfactant:co-surfactant:oil were coated onto rapidly disintegrating inert tablet core. SDs evaluated for stability, in-vitro release and bioenhancement. Cur SMEC-SDs exhibited high Cur loading of 45% w/w and microemulsion formation with globule size (~100 nm) irrespective of polymers. Among the polymers, SD with KVA revealed exceptionally low contact angle (7°C) and rapid in-vitro release (t50%-6.45 min). No crystallization was evident as confirmed by SEM, DSC and XRD and is attributed to SMEC aided solubilization/amorphisation, and interaction of KVA with Cur seen in the FTIR spectra. Stability was confirmed as per ICH guidelines. Remarkable bioenhancement with Cur SMEC-SD was confirmed by the > four fold and a two fold compared to Cur and Cur-SD without SMEC respectively. High efficacy ~ 80% compared to Indomethacin, seen with rheumatoid arthritis (RA) induced rats coupled with no adverse toxicity. The advanced third generation Cur SMEC-SD presents a practical technological advancement and suggests Cur SMEC-SD as promising alternative for RA therapy.

  3. The influence of plasticizers on the release of theophylline from microporous-controlled tablets.

    PubMed

    Lin, W J; Lee, H K; Wang, D M

    2004-10-19

    The aim of present work was to investigate the influence of plasticizer on the release of theophylline from microporous-controlled tablets. Three plasticizers, acetyltributyl citrate (ATBC), castor oil, and triacetin, were included in this study. These plasticizers reduced the crystallinity of poly(epsilon-caprolactone) (PCL)/poly(ethylene glycol) (PEG)-blended films, and the most prominent change of enthalpy of fusion was the film plasticized by triacetin. This might be due to triacetin penetrating into both PCL and PEG domains. However, the lipophilic property of castor oil only allowed it to alter the crystallization of hydrophobic PCL domain. The Young's modulus and the tensile strength of films showed a decreased tendency while increasing the amount of plasticizer. The change of elongation of plasticized blended films was irregular and was dependent of the type of plasticizer. The size of micropores formed in the presence of plasticizer was larger than those micropores formed in its absence. The fatty plasticizer, castor oil, altered the thermal and mechanical performance and pore size of films via soluble in PCL domain, which resulted in the release of theophylline from castor oil plasticized-coated tablets, which in turn enhanced and closed to a constant release pattern.

  4. Ulcerogenicity and effect on inhibition of prostaglandin generation of indometacin farnesil, a prodrug of indomethacin, in rat gastric mucosa: comparison with indomethacin or loxoprofen.

    PubMed

    Arakawa, T; Fukuda, T; Nakagawa, K; Higuchi, K; Watanabe, T; Tominaga, K; Kobayashi, K

    1995-01-01

    Indometacin farnesil was compared with indomethacin and loxoprofen in rats to ascertain whether it caused less gastric mucosal damage than the two older drugs. Damage was evaluated in terms of the size of ulcers that formed after oral administration and the changes in concentrations of prostaglandins E2 and I2 in the mucosa. Indometacin farnesil caused less damage than indomethacin and tended to cause less damage than loxoprofen. Indometacin farnesil was less potent than indomethacin in inhibiting prostaglandin generation by gastric mucosa. This property of indometacin farnesil may contribute to the low ulcerogenicity of this compound.

  5. Clinical pharmacology of indomethacin in preterm infants: implications in patent ductus arteriosus closure.

    PubMed

    Pacifici, Gian Maria

    2013-10-01

    Indomethacin is a non-steroidal anti-inflammatory drug that is a potent inhibitor of prostaglandin E(2) synthesis. After birth, the ductus arteriosus closes spontaneously within 2-4 days in term infants. The major factor closing the ductus arteriosus is the tension of oxygen, which increases significantly after birth. Prostaglandin E(2) has the opposite effect to that of oxygen; it relaxes smooth muscle and tends to inhibit the closure of the ductus arteriosus. In preterm infants with respiratory distress syndrome, the ductus arteriosus fails to close (patent ductus arteriosus [PDA]) because the concentration of prostaglandin E2 is relatively high. PDA occurs in more than 70 % of neonates weighing less than 1,500 g at birth. The aim of this article was to review the published data on the clinical pharmacology of indomethacin in preterm infants in order to provide a critical analysis of the literature and a useful tool for physicians. The bibliographic search was performed electronically using the PubMed and EMBASE databases as search engines and February 2012 was the cutoff point. A remarkable interindividual variability was observed for the half-life (t(½)), clearance (CL), and volume of distribution (V(d)) of indomethacin. Prophylactic indomethacin consists of a continuous infusion of low levels of indomethacin and may be useful in preterm infants. Extremely preterm infants are less likely to respond to indomethacin. Infants with a postnatal age of 2 months do not respond to treatment with indomethacin. Indomethacin has several adverse effects, the most common of which is renal failure. An increase in serum creatinine of ≥0.5 % mg/dL after indomethacin was observed in about 10-15 % of the patients and creatinine returns to a normal level about 1 week after cessation of therapy. Indomethacin should be administered intravenously by syringe pump for at least 30 min to minimize adverse effects on cerebral, gastrointestinal, and renal blood flow velocities. A

  6. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  7. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats

    PubMed Central

    Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi

    2014-01-01

    AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600

  8. Optimization and evaluation of clarithromycin floating tablets using experimental mixture design.

    PubMed

    Uğurlu, Timucin; Karaçiçek, Uğur; Rayaman, Erkan

    2014-01-01

    The purpose of the study was to prepare and evaluate clarithromycin (CLA) floating tablets using experimental mixture design for treatment of Helicobacter pylori provided by prolonged gastric residence time and controlled plasma level. Ten different formulations were generated based on different molecular weight of hypromellose (HPMC K100, K4M, K15M) by using simplex lattice design (a sub-class of mixture design) with Minitab 16 software. Sodium bicarbonate and anhydrous citric acid were used as gas generating agents. Tablets were prepared by wet granulation technique. All of the process variables were fixed. Results of cumulative drug release at 8th h (CDR 8th) were statistically analyzed to get optimized formulation (OF). Optimized formulation, which gave floating lag time lower than 15 s and total floating time more than 10 h, was analyzed and compared with target for CDR 8th (80%). A good agreement was shown between predicted and actual values of CDR 8th with a variation lower than 1%. The activity of clarithromycin contained optimizedformula against H. pylori were quantified using well diffusion agar assay. Diameters of inhibition zones vs. log10 clarithromycin concentrations were plotted in order to obtain a standard curve and clarithromycin activity.

  9. Development and evaluation of orally disintegrating tablets comprising taste-masked mirtazapine granules.

    PubMed

    Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Vural, İmran; Ünlü, Nurşen

    2018-06-01

    Orally disintegrating tablets (ODTs) provide an important treatment option for pediatric, geriatric and psychiatric patients. In our previous study, we have performed the initial studies for the formulation development and characterization of new ODT formulations containing a bitter taste drug, mirtazapine, coated with 6% (w/w) Eudragit ® E-100 (first group of formulations, FGF) without taste evaluation. In present study, coating ratio of the drug was increased to 8% (w/w) (second group of formulations, SGF) to examine the effect of increased coating ratio of drug on in vitro characterization of the formulations including in vitro taste masking study. Coacervation technique using Eudragit ® E-100 was employed to obtain taste-masked mirtazapine granules. FGF and SGF were compared to original product (Remeron SolTab, an antidepressant drug which produced by pellet technology) in terms of in vitro permeability, in vitro taste masking efficiency which was performed by dissolution studies in salivary medium and dissolution stability. Also, the other tablet characteristics (such as diameter, thickness) of SGF were examined. The disintegration time of the SGF were found as A1 < A2 < A3 < A5 < A4 (8% Eudragit ® E-100), but all of the formulations dissolved under 30 seconds and friability values were less than 1%. In vitro taste masking efficiency studies demonstrated that C2 formulation (in FGF) had the most similar dissolution profile to Remeron SolTab. According to these findings, B2 or C2 (with citric acid or sodium bicarbonate, respectively, with 6% Eudragit ® E-100) formulations could be promising alternatives to Remeron SolTab.

  10. Gastroprotective effect of garlic in indomethacin induced gastric ulcer in rats.

    PubMed

    El-Ashmawy, Nahla E; Khedr, Eman G; El-Bahrawy, Hoda A; Selim, Hend M

    2016-01-01

    Garlic, in its natural plant state, has a great history in ancient medicine as a remedy for many diseases. In our study, the gastroprotective effect of aged garlic extract (AGE) and the possible underlying mechanisms were investigated in an experimental model of indomethacin-induced gastric ulcer. Male Wistar rats were divided into four groups: (normal control, n = 20), ulcer control (indomethacin group, n = 20), (omeprazole group, n = 30) and (garlic group, n = 20). Each dose of garlic and omeprazole was given to rats orally daily for 10 consecutive days before induction of ulcer by indomethacin. Indomethacin was given as a single oral dose (100 mg/kg). Four hours later after indomethacin treatment, the rats were sacrificed and gastric tissue was obtained for histopathological examination, calculation of ulcer index and measurement of oxidative stress markers as well as gastroprotective mediators. The results showed that indomethacin induced gastric ulcer (ulcer index = 2900), was associated with a significant increase of tumor necrosis factor-alpha and malondialdehyde, and significant decrease of the gastroprotective mediators prostaglandin E2, glutathione (GSH) and nitric oxide (NO) compared with normal control. Pretreatment with AGE produced comparable results with those obtained in the omeprazole group; the preventive index in the AGE group was 83.4% compared with 94.5% in the omeprazole group. The prophylactic role of AGE in indomethacin-induced ulcer was, in part, mediated by decreasing oxidative stress and increasing gastric level of PGE2, GSH, and NO. AGE corrected the histopathological abnormalities in gastric tissue and proved a promising gastroprotective role in gastric ulcer. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action.

    PubMed

    Pérez, Yohani; Oyárzabal, Ambar; Mas, Rosa; Molina, Vivian; Jiménez, Sonia

    2013-01-01

    D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.

  12. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  13. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  14. Profiling indomethacin impurities using high-performance liquid chromatography and nuclear magnetic resonance.

    PubMed

    Hess, S; Teubert, U; Ortwein, J; Eger, K

    2001-12-01

    The anti-inflammatory drug indomethacin was investigated regarding new related impurities. Therefore, related substances 2-9 were prepared by independent synthesis and physicochemically characterized. To determine indomethacin and its related substances, a new HPLC-UV method was developed and validated. Indomethacin and its impurities were eluted on a C(18) column with a mobile phase consisting of methanol and an aqueous solution of 0.2% phosphoric acid at a flow rate of 1.5 ml/min and were quantified by UV detection at 320 nm. Overall, the HPLC-UV method was simple and reliable for the detection of eight impurities in indomethacin. In addition to the HPLC-UV method, 1H nuclear magnetic resonance (NMR) was used to investigate indomethacin regarding impurities. For that purpose, related substances 2-9 were systematically added to indomethacin and investigated. The NMR method was found to be very useful for the identification of impurities in bulk substance without prior separation. Both HPLC-UV and NMR were used to analyze 38 batches of indomethacin available on the European market. The outcome was that 42% of the batches did not meet the compendial requirements although they met the specifications of current compendial methods. Some batches contained the previously undescribed impurity 8, while other batches contained by-products from two distinct synthetic routes. The methods presented herein are important contributions to the ongoing efforts to reduce impurities and therefore the risk of adverse side-effects in drugs that are no longer under patent protection.

  15. A randomized trial of rectal indomethacin and sublingual nitrates to prevent post-ERCP pancreatitis.

    PubMed

    Sotoudehmanesh, Rasoul; Eloubeidi, Mohamad Ali; Asgari, Ali Ali; Farsinejad, Maryam; Khatibian, Morteza

    2014-06-01

    Acute pancreatitis is the most common adverse event of endoscopic retrograde cholangiopancreatography (ERCP). Recent data suggest that indomethacin can reduce the risk of post-ERCP pancreatitis (PEP) in high-risk individuals. However, whether the combination of indomethacin and sublingual nitrates is superior to indomethacin alone is unknown. Therefore, we aimed to evaluate the efficacy of rectally administered indomethacin plus sublingual nitrate compared with indomethacin alone to prevent PEP. During a 17-month period, all eligible patients who underwent ERCP were enrolled in this study. We excluded patients who had undergone a prior endoscopic sphincterotomy. In a double-blind controlled randomized trial, patients received a suppository containing 100 mg of indomethacin, plus 5 mg of sublingual nitrate (group A), or a suppository containing 100 mg of indomethacin, plus sublingual placebo (group B), before ERCP. Serum amylase levels and clinically pertinent evaluations were measured in all patients after ERCP. Of the 300 enrolled patients, 150 received indomethacin plus nitrate. Thirty-three patients developed pancreatitis: 10 (6.7%) in group A and 23 (15.3%) in group B (P=0.016, risk ratio=0.39, 95% confidence intervals (CI): 0.18-0.86). More than 80% of the patients were at high risk of developing pancreatitis after ERCP. Absolute risk reduction, relative risk reduction, and number needed to treat for the prevention of PEP were 8.6% (95% CI: 4.7-14.5), 56.2% (95% CI: 50.6-60.8), and 12 (95% CI: 7-22), respectively. Combination of rectal indomethacin and sublingual nitrate given before ERCP was significantly more likely to reduce the incidence of PEP than indomethacin suppository alone. Multicenter trials to confirm these promising findings are needed.

  16. Indomethacin-associated neutropenia with subsequent Gram-negative sepsis in a preterm infant. Cause or coincidence?

    PubMed

    Bengtsson, B-O S; Milstein, J M; Sherman, M P

    2006-06-01

    A preterm male infant with a patent ductus arteriosus developed neutropenia during treatment with indomethacin. Afterward, the mother described her own history of indomethacin-associated neutropenia. During the recovery from the neutropenia, the infant became septic with bacteremia caused by Enterobacter cloacae. Although indomethacin-related neutropenia has been described in adults, no case in a neonate has been reported. If neutropenia occurs after indomethacin therapy in a neonate, a familial history of indomethacin-associated neutropenia should be sought and the increased risk of infection should be considered.

  17. Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.

    PubMed

    Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas

    2005-11-01

    We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.

  18. Effect of PEG6000 on the in vitro and in vivo transdermal permeation of ondansetron hydrochloride from EVA1802 membranes.

    PubMed

    Krishnaiah, Yellela S R; Rama, Bukka; Raghumurthy, Vanambattina; Ramanamurthy, Kolapalli V; Satyanarayana, Vemulapalli

    2009-01-01

    The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.

  19. Indomethacin causes prostaglandin D(2)-like and eotaxin-like selective responses in eosinophils and basophils.

    PubMed

    Stubbs, Victoria E L; Schratl, Petra; Hartnell, Adele; Williams, Timothy J; Peskar, Bernhard A; Heinemann, Akos; Sabroe, Ian

    2002-07-19

    We investigated the actions of a panel of nonsteroidal anti-inflammatory drugs on eosinophils, basophils, neutrophils, and monocytes. Indomethacin alone was a potent and selective inducer of eosinophil and basophil shape change. In eosinophils, indomethacin induced chemotaxis, CD11b up-regulation, respiratory burst, and L-selectin shedding but did not cause up-regulation of CD63 expression. Pretreatment of eosinophils with indomethacin also enhanced subsequent eosinophil shape change induced by eotaxin, although treatment with higher concentrations of indomethacin resulted in a decrease in the expression of the major eosinophil chemokine receptor, CCR3. Indomethacin activities and cell selectivity closely resembled those of prostaglandin D(2) (PGD(2)). Eosinophil shape change in response to eotaxin was inhibited by pertussis toxin, but indomethacin- and PGD(2)-induced shape change responses were not. Treatment of eosinophils with specific inhibitors of phospholipase C (U-73122), phosphatidylinositol 3-kinase (LY-294002), and p38 mitogen-activated protein kinase (SB-202190) revealed roles for these pathways in indomethacin signaling. Indomethacin and its analogues may therefore provide a structural basis from which selective PGD(2) receptor small molecule antagonists may be designed and which may have utility in the treatment of allergic inflammatory disease.

  20. QbD-Oriented Development and Characterization of Effervescent Floating-Bioadhesive Tablets of Cefuroxime Axetil.

    PubMed

    Bansal, Sanjay; Beg, Sarwar; Garg, Babita; Asthana, Abhay; Asthana, Gyati S; Singh, Bhupinder

    2016-10-01

    The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60% > 6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.

  1. Aspirin- and Indomethacin-Induced Ulcers and their Antagonism by Anthihistamines

    NASA Technical Reports Server (NTRS)

    Brown, Patricia A.; Sawrey, James M.; Vernikos, Joan

    1978-01-01

    Gastric ulceration produced by aspirin and indomethacin was compared in acutely stressed and non-stressed rats. We found a synergism between these anti-inflammatory agents and acute stress in the production of gastric ulcers. Even at relatively high doses, neither agent caused appreciable gastric damage in non-stressed rats, whereas moderate doses of both agents produced massive ulceration in stressed rats. The synergism appears unrelated to the effect of these agents on the pituitary-adrenal response. The size and regional distribution of ulcers produced by aspirin and indomethacin in stressed rats were comparable. However, the dose--response curves of the two drugs were markedly dissimilar. Furthermore, the ulceration produced by indomethacin was attenuated by both H(sub 1) and H(sub 2) histamine receptor antagonists, whereas ulceration produced by aspirin was attenuated only by an H(sub 2) antagonist. The results suggest that the ulcerogenic mechanism of indomethacin may differ from that of aspirin and add to the growing evidence on the importance of endogenous histamine in various forms of gastric ulceration.

  2. Influence of beta-cyclodextrin complexation on glipizide release from hydroxypropyl methylcellulose matrix tablets.

    PubMed

    Shivakumar, H N; Desai, B G; Pandya, Saumyak; Karki, S S

    2007-01-01

    Glipizide was complexed with beta-cyclodextrin in an attempt to enhance the drug solubility. The phase solubility diagram was classified as A(L) type, which was characterized by an apparent 1:1 stability constant that had a value of 413.82 M(-1). Fourier transform infrared spectrophotometry, differential scanning calorimetry, powder x-ray diffractometry and proton nuclear magnetic resonance spectral analysis indicated considerable interaction between the drug and beta-cyclodextrin. A 2(3) factorial design was employed to prepare hydroxypropyl methylcellulose (HPMC) matrix tablets containing the drug or its complex. The effect of the total polymer loads (X1), levels of HPMC K100LV (X9), and complexation (X3) on release at first hour (Y1), 24 h (Y2), time taken for 50% release (Y3), and diffusion exponent (Y4) was systematically analyzed using the F test. Mathematical models containing only the significant terms (P < 0.05) were generated for each parameter by multiple linear regression analysis and analysis of variance. Complexation was found to exert a significant effect on Y1, Y2, and Y3, whereas total polymer loads significantly influenced all the responses. The models generated were validated by developing two new formulations with a combination of factors within the experimental domain. The experimental values of the response parameters were in close agreement with the predicted values, thereby proving-the validity of the generated mathematical models.

  3. Formulation, development, and evaluation of floating pulsatile drug delivery system of atenolol.

    PubMed

    Jagdale, Swati C; Sali, Monali S; Barhate, Ajay L; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2013-01-01

    The objective of this work was to develop and evaluate a floating-pulsatile drug delivery of atenolol. The floating-pulsatile concept was applied to increase the gastric residence of the dosage form by having lag phase followed by a burst release. The system was generated which consisted of three different parts: a core tablet, containing the active ingredient; an erodible outer shell; and a top cover buoyant layer. The dry, coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with hydroxypropyl methylcellulose (HPMC) K100 M, citric acid, and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their physical properties in vitro release as well as in vivo behavior. The results showed that K3 (180 mg of HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulation, with lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively. Floating time was controlled by the quantity and composition of the buoyant layer. In-vitro results point out the capability of the system with its prolonged residence of the tablets in the stomach and release of drug after a programmed lag time. This was confirmed by in vivo x-ray technique. The objective of the present work was to develop a floating-pulsatile oral drug delivery system of atenolol with addition of hydroxylpropyl methylcellulose (HPMC) K100 M, HPMC K4 M, and HPMC E15 LV in different ratios with citric acid and sodium bicarbonate as gas-forming agents. The system consist of three different parts: a core tablet, containing the active ingredient; a bottom layer that erodes; and a top cover floating layer. Atenolol, a β-blocker, is prescribed widely in diverse

  4. Effect of prostaglandin on indomethacin-induced increased intestinal permeability in man.

    PubMed

    Bjarnason, I; Smethurst, P; Clark, P; Menzies, I; Levi, J; Peters, T

    1989-01-01

    This study examines whether NSAID induced disruption of small intestinal integrity is preventable by concomitant prostaglandin administration, and whether prostaglandins themselves interfere with intestinal permeability and absorption. Twelve subjects underwent testing following treatment as indicated: baseline, no treatment rioprostil, 300 micrograms, at -9 and -1 h indomethacin, 75 mg and 50 mg, at -9 and -1 h respectively rioprostil plus indomethacin, regimen as above. At 0800 h (0 h) subjects drink a solution containing 51CrEDTA 100 microCi, L-rhamnose 0.5 g, D-xylose 0.5 g and 3-O-methyl-glucose 0.2 g; this is followed by a 5-h urine collection. The amount of test substance in the urine reflects non-mediated intercellular and transcellular permeability, and passive and active carrier mediated transport systems, respectively. Permeation of L-rhamnose, D-xylose and 3-O-methyl-glucose is unaffected by rioprostil and/or indomethacin. Indomethacin significantly increases intestinal permeability to 51CrEDTA; coadministration of rioprostil, however, significantly decreases this detrimental effect of indomethacin. These findings suggest that prostaglandins are essential for maintaining small intestinal integrity in man and lend further support to the suggestion that NSAIDs damage the small intestine by reducing mucosal prostaglandin synthesis.

  5. In vitro dissolution and in vivo gamma scintigraphic evaluation of press-coated salbutamol sulfate tablets.

    PubMed

    Li, Wei; Shi, Cai-Hong; Sheng, Yi-Ling; Cui, Ping; Zhao, Yu-Qing; Zhang, Xiang-Rong

    2013-12-01

    The aim of this study was to investigate the in vitro and in vivo performance of salbutamol sulfate press-coated tablets for delayed release. The in vitro release behavior of press-coated tablets with the outer layer of PEG 6000/ Eudragit S100 blends (2:1) in pH 1.2 (0.1 mol L-1 HCl) and then pH 6.8 buffer solution was examined. Morphological change of the press-coated tablet during in vitro release was recorded with a digital camera. Release of salbutamol sulfate from press-coated tablets was less than 5 % before 3 h and was completed after 8 h in pH 6.8 phosphate buffer solution. In vivo gamma scintigraphy study carried out on healthy men indicated that the designed system released the drug in lower parts of the GI tract after a lag time of 5 hours. The results showed the capability of the system of achieving delayed release of the drug in both in vitro and in vivo gamma scintigraphy studies.

  6. Optimization of poorly compactable drug tablets manufactured by direct compression using the mixture experimental design.

    PubMed

    Martinello, Tiago; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Taqueda, Maria Elena Santos; Consiglieri, Vladi O

    2006-09-28

    The poor flowability and bad compressibility characteristics of paracetamol are well known. As a result, the production of paracetamol tablets is almost exclusively by wet granulation, a disadvantageous method when compared to direct compression. The development of a new tablet formulation is still based on a large number of experiments and often relies merely on the experience of the analyst. The purpose of this study was to apply experimental design methodology (DOE) to the development and optimization of tablet formulations containing high amounts of paracetamol (more than 70%) and manufactured by direct compression. Nineteen formulations, screened by DOE methodology, were produced with different proportions of Microcel 102, Kollydon VA 64, Flowlac, Kollydon CL 30, PEG 4000, Aerosil, and magnesium stearate. Tablet properties, except friability, were in accordance with the USP 28th ed. requirements. These results were used to generate plots for optimization, mainly for friability. The physical-chemical data found from the optimized formulation were very close to those from the regression analysis, demonstrating that the mixture project is a great tool for the research and development of new formulations.

  7. Poly(glycerol adipate) - indomethacin drug conjugates - synthesis and in vitro characterization.

    PubMed

    Wersig, T; Hacker, M C; Kressler, J; Mäder, K

    2017-10-05

    The linear biodegradable polyester poly(glycerol adipate) (PGA) was synthesized via enzymatic polycondensation using lipase B from Candida antarctica (CAL-B). Every monomer unit of PGA possesses a pendant hydroxyl group which is responsible for the hydrophilic character and moisture swelling. These OH groups were esterified to different degrees with the anti-inflammatory drug indomethacin in order to create a prodrug with a pH-sensitive linker for modified drug release. The structure of the conjugates was determined via ATR FT-IR spectroscopy, NMR spectroscopy, GPC and UV/VIS spectroscopy. The physical properties of polymers with different drug load were investigated using DSC, contact angle measurements and oscillatory rheology. Drug release was monitored over one month in vitro. A very slow, but continuous release was observed in PBS. Slightly acidic conditions and lipase activity are accelerating the indomethacin release. Therefore, poly(glycerol adipate) - indomethacin conjugates are promising prodrugs for the local sustained release of indomethacin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    PubMed

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p

  9. Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: development, optimization and in vitro/in vivo studies.

    PubMed

    Basalious, Emad B; El-Sebaie, Wessam; El-Gazayerly, Omaima

    2013-01-01

    A liquisolid orodispersible tablet of felodipine, a BCS Class II drug, was developed to improve drug dissolution and absorption through the buccal mucosa for management of hypertensive crisis. A 24 full-factorial design was applied to optimize felodipine liquisolid systems (FLSs) having acceptable flow properties and possessing enhanced drug dissolution rates. Four formulation variables; The liquid type, X1 (PG or PEG), drug concentration, X2 (10% and 20%), type of coat, X3 (Aerosil® and Aeroperl®) and excipients ratio, X4 (10 and 20) were included in the design. The systems were assessed for dissolution and flow properties. Following optimization, the formulation components (X1, X2, X3 and X4) were PEG, 10%, Aerosil® and 20, respectively. The optimized FLS was compressed into felodipine liquisolid orodispersible tablet using Prosolv® as carrier material (FLODT-2). The in vitro and in vivo disintegration times of FLODT-2 were 9 and 7 s, respectively. The in vivo pharmacokinetic study using human volunteers showed a significant increase in dissolution and absorption rates of the formulation of FLODT-2 compared to soft gelatin capsules filled with felodipine solution in PEG under the same conditions. Our results proposed that the optimized FLODT formulation could be promising to manage hypertensive crisis.

  10. Formulation Optimization of Gastro-Retention Tablets of Paeonol and Efficacy in Treatment of Experimental Gastric Ulcer.

    PubMed

    Zhang, Xitong; Zhang, Yue; Han, Han; Yang, Jun; Xu, Benliang; Wang, Bing; Zhang, Tong

    2017-08-01

    This study aims to develop a gastroretentive sustained-release drug delivery system of paeonol using floating properties and to investigate its therapeutic effects in rat models. The gastric retention tablets of paeonol (GRT-Ps) were prepared by a direct compression method, and the Box-Behnken design was used to optimize its formulation. The optimized formulation containing 15% NaHCO 3 and a 2 : 1 ratio of paeonol and HPMC-K4M floated within 1 min and remained afloat for more than 8 h in the simulated gastric fluid (200 mL, pH=1.2) and simultaneously showed the desired sustained drug release. Moreover, small tablets (3 mm) were prepared according to the same formulation and the process technology of big tablets (8 mm). A similar drug release behavior was observed between two kinds of tablets (f 2 =52), and then the evaluations of efficacy and retention capacity in vivo were conducted with small tablets. In vivo retention studies showed that the T max (2 h) of GRT-P in rat stomachs was significantly extended compared with the T max (0.5 h) of normal reference preparation. Compared with the model group, low and high doses of GRT-P could significantly inhibit the increase of malondialdehyde (MDA) in serum. Studies showed that the higher MDA content in inflammation tissue increases the inflammatory response. The ulcer inhibition rates of GRT-P in the high-dose group were 59.0 and 64.1% in the ranitidine group. Results indicated that GRT-Ps had the potential for a sustained drug release and an enhanced gastric residence time with relatively high drug concentrations in the tissue distribution.

  11. Site specific solubility improvement using solid dispersions of HPMC-AS/HPC SSL--mixtures.

    PubMed

    Zecevic, Damir Elmar; Meier, Robin; Daniels, Rolf; Wagner, Karl-Gerhard

    2014-07-01

    Many upcoming drug candidates are pH-dependent poorly soluble weak bases in the pH range of the gastrointestinal tract. This often leads to a high in vivo variability and bioavailability issues. Aiming to overcome these limitations, the design of solid dispersions for site specific dissolution improvement or maintenance of a potent supersaturation over the entire gastro-intestinal pH-range, is proposed to assure a reliable drug therapy. Solid dispersions containing different ratios of Dipyridamole (DPD) or Griseofulvin (GRI) and the enteric polymer hydroxypropylmethylcellulose-acetate succinate (HPMC-AS) and the water soluble low-viscosity hydroxypropylcellulose (HPC-SSL) were prepared by hot melt extrusion (HME). The solid dispersions were evaluated for their solid state, dissolution characteristics applying a three pH-step dissolution method following an acidic to neutral pH transition and stability. The use of HPMC-AS in binary mixtures with DPD and GRI facilitated increased solubility and supersaturation at pH-controlled release of the preserved amorphous state of the dispersed drug, which even inverted the pH-dependent solubility profile of the weakly basic model drug (Dipyridamole). I.e. a potent site specific delivery system was created. With ternary solid dispersions of API, HPMC-AS and HPC-SSL, tailored release profiles with superior supersaturation over the applied pH-range could be obtained. At the same time, binary and ternary mixtures showed favorable stability properties at a temperature difference between glass transition temperature and the applied storage temperature of down to 16°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25 MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (X{sub c}) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitablemore » for food packing and other biomedical applications.« less

  13. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  14. Protective effects of escin against indomethacin-induced gastric ulcer in mice.

    PubMed

    Wang, Tian; Zhao, Shanshan; Wang, Yucun; Yang, Yujiao; Yao, Le; Chu, Liuxiang; Du, Hanhan; Fu, Fenghua

    2014-12-01

    Escin, a natural mixture of triterpenoid saponin isolated from the seed of the horse chestnut, is reported to have a potent antiulcer activity against ethanol-induced gastric mucosal lesions. This study investigated the possible mechanisms underlying the gastroprotective effect of escin against indomethacin-induced gastric ulcer in mice. Gastric ulceration was induced by a single intragastric administration of indomethacin (18 mg/kg). The mice underwent intragastric treatment with escin at doses of 0.45, 0.9 or 1.8 mg/kg. Gastric lesion was estimated morphometrically and histopathologically 6 h after the indomethacin administration. The antioxidative parameters in gastric mucosa were measured. Moreover, the activity of myeloperoxidase and the contents of TNF-α, P-selectin and VCAM-1 in gastric tissues were determined. The results showed that escin protected gastric tissues against indomethacin-induced gastropathy as demonstrated from a reduction in the ulcer index and an attenuation of histopathologic changes. Escin caused significant reductions of the contents of malondialdehyde, TNF-α, P-selectin, VCAM-1 and myeloperoxidase activity. The altered activities of superoxide dismutase, catalase and glutathione peroxidase in the stomach tissues were also ameliorated by escin treatment. The present study demonstrated that escin had a protective effect against indomethacin-induced gastric ulcer in mice, not only by virtue of its antioxidant potential, but also due to its anti-inflammatory effect.

  15. On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient.

    PubMed

    Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Zeitler, J Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik; Gane, Patrick

    2017-06-30

    The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels. Tablets from the defined API/MCC ratios are made under conditions of controlled porosity and tablet thickness, resulting from different compression conditions, and thus compaction levels. Mercury intrusion porosimetry is used to establish the accessible pore volume, pore size distribution and, adopting the observed region of elastic intrusion-extrusion at high pressure, an elastic bulk modulus of the skeletal material is recorded. Porosity values are compared to previously published values derived from terahertz (THz) refractive index data obtained from exactly the same tablet sample sets. It is shown that the elastic bulk modulus is dependent on API wt% loading under constant tablet preparation conditions delivering equal dimensions and porosity. The findings are considered of novel value in respect to establishing consistency of tablet production and optimisation of physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Clinical pharmacology of ibuprofen and indomethacin in preterm infants with patent ductus arteriosus.

    PubMed

    Pacifici, Gian Maria

    2014-01-01

    Ibuprofen and indomethacin are potent non-selective cyclo-oxygenase inhibitors and inhibit prostaglandin E2 synthesis. The patent ductus arteriosus (PDA) occurs in more than 70% of preterm infants weighing <1500 g. Prostaglandin E2 relaxes smooth muscle, tends to inhibit the closure of PDA, yields vasodilatation of the afferent renal arterioles and maintains glomerular filtration rate (GFR). Ibuprofen and indomethacin inhibiting prostaglandin E2 synthesis close PDA and reduce GFR with consequent decrease of urine output and increase of serum creatinine concentrations. The aims of this study are to give the definitive estimates of PDA closure rate following ibuprofen or indomethacin treatment and to evaluate the extent of renal side effects following the administration of these drugs to preterm infants. Other aims are to review the metabolism and the pharmacokinetics of ibuprofen and indomethacin in preterm infants with PDA. The bibliographic search was performed using PubMed and EMBASE databases as search engines, January 2013 was the cutoff point. The %PDA closed by ibuprofen (n=24) and indomethacin (n=24) is 77.7±14.1 and 77.3±11.0, respectively. For ibuprofen, the gestational age of the infants included in the study ranged from 25.0 to 39.0 weeks (mean±SD=29.3±3.1 weeks). The %PDA did not correlate with the gestational age (p=0.2516). For indomethacin, the gestational age of infants included in the study ranged from 25.0 and 39.0 weeks (mean±SD=29.4±2.9 weeks). The %PDA did not correlate with the gestational age (p=0.3742). The treatment with ibuprofen reduces the urine output and increases the serum creatinine concentrations less extensively than indomethacin. The half-life (t1/2) of ibuprofen and indomethacin is lengthened and the clearance is reduced in preterm infants as compared with fullterm infants. Ibuprofen and indomethacin are equally effective in closing PDA. Treatment with ibuprofen decreases the risk of renal failure. Ibuprofen has the most

  17. Indomethacin prophylaxis or expectant treatment of patent ductus arteriosus in extremely low birth weight infants?

    PubMed

    Cordero, L; Nankervis, C A; Delooze, D; Giannone, P J

    2007-03-01

    Indomethacin prophylaxis or expectant treatment are common strategies for the prevention or management of symptomatic patent ductus arteriosus (sPDA). To compare the clinical responses of extremely low birth weight (ELBW) infants to indomethacin prophylaxis with that of other infants who were managed expectantly by being treated with indomethacin or surgically only after an sPDA was detected. Retrospective cohort investigation of 167 ELBW infants who received indomethacin prophylaxis (study) and 167 ELBW infants (control) treated expectantly who were matched by year of birth (1999 to 2006), birth weight, gestational age (GA) and gender. Mothers of the two groups of infants were comparable demographically and on the history of preterm labor, pre-eclampsia, antepartum steroids and cesarean delivery. Study and control infants were similar in birth weight, GA, low 5 min Apgar scores, surfactant administration, the need for arterial blood pressure control, bronchopulmonary dysplasia and neonatal mortality. Necrotizing enterocolitis, spontaneous intestinal perforations, intraventricular hemorrhage grade III to IV, periventricular leukomalacia and stage 3 to 5 retinopathy of prematurity occurred also with similar frequency in both groups of infants. In the indomethacin prophylaxis group, 29% of the infants developed sPDA, and of them 38% responded to indomethacin treatment. In the expectantly treated group, 37% developed sPDA, and of them 59% responded to indomethacin treatment. Overall, surgical ligation rate for sPDA was similar between both groups of patients. In our experience, indomethacin prophylaxis does not show any advantages over expectant early treatment on the management of sPDA in ELBW infants. Although no deleterious effects were observed, prophylaxis exposed a significant number of infants who may have never developed sPDA, to potential indomethacin-related complications.

  18. Alternative method for enteric coating of HPMC capsules resulting in ready-to-use enteric-coated capsules.

    PubMed

    Huyghebaert, Nathalie; Vermeire, An; Remon, Jean Paul

    2004-04-01

    The aim of this study was to develop an alternative method for enteric coating of HPMC capsules that avoids the sealing step before coating, resulting in ready-to-use enteric-coated capsules for the use in retail or hospital pharmacy or R&D sections of pharmaceutical industry and for the production of enteric-coated heat and moisture sensitive biomaterials. HPMC caps and bodies 00 (Vcaps, Capsugel) were coated separately in a fluid bed apparatus prior to filling (GPCG-1, Glatt) with Eudragit L30D-55 or Eudragit FS 30 D (Röhm), Aqoat AS-HF (Shin-Etsu) and Sureteric (Colorcon), using an optimised coating process. The coated bodies were filled and closed with the coated caps without encountering problems of coating damage. The release in 0.1N HCl after 2h from capsules coated with Eudragit L30D-55, Eudragit FS 30 D, Aqoat AS-HF and Sureteric was 0.6+/-.03, 0.6+/-0.3, 1.2+/-0.2 and 7.3+/-1.9%, respectively. The alternative method was reproducible and offered a way to overcome the time-consuming and expensive sealing step required using the conventional coating procedure. The obtained enteric-coated HPMC capsules can be stored (un)-filled for at least 6 months without loosing enteric properties.

  19. Improvement of sticking in tablet compaction for tocopherol acetate.

    PubMed

    Sakata, Yukoh; Yamaguchi, Hiroyuki

    2011-09-01

    We have found that the addition of xylitol solution effectively improves the sticking observed in tablet compaction using a powder prescription including kneading mixtures comprising tocopherol acetate (TA)/Florite(®) RE (FLR) blends. The aim of the present study was to investigate the distribution states of TA and xylitol in kneaded mixtures comprising TA/FLR/xylitol blends and the particle states of these mixtures in order to derive an appropriate powder formulation for tablet compaction. Nitrogen gas adsorption analysis revealed that xylitol is distributed on the interparticle and intraparticle pores of FLR in the same manner as TA. Moreover, it was found that xylitol was distributed in an incomplete crystalline form because of its interaction with FLR particles in the kneaded mixtures comprising TA/FLR/xylitol blends. It was also observed that the surfaces of the particles of the kneaded mixtures comprising TA/FLR blends changed from rough to smooth because of kneading with xylitol. The occurrence of sticking can be prevented not only by the addition of xylitol but also by changing the particle states of TA/FLR/xylitol blends.

  20. Factors affecting successful closure of hemodynamically significant patent ductus arteriosus with indomethacin in extremely low birth weight infants.

    PubMed

    Yang, Chuan-Zhong; Lee, Jiun

    2008-05-01

    The incidence of patent ductus arteriosus (PDA) is high in extremely low birth weight (ELBW) infants. Indomethacin has been widely used in the prophylaxis and treatment of hemodynamically significant PDA. This retrospective study was undertaken to identify factors such as birth weight, gestational age, gender, fetal growth retardation, ductal size, timing of the first dose of indomethacin and side effects of indomethacin, which may affect the successful closure of the PDA with indomethacin in ELBW infants. A cohort of 139 ELBW infants who had received indomethacin treatment for PDA during a consecutive period of more than three years (September 2000 to December 2003) was retrospectively analyzed. Administration of indomethacin was associated with closure of PDA in 108 (77.7%) of 139 ELBW infants, and only 19.4% of infants required surgical ligation of the ductus eventually. There was no significant relationship between closure of PDA with gestational age, gender, fetal growth retardation, and ductal size. A higher birth weight and early use of indomethacin after birth could significantly increase the closure rate of PDA (P<0.05). Side effects of indomethacin such as transient oliguria and hyponatremia during indomethacin therapy did not affect PDA closure. Indomethacin is effective for the treatment of PDA in ELBW infants. A higher rate of ductal closure is related to the increase of birth weight. PDA closure with indomethacin is age-related, and early administration of indomethacin could increase PDA closure and reduce the incidence of hyponatremia. There is no significant difference in major morbidities such as bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and retinopathy of prematurity (ROP) after early treatment. Early screening for hemodynamically significant PDA in ELBW infants and early treatment with indomethacin are recommended.

  1. PEG-asparaginase induced severe hypertriglyceridemia.

    PubMed

    Galindo, Rodolfo J; Yoon, Justin; Devoe, Craig; Myers, Alyson K

    2016-04-01

    Asparaginase (ASP) is an effective chemotherapy agent extensively used in children with acute lymphocytic leukemia (ALL). There has been a recent interest in using ASP in adults with ALL, particularly the less toxic pegylated (PEG) formulation. Hypertriglyceridemia (HTG) is a rare complication of PEG-ASP therapy. We report two cases of obese patients who developed severe HTG after receiving PEG for ALL. Both patients were incidentally found to have severe HTG (TG of 4,330 and 4,420 mg/dL). In both patients, there was no personal or family history of dyslipidemia or hypothyroidism. There was no evidence of pancreatitis or skin manifestations of HTG. Both patients were treated with PEG cessation, low-fat diet and pharmacotherapy. Both patients were re-challenged with PEG, with subsequent increase in TG but no associated complications. TG returned to baseline after discontinuing PEG and while on therapy for HTG. A literature review of PEG-induced HTG in adults demonstrated similar results: asymptomatic presentation despite very severe HTG. HTG is a rare but clinically important adverse effect of PEG. Underlying obesity and/or diabetes may represent risk factors. Clinicians should monitor TG levels during PEG therapy to avoid TG-induced pancreatitis.

  2. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    PubMed

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.

  3. Metformin and phenformin block the peripheral antinociception induced by diclofenac and indomethacin on the formalin test.

    PubMed

    Ortiz, Mario I

    2012-01-02

    Recent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin. Diclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K(+) channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed. Local peripheral injections of diclofenac (50-200 μg/paw) and indomethacin (200-800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin. Data suggest that diclofenac could activate the K(+) channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Alteration of plasma prednisolone levels by indomethacin and naproxen.

    PubMed Central

    Rae, S A; Williams, I A; English, J; Baylis, E M

    1982-01-01

    Eleven patients with stable rheumatoid disease (RD) who were receiving regular corticosteroid therapy (CS) were investigated to discover the effect on plasma prednisolone levels of additional therapy with the non-steroidal anti-inflammatory (NSAI) drugs, indomethacin and naproxen. There was a highly significant (P less than 0.001) increase in free prednisolone levels after concurrent therapy with either indomethacin or naproxen for 2 weeks. Total prednisolone levels were unchanged. These results could provide an explanation for clinical reports that these two NSAI drugs possess a steroid-sparing effect. PMID:7126420

  5. Gastroretentive Ranitidine Hydrochloride Tablets with Combined Floating and Bioadhesive Properties: Factorial Design Analysis, In Vitro Evaluation and In Vivo Abdominal X-Ray Imaging.

    PubMed

    Abduljabbar, Hana N; Badr-Eldin, Shaimaa M; Aldawsari, Hibah M

    2015-01-01

    Ranitidine HCl is an H2-antagonist that suffers from low oral bioavailability of 50%. The site-specific absorption from the upper part of the small intestine and the colonic metabolism of the drug could partially contribute to its reduced bioavailability. To surmount these drawbacks, this work aimed at the formulation of Ranitidine HCl gastroretentive floating-biaodhesive tablets. A 3(2) factorial design was applied to assess the effects of matrix former (HPMC K100M): drug ratio, and the release retardant (Carbopol 971) amount on the characteristics of the tablets prepared using direct compression technique. The prepared tablets were thoroughly evaluated for physical properties, floating, swelling, bioadhesive and in vitro release behaviors. Statistical analysis of the results revealed significant effects for both formulation variables on the swelling index, maximum detachment force and cumulative percent drug released after 6 hours. In addition, the matrix- former: drug ratio showed a statistically significant effect on the floating lag time. Kinetic analysis of the release data indicated Higuchi diffusion kinetics and anomalous transport mechanism for all formulations. Scanning electron micrographs of the selected tablet formulation; F8, revealed intact surface without any perforations or channels in the dry state, while polymer expansion (relaxation) with some perforated areas were observed on the surface of the tablets after 12 hours dissolution in 0.1 N HCl. Furthermore, in vivo abdominal x-ray imaging showed good floating behavior of the selected formulation; F8, for up to 6 hours with appropriate bioadhesive property. In conclusion, the selected ranitidine HCl floating-bioadhesive tablets could be regarded as a promising gastroretentive drug delivery system that could deliver the drug at a controlled rate.

  6. Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.

    PubMed

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian

    2017-03-15

    In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.

    PubMed

    ElShaer, Amr; Kaialy, Waseem; Akhtar, Noreen; Iyire, Affiong; Hussain, Tariq; Alany, Raid; Mohammed, Afzal R

    2015-10-01

    The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm(2) to 2.85±0.36N/mm(2) upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the

  8. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  9. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  10. Is rectal indomethacin effective in preventing of post-endoscopic retrograde cholangiopancreatography pancreatitis?

    PubMed Central

    Döbrönte, Zoltán; Szepes, Zoltán; Izbéki, Ferenc; Gervain, Judit; Lakatos, László; Pécsi, Gyula; Ihász, Miklós; Lakner, Lilla; Toldy, Erzsébet; Czakó, László

    2014-01-01

    AIM: To investigate the effectiveness of rectally administered indomethacin in the prophylaxis of post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis and hyperamylasaemia in a multicentre study. METHODS: A prospective, randomised, placebo-controlled multicentre study in five endoscopic units was conducted on 686 patients randomised to receive a suppository containing 100 mg indomethacin, or an inert placebo, 10-15 min before ERCP. Post-ERCP pancreatitis and hyperamylasaemia were evaluated 24 h following the procedure on the basis of clinical signs and laboratory parameters, and computed tomography/magnetic resonance imaging findings if required. RESULTS: Twenty-one patients were excluded because of incompleteness of their data or because of protocol violation. The results of 665 investigations were evaluated: 347 in the indomethacin group and 318 in the placebo group. The distributions of the risk factors in the two groups did not differ significantly. Pancreatitis developed in 42 patients (6.3%): it was mild in 34 (5.1%) and severe in eight (1.2%) cases. Hyperamylaesemia occurred in 160 patients (24.1%). There was no significant difference between the indomethacin and placebo groups in the incidence of either post-ERCP pancreatitis (5.8% vs 6.9%) or hyperamylasaemia (23.3% vs 24.8%). Similarly, subgroup analysis did not reveal any significant differences between the two groups. CONCLUSION: 100 mg rectal indomethacin administered before ERCP did not prove effective in preventing post-ERCP pancreatitis. PMID:25110443

  11. Is rectal indomethacin effective in preventing of post-endoscopic retrograde cholangiopancreatography pancreatitis?

    PubMed

    Döbrönte, Zoltán; Szepes, Zoltán; Izbéki, Ferenc; Gervain, Judit; Lakatos, László; Pécsi, Gyula; Ihász, Miklós; Lakner, Lilla; Toldy, Erzsébet; Czakó, László

    2014-08-07

    To investigate the effectiveness of rectally administered indomethacin in the prophylaxis of post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis and hyperamylasaemia in a multicentre study. A prospective, randomised, placebo-controlled multicentre study in five endoscopic units was conducted on 686 patients randomised to receive a suppository containing 100 mg indomethacin, or an inert placebo, 10-15 min before ERCP. Post-ERCP pancreatitis and hyperamylasaemia were evaluated 24 h following the procedure on the basis of clinical signs and laboratory parameters, and computed tomography/magnetic resonance imaging findings if required. Twenty-one patients were excluded because of incompleteness of their data or because of protocol violation. The results of 665 investigations were evaluated: 347 in the indomethacin group and 318 in the placebo group. The distributions of the risk factors in the two groups did not differ significantly. Pancreatitis developed in 42 patients (6.3%): it was mild in 34 (5.1%) and severe in eight (1.2%) cases. Hyperamylaesemia occurred in 160 patients (24.1%). There was no significant difference between the indomethacin and placebo groups in the incidence of either post-ERCP pancreatitis (5.8% vs 6.9%) or hyperamylasaemia (23.3% vs 24.8%). Similarly, subgroup analysis did not reveal any significant differences between the two groups. 100 mg rectal indomethacin administered before ERCP did not prove effective in preventing post-ERCP pancreatitis.

  12. CT measurement of indomethacin-induced cerebral hemodynamic changes in the newborn piglet

    NASA Astrophysics Data System (ADS)

    Brown, Derek W.; Hadway, Jennifer; Lee, Ting-Yim

    2003-05-01

    Patent ductus arteriosus (PDA), a common condition among preterm infants, increases the risk of intraventricular hemorrhage, bronchopulmonary dysplasia, and death in afflicted individuals. Current clinical treatment of PDA relies on use of the drug indomethacin to close the ductus arteriosus. In the present study, we have investigated the effect of indomethacin on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral mean transit time (MTT) in newborn piglets using computed tomography (CT) perfusion. Twenty newborn piglets divided by age into two groups, less than 12 hours of age (n = 10) and greater than 12 hours of age (n = 10) were studied. Five piglets in each group received indomethacin treatment (0.2 mg/kg infused over 30 min) while remaining piglets served as controls. No significant changes in CBF were observed in control groups. In both indomethacin treated groups, average CBF decreased 32.3% and 34.3% (P > 0.05) below baseline immediately post infusion in piglets less than and greater than 12 hours of age respectively. Piglets less than 12hours of age treated with indomethacin also exhibited a delayed increase in CBF, maximum average increase of 41.7% (P > 0.05) above baseline at 210 min post infusion, a response not observed in the corresponding group of piglets greater than 12 hours of age. The observed age dependent response may be due to functional/anatomical closure of the PDA.

  13. Effect of indomethacin on desmopressin resistant nocturnal polyuria and nocturnal enuresis.

    PubMed

    Kamperis, Konstantinos; Rittig, Søren; Bower, Wendy F; Djurhuus, Jens C

    2012-11-01

    We evaluated the acute effect of indomethacin on renal water and solute handling in children with coexisting monosymptomatic nocturnal enuresis and desmopressin resistant nocturnal polyuria, and in healthy controls. A total of 23 subjects were recruited, consisting of 12 children with monosymptomatic nocturnal enuresis and nocturnal polyuria with partial or no response to desmopressin, and 11 age matched controls. Children completed a 48-hour inpatient study protocol consisting of fractional urine collections and blood samples. Sodium and water intake were standardized. During the second night a dose of 50 mg indomethacin was administered orally before bedtime. Diuresis, urine osmolalities, clearances and fractional excretions were calculated for sodium, potassium, urea, osmoles and solute-free water. Renin, angiotensin II, aldosterone and atrial natriuretic peptide were measured in plasma. Prostaglandin E(2) was measured in urine. Indomethacin markedly decreased the nocturnal sodium, urea and osmotic excretion in children with enuresis and controls. The overall effect on nocturnal urine output was inconsistent in the group with enuresis. Subjects in whom nocturnal diuresis was decreased following administration of indomethacin remained dry. Prostaglandin inhibition leads to antidiuresis, reducing the amount of sodium, urea and osmotic excretion in children with monosymptomatic nocturnal enuresis and desmopressin resistant nocturnal polyuria. The sodium regulating hormones do not seem to mediate these processes. The overall effect in desmopressin nonresponders with nocturnal polyuria is variable. The extent to which indomethacin can be applied in the treatment of enuresis needs further evaluation. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Indomethacin inhibits eosinophil migration to prostaglandin D2: therapeutic potential of CRTH2 desensitization for eosinophilic pustular folliculitis

    PubMed Central

    Kataoka, Naoko; Satoh, Takahiro; Hirai, Aiko; Saeki, Kazumi; Yokozeki, Hiroo

    2013-01-01

    Summary Indomethacin is a cyclo-oxygenase inhibitor, and shows therapeutic potential for various eosinophilic skin diseases, particularly eosinophilic pustular folliculitis. One of the unique characteristics of indomethacin is that, unlike other non-steroidal anti-inflammatory drugs, it is a potent agonist of chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2). This study investigated the pharmacological actions of indomethacin on eosinophil migration to clarify the actual mechanisms underlying the therapeutic effects of indomethacin on eosinophilic pustular folliculitis. Eosinophils exhibited chemokinetic and chemotactic responses to both PGD2 and indomethacin through CRTH2 receptors. Pre-treatment of eosinophils with indomethacin greatly inhibited eosinophil migration to PGD2 and, to a much lesser extent, to eotaxin (CCL11); these effects could be mediated by homologous and heterologous desensitization of eosinophil CRTH2 and CCR3, respectively, by agonistic effects of indomethacin on CRTH2. Indomethacin also cancelled a priming effect of Δ12-PGJ2, a plasma metabolite of PGD2, on eosinophil chemotaxis to eotaxin. Indomethacin down-modulated cell surface expression of both CRTH2 and CCR3. Hair follicle epithelium and epidermal keratinocytes around eosinophilic pustules together with the eccrine apparatus of palmoplantar lesions of eosinophilic pustular folliculitis were immunohistochemically positive for lipocalin-type PGD synthase. Indomethacin may exert therapeutic effects against eosinophilic skin diseases in which PGD2-CRTH2 signals play major roles by reducing eosinophil responses to PGD2. PMID:23582181

  15. Multi-methodological investigation of the variability of the microstructure of HPMC hard capsules.

    PubMed

    Faulhammer, E; Kovalcik, A; Wahl, V; Markl, D; Stelzer, F; Lawrence, S; Khinast, J G; Paudel, A

    2016-09-25

    The objective of this study was to analyze differences in the subtle microstructure of three different grades of HMPC hard capsule shells using mechanical, spectroscopic, microscopic and tomographic approaches. Dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), vibrational spectroscopic, X-Ray scattering techniques as well as environmental scanning electron microscopy (ESEM) and optical coherence tomography (OCT) were used. Two HPMC capsules manufactured via chemical gelling, one capsule shell manufactured via thermal gelling and one thermally gelled transparent capsule were included. Characteristic micro-structural alterations (associated manufacturing processes) such as mechanical and physical properties relevant to capsule performance and processability were thoroughly elucidated with the integration of data obtained from multi-methodological investigations. The physico-chemical and physico-mechanical data obtained from a gamut of techniques implied that thermally gelled HPMC hard capsule shells could offer an advantage in terms of machinability during capsule filling, owing to their superior micro- and macroscopic structure as well as specifically the mechanical stability under dry or humid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparison of the Efficacy of Carboxymethylcellulose 0.5%, Hydroxypropyl-guar Containing Polyethylene Glycol 400/Propylene Glycol, and Hydroxypropyl Methyl Cellulose 0.3% Tear Substitutes in Improving Ocular Surface Disease Index in Cases of Dry Eye.

    PubMed

    Maharana, Prafulla K; Raghuwanshi, Sapna; Chauhan, Ashish K; Rai, Vaishali G; Pattebahadur, Rajesh

    2017-01-01

    To compare the efficacy of carboxymethylcellulose 0.5% (CMC), hydroxypropyl-guar containing polyethylene glycol 400/propylene glycol (PEG/PG), and hydroxypropyl methylcellulose 0.3% (HPMC) as tear substitutes in patients with dry eye. A retrospective evaluation of cases presenting with symptoms of dry eye from July 2014 to June 2015 was done. Patients with Ocular Surface Disease Index (OSDI) scoring >12 were included in the study. Parameters such as age, gender, Schirmer test (ST), and tear film breakup time (TBUT) were recorded on day 0, week 1, and week 4. For analysis, cases were divided into three groups; Group 1 - CMC, Group 2 - PEG/PG, and Group 3 - HPMC. Overall, 120 patients were included in the study. Demographic data and baseline characteristics were comparable among the groups. Group 2 had significant improvement in percentage change in OSDI (weeks 0-1, 0-4, and 1-4, P = 0.00), TBUT (weeks 0-1, P = 0.01; 0-4, P = 0.006; and 1-4, P = 0.007), and in ST (weeks 0-1, P = 0.02; 0-4, P = 0.002; and 1-4, P = 0.008) compared to Group 1 at all follow-ups. Group 3 had improvements similar to Group 2, but it was not at all follow-ups (improvement in percentage change OSDI [weeks 0-1, 0-4, and 1-4, P = 0.00], TBUT [weeks 0-1, P = 0.10; 0-4, P = 0.03; and 1-4, P = 0.04], and in ST [weeks 0-1, P = 0.007; 0-4, P = 0.03; and 1-4, P = 0.12]). No significant difference was found between Groups 2 and 3. Hydroxypropyl-guar containing PEG/PG and HPMC as tear substitutes are better than CMC. While HPMC was comparable to PEG/PG in subjective improvement, the objective improvement was not consistent.

  17. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yaonan; Department of Orthopaedic, Beijing Hospital of Ministry of Public Health, Beijing, China 100730; Wang, Xiao

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferationmore » and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.« less

  18. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    PubMed

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Indomethacin inhibits eosinophil migration to prostaglandin D2 : therapeutic potential of CRTH2 desensitization for eosinophilic pustular folliculitis.

    PubMed

    Kataoka, Naoko; Satoh, Takahiro; Hirai, Aiko; Saeki, Kazumi; Yokozeki, Hiroo

    2013-09-01

    Indomethacin is a cyclo-oxygenase inhibitor, and shows therapeutic potential for various eosinophilic skin diseases, particularly eosinophilic pustular folliculitis. One of the unique characteristics of indomethacin is that, unlike other non-steroidal anti-inflammatory drugs, it is a potent agonist of chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2 ). This study investigated the pharmacological actions of indomethacin on eosinophil migration to clarify the actual mechanisms underlying the therapeutic effects of indomethacin on eosinophilic pustular folliculitis. Eosinophils exhibited chemokinetic and chemotactic responses to both PGD2 and indomethacin through CRTH2 receptors. Pre-treatment of eosinophils with indomethacin greatly inhibited eosinophil migration to PGD2 and, to a much lesser extent, to eotaxin (CCL11); these effects could be mediated by homologous and heterologous desensitization of eosinophil CRTH2 and CCR3, respectively, by agonistic effects of indomethacin on CRTH2. Indomethacin also cancelled a priming effect of Δ(12) -PGJ2 , a plasma metabolite of PGD2 , on eosinophil chemotaxis to eotaxin. Indomethacin down-modulated cell surface expression of both CRTH2 and CCR3. Hair follicle epithelium and epidermal keratinocytes around eosinophilic pustules together with the eccrine apparatus of palmoplantar lesions of eosinophilic pustular folliculitis were immunohistochemically positive for lipocalin-type PGD synthase. Indomethacin may exert therapeutic effects against eosinophilic skin diseases in which PGD2 -CRTH2 signals play major roles by reducing eosinophil responses to PGD2 . © 2013 John Wiley & Sons Ltd.

  20. Maintenance of supersaturation I: indomethacin crystal growth kinetic modeling using an online second-derivative ultraviolet spectroscopic method.

    PubMed

    Patel, Dhaval D; Joguparthi, Vijay; Wang, Zeren; Anderson, Bradley D

    2011-07-01

    Formulations that produce supersaturated solutions after their oral administration have received increased attention as a means to improve bioavailability of poorly water-soluble drugs. Although it is widely recognized that excipients can prolong supersaturation, the mechanisms by which these beneficial effects are realized are generally unknown. Difficulties in separately measuring the kinetics of nucleation and crystal growth have limited progress in understanding the mechanisms by which excipients contribute to the supersaturation maintenance. This paper describes the crystal growth kinetic modeling of indomethacin, a poorly water-soluble drug, from supersaturated aqueous suspensions using a newly developed, online second-derivative ultraviolet spectroscopic method. The apparent indomethacin equilibrium solubility after crystal growth at a high degree of supersaturation (S=6) was approximately 55% higher than the indomethacin equilibrium solubility determined prior to growth, which was attributed to the deposition of a higher energy indomethacin form on the seed crystals. The indomethacin crystal growth kinetics (S=6) was of first order. By comparing the mass transfer coefficients from indomethacin dissolution and crystal growth, it was shown that the indomethacin crystal growth kinetics at S=6 was bulk diffusion controlled. The change in indomethacin seed crystal size distribution before and after crystal growth was determined and modeled using a mass-balance relationship. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    PubMed

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness.

  2. Reversal of histopathologic pulmonary changes with indomethacin.

    PubMed

    Kerstein, M D; Crivello, M

    1980-12-01

    There are pulmonary changes documented by light and electron microscopy in a canine model of nonhypotensive shock induced by a lower limb tourniquet. These histopathologic changes are mediated, at least in part, when the dog is treated with indomethacin.

  3. Protective effects of amphetamine on gastric ulcerations induced by indomethacin in rats

    PubMed Central

    Sandor, Vlaicu; Cuparencu, Barbu; Dumitrascu, Dan L; Birt, Mircea A; Krausz, Tibor L

    2006-01-01

    AIM: To study the effects of amphetamine, an indirect-acting adrenomimetic compound on the indomethacin-induced gastric ulcerations in rats. METHODS: Male Wistar-Bratislava rats were randomly divided into four groups: Group 1 (control), received an ulcerogenic dose of indomethacin (50 μmol/kg) and Groups 2, 3 and 4, treated with amphetamine (10, 25 and 50 μmol/kg). The drug was administered simultaneously with indomethacin and once again 4 h later. The animals were sacrificed 8 h after indomethacin treatment. The stomachs were opened and the incidence, the number of lesions and their severity were evaluated. The results were expressed as percentage and as mean ± standard error (mean ± SE). RESULTS: The incidence of ulceration in the control group was 100%. Amphetamine, at doses of 10, 25 and 50 μmol/kg, lowered the incidence to 88.89%, 77.78% and 37.5% respectively. The protection ratio was positive: 24.14%, 55.17% and 80.6% respectively. The total number of ulcerations/rat was 12.44 ± 3.69 in the control group. It decreased to 7.33 ± 1.89, 5.33 ± 2.38 and 2.25 ± 1.97 under the effects of the above-mentioned doses of amphetamine. CONCLUSION: Amphetamine affords a significant dose-dependent protection against the indomethacin-induced gastric ulcerations in rats. It is suggested that the adrenergic system is involved in the gastric mucosa protection. PMID:17131481

  4. Feasibility of optimizing trimetazidine dihydrochloride release from controlled porosity osmotic pump tablets of directly compressed cores

    PubMed Central

    Habib, Basant A.; Rehim, Randa T. Abd El; Nour, Samia A.

    2013-01-01

    The aim of this study was to develop and optimize Trimetazidine dihydrochloride (TM) controlled porosity osmotic pump (CPOP) tablets of directly compressed cores. A 23 full factorial design was used to study the influence of three factors namely: PEG400 (10% and 25% based on coating polymer weight), coating level (10% and 20% of tablet core weight) and hole diameter (0 “no hole” and 1 mm). Other variables such as tablet cores, coating mixture of ethylcellulose (4%) and dibutylphthalate (2%) in 95% ethanol and pan coating conditions were kept constant. The responses studied (Yi) were cumulative percentage released after 2 h (Q%2h), 6 h (Q%6h), 12 h (Q%12h) and regression coefficient of release data fitted to zero order equation (RSQzero), for Y1, Y2, Y3, and Y4, respectively. Polynomial equations were used to study the influence of different factors on each response individually. Response surface methodology and multiple response optimization were used to search for an optimized formula. Response variables for the optimized formula were restricted to 10% ⩽ Y1 ⩽ 20%, 40% ⩽ Y2 ⩽ 60%, 80% ⩽ Y3 ⩽ 100%, and Y4 > 0.9. The statistical analysis of the results revealed that PEG400 had positive effects on Q%2h, Q%6h and Q%12h, hole diameter had positive effects on all responses and coating level had positive effect on Q%6h, Q%12h and negative effect on RSQzero. Full three factor interaction (3FI) equations were used for representation of all responses except Q%2h which was represented by reduced (3FI) equation. Upon exploring the experimental space, no formula in the tested range could satisfy the required constraints. Thus, direct compression of TM cores was not suitable for formation of CPOP tablets. Preliminary trials of CPOP tablets with wet granulated cores were promising with an intact membrane for 12 h and high RSQzero. Further improvement of these formulations to optimize TM release will be done in further studies. PMID:25685502

  5. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin.

    PubMed

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-07-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2(2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization behavior of the samples, such as the total recrystallization rate, the individual recrystallization rates of naproxen and indomethacin as well as the polymorphic form of indomethacin that was formed were influenced by these process conditions. For initially amorphous samples, it was found that naproxen and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. LPS from Escherichia coli protects against indomethacin-induced gastropathy in rats--role of ATP-sensitive potassium channels.

    PubMed

    Gomes, Antoniella S; Lima, Lívia M F; Santos, Camila L; Cunha, Fernando Q; Ribeiro, Ronaldo A; Souza, Marcellus H L P

    2006-10-10

    The effect of lipopolysaccharide (LPS) in gastric protection has not been elucidated, but ATP-sensitive potassium (K(ATP)) channels are known to be involved in gastric defense. We evaluated the effect of LPS administration on indomethacin-induced gastropathy, and the role of K(ATP) channels in this event. Rats received intravenous (i.v.) LPS administration. After 1/2, 6, 24 or 48 h, indomethacin was injected. 3H later, gastric damage and myeloperoxidase activity were determined. Another group received LPS and 5 h later, glibenclamide, diazoxide or glibenclamide plus diazoxide. After 1 h, the rats received indomethacin and 3 h later, gastric damage and myeloperoxidase activity were evaluated. LPS reduced dose dependently gastric damage and myeloperoxidase activity induced by indomethacin. Glibenclamide reversed this LPS effect on indomethacin-induced gastropathy. Glibenclamide plus diazoxide administration did not change this LPS effect. Thus LPS has a protective effect against indomethacin-induced gastropathy, probably through activation of K(ATP) channels.

  7. Mitigation of indomethacin-induced gastric mucosal lesions by a potent specific type V phosphodiesterase inhibitor

    PubMed Central

    Karakaya, Kemal; Hanci, Volkan; Bektas, Sibel; Can, Murat; Ucan, Hamdi B; Emre, Ali Ugur; Tascılar, Oge; Turan, Isıl Ozkocak; Comert, Mustafa; Irkorucu, Oktay; Cakmak, Guldeniz Karadeniz

    2009-01-01

    AIM: To investigate the gastroprotective effect of vardenafil against indomethacin-induced gastric damage. METHODS: Forty-eight female Wistar albino rats were randomly divided into 6 groups. Group 1 received saline only. Group 2 (indomethacin) received indomethacin. Rats in group 3 and 4 were pretreated with different doses of famotidine. Group 5 and 6 were pretreated with different doses of vardenafil. Rats in groups 3 to 6 received 25 mg/kg indomethacin 30 min after pretreatment. The animals were sacrificed 6 h later and their stomachs were opened. Gastric lesions were counted and measured. The stomach of each animal was divided in two parts for histopathological examinations and nitric oxide (NO) and malondialdehyde (MDA) assays, respectively. RESULTS: There were no gastric mucosal lesion in the saline group but all rats in the indomethacin group had gastric mucosal ulcerations (ulcer count; 6.25 ± 3.49, and mean ulcer area; 21.00 ± 12.35). Ulcer counts were diminished with famotidine 5 mg/kg (4.12 ± 2.47, P > 0.05), 20 mg/kg (2.37 ± 4.43, P < 0.05), vardenafil 2 mg/kg (4.37 ± 3.06), and vardenafil 10 mgkg (1.25 ± 1.38, P < 0.05) compared to the indomethacin group. Gastric mucosal lesion areas were diminished with famotidine 5 mg/kg (8.62 ± 2.97, P < 0.001) , famotidine 20 mg/kg (0.94 ± 2.06, P < 0.001), vardenafil 2 mg/kg (6.62 ± 5.87, P < 0.001), and vardenafil 10 mg/kg (0.75 ± 0.88, P < 0.001) compared to the indomethacin group. MDA levels were significantly higher in indomethacin group (28.48 ± 14.51), compared to the famotidine 5 mg/kg (6,21 ± 1.88, P < 0.05), famotidine 20 mg/kg (5.88 ± 1.60. P < 0.05), vardenafil 2 mg/kg (15.87 ± 3.93, P < 0.05), and vardenafil 10 mg/kg (10.97 ± 4.50, P < 0.05). NO concentration in gastric tissues of the famotidine groups were significantly increased (P < 0.05), but the NO increases in the vardenafil groups were not statistically significant. Histopathology revealed diminished gastric damage for

  8. Amorphization of Indomethacin by Co-Grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism.

    PubMed

    Bahl, Deepak; Bogner, Robin H

    2006-10-01

    To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction. A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25 degrees C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40 degrees C/75% RH and 40 degrees C/0% RH. The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40 degrees C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra. The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.

  9. Oseltamivir and indomethacin reduce the oxidative stress in brain and stomach of infected rats.

    PubMed

    Guzmán, David Calderón; Herrera, Maribel Ortiz; Brizuela, Norma Osnaya; Mejía, Gerardo Barragán; García, Ernestina Hernández; Olguín, Hugo Juárez; Ruíz, Norma Labra; Peraza, Armando Valenzuela

    2018-02-01

    The aim of this study was to determine the effect of oseltamivir and indomethacin on lipid peroxidation (LP), GABA levels, and ATPase activity in brain and stomach of normal and infected rats (IR), as novel inflammation model. Female Sprague Dawley rats grouped five each, either in the absence or presence of a live culture of Salmonella typhimurium (S. typh), were treated as follows: group 1 (control), PBS buffer; group 2, oseltamivir (100 mg/kg); group 3, indomethacin (67 μg/rat); group 4, oseltamivir (100 mg/kg) + indomethacin (67 μg/rat). All drugs were given intraperitoneally for 5 days. IR received the same treatments and the brain and stomach of the rats were removed in order to measure levels of GABA, LP, and total ATPase, using validated methods. Levels of GABA increased in stomach and cortex of IR with oseltamivir, but decreased in striatum and cerebellum/medulla oblongata of IR with indomethacin. LP decreased in the three brain regions of IR with oseltamivir. ATPase increased in stomach of IR and non-IR with oseltamivir and in striatum and cerebellum/medulla oblongata of IR with indomethacin. Results suggest that the effect of free radicals produced in an infection and inflammatory condition caused by S. typh could be less toxic by a combination of oseltamivir and indomethacin. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  10. Characterization and microstructure of HPMC/Gly:AgNO3 polymer composites

    NASA Astrophysics Data System (ADS)

    Ananda, H. T.; Urs, G. Thejas; Somashekar, R.

    2018-04-01

    This study reports the synthesis and characterization of AgNo3 doped HPMC/Glycerol blend films. The microstructural parameters of these composites were evaluated employing whole powder pattern fitting method (WPPF) and the results obtained are related with other physical properties. AC conductivity results and optical band gap evaluated from UV/Vis studies are focused to establish structure property relations. These composite films are bio-degradable in nature and non-hazardous, this makes them very suitable candidates for applications in appropriate fields.

  11. Antihyperalgesic Effects of Indomethacin, Ketorolac, and Metamizole in Rats: Effects of Metformin.

    PubMed

    Guzmán-Priego, Crystell Guadalupe; Méndez-Mena, Roberto; Baños-González, Manuel Alfonso; Araiza-Saldaña, Claudia Ivonne; Castañeda-Corral, Gabriela; Torres-López, Jorge Elías

    2017-03-01

    Preclinical Research Metformin-dependent mechanisms have been implicated in the antinociceptive effect of some non-steroidal anti-inflammatory drugs (NSAIDs). In this study, the effect of local peripheral or systemic administration of metformin on the local peripheral or systemic antinociception induced by indomethacin, ketorolac and metamizole was assessed in the rat carrageenan-induced thermal hyperalgesia model. Rats were injected with carrageenan (1%, 50 µl) into the right hindpaw which reduced paw withdrawal latency, a measure of thermal hyperalgesia. Local peripheral or systemic administration of indomethacin, ketorolac or metamizole dose-dependently reduced carrageenan-induced thermal hyperalgesia. Local peripheral pre-treatment with metformin (800 µg/paw) partially inhibited the anti-hyperalgesic effect of indomethacin (200 µg/paw) and metamizole (200 µg/paw), but not that of ketorolac (200 µg/paw). In contrast, systemic pre-treatment with metformin (200 mg/kg) attenuated the antihyperalgesic effect of metamizole (10 mg/kg), but not that observed with either indomethacin (10 mg/kg) or ketorolac (10 mg/kg). These findings suggest that some but not all NSAIDs have effects mediated by metformin-dependent mechanisms. Drug Dev Res 78 : 98-104, 2017. ©2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    PubMed

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  13. High-dose senna compared with conventional PEG-ES lavage as bowel preparation for elective colonoscopy: a prospective, randomized, investigator-blinded trial.

    PubMed

    Radaelli, Franco; Meucci, Gianmichele; Imperiali, Gianni; Spinzi, Giancarlo; Strocchi, Enrico; Terruzzi, Vittorio; Minoli, Giorgio

    2005-12-01

    To compare the efficacy and patient acceptance of an oral high dose of senna to conventional polyethylene glycol-electrolyte lavage solution (PEG-ES) in adults undergoing elective colonoscopy. Consecutive outpatients referred for elective colonoscopy were prospectively randomly assigned to receive, the day before the procedure, either 24 tablets of 12 mg senna, divided into two doses at 1 p.m. and 9 p.m. (senna group, n=191), or standard 4-L PEG-ES (PEG-ES group, n=92). The overall quality of colon cleansing (primary outcome measure) and cleansing in the right colon were evaluated using the Aronchick scoring scale (1=excellent to 4=inadequate) by the investigator/endoscopist who was blinded to the treatment assignment. Patient acceptance and the safety of the preparation were assessed by a nurse, using a structured questionnaire covering compliance with the dosing, overall tolerance of the preparation (1=none or mild discomfort to 4=severely distressing), and adverse events. The quality of colon cleansing, overall tolerance of the preparation, and compliance were significantly better with senna; overall cleansing was excellent or good in 90.6% of patients in the senna group and in 79.7% in the PEG-ES group (p= 0.003). The percentage of procedures rescheduled because of insufficient colon cleansing was 7.3% in the PEG-ES group and 2.6% in the senna group (p=0.035). Multivariate logistic regression modeling showed the PEG-ES preparation as negative independent predictor of unsuccessful bowel cleansing. The incidence of adverse reactions was similar in the two groups; patients who received senna experienced significantly less nausea and vomiting, but more abdominal pain. An oral high dose of senna is a valid alternative to standard PEG-ES for outpatient colonoscopy preparation.

  14. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.

    PubMed

    LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.

  15. Tableting Properties and Compression Models of Labisia pumila Tablets.

    PubMed

    Etti, C J; Yusof, Y A; Chin, N L; Mohd Tahir, S

    2017-03-04

    The tableting properties of Labisia pumila herbal powder, which is well known for its therapeutic benefits was investigated. The herbal powder was compressed into tablets using a stainless steel cylindrical uniaxial die of 13-mm- diameter with compaction pressures ranging from 7 to 25 MPa. Two feed weights, 0.5 and 1.0 g were used to form tablets. Some empirical models were used to describe the compressibility behavior of Labisia pumila tablets. The strength and density of tablets increased with increase in compaction pressure and resulted in reduction in porosity of the tablets. Smaller feeds, higher forces and increase in compaction pressure, contributed to more coherent tablets. These findings can be used to enhance the approach and understanding of tableting properties of Labisia pumila herbal powder tablets.

  16. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2017-06-30

    Improvement of the physicochemical properties of amorphous active pharmaceutical ingredients (APIs) applying the concept of co-amorphisation is a promising alternative to the use of polymer glass solutions. In co-amorphous systems, the physical stability and the dissolution rate of the involved components may be improved in comparison to the respective single amorphous phases. However, for the co-amorphous naproxen-indomethacin model system it has been reported that recrystallization could not be prevented for more than 112days regardless of the applied preparation method and blend ratio In the present study, it was thus tested if the physicochemical properties of co-amorphous naproxen-indomethacin could be optimized by incorporation of the naproxen sodium into the system. Three different co-amorphous systems in nine different molar ratios were prepared by quench-cooling: naproxen-indomethacin (NI), naproxen-sodium-naproxen-indomethacin (NSNI) and naproxen-sodium-indomethacin (NSI). The samples were analyzed by XRPD, FTIR, DSC and by intrinsic dissolution experiments to investigate the influence of naproxen-sodium on the resulting physicochemical properties of the systems. With the three systems, fully amorphous samples with single glass transition temperatures could be prepared with naproxen molar fractions up to 0.7. The NSI and NSNI systems showed up to about 40°C higher Tgs than the NI system. Furthermore, no recrystallization occurred during 270d of storage with the NSI and NSNI samples that were initially amorphous. Moreover, with the NSI system, the intrinsic dissolution rate of naproxen and indomethacin was improved by a factor of 2 compared to the unmodified NI system. In conclusion, the physical stability as well as the dissolution rate was significantly improved if partial or full exchange of naproxen by its sodium salt was performed, which may present a general optimization method to improve co-amorphous systems. Copyright © 2017 Elsevier B.V. All

  17. A randomized trial of rectal indomethacin to prevent post-ERCP pancreatitis.

    PubMed

    Elmunzer, B Joseph; Scheiman, James M; Lehman, Glen A; Chak, Amitabh; Mosler, Patrick; Higgins, Peter D R; Hayward, Rodney A; Romagnuolo, Joseph; Elta, Grace H; Sherman, Stuart; Waljee, Akbar K; Repaka, Aparna; Atkinson, Matthew R; Cote, Gregory A; Kwon, Richard S; McHenry, Lee; Piraka, Cyrus R; Wamsteker, Erik J; Watkins, James L; Korsnes, Sheryl J; Schmidt, Suzette E; Turner, Sarah M; Nicholson, Sylvia; Fogel, Evan L

    2012-04-12

    Preliminary research suggests that rectally administered nonsteroidal antiinflammatory drugs may reduce the incidence of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). In this multicenter, randomized, placebo-controlled, double-blind clinical trial, we assigned patients at elevated risk for post-ERCP pancreatitis to receive a single dose of rectal indomethacin or placebo immediately after ERCP. Patients were determined to be at high risk on the basis of validated patient- and procedure-related risk factors. The primary outcome was post-ERCP pancreatitis, which was defined as new upper abdominal pain, an elevation in pancreatic enzymes to at least three times the upper limit of the normal range 24 hours after the procedure, and hospitalization for at least 2 nights. A total of 602 patients were enrolled and completed follow-up. The majority of patients (82%) had a clinical suspicion of sphincter of Oddi dysfunction. Post-ERCP pancreatitis developed in 27 of 295 patients (9.2%) in the indomethacin group and in 52 of 307 patients (16.9%) in the placebo group (P=0.005). Moderate-to-severe pancreatitis developed in 13 patients (4.4%) in the indomethacin group and in 27 patients (8.8%) in the placebo group (P=0.03). Among patients at high risk for post-ERCP pancreatitis, rectal indomethacin significantly reduced the incidence of the condition. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00820612.).

  18. Formulation development and release studies of indomethacin suppositories.

    PubMed

    Sah, M L; Saini, T R

    2008-01-01

    Indomethacin suppositories were prepared by using water-soluble and oil soluble suppository bases, and evaluated for in vitro release by USP I and modified continuous flow through bead bed apparatus. Effect of the Tween 80 (1% and 5%) was further studied on in vitro release of the medicament. Release rate was good in water-soluble suppositories bases in comparison to oil soluble suppositories bases. Release was found to be greater in modified continuous flow through bead bed apparatus. When surfactant was used in low concentration then release rate was much greater, as compared to high concentration. When stability studies were performed on the prepared indomethacin suppositories it was found that suppositories made by water-soluble base had no significant changes while suppositories prepared by oil soluble bases, had some signs of instability.

  19. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    NASA Astrophysics Data System (ADS)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  20. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    PubMed

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  1. 2 L PEG plus ascorbic acid versus 4 L PEG plus simethicon for colonoscopy preparation: a randomized single-blind clinical trial.

    PubMed

    Gentile, Maurizio; De Rosa, Michele; Cestaro, Giovanni; Forestieri, Pietro

    2013-06-01

    The 2 L polyethylene glycol (PEG) lavage solution has been proved to be similarly safe and effective as 4 L PEG formulations, in spite of the reduced volume. To compare low-volume PEG-based solution combined with ascorbic acid with high-volume PEG-based solution combined with simethicon in terms of efficacy and patient tolerability. This was a single-blind prospective randomized trial. Patients were randomized to receive either 2 L PEG plus ascorbic acid (PEG+Asc) or 4 L PEG plus simethicon (PEG+Sim). The primary endpoint was overall colon cleansing evaluation, assessed by blinded investigators using Aronchick score. Secondary end points included patient compliance and tolerability and adverse events. Sixty patients received PEG+Asc and 60 received PEG+Sim. Overall bowel cleansing score was considered adequate in 81.67% of the PEG+Asc and 80% of the PEG+Sim groups, respectively. Excellent and good ratings were recorded in 11.6% and 38.3% receiving PEG+Asc as compared with 26.6% and 23.3% of patients receiving PEG+Sim. Patient tolerability and safety were similar with both the preparations. According to our data, low-volume PEG+Asc has comparable efficacy, safety, and tolerability as high-volume PEG+Sim; therefore, it can be considered as a good alternative solution for bowel preparation. More improvements are necessary to achieve the target of a perfect preparation.

  2. Ameliorative effect of chromium-d-phenylalanine complex on indomethacin-induced inflammatory bowel disease in rats.

    PubMed

    Nagarjun, S; Dhadde, Shivsharan B; Veerapur, Veeresh P; Thippeswamy, B S; Chandakavathe, Baburao N

    2017-05-01

    Present study was designed to evaluate the effect of chromium-d-phenylalanine complex (Cr (d-phe) 3 ) on indomethacin-induced inflammatory bowel disease (IBD) in rats. Adult Wistar rats were pretreated with vehicle/Cr (d-phe) 3 (30, 60 and 90μg/kg, p.o.) for 11days. On day 8 and 9, after one h of the above mentioned treatment, indomethacin (7.5mg/kg/day,s.c.) was administered to induce IBD. On day 12, blood samples were collected from animals for lactate dehydrogenase (LDH) estimation and ileum was isolated for macroscopic scoring, biochemical estimation (lipid peroxidation, reduced glutathione and myeloperoxidase activity) and histopathological study. Administration of indomethacin significantly altered the serum LDH, macroscopic and microscopic appearance and biochemical parameters in ileum tissue. Cr (d-phe) 3 , at all the tested doses, caused a significant reversal of changes induced by indomethacin. Present study demonstrates the protective effect of Cr (d-phe) 3 against indomethacin-induced IBD in rats. The observed protective effect might be attributed to the antioxidant and anti-inflammatory properties of Cr (d-phe) 3 . Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. [Effects of rectal indomethacin in the prevention of post-ERCP acute pancreatitis].

    PubMed

    Döbrönte, Zoltán; Toldy, Erzsébet; Márk, Levente; Sarang, Krisztina; Lakner, Lilla

    2012-06-24

    Recently non-steroidal anti-inflammatory drugs have seemed to reduce the frequency of post-ERCP pancreatitis in some prospective controlled trials, but the results have to be confirmed by further studies. To evaluate the efficacy of rectally administered indomethacin for the reduction of incidence of post-ERCP pancreatitis. A prospective randomized placebo-controlled study was conducted in 228 patients who underwent ERCP. Patients were randomized to receive a suppository containing 100 mg indomethacin or an inert placebo 10 mins before ERCP. Patients were evaluated clinically and biochemically by using serum amylase levels measured 24 h after the procedure. Pancreatitis and hyperamylasemia occurred more frequently in the placebo group, but the difference was not significant. In respect to the rate of pancreatitis, this tendency could particularly be observed in females, in patients older than 60 years and in patients with BMI lower than 25; however, it completely failed in cases with pancreatic duct filling or in those with pancreatic EST. Rectal indomethacin given before ERCP did not prove to be statistically effective in the reduction of the incidence of post-procedure pancreatitis. Further, controlled multicenter studies are required to assess safely the potential efficacy of indomethacin in the prevention of pancreatitis following ERCP.

  4. Comparison of two neonatal indomethacin protocols: efficacy and outcome for patent ductus arteriosus closure.

    PubMed

    Rosito, G; Sum, K; Chorne, N

    2010-10-01

    Indomethacin, a non-selective inhibitor of prostaglandin synthesis, is the gold standard treatment for patent ductus arteriosus (PDA). Indomethacin has been shown to permanently close the ductus and when given prophylactically, it reduces the incidence of PDA (1, 2). This study compares PDA closure and surgical ligation rates between patients using two different indomethacin administration protocols. This is a retrospective comparison analysis of 72 neonates, who received one of two indomethacin administration protocols. Our previous protocol suggested an initial dose of 0·2 mg/kg followed by two 0·1 mg/kg, with doses infused over 4 h and a 24-h dosing interval. A new potentially more useful protocol using the same mg/kg dose regimen but with doses infused over 30 min and a 12-h dosing interval, was evaluated. Each neonate was allowed three courses of treatment before surgical ligation was performed for persistent PDA. There were no statistically significant differences between the two protocol groups when comparing percentages of neonates with gestational age≤28 weeks, birth weight≤1000 g, male gender or receiving indomethacin for the indication of PDA prophylaxis vs. treatment. There was a trend towards a higher PDA closure rate and subsequently a lower PDA ligation rate in the new protocol when compared with the previous protocol. In this small population of premature neonates, there was a trend, but no significant difference, towards increasing PDA closure and lower surgical ligation rates in neonates given indomethacin with more frequent dosing and shorter infusion time. A well-powered randomized controlled trial is now needed. Copyright © 2010 The Authors. JCPT © 2010 Blackwell Publishing Ltd.

  5. N-acetylcysteine a possible protector against indomethacin-induced peptic ulcer: crosstalk between antioxidant, anti-inflammatory, and antiapoptotic mechanisms.

    PubMed

    Soliman, Nema Ali; Zineldeen, Doaa Hussein; Katary, Mohamed Alaa; Ali, Darin Abd

    2017-04-01

    This study investigated the gastroprotective effects of N-acetylcysteine (NAC) against indomethacin-induced gastric ulcer in rats. Ulceration was induced by a single oral administration of indomethacin (30 mg/kg). 50 male albino rats were allocated into 5 equal groups: control group received normal saline orally, indomethacin group rats received normal saline orally for 5 days and indomethacin (50 mg/kg) on the last day, ranitidine group received ranitidine (reference drug) orally for 5 days (50 mg/kg) before receiving indomethacin (50 mg/kg) on the last day, and NAC groups received NAC orally at 300 and 500 mg/kg, respectively, for 5 days before receiving indomethacin (50 mg/kg) on the last day. Gastric tissue interleukin-1β (IL-1β), interferon-γ (IFN-γ), and caspase-3 levels were immunoassayed. Total thiol (T-SH), myeloperoxidase (MPO), and glucose-6-phosphate dehydrogenase (G6PD) were determined by spectrophotometry. Cytokine-induced neutrophil chemoattractant 2α (CINC-2α) gene expression was evaluated in addition to Bcl-2 immunohistochemistry. Pretreatment with NAC improved the inflammatory, apoptotic, and redox status in a dose-dependent manner particularly in NAC 500 mg/kg pretreated group. These results show a role for NAC in improving indomethacin-induced gastric ulceration via antioxidative, antiapoptotic, and anti-inflammatory interactive mechanisms.

  6. Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories.

    PubMed

    Saleem, M A; Taher, M; Sanaullah, S; Najmuddin, M; Ali, Javed; Humaira, S; Roshan, S

    2008-09-01

    Rectal suppositories of tramadol hydrochloride were prepared using different bases and polymers like PEG, cocoa butter, agar and the effect of different additives on in vitro release of tramadol hydrochloride was studied. The agar-based suppositories were non-disintegrating/non-dissolving, whereas PEGs were disintegrating/dissolving and cocoa butter were melting suppositories. All the prepared suppositories were evaluated for various physical parameters like weight variation, drug content and hardness. The PEG and cocoa butter suppositories were evaluated for macromelting range, disintegration and liquefaction time. In vitro release study was performed by USP type I apparatus. The prepared suppositories were within the permissible range of all physical parameters. In vitro drug release was in the order of PEG>Agar>cocoa butter. Addition of PVP, HPMC in agar suppositories retards the release. The mechanism of drug release was diffusion controlled and follows first order kinetics. The results suggested that blends of PEG of low molecular weight (1000) with high molecular weight (4000 and 6000) in different percentage and agar in 10% w/w as base used to formulate rapid release suppositories. The sustained release suppositories can be prepared by addition of PVP, HPMC in agar-based suppositories and by use of cocoa butter as base.

  7. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  8. Comparative effectiveness and safety of indomethacin versus ibuprofen for the treatment of patent ductus arteriosus

    PubMed Central

    Gulack, Brian C.; Laughon, Matthew M.; Clark, Reese H.; Sankar, Meera N.; Hornik, Christoph P.; Smith, P. Brian

    2015-01-01

    Background Patent ductus arteriosus (PDA) is common in extremely premature infants and associated with increased morbidity and mortality. Medical management of PDA uses either indomethacin or ibuprofen. Despite numerous studies, uncertainty exists as to which drug is safer or more effective; we sought to fill this knowledge gap. Methods We identified infants <28 weeks gestational age discharged from neonatal intensive care units included in the Pediatrix Medical Group Clinical Data Warehouse between 2006 and 2012 who were treated with indomethacin or ibuprofen between postnatal day 2 and 14. Infants treated with both drugs or infants with a congenital malformation were excluded. We used multivariable logistic regression to determine the association of indomethacin versus ibuprofen on clinical outcomes. Results Of 6349 patients who met study criteria, 1177 (19%) received ibuprofen and 5172 (81%) received indomethacin. The median gestational age was 25 weeks (interquartile range 24–26), and 2894 (46%) infants were <750 g at birth. On unadjusted analysis, infants who received ibuprofen had significantly higher incidences of death prior to discharge, surgical ligation of the PDA prior to discharge, death or spontaneous intestinal perforation within 7 days of therapy, death or surgical ligation of the PDA prior to discharge, and an elevated creatinine within 7 days of treatment. However, on multivariable analysis, no significant differences in outcomes were observed (odds ratio for death/PDA ligation for ibuprofen vs. indomethacin = 1.12 [95% CI 0.91–1.39]). Conclusions We observed similar effectiveness and safety profiles for indomethacin and ibuprofen in the medical management of PDA in premature infants. PMID:26386610

  9. Enteral feeding during indomethacin and ibuprofen treatment of a patent ductus arteriosus

    PubMed Central

    Clyman, Ronald; Wickremasinghe, Andrea; Jhaveri, Nami; Hassinger, Denise C.; Attridge, Joshua T.; Sanocka, Ulana; Polin, Richard; Gillam-Krakauer, Maria; Reese, Jeff; Mammel, Mark; Couser, Robert; Mulrooney, Neil; Yanowitz, Toby D.; Derrick, Matthew; Jegatheesan, Priya; Walsh, Michele; Fujii, Alan; Porta, Nicolas; Carey, William A.; Swanson, Jonathan R.

    2013-01-01

    Objective To test the hypothesis that infants who are just being introduced to enteral feedings will advance to full enteral nutrition at a faster rate if they receive “trophic” (15 ml/kg/day) enteral feedings while receiving indomethacin or ibuprofen treatment for patent ductus arteriosus (PDA). Study design Infants were eligible for the study if they were 231/7 – 306/7 weeks gestation, weighed 401–1250 g at birth, received maximum enteral volumes ≤60 ml/kg/day and were about to be treated with indomethacin or ibuprofen. A standardized “feeding advance regimen” and guidelines for managing feeding intolerance were followed at each site (n=13). Results Infants (n=177; 26.3±1.9 wks (±SD) gestation) were randomized at 6.5±3.9 days to receive “trophic” feeds (“feeding” group, n=81: indomethacin=80%, ibuprofen=20%) or no feeds (“fasting (npo)” group, n=96: indomethacin=75%, ibuprofen=25%) during the drug administration period. Maximum daily enteral volumes prior to study entry were 14±15 ml/kg/day. After drug treatment, infants randomized to the “feeding” arm required fewer days to reach the study’s feeding volume endpoint (120 ml/kg/day). Although the enteral feeding endpoint was reached at an earlier postnatal age, the age at which central venous lines were removed did not differ between the two groups. There were no differences between the two groups in the incidence of infection, necrotizing enterocolitis, spontaneous intestinal perforation or other neonatal morbidities. Conclusion Infants required less time to reach the feeding volume endpoint if they were given “trophic” enteral feedings when they received indomethacin or ibuprofen treatments. PMID:23472765

  10. Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements.

    PubMed

    Bawuah, Prince; Silfsten, Pertti; Ervasti, Tuomas; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2014-12-10

    By measuring the time delay of a terahertz pulse traversing a tablet, and hence its effective refractive index, it is possible to non-invasively and non-destructively detect the weight of tablets made of microcrystalline cellulose (MCC). Two sets of MCC tablets were used in the study: Set A (training set) consisted of 13 tablets with nominally constant height but varying porosities, whereas Set B (test set) comprised of 21 tablets with nominally constant porosity but different heights. A linear correlation between the estimated absolute weight based on the terahertz measurement and the measured weight of both sets of MCC tablets was found. In addition, it was possible to estimate the height of the tablets by utilizing the estimated absolute weight and calculating the relative change of height of each tablet with respect to an ideal tablet. A good agreement between the experimental and the calculated results was found highlighting the potential of this technique for in-line sensing of the weight, porosity and the relative change in height of the tablets compared to a reference/ideal tablet. In this context, we propose a quantitative quality control method to assess the deviations in porosity of tablets immediately after compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    PubMed

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  12. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  13. PEG tube insertion -- discharge

    MedlinePlus

    ... be treated with medicine. Caring for the PEG-tube Site Drainage from around the PEG tube is common for the first 1 or 2 ... cotton swab or gauze. Try to remove any drainage or crusting on the skin and tube. Be gentle. If you used soap, gently clean ...

  14. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac

    PubMed Central

    Tawfeek, Hesham M.

    2013-01-01

    The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959

  16. Novel mesalamine-loaded beads in tablets for delayed release of drug to the colon.

    PubMed

    Nguyen, Chien; Christensen, J Mark; Ayres, James W

    2012-01-01

    Novel 'beads-in-a-tablet' formulations (total weight ∼740-780 mg) have been prepared that meet USP 31 requirements for Delayed Release of mesalamine. Several methods are presented that overcome breakage of beads during tablet compaction were explored. Bead formulations comprise a combination of extrusion and spheronization to produce a relatively high drug load (80%), followed by coating (25%) with a colonic-targeted drug release polymer (polymethacrylates, Eudragit(®) S100), overcoated (3%) with hydroxypropyl methylcellulose (Opadry(®)) to improve bead binding and compactability, and using 20% coat of lactose/sodium starch glycolate (Explotab(®)) as binder/disintegrant/cushioning agent, thus allowing a sufficiently thick coating to be uniform and without being broken during tablet compaction. Then, the aforementioned beads were compressed into tablets at 1500 pounds of pressure containing 400 mg of mesalamine, and finally coating the compressed tablets with Surelease(®) (ethylcellulose):Opadry(®) = 1:0.5 ranging from 1.5-2.5% weight gain; the resulting tablets met USP 31 dissolution requirements for delayed release tablets.

  17. Injector having multiple fuel pegs

    DOEpatents

    Hadley, Mark Allan; Felling, David Kenton

    2013-04-30

    A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

  18. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG).

    PubMed

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.

  19. Differential effects of sulindac and indomethacin on blood pressure in treated essential hypertensive subjects.

    PubMed

    Puddey, I B; Beilin, L J; Vandongen, R; Banks, R; Rouse, I

    1985-09-01

    Attenuation of the effectiveness of antihypertensive therapy by non-steroidal anti-inflammatory (NSAI) drugs has been attributed to inhibition of systemic or renal vasodilator prostaglandin synthesis, or a combination of both. Indomethacin is a NSAI drug with both renal and extrarenal cyclo-oxygenase inhibition properties. Sulindac is a relatively selective cyclo-oxygenase inhibitor said not to affect urinary prostaglandin excretion. This study examines the relative effect on blood pressure of 4 weeks' treatment, with indomethacin 25 mg three times daily and sulindac 200 mg twice daily, in a randomized placebo controlled trial in 26 hypertensive subjects. In nine patients treated with indomethacin, supine blood pressure rose 11 mmHg systolic and 4 mmHg diastolic by the end of the first week, whereas nine subjects treated with sulindac showed a fall in blood pressure similar to the trend seen in placebo-treated subjects. Indomethacin treatment inhibited renal cyclo-oxygenase with a 78% reduction in urinary prostaglandin E2 excretion and 89% suppression of plasma renin activity. Neither measurement was affected by sulindac. Extrarenal cyclo-oxygenase activity was inhibited by both indomethacin and sulindac with serum thromboxane B2 decreasing by 96% and 69% respectively. The results suggest that the pressor effect of NSAI drugs is predominantly related to renal cyclo-oxygenase inhibition. the lack of effect of sulindac on blood pressure may make it a safer therapeutic option if NSAI drug therapy is necessary in the hypertensive patient.

  20. Chitosan-HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid.

    PubMed

    Arthanari, Saravanakumar; Mani, Ganesh; Peng, Mei Mei; Jang, Hyun Tae

    2016-01-01

    The purpose of this research was to develop a suitable and alternate adjuvant for the tetanus toxoid (TT) vaccine that induces long term immunity after a single-dose immunization. In our study, the preformulation studies were carried out by using different ratios (7/3, 8/2, and 9/1) of chitosan-hydroxypropyl methylcellulose (HPMC)-blended empty microspheres. Moreover, TT was stabilized with heparin (at heparin concentrations of 1%, 2%, 3%, and 4% w/v) and encapsulated in ideal chitosan - HPMC (CHBMS) microspheres, by the water-in-oil-in-water (W/O/W) multiple emulsion method. The vaccine entrapment and the in vitro release efficiency of the CHBMS was evaluated for a period of 90 days. The release of antigens from the microspheres was determined by ELISA. Antigen integrity was investigated by SDS-PAGE. From the optimization studies, it was found that a chitosan/HPMC ratio of 8/2 produced a good yield, with microspheres that were spherical, regular and uniformly-sized. In the CHBMS, a heparin concentration of 3% w/v resulted in well-sustained antigen delivery for a period of 90 days. It was found that the characteristics of initial release could be observed in 2 days, followed by a constant release, and an almost 100% complete release in 90 days. From the in vitro release characteristics, the ideal batch of CHBMS (3% w/v heparin) was evaluated for in vivo studies by the antibody induction method. The antibody levels were measured for different combinations for the period of 9 months, and finally, with a second booster dose after 1 year. In conclusion, it was observed that CHBMS (combination-1) resulted in the antibody level of 4.5 IU/mL of guinea pig serum, and the level was 3.5 IU/mL for the Central Research Institute's alum-adsorbed tetanus toxoid (CRITT) (combination 2), after 1 year, with a second booster dose. This novel approach of using CHBMS may have potential advantages for single-step immunization with vaccines.

  1. [Tablets and tablet production - with special reference to Icelandic conditions].

    PubMed

    Skaftason, Jóhannes F; Jóhannesson, Thorkell

    2013-04-01

    Modern tablet compression was instituted in England in 1844 by William Brockedon (1787-1854). The first tablets made according to Brockedon´s procedures contained watersoluble salts and were most likely compressed without expedients. In USA a watershed occurred around 1887 when starch (amylum maydis) was introduced to disperse tablets in aqueous milieu in order to corroborate bioavailability of drugs in the almentary canal. About the same time great advances in tablet production were introduced by the British firm Burroughs Wellcome and Co. In Denmark on the other hand tablet production remained on low scale until after 1920. As Icelandic pharmacies and drug firms modelled themselves mostly upon Danish firms tablet production was first instituted in Iceland around 1930. The first tablet machines in Iceland were hand-driven. More efficent machines came after 1945. Around 1960 three sizeable tablet producers were in Iceland; now there is only one. Numbers of individual tablet species (generic and proprietary) on the market rose from less than 10 in 1913 to 500 in 1965, with wide variations in numbers in between. Tablets have not wiped out other medicinal forms for peroral use but most new peroral drugs have been marketed in the form of tablets during the last decades.

  2. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.

    PubMed

    Silva, Adny H; Lima, Enio; Mansilla, Marcelo Vasquez; Zysler, Roberto D; Troiani, Horacio; Pisciotti, Mary Luz Mojica; Locatelli, Claudriana; Benech, Juan C; Oddone, Natalia; Zoldan, Vinícius C; Winter, Evelyn; Pasa, André A; Creczynski-Pasa, Tânia B

    2016-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONS) were synthesized by thermal decomposition of an organometallic precursor at high temperature and coated with a bi-layer composed of oleic acid and methoxy-polyethylene glycol-phospholipid. The formulations were named SPION-PEG350 and SPION-PEG2000. Transmission electron microscopy, X-ray diffraction and magnetic measurements show that the SPIONs are near-spherical, well-crystalline, and have high saturation magnetization and susceptibility. FTIR spectroscopy identifies the presence of oleic acid and of the conjugates mPEG for each sample. In vitro biocompatibility of SPIONS was investigated using three cell lines; up to 100μg/ml SPION-PEG350 showed non-toxicity, while SPION-PEG2000 showed no signal of toxicity even up to 200μg/ml. The uptake of SPIONS was detected using magnetization measurement, confocal and atomic force microscopy. SPION-PEG2000 presented the highest internalization capacity, which should be correlated with the mPEG chain size. The in vivo results suggested that SPION-PEG2000 administration in mice triggered liver and kidney injury. The potential use of superparamagnetic iron oxide nanoparticles (SPIONS) in the clinical setting have been studied by many researchers. The authors synthesized two types of SPIONS here and investigated the physical properties and biological compatibility. The findings should provide more data on the design of SPIONS for clinical application in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Lubiprostone plus PEG electrolytes versus placebo plus PEG electrolytes for outpatient colonoscopy preparation: a randomized, double-blind placebo-controlled trial.

    PubMed

    Sofi, Aijaz A; Nawras, Ali T; Pai, Chetan; Samuels, Qiana; Silverman, Ann L

    2015-01-01

    Bowel preparation using large volume of polyethylene glycol (PEG) solutions is often poorly tolerated. Therefore, there are ongoing efforts to develop an alternative bowel cleansing regimen that should be equally effective and better tolerated. The aim of this study was to assess the efficacy of lubiprostone (versus placebo) plus PEG as a bowel cleansing preparation for colonoscopy. Our study was a randomized, double-blind placebo-controlled design. Patients scheduled for screening colonoscopy were randomized 1:1 to lubiprostone (group 1) or placebo (group 2) plus 1 gallon of PEG. The primary endpoints were patient's tolerability and endoscopist's evaluation of the preparation quality. The secondary endpoint was to determine any reduction in the amount of PEG consumed in the lubiprostone group compared with the placebo group. One hundred twenty-three patients completed the study and were included in the analysis. There was no difference in overall cleanliness. The volume of PEG was similar in both the groups. The volume of PEG approached significance as a predictor of improved score for both the groups (P = 0.054). Lubiprostone plus PEG was similar to placebo plus PEG in colon cleansing and volume of PEG consumed. The volume of PEG consumed showed a trend toward improving the quality of the colon cleansing.

  4. Indomethacin inhibits the effects of oestrogen in the anterior pituitary gland of the rat.

    PubMed

    Rosental, D G; Machiavelli, G A; Cherñavsky, A C; Speziale, N S; Burdman, J A

    1989-06-01

    Two inhibitors of prostaglandin synthesis, indomethacin and aspirin, blocked the increase of oestrogen-binding sites in the nuclear subcellular fraction, an increase which occurs after the administration of oestradiol. Consequently the biological effects of oestrogens in the anterior pituitary gland of the rat (prolactin synthesis, concentration of progesterone-binding sites and cell proliferation) are diminished. The anterior pituitary gland synthesized prostaglandin F2 alpha (PGF2 alpha), PGE2 and PGD2 from arachidonic acid. This synthesis was blocked when indomethacin was added to the culture media. Oestrogen increased the concentration of PGE2: an increase that was partially prevented by indomethacin. Prostaglandins may have an important role on the effects of oestrogen in the anterior pituitary gland of the rat.

  5. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin

  6. The use of Hibiscus esculentus (Okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form.

    PubMed

    Zaharuddin, Nurul Dhania; Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.

  7. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.

    PubMed

    Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Ming-Fa; Lee, Hung-Maan

    2013-04-01

    Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.

  8. Protective effects of ginger and marshmallow extracts on indomethacin-induced peptic ulcer in rats.

    PubMed

    Zaghlool, Sameh S; Shehata, Basim A; Abo-Seif, Ali A; Abd El-Latif, Hekma A

    2015-01-01

    Gastric ulcer is one of the most serious diseases. Most classic treatment lines produce adverse drug reactions. Therefore, this study aimed to investigate the protective effects of two natural extracts, namely ginger and marshmallow extracts, on indomethacin-induced gastric ulcer in rats. Animals were divided into five groups; a normal control group, an ulcer control group, and three treatment groups receiving famotidine (20 mg/kg), ginger (100 mg/kg), and marshmallow (100 mg/kg). Treatments were given orally on a daily basis for 14 days prior to a single intra-peritoneal administration of indomethacin (20 mg/kg). Indomethacin administration resulted in significant ulcerogenic effect evidenced by significant elevations in ulcer number, ulcer index, and blood superoxide dismutase activity accompanied by significant decreases in gastric mucosal nitric oxide and glutathione levels. In addition, elevations in gastric mucosal lipid peroxides and histamine content were observed. Alternatively, pretreatment with famotidine, ginger or marshmallow significantly corrected macroscopic and biochemical findings, supported microscopically by results of histopathological study. These results demonstrate that administration of either ginger or marshmallow extract could protect against indomethacin-induced peptic ulcer in rats presumably via their antioxidant properties and inhibition of histamine release.

  9. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.

    2014-01-01

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.

  10. Effect of indomethacin on surface treatment and intracanal dressing of replanted teeth in dogs.

    PubMed

    Zanetta-Barbosa, Darceny; Moura, Camilla Christian Gomes; Machado, Juliana Reis; Crema, Virginia Oliveira; Lima, Cirilo Antônio de Paula; de Carvalho, Antônio Cesar Perry

    2014-01-01

    This study evaluated the healing process of teeth replanted after root treatment and intracanal dressing with indomethacin alone or indomethacin with calcium hydroxide (Ca[OH]2). Through a case-control study, 24 teeth of 6 adult dogs were extracted, dried, and divided into 4 groups according to the root surface treatment protocols performed before replantation and the intracanal medication used after replantation. In group 1 (negative control), root surfaces were treated by immersion in a 0.9% saline solution and then replanted. In the other groups, the roots were immersed for 10 minutes in Ca(OH)2 (group 2), indomethacin (group 3), or a solution of indomethacin and Ca(OH)2 (group 4). After 2 weeks, group 1 teeth were subjected to single-visit root canal treatment and obturation with gutta-percha and sealer consisting of zinc oxide and eugenol. The teeth in the other groups were subjected to intracanal dressing with the same material used for immersion. After an additional period of 28 weeks, the animals were euthanized and the jaws containing the replanted teeth were processed for histologic analysis. Histometric values were statistically analyzed, with significance set at a P value less than or equal to .05. Group 1 exhibited significantly more normal periodontium than group 4 (P = .02). Total resorption was greater in group 4 than in group 1 (P = .02). No statistically significant difference in the percentage of surface resorption or in total inactive resorption was observed between the groups. The findings of this study suggest that intracanal dressing and topical root treatment with Ca(OH)2 with or without indomethacin is not recommended for teeth dried for 50 minutes, but the use of indomethacin alone as root surface treatment for delayed tooth replantation deserves further study using longer drying periods. In addition, the present results suggest that a single-visit root canal, performed up to 2 weeks after replantation, might be indicated for teeth dried

  11. Pharmacokinetic analysis of multi PEG-theophylline conjugates.

    PubMed

    Grassi, Mario; Bonora, Gian Maria; Drioli, Sara; Cateni, Francesca; Zacchigna, Marina

    2012-10-01

    In the attempt of prolonging the effect of drugs, a new branched, high-molecular weight multimeric poly(ethylene glycol) (MultiPEG), synthesized with a simple assembling procedure that devised the introduction of functional groups with divergent and selective reactivity, was employed as drug carrier. In particular, the attention was focused on the study of theophylline (THEO) and THEO-MultiPEG conjugates pharmacokinetic after oral administration in rabbit. Pharmacokinetic behavior was studied according to an ad hoc developed mathematical model accounting for THEO-MultiPEG in vivo absorption and decomposition into drug (THEO) and carrier (MultiPEG). The branched high-molecular weight MultiPEG proved to be a reliable drug delivery system able to prolong theophylline staying in the blood after oral administration of a THEO-MultiPEG solution. The analysis of experimental data by means of the developed mathematical model revealed that the prolongation of THEO effect was essentially due to the low THEO-MultiPEG permeability in comparison to that of pure THEO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    PubMed

    Duque, Aránzazu; Vinader-Caerols, Concepción; Monleón, Santiago

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  13. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice

    PubMed Central

    Duque, Aránzazu; Vinader-Caerols, Concepción

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity. PMID:28278165

  14. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.

    PubMed

    Yamini, D; Devanand Venkatasubbu, G; Kumar, J; Ramakrishnan, V

    2014-01-03

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Chemical Interactions of Polyethylene Glycols (PEG) and Glycerol with Protein Functional Groups: Applications to PEG, Glycerol Effects on Protein Processes

    PubMed Central

    Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas

    2015-01-01

    Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980

  16. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    PubMed

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway.

    PubMed

    Pantovic, Aleksandar; Bosnjak, Mihajlo; Arsikin, Katarina; Kosic, Milica; Mandic, Milos; Ristic, Biljana; Tosic, Jelena; Grujicic, Danica; Isakovic, Aleksandra; Micic, Nikola; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2017-02-01

    We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G 2 M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Tablet splitting and weight uniformity of half-tablets of 4 medications in pharmacy practice.

    PubMed

    Tahaineh, Linda M; Gharaibeh, Shadi F

    2012-08-01

    Tablet splitting is a common practice for multiple reasons including cost savings; however, it does not necessarily result in weight-uniform half-tablets. To determine weight uniformity of half-tablets resulting from splitting 4 products available in the Jordanian market and investigate the effect of tablet characteristics on weight uniformity of half-tablets. Ten random tablets each of warfarin 5 mg, digoxin 0.25 mg, phenobarbital 30 mg, and prednisolone 5 mg were weighed and split by 6 PharmD students using a knife. The resulting half-tablets were weighed and evaluated for weight uniformity. Other relevant physical characteristics of the 4 products were measured. The average tablet hardness of the sampled tablets ranged from 40.3 N to 68.9 N. Digoxin, phenobarbital, and prednisolone half-tablets failed the weight uniformity test; however, warfarin half-tablets passed. Digoxin, warfarin, and phenobarbital tablets had a score line and warfarin tablets had the deepest score line of 0.81 mm. Splitting warfarin tablets produces weight-uniform half-tablets that may possibly be attributed to the hardness and the presence of a deep score line. Digoxin, phenobarbital, and prednisolone tablet splitting produces highly weight variable half-tablets. This can be of clinical significance in the case of the narrow therapeutic index medication digoxin.

  19. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG)

    PubMed Central

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  20. Informed peg-in-hole insertion using optical sensors

    NASA Astrophysics Data System (ADS)

    Paulos, Eric; Canny, John F.

    1993-08-01

    Peg-in-hole insertion is not only a longstanding problem in robotics but the most common automated mechanical assembly task. In this paper we present a high precision, self-calibrating peg-in-hole insertion strategy using several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us to achieve successful dead-reckoning insertions with tolerances of 25 microns without any accurate initial position information for the robot, pegs, or holes. The program we implemented works for any cylindrical peg, and the sensing steps do not depend on the peg diameter, which the program does not know. The key to the strategy is the use of a fixed sensor to localize both a mobile sensor and the peg, while the mobile sensor localizes the hole. Our strategy is extremely fast, localizing pegs as they are in route to their insertion location without pausing. The result is that insertion times are dominated by the transport time between pick and place operations.

  1. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  2. Gum Ghatti--a pharmaceutical excipient: development, evaluation and optimization of sustained release mucoadhesive matrix tablets of domperidone.

    PubMed

    Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir

    2012-01-01

    The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.

  3. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  4. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin

    NASA Astrophysics Data System (ADS)

    Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej

    2018-06-01

    Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.

  5. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  6. Evidence against the participation of a pharmacokinetic interaction in the protective effect of single-dose curcumin against gastrointestinal damage induced by indomethacin in rats.

    PubMed

    Zazueta-Beltrán, Liliana; Medina-Aymerich, Lorena; Estela Díaz-Triste, Nadia; Chávez-Piña, Aracely Evangelina; Castañeda-Hernández, Gilberto; Cruz-Antonio, Leticia

    2017-03-01

    To determine the role of a pharmacokinetic interaction in the protective effect of curcumin against the gastric damage induced by indomethacin administration as such or as its prodrug acemetacin. Wistar rats orally received single dose of indomethacin (30 mg/kg) with and without curcumin (30 mg/kg); gastric injury was evaluated by determining the total damaged area. Additional groups of rats received an oral single dose of indomethacin (30 mg/kg) or its prodrug acemetacin (34.86 mg/kg) in the presence or absence of curcumin (30 mg/kg). Indomethacin and acemetacin concentrations in plasma from blood draws were determined by high-performance liquid chromatography.Plasma concentration-against-time curves were constructed, and bioavailability parameters, maximal concentration (C max ) and area under the curve to the last sampling time (AUC 0-t ) were estimated. Concomitant administration of indomethacin and curcumin resulted in a significantly reduced gastric damage compared to indomethacin alone. However, co-administration of curcumin did not produce any significant alteration in the bioavailability parameters of indomethacin and acemetacin after administration of either the active compound or the prodrug. Curcumin exhibits a protective effect against indomethacin-induced gastric damage, but does not produce a reduction of the bioavailability of this nonsteroidal anti-inflammatory drug, indomethacin. Data thus suggest that a pharmacokinetic mechanism of action is not involved in curcumin gastroprotection.

  7. The Use of Hibiscus esculentus (Okra) Gum in Sustaining the Release of Propranolol Hydrochloride in a Solid Oral Dosage Form

    PubMed Central

    Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength. PMID:24678512

  8. Comparison of rectal indomethacin, diclofenac, and naproxen for the prevention of post endoscopic retrograde cholangiopancreatography pancreatitis.

    PubMed

    Mohammad Alizadeh, Amir H; Abbasinazari, Mohammad; Hatami, Behzad; Abdi, Saeed; Ahmadpour, Forozan; Dabir, Shideh; Nematollahi, Aida; Fatehi, Samira; Pourhoseingholi, Mohammad A

    2017-03-01

    NSAIDs are commonly utilized for the prevention of post endoscopic retrograde cholangiopancreatography pancreatitis (PEP). However, not much is known about the most effective drug in preventing this complication. This study aims to clarify which drug (indomethacin, diclofenac, or naproxen) is most effective for the prevention of post endoscopic retrograde cholangiopancreatography (ERCP). In a double-blind, randomized study, patients received a single rectal dose of one of the three drugs 30 min before undergoing ERCP: diclofenac (100 mg), indomethacin (100 mg), or naproxen (500 mg). The primary outcome measured was the development of pancreatitis. The levels of serum amylase, lipase, lipoxin A4, and resolvin E1 were measured before ERCP, and at 24 h after the procedure. Three hundred and seventy-two patients completed the study. The overall incidence of PEP was 8.6%, which occurred in five of the 124 (4%) patients who received diclofenac, seven of the 122 (5.8%) patients who received indomethacin, and 20 of the 126 (15.9%) patients who received naproxen. There were no significant differences in amylase and lipase levels among the three groups (P=0.183 and 0.597, respectively). Unlike patients in the naproxen group, patients in the diclofenac and indomethacin groups showed a significant increase in lipoxin A4 and resolvin E1 (P=0.001 and 0.02, respectively). Diclofenac and indomethacin patient groups had a lower incidence of PEP than the naproxen group.

  9. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  10. Enhancement of the physical stability of amorphous indomethacin by mixing it with octaacetylmaltose. inter and intra molecular studies.

    PubMed

    Kaminska, E; Adrjanowicz, K; Zakowiecki, D; Milanowski, B; Tarnacka, M; Hawelek, L; Dulski, M; Pilch, J; Smolka, W; Kaczmarczyk-Sedlak, I; Kaminski, K

    2014-10-01

    To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied. The amorphous IMC, acMAL and binary mixtures (IMC-acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure-Activity Relationship (QSAR). Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC. Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.

  11. Investigation of Dissolution Behavior HPMC/Eudragit®/Magnesium Aluminometasilicate Oral Matrices Based on NMR Solid-State Spectroscopy and Dynamic Characteristics of Gel Layer.

    PubMed

    Naiserová, M; Kubová, K; Vysloužil, J; Pavloková, S; Vetchý, D; Urbanová, M; Brus, J; Vysloužil, J; Kulich, P

    2018-02-01

    Burst drug release is often considered a negative phenomenon resulting in unexpected toxicity or tissue irritation. Optimal release of a highly soluble active pharmaceutical ingredient (API) from hypromellose (HPMC) matrices is technologically impossible; therefore, a combination of polymers is required for burst effect reduction. Promising variant could be seen in combination of HPMC and insoluble Eudragits ® as water dispersions. These can be applied only on API/insoluble filler mixture as over-wetting prevention. The main hurdle is a limited water absorption capacity (WAC) of filler. Therefore, the object of this study was to investigate the dissolution behavior of levetiracetam from HPMC/Eudragit ® NE matrices using magnesium aluminometasilicate (Neusilin ® US2) as filler with excellent WAC. Part of this study was also to assess influence of thermal treatment on quality parameters of matrices. The use of Neusilin ® allowed the application of Eudragit ® dispersion to API/Neusilin ® mixture in one step during high-shear wet granulation. HPMC was added extragranularly. Obtained matrices were investigated for qualitative characteristics, NMR solid-state spectroscopy (ssNMR), gel layer dynamic parameters, SEM, and principal component analysis (PCA). Decrease in burst effect (max. of 33.6%) and dissolution rate, increase in fitting to zero-order kinetics, and paradoxical reduction in gel layer thickness were observed with rising Eudragit ® NE concentration. The explanation was done by ssNMR, which clearly showed a significant reduction of the API particle size (150-500 nm) in granules as effect of surfactant present in dispersion in dependence on Eudragit ® NE amount. This change in API particle size resulted in a significantly larger interface between these two entities. Based on ANOVA and PCA, thermal treatment was not revealed as a useful procedure for this system.

  12. Indomethacin-induced alterations in corticosteroid and prostaglandin release by isolated adrenocortical cells of the cat.

    PubMed Central

    Laychock, S G; Rubin, R P

    1976-01-01

    1 The effects of purported prostaglandin synthesis inhibitors on steroid and prostaglandin (E and F) release from trypsin-dispersed cat adrenocortical cells were investigated. 2 Low indomethacin concentrations potentiated adrenocorticotrophin (ACTH)-evoked prostaglandin and steroid release, whereas higher concentrations depressed both responses to ACTH. The steroidogenic response to exogenous prostaglandin E2 was not markedly altered over a wide range of indomethacin concentrations. 3 Indomethacin enhanced basal steroid release but did not enhance basal prostaglandin E or F release. 4 5,8,11,14-Eicosatetraynoic acid (ETA) elicited a concentration-dependent inhibition of ACTH-induced steroid release, but had little effect on prostaglandin E2-induced steroid release. A high concentration of ETA inhibited prostaglandin E and F release. 5 These data are discussed in relation to the concept that prostaglandins provide a critical link in ACTH-induced corticosteroidogenesis. PMID:181110

  13. Angular circulation speed of tablets in a vibratory tablet coating pan.

    PubMed

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  14. Effects of chronic treatment with cyclooxygenase inhibitor, indomethacin on oral contraceptive-induced high blood pressure in female rats.

    PubMed

    Olatunji, L A; Soladoye, A O

    2010-03-01

    The present study sought to investigate the effects of prostaglandins synthesis inhibition with indomethacin on blood pressure, heart rate, cardiac weight, plasma electrolytes and cardiovascular responses to arterial baroreceptor stimulation in Oral contraceptive (OC) treated female Sprague-Dawley rats. Oral administration of synthetic oestrogen, ethinyl oestradiol in combination with progestogen, norgestrel for ten weeks significantly increased blood pressure and cardiac weight compared with those of the control rats. Concomitant treatment with indomethacin significantly abrogated increase in blood pressure but did not affect the increase in cardiac weight induced by OC. Heart rate, plasma sodium and potassium concentrations were not affected by OC and/or indomethacin treatment. OC treatment did not alter sympathetic-mediated pressor and tachycardiac responses caused by bilateral carotid baroreceptors unloading. However, these responses were significantly attenuated by indomethacin treatment. These results demonstrated that rat model of OC-induced high blood pressure developed cardiac hypertrophy that is not associated with altered sympathetic-mediated cardiovascular responses to arterial baroreceptor stimulation. The finding that indomethacin prevented OC-induced high blood pressure, but not associated cardiac hypertrophy implies that synthesis of prostaglandins may be an important determinant of OC-induced hypertension, while associated cardiac hypertrophy may not be pressure overload-dependent.

  15. Performance of tablet disintegrants: impact of storage conditions and relative tablet density.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2015-01-01

    Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.

  16. Biopolymeric mucoadhesive bilayer patch of pravastatin sodium for buccal delivery and treatment of patients with atherosclerosis.

    PubMed

    Yedurkar, Pramod; Dhiman, Munish Kumar; Petkar, Kailash; Sawant, Krutika

    2013-05-01

    Mucoadhesive bilayer buccal patch has been developed to improve the bioavailability and therapeutic efficacy along with providing sustained release of pravastatin sodium. Buccal patches comprising of varying composition of Carbopol 934P and HPMC K4M were designed and characterized for surface pH, swelling index, in vitro bioadhesion, mechanical properties, in vitro drug release and in vivo pharmacokinetic and pharmacodynamics performance. All formulations exhibited satisfactory technological parameters and followed non-fickian drug release mechanism. Bilayer buccal patch containing Carbopol 934P and HPMC K4M in 4:6 ratio (PBP5) was considered optimum in terms of swelling, mucoadhesion, mechanical properties and in vitro release profile. Pharmacokinetic studies in rabbits showed significantly higher (p < 0.05) Cmax (75.63 ± 6.98 ng/mL), AUC(0-8) (311.10 ± 5.89 ng/mL/h) and AUC(0-∞) (909.42 ± 5.89 ng/mL/h) than pravastatin oral tablet (Cmax - 67.40 ± 9.23 ng/mL, AUC(0-8)-130.33 ± 10.25 ng/mL/h and AUC(0-∞)-417.17 ± 5.89 ng/mL/h)). While, increased tmax of buccal patch indicated its sustained release property in comparison to oral tablet. Pharmacodynamic studies in rabbits showed statistically significant difference (p < 0.005) in the reduction of TG (131.10 ± 10.23 mg/dL), VLDL (26.00 ± 2.56 mg/dL) and LDL level (8.99 ± 3.01 mg/dL) as compared to oral conventional tablet. In conclusion, bioavailability from the developed buccal patch of pravastatin was 2.38 times higher than the oral dosage form, indicating its therapeutic potential in the treatment of atherosclerosis.

  17. Soluble Dietary Fibers Can Protect the Small Intestinal Mucosa Without Affecting the Anti-inflammatory Effect of Indomethacin in Adjuvant-Induced Arthritis Rats.

    PubMed

    Satoh, Hiroshi; Matsumoto, Hiroki; Hirakawa, Tomoe; Wada, Naoki

    2016-01-01

    How to prevent the small intestinal damage induced by NSAIDs is an urgent issue to be resolved. In the present study, we examined the effects of soluble dietary fibers on both anti-inflammatory and ulcerogenic effects of indomethacin in arthritic rats. Male Wistar rats weighing 180-220 g were used. Arthritis was induced by injecting Freund's complete adjuvant (killed M. tuberculosis) into the plantar region of the right hindpaw. The animals were fed a regular powder diet for rats or a diet supplemented with soluble dietary fibers such as pectin or guar gum. Indomethacin was administered once a day for 3 days starting 14 days after the adjuvant injection, when marked arthritis was observed. The volumes of the hindpaw were measured before and after indomethacin treatment to evaluate the effect of indomethacin on edema. The lesions in the small intestine were examined 24 h after the final dosing of indomethacin. Hindpaw volume was increased about 3 times 14 days after injection of the adjuvant. Indomethacin (3-10 mg/kg, p.o.) decreased hindpaw volume dose-dependently, but caused severe lesions in the small intestine at doses of 6 and 10 mg/kg. The addition of pectin (1-10 %) or guar gum (10 %) to the diet markedly decreased the lesion formation without affecting the anti-edema action of indomethacin. The same effects of pectin were observed when indomethacin was administered subcutaneously. It is suggested that soluble dietary fibers can prevent intestinal damage induced by NSAIDs without affecting the anti-inflammatory effect of these agents.

  18. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Anti-ulcerogenic activity of aqueous extract of Carica papaya seed on indomethacin-induced peptic ulcer in male albino rats.

    PubMed

    Oloyede, Hussein O B; Adaja, Matthew C; Ajiboye, Taofeek O; Salawu, Musa O

    2015-03-01

    Carica papaya is an important fruit with its seeds used in the treatment of ulcer in Nigeria. This study investigated the anti-ulcerogenic and antioxidant activities of aqueous extract of Carica papaya seed against indomethacin-induced peptic ulcer in male rats. Thirty male rats were separated into 6 groups (A-F) of five rats each. For 14 d before ulcer induction with indomethacin, groups received once daily oral doses of vehicle (distilled water), cimetidine 200 mg/kg body weight (BW), or aqueous extract of C. papaya seed at doses of 100, 150 or 200 mg/kg BW (groups A, B, C, D, E and F, respectively). Twenty-four hours after the last treatment, groups B, C, D, E and F were treated with 100 mg/kg BW of indomethacin to induce ulcer formation. Carica papaya seed extract significantly (P< 0.05) increased gastric pH and percentage of ulcer inhibition relative to indomethacin-induced ulcer rats. The extract significantly (P< 0.05) decreased gastric acidity, gastric acid output, gastric pepsin secretion, ulcer index and gastric secretion volume relative to group B. These results were similar to that achieved by pretreatment with cimetidine. Specific activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase in the extract-treated groups (D, E and F) were increased significantly over the group B (P< 0.05). Pretreatment with the seed extract protected rats from the indomethacin-mediated decrease in enzyme function experienced by the group B. Similarly, indomethacin-mediated decrease in reduced glutathione level and indomethacin-mediated increase in malondialdehyde were reversed by Carica papaya extract. In this study, pretreatment with aqueous extract of Carica papaya seed exhibited anti-ulcerogenic and antioxidant effects, which may be due to the enhanced antioxidant enzymes.

  20. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2010-02-15

    We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  2. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  3. Indomethacin derivatives as tubulin stabilizers to inhibit cancer cell proliferation.

    PubMed

    Chennamaneni, Snigdha; Gan, Chunfang; Lama, Rati; Zhong, Bo; Su, Bin

    2016-01-15

    Cyclooxygenase (COX) inhibitor Indomethacin analogs exhibited more potent cancer cell growth inhibition and apoptosis inducing activities than the parental compound. The anti-proliferative mechanism investigation of the analogs revealed that they inhibited tubulin polymerization at high concentrations whereas enhanced polymerization at low concentrations. The two opposite activities might antagonize each other and impaired the anti-proliferative activity of the derivatives eventually. In this study, we further performed lead optimization based on the structure activity relationship (SAR) generated. One of the new Indomethacin derivatives compound 11 {2-(4-(benzyloxy)phenyl)-N-(1-(4-bromobenzoyl)-3-(2-((2-(dimethylamino)ethyl)amino)-2-oxoethyl)-2-methyl-1H-indol-5-yl)acetamide} inhibited the proliferation of a panel of cancer cell lines with IC50s at the sub-micromole levels. Further study revealed that the compound only enhanced tubulin polymerization and was a tubulin stabilizer. Published by Elsevier Ltd.

  4. Efficacy and tolerability of peg-only laxative on faecal impaction and chronic constipation in children. A controlled double blind randomized study vs a standard peg-electrolyte laxative

    PubMed Central

    2012-01-01

    Background PEG-based laxatives are considered today the gold standard for the treatment of constipation in children. PEG formulations differ in terms of composition of inactive ingredients which may have an impact on acceptance, compliance and adherence to treatment. We therefore compared the efficacy, tolerability, acceptance and compliance of a new PEG-only formulation compared to a reference PEG-electrolyte (PEG-EL) formulation in resolving faecal impaction and in the treatment of chronic constipation. Methods Children aged 2–16 years with functional chronic constipation for at least 2 months were randomized to receive PEG-only 0.7 g/kg/day in 2 divided doses or 6.9 g PEG-EL 1–4 sachets according to age for 4 weeks. Children with faecal impaction were randomized to receive PEG-only 1.5/g/kg in 2 divided doses until resolution or for 6 days or PEG-EL with an initial dose of 4 sachets and increasing 2 sachets a day until resolution or for 7 days. Results Ninety-six children were randomized into the study. Five patients withdrew consent before starting treatment. Three children discontinued treatment for refusal due to bad taste of the product (1 PEG-only, 2 PEG-EL); 1 (PEG-EL) for an adverse effect (abdominal pain). Intent-to-treat analysis was carried out in 49 children in the PEG-only group and 42 in the PEG-EL group. No significant differences were observed between the two treatment groups at baseline. Adequate relief of constipation in terms of normalized frequency and painless defecation of soft stools was achieved in all patients in both groups. The number of stools/week was 9.2 ± 3.2 (mean ± SD) in the PEG-only group and 7.8 ± 2.4 in the PEG-EL group (p = 0.025); the number of days with stool was 22.4 ± 5.1 in the PEG-only group and 19.6 ± 7.2 in the PEG-EL group (p = 0.034). In the PEG-only group faecaloma resolution was observed in 5 children on the second day and in 2 children on the third day, while in the PEG-EL group it was observed in 2

  5. Response to low dose indomethacin in two children with nephrogenic diabetes insipidus.

    PubMed

    Dayal, Devi; Verma Attri, Savita; Kumar Bhalla, Anil; Kumar, Rakesh

    2015-01-01

    Two children with nephrogenic diabetes insipidus (NDI) were treated with oral indomethacin (0.75-1.2 mg/kg/day) three times a day for a mean duration of 3 yrs. Remission occurred in both patients in terms of achieving a normal fluid balance and body growth and the drug was withdrawn in one patient after 2 yrs. The treatment was well tolerated and no side effects were noted. The mean duration of follow-up was 6.5 yrs. These long-term observations of a favourable response to low dose indomethacin in 2 children with NDI need to be tested on larger number of patients. © Polish Society for Pediatric Endocrinology and Diabetology.

  6. A dual-action, low-volume bowel cleanser administered the day before colonoscopy: results from the SEE CLEAR II study.

    PubMed

    Katz, Philip O; Rex, Douglas K; Epstein, Michael; Grandhi, Nav K; Vanner, Stephen; Hookey, Lawrence C; Alderfer, Vivian; Joseph, Raymond E

    2013-03-01

    Optimal bowel preparation is vital for the efficacy and safety of colonoscopy. The inconvenience, discomfort, required consumption of large volumes of product, and potential adverse effects associated with some bowel preparations deter patients from colonoscopy and may provide inadequate cleansing. A dual-action, non-phosphate, natural orange-flavored, low-volume preparation containing sodium picosulfate and magnesium citrate (P/MC) is currently being reviewed for bowel cleansing. This was a phase 3, randomized, multicenter, assessor-blinded, prespecified non-inferiority, head-to-head study to investigate the efficacy, safety, and tolerability of day-before administration of P/MC vs. 2L polyethylene glycol solution and two 5-mg bisacodyl tablets (2L PEG-3350 and bisacodyl tablets (HalfLytely and Bisacodyl Tablets Bowel Prep Kit)) in adult patients preparing for colonoscopy (SEE CLEAR II Study). The primary objective of the study was to demonstrate the non-inferiority of P/MC to 2L PEG-3350 and bisacodyl tablets in overall colon cleansing using a modified Aronchick scale. In addition, efficacy in the ascending, mid (transverse and descending), and recto-sigmoid segments of colon was evaluated using a modified Ottawa scale. Patient acceptability and tolerability of the bowel preparations were assessed via a standard questionnaire. Safety was assessed based on the monitoring of adverse events (AEs) and meaningful findings on clinical evaluations including physical examinations, vital sign measurements, and electrocardiograms (ECGs). A total of 603 patients were randomized to receive either P/MC (n = 300) or 2L PEG-3350 and bisacodyl tablets (n = 303). Based on the Aronchick scale, successful overall cleansing was similar in patients receiving P/MC (83.0%) and patients receiving 2L PEG-3350 and bisacodyl tablets (79.7%). P/MC demonstrated non-inferiority to 2L PEG-3350 and bisacodyl tablets in overall cleansing of the colon, as measured by the Aronchick scale

  7. Optimization of Time Controlled 6-mercaptopurine Delivery for Site- Specific Targeting to Colon Diseases.

    PubMed

    Hude, Rahul U; Jagdale, Swati C

    2016-01-01

    6-MP has short elimination time (<2 h) and low bioavailability (~ 50%). Present study was aimed to develop time controlled and site targeted delivery of 6-Mercaptopurine (6-MP) for treatment of colon diseases. Compression coating technique was used. 32 full factorial design was designed for optimization of the outer coat for the core tablet. For outer coat amount of Eudragit RS 100 and hydroxypropyl methylcellulose (HPMC K100) were employed as independent variables each at three levels while responses evaluated were swelling index and bursting time. Direct compression method was used for tablets formulation. 80% w/w of microcrystalline cellulose and 20% w/w of croscarmellose sodium were found to be optimum concentration for the core tablet. The outer coat of optimized batch (ED) contains 21.05% w/w Eudragit RS 100 and 78.95% w/w HPMC K100 of total polymer weight. In-vitro dissolution study indicated that combination of polymer retards the drug release in gastric region and releases ≥95% of drug in colonic region after ≥7 h. Whereas in case of in-vivo placebo x-ray imaging study had shown that the tablet reaches colonic part after 5±0.5 h providing the proof of arrival in the colon. Stability study indicated that the optimized formulation were physically and chemically stable. Present research work concluded that compression coating by Eudragit RS 100 and HPMC K100 to 6-MP core provides potential colon targeted system with advantages of reduced gastric exposure and enhanced bioavailability. Formulation can be considered as potential and promising candidate for the treatment of colon diseases.

  8. Tablet Use within Medicine

    ERIC Educational Resources Information Center

    Hogue, Rebecca J.

    2013-01-01

    This paper discusses the scholarly literature related to tablet computer use in medicine. Forty-four research-based articles were examined for emerging categories and themes. The most studied uses for tablet computers include: patients using tablets to complete diagnostic survey instruments, medical professionals using tablet computers to view…

  9. INFLUENCE OF TABLET SPLITTING ON CONTENT UNIFORMITY OF LISINOPRIL/ HYDROCHLORTHIAZIDE TABLETS

    PubMed Central

    Vranić, Edina; Uzunović, Alija

    2007-01-01

    Dose-related adverse effects of medications are a major problem in modern medical practice. The “correct” dose, based on drug company guidelines in package inserts, may not be correct for many patients. Tablet splitting or dividing has been an accepted practice for many years as a means of obtaining the prescribed dose of medication. As model tablets for this investigation, two batches of lisinopril-hydrochlorothiazide scored tablets labeled to contain 20/12,5 mg were used. The aim of this study was to establish possible influence of tablet splitting on content uniformity of lisinopril/hydrochlorthiazide tablets. Determination of the content uniformity of lisinopril and hydrochlorthiazide in our batches, was carried out by HPLC method. The results of content uniformity studies for halves of tablets containing combination of lisinopril-hydrochlorthiazide (supposed to contain 50% of stated 20/12,5 mg in the whole tablet) were: 49,60 ±3,29% and 49,29±0,60 % (lisinopril); 50,33±3,50% and 50,69±1,95% (hydrochlorthiazide) for batch I and II, respectively. We can conclude that the results obtained in this study support an option of tablet splitting, which is very important for obtaining the required dosage when a dosage form of the required strength is unavailable, and for better individualization of the therapy PMID:18039191

  10. Practical application to time indicator of a novel white film formed by interaction of calcium salts with hydroxypropyl methylcellulose.

    PubMed

    Shiraishi, Sumihiro; Sakata, Yukoh; Yamaguchi, Hiroyuki

    2010-01-04

    We have found that a cast film forms a white film when an aqueous solution comprising hydroxypropyl methylcellulose (HPMC) and calcium salts such as calcium lactate pentahydrate (CLP) and calcium chloride (CaCl(2)) is used. In contrast, the obtained white film was transformed into a transparent film by the addition of purified water. The transformation time for the change from the white film to the transparent film was dependent on film thickness. The relationship between the transformation time and the film thickness was significantly correlated, and it was found that the white film could be adaptable as time indicator. The formation of a white film comprising HPMC and calcium salts was strongly dependent on temperature conditions. The objective of the present study is to investigate the mechanism of the formation of this white film because of the interaction between HPMC and calcium salts. The DSC and XRPD results indicate that the calcium salts affect the HPMC polymer phase in the cast film comprising HPMC and calcium salts. By carrying out attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis, we found that the white film could be formed by the calcium salts affecting the region associated with the C-O-C, C-O, and CH(3) stretching of the HPMC polymer phase.

  11. In Vivo Anticancer Efficacy and Toxicity Studies of a Novel Polymer Conjugate N-Acetyl Glucosamine (NAG)-PEG-Doxorubicin for Targeted Cancer Therapy.

    PubMed

    Pawar, Smita; Mahajan, Ketan; Vavia, Pradeep

    2017-11-01

    A novel polymer-drug conjugate, polyethylene glycol-N-(acetyl)-glucosamine-doxorubicin (PEG-NAG-DOX) was evaluated in this study for its in vivo potential for treatment of tumours demonstrating improved efficacy and reduced toxicity. The proposed polymer-drug conjugate comprised of polyethylene glycol-maleimide (mPEG-MAL, 30000 Da) as a carrier, doxorubicin (DOX) as an anticancer drug and N-acetyl glucosamine (NAG) as a targeting moiety as well as penetration enhancer. Doxorubicin has a potent and promising anticancer activity; however, severe cardiotoxicity limits its application in cancer treatment. By modifying DOX in PEG-NAG-DOX prodrug conjugate, we aimed to eliminate this limitation. In vivo anticancer efficacy of the conjugate was evaluated using BDF mice-induced skin melanoma model by i.v. administration of DOX conjugates. Anticancer efficacy studies were done by comparing tumour volume, body weight, organ index and percent survival rate of the animals. Tumour suppression achieved by PEG-NAG-DOX at the cumulative dose of 7.5 mg/kg was two-fold better than that achieved by DOX solution. Also, the survival rate for PEG-NAG-DOX conjugate was >70% as compared to <50% survival rate for DOX solution. In addition, toxicity studies and histopathological studies revealed that while maintaining its cytotoxicity towards tumour cells, PEG-NAG-DOX conjugate showed no toxicities to major organs. Therefore, PEG-NAG-DOX conjugate can be suggested as a desirable candidate for targeted cancer therapy.

  12. Ozonized sunflower oil reduces oxidative damage induced by indomethacin in rat gastric mucosa.

    PubMed

    Zamora, Z; González, R; Guanche, D; Merino, N; Menéndez, S; Hernández, F; Alonso, Y; Schulz, S

    2008-01-01

    This study was carried out in order to investigate the potential cytoprotective effects of ozonized sunflower oil (OSO) in the damage of rat gastric mucosa induced by indomethacin and also to elucidate the role of reactive oxygen species (ROS), lipid peroxidation and some constituents of antioxidant defense such as superoxide dismutase (SOD) and catalase (CAT) in these effects. The gastric damage was induced by indomethacin (20 mg/kg) as solution in 0.5% sodium bicarbonate and given intragastrically. Three hours later OSO (4, 12 and 24 mg/kg) and cimetidine 25 mg/kg were administered also by oral route. Four hours thereafter the rats were killed and the stomachs were removed for biochemical analysis and histological study. The gastric ulcer index was reduced by OSO and cimetidine. OSO also reduced TBARS concentration, but it increased SOD activity in gastric mucosa homogenates. In contrast, CAT activity was not significantly modified the treatment. Histological study confirmed the cytoprotective effects of OSO in rat gastric mucosa damaged by indomethacin. It was concluded that cytoprotective effects of OSO in rat gastric mucosa are mediated at least partially by upregulation of the antioxidant system and mainly SOD.

  13. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer.

    PubMed

    Young, Christopher R; Dietzsch, Caroline; Cerea, Matteo; Farrell, Thomas; Fegely, Kurt A; Rajabi-Siahboomi, Ali; McGinity, James W

    2005-09-14

    The purpose of the current study was to investigate the physicochemical properties of melt-extruded dosage forms based on Acryl-EZE and to determine the influence of gelling agents on the mechanisms and kinetics of drug release from thermally processed matrices. Acryl-EZE is a pre-mixed excipient blend based on a methacrylic acid copolymer that is optimized for film-coating applications. Powder blends containing theophylline, Acryl-EZE, triethyl citrate and an optional gelling agent, Methocel K4M Premium (hydroxypropyl methylcellulose, HPMC, hypromellose 2208) or Carbopol 974P (carbomer), were thermally processed using a Randcastle single-screw extruder. The physical and chemical stability of materials during processing was determined using thermal gravimetric analysis and HPLC. The mechanism of drug release was determined using the Korsmeyer-Peppas model and the hydration and erosion of tablets during the dissolution studies were investigated. The excipient blends were physically and chemically stable during processing, and the resulting dosage forms exhibited pH-dependent dissolution properties. Extrusion of blends containing HPMC or carbomer changed the mechanism and kinetics of drug release from the thermally processed dosage forms. At concentrations of 5% or below, carbomer was more effective than HPMC at extending the duration of theophylline release from matrix tablets. Furthermore, carbomer containing tablets were stable upon storage for 3 months at 40 degrees C/75% RH. Thus, hot-melt extrusion was an effective process for the preparation of controlled release matrix systems based on Acryl-EZE.

  14. Development of sustained release floating drug delivery system for norfloxacin: in vitro and in vivo evaluation.

    PubMed

    Guguloth, Mohan; Bomma, Ramesh; Veerabrahma, Kishan

    2011-01-01

    Norfloxacin is a drug with an absorption window. Its oral bioavailability is 30-40% and is a case for improvement by appropriate formulation design. In our previous study, gastroretentive floating tablets for norfloxacin were developed employing three different polymers such as HPMC K4M, HPMC K100M, and xanthan gum. The purpose of this investigation is to further improve and evaluate the in vitro and in vivo performance of the prepared floating tablets by inclusion of citric acid as an acidifier, which is also useful in a fed state. The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. The effects of citric acid at different concentrations on drug release and floating properties were studied. All the prepared batches showed good in vitro buoyancy. It was observed that the tablets remained buoyant for 24 h. The best formulation (F4c), consisting of 1.5% citric acid and 18% HPMC K4M, was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate. These studies revealed that the tablets remained in the stomach for 205 ± 8.4 min in fasting human volunteers. In vivo studies were carried out for the best formulation in eight healthy male human volunteers, and the pharmacokinetic parameters of the developed formulation were compared with marketed conventional (Norbid) tablets. Based on the in vivo performance in a two-way, crossover study design in healthy subjects, the developed floating tablets showed superior bioavailability than the Norbid tablets. The increased bioavailability of developed formulation was found to be 16.27%. Norfloxacin is a broad-spectrum antibiotic used to treat bacterial infections such as respiratory and urinary tract infections. Conventional norfloxacin tablets show incomplete drug absorption resulting in lower bioavailabilty. Norfloxacin is better absorbed in the stomach. The dosage forms that remain in the stomach are referred to as

  15. A wider view on gastric erosion: detailed evaluation of complex somatic and behavioral changes in rats treated with indomethacin at gastric ulcerogenic dose.

    PubMed

    Filaretova, L P; Bagaeva, T R; Morozova, O Y; Zelena, D

    2014-10-01

    Gastric erosion is widespread side effect of nonsteroidal anti-inflammatory drugs. To examine the complexity of the brain-gut axis regulation, indomethacin-induced gastric erosion formation was studied in connection with somatic and behavioral changes. During a constant telemetric recording of heart rate, body temperature, and locomotion of male rats we examined the effects of 24 h fasting, indomethacin (35 mg/kg s.c.) injection, and refeeding at 4 h. Behavior was analyzed on elevated plus maze (EPM) at 24 h and somatic changes at 72 h. Gastric erosion developed 4 h after indomethacin injection, healed 72 h later contrasted by large injury in the small intestine. As classical signs of chronic stress, body and thymus weight were reduced while adrenal weight was enhanced 72 h after indomethacin injection. Fasting by itself changed all telemetrically recorded parameters with most prominent decrease in heart rate. Indomethacin induced similar diminishing effects with earliest and strongest temperature decrease. As a sign of more anxious phenotype locomotion reducing effect of indomethacin injection was detected on EPM. The EPM-induced temperature elevation was missing in indomethacin-treated animals. Fasting by itself induce somatic changes, which can make the animals more vulnerable to ulcerogenic stimuli. Development of indomethacin-induced gastrointestinal lesions happened in parallel with disturbances of heart rate, core body temperature, and chronic stress-like somatic changes as well as anxiety-like behavior. We have to be more aware of the existence of the brain-gut axis and should study changes in the whole body rather than focusing on a specific organ. elevated plus maze.

  16. Dose uniformity of scored and unscored tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    PubMed

    Ciavarella, Anthony; Khan, Mansoor; Gupta, Abhay; Faustino, Patrick

    2016-06-20

    This FDA laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5-2.1 standard deviation (SD) of the % label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3-9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting "can affect how much drug is present in the split tablet and available for absorption" as stated in the guidance (1). Copyright © 2016, Parenteral Drug Association.

  17. Sub-chronic indomethacin treatment and its effect on the male reproductive system of albino rats: possible protective role of black tea extract.

    PubMed

    Bagoji, Ishwar B; Hadimani, Gavishiddappa A; Yendigeri, Saeed M; Das, Kusal K

    2017-05-01

    Indomethacin is commonly used as a nonsteroidal anti-inflammatory drug (NSAID) to treat inflammation, arthritis and joint pains. Unfortunately, it has a wide range of adverse effects on the physiological system, including gonads. This study aimed to assess possible beneficial effects of black tea extract (BTE) against indomethacin-induced alteration of gonadal hormone levels in male rats. Adult male rats were divided into Group I (control), Group II (indomethacin, 5 mg/kg body weight [bwt.]; i.p., 21 days), Group III (BTE, 2.5 g tea leaf/dL of water, i.e. 2.5% of aqueous BTE, orally, 21 days) and Group IV (indomethacin+BTE, 21 days). Sperm count and motility, serum luteinising hormone (LH), follicle-stimulating hormone (FSH) and testosterone, along with histopathology of testes were studied. One-way ANOVA, followed by post-hoc t-test were conducted. Indomethacin-treated rats showed significant decrease in testicular weight, sperm count, sperm motility, serum gonadotropins and testosterone concentrations. Histopathology of the testes showed tortuous and distorted seminiferous tubules, marked thickening of the tubular basement membrane, reduced spermatogenesis process (>30%) and marked decrease in the number of interstitial cells of Leydig in indomethacin-treated rats. Interestingly, rats supplemented with BTE showed remarkable improvements in testicular weight gain, sperm count and motility, serum gonadotropins and testosterone concentrations, along with testicular histopathology. The results suggest that BTE might have potential ameliorative effects against sub-chronic indomethacin-induced alteration of gonadal hormone levels in male albino rats.

  18. Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer.

    PubMed

    Johnson, Sara D; Young, M Rita I

    2016-01-01

    Current treatment options for head and neck squamous cell carcinoma (HNSCC) patients are often ineffective due to tumor-localized and systemic immunosuppression. Using the 4-NQO mouse model of oral carcinogenesis, this study showed that premalignant oral lesion cells produce higher levels of the immune modulator, PGE 2 , compared to HNSCC cells. Inhibiting prostaglandin production of premalignant lesion cells with the pan-cyclooxygenase inhibitor indomethacin stimulated their induction of spleen cell cytokine production. In contrast, inhibiting HNSCC prostaglandin production did not stimulate their induction of spleen cell cytokine production. Treatment of mice bearing premalignant oral lesions with indomethacin slowed progression of premalignant oral lesions to HNSCC. Flow cytometric analysis of T cells in the regional lymph nodes of lesion-bearing mice receiving indomethacin treatment showed an increase in lymph node cellularity and in the absolute number of CD8 + T cells expressing IFN-γ compared to levels in lesion-bearing mice receiving diluent control treatment. The cytokine-stimulatory effect of indomethacin treatment was not localized to regional lymph nodes but was also seen in the spleen of mice with premalignant oral lesions. Together, these data suggest that inhibiting prostaglandin production at the premalignant lesion stage boosts immune capability and improves clinical outcomes.

  19. Does rectal indomethacin eliminate the need for prophylactic pancreatic stent placement in patients undergoing high-risk ERCP? Post hoc efficacy and cost-benefit analyses using prospective clinical trial data.

    PubMed

    Elmunzer, B Joseph; Higgins, Peter D R; Saini, Sameer D; Scheiman, James M; Parker, Robert A; Chak, Amitabh; Romagnuolo, Joseph; Mosler, Patrick; Hayward, Rodney A; Elta, Grace H; Korsnes, Sheryl J; Schmidt, Suzette E; Sherman, Stuart; Lehman, Glen A; Fogel, Evan L

    2013-03-01

    A recent large-scale randomized controlled trial (RCT) demonstrated that rectal indomethacin administration is effective in addition to pancreatic stent placement (PSP) for preventing post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) in high-risk cases. We performed a post hoc analysis of this RCT to explore whether rectal indomethacin can replace PSP in the prevention of PEP and to estimate the potential cost savings of such an approach. We retrospectively classified RCT subjects into four prevention groups: (1) no prophylaxis, (2) PSP alone, (3) rectal indomethacin alone, and (4) the combination of PSP and indomethacin. Multivariable logistic regression was used to adjust for imbalances in the prevalence of risk factors for PEP between the groups. Based on these adjusted PEP rates, we conducted an economic analysis comparing the costs associated with PEP prevention strategies employing rectal indomethacin alone, PSP alone, or the combination of both. After adjusting for risk using two different logistic regression models, rectal indomethacin alone appeared to be more effective for preventing PEP than no prophylaxis, PSP alone, and the combination of indomethacin and PSP. Economic analysis revealed that indomethacin alone was a cost-saving strategy in 96% of Monte Carlo trials. A prevention strategy employing rectal indomethacin alone could save approximately $150 million annually in the United States compared with a strategy of PSP alone, and $85 million compared with a strategy of indomethacin and PSP. This hypothesis-generating study suggests that prophylactic rectal indomethacin could replace PSP in patients undergoing high-risk ERCP, potentially improving clinical outcomes and reducing healthcare costs. A RCT comparing rectal indomethacin alone vs. indomethacin plus PSP is needed.

  20. Calcification prevention tablets

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.; Hasting, Michael A.; Gustavson, Michael A.

    1991-01-01

    Citric acid tablets, which slowly release citric acid when flushed with water, are under development by the Navy for calcification prevention. The citric acid dissolves calcium carbonate deposits and chelates the calcium. For use in urinals, a dispenser is not required because the tablets are non-toxic and safe to handle. The tablets are placed in the bottom of the urinal, and are consumed in several hundred flushes (the release rate can be tailored by adjusting the formulation). All of the ingredients are environmentally biodegradable. Mass production of the tablets on commercial tableting machines was demonstrated. The tablets are inexpensive (about 75 cents apiece). Incidences of clogged pipes and urinals were greatly decreased in long term shipboard tests. The corrosion rate of sewage collection pipe (90/10 Cu/Ni) in citric acid solution in the laboratory is several mils per year at conditions typically found in traps under the urinals. The only shipboard corrosion seen to date is of the yellow brass urinal tail pieces. While this is acceptable, the search for a nontoxic corrosion inhibitor is underway. The shelf life of the tablets is at least one year if stored at 50 percent relative humidity, and longer if stored in sealed plastic buckets.

  1. A new tablet brittleness index.

    PubMed

    Gong, Xingchu; Sun, Changquan Calvin

    2015-06-01

    Brittleness is one of the important material properties that influences the success or failure of powder compaction. We have discovered that the reciprocal of diametrical elastic strain at fracture is the most suitable tablet brittleness indices (TBIs) for quantifying brittleness of pharmaceutical tablets. The new strain based TBI is supported by both theoretical considerations and a systematic statistical analysis of friability data. It is sufficiently sensitive to changes in both tablet compositions and compaction parameters. For all tested materials, it correctly shows that tablet brittleness increases with increasing tablet porosity for the same powder. In addition, TBI increases with increasing content of a brittle excipient, lactose monohydrate, in the mixtures with a plastic excipient, microcrystalline cellulose. A probability map for achieving less than 1% tablet friability at various combinations of tablet tensile strength and TBI was constructed. Data from marketed tablets validate this probability map and a TBI value of 150 is recommended as the upper limit for pharmaceutical tablets. This TBI can be calculated from the data routinely obtained during tablet diametrical breaking test, which is commonly performed for assessing tablet mechanical strength. Therefore, it is ready for adoption for quantifying tablet brittleness to guide tablet formulation development since it does not require additional experimental work. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dose Uniformity of Scored and Unscored Tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    PubMed

    Ciavarella, Anthony B; Khan, Mansoor A; Gupta, Abhay; Faustino, Patrick J

    This U.S. Food and Drug Administration (FDA) laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product, and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5 to 2.1 standard deviation (SD) of the percent label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3 to 9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting can have an effect on the amount of drug present in a split tablet and available for absorption. Tablet splitting has become a very common practice in the United States and throughout

  3. Relationships between surface free energy, surface texture parameters and controlled drug release in hydrophilic matrices.

    PubMed

    Saurí, J; Suñé-Negre, J M; Díaz-Marcos, J; Vilana, J; Millán, D; Ticó, J R; Miñarro, M; Pérez-Lozano, P; García-Montoya, E

    2015-01-15

    The study of controlled release and drug release devices has been dominated by considerations of the bulk or average properties of material or devices. Yet the outermost surface atoms play a central role in their performance. The objective of this article has been to characterize the surface of hydrophilic matrix tablets using the contact angle (CA) method to ascertain the surface free energy, and atomic force microscopy (AFM) and confocal microscopy (CM) for the physical characterization of the surface of the hydrophilic matrix. The surface free energy results obtained show that hydroxypropylmethylcellulose K15M hinders the spreading of water on the surface of the tablet, such that the concentration of HPMC K15M increases the reaction rate of the hydrophobic interactions between the chains of HPMC K15M which increases with respect to the rate of penetration of water into the tablet. In this study, we developed a new method to characterize the swelling of the tablets and established a relationship between the new method based on microswelling and the swelling ratio parameter. The surface texture parameters have been determined and the morphology of the tablets of the different formulations and the evolution of the surface morphology after interacting with the water, swelling and forming a gel layer were characterized. This work represents significant progress in the characterization of matrix tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Dimethyl sulfoxide but not indomethacin is efficient for healing in hydrofluoric acid eye burns.

    PubMed

    Altan, Semih; Oğurtan, Zeki

    2017-02-01

    In this study, we aimed to investigate the effect of indomethacin and dimethyl sulfoxide (DMSO), well-known antioxidant and anti-inflammatory agents, to heal eye burns induced with hydrofluoric acid in rabbits. After general anesthesia, the right eye of 72 male New Zealand rabbits were burned by instillation of 2% hydrofluoric acid for 60s. Following this, the eyes were irrigated with 500 cc normal saline. The rabbits were then divided into four groups of 18 rabbits each. Group D was instilled dimethyl sulfoxide 40%, Group I indomethacin 0.1%, and Group DI dimethyl sulfoxide together with indomethacin for 2, 7, and 14 treatment days, respectively. Group C received no instilled drug as control. Treatment efficacies were evaluated as clinical (corneal haziness, conjunctival status, conjunctivitis, corneal erosion area, and intraocular pressure) and histopathological (inflammatory cell infiltration, vascularization, stromal thickness, reepithelization, proliferating cell nuclear antigen [PCNA], apoptosis, and inducible nitric oxide synthases [iNOS]). In terms of corneal haziness and erosion area at days 7 and 14, group D showed the best result statistically as compared to the other groups. This group also showed the best result statistically for reepithelization rate, stromal thickness, and inflammatory cell end at day 14 as compared to the other groups. Dimethyl sulfoxide (40%) was efficient to induce reepithelization on mild hydrofluoric acid eye burns, whereas 0.1% indomethacin both alone and along with DMSO poorly induced reepithelization and exacerbated inflammation. Thus, 40% DMSO could be used for the treatment of corneal disorders. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  5. Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates

    PubMed Central

    2012-01-01

    Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for

  6. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. NMR imaging of high-amylose starch tablets. 2. Effect of tablet size.

    PubMed

    Malveau, Cédric; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H

    2002-01-01

    Carbohydrate polymers are widely used for pharmaceutical applications such as the controlled release of drugs. The swelling and water mobility in high-amylose starch tablets are important parameters to be determined for these applications. They have been studied at different time intervals by nuclear magnetic resonance imaging (NMRI) after the immersion of the samples in water. These tablets have a hydrophilic matrix, which swells anisotropically and forms a hydrogel in water. NMRI shows clearly the anisotropy of the water penetration and the swelling along the radial and axial dimensions of the tablets. Empirical relationships are established to describe the kinetics of water penetration and swelling of the tablets. Results show that water uptake and tablet swelling strongly depend on the size of the tablets. Gravimetric measurements of water uptake were also performed in comparison with the NMRI results.

  8. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  9. Effects of prophylactic indomethacin in extremely low-birth-weight infants with and without adequate exposure to antenatal corticosteroids.

    PubMed

    Schmidt, Barbara; Seshia, Mary; Shankaran, Seetha; Mildenhall, Lindsay; Tyson, Jon; Lui, Kei; Fok, Tai; Roberts, Robin

    2011-07-01

    To examine whether treatment with antenatal corticosteroids modifies the immediate and long-term effects of prophylactic indomethacin sodium trihydrate in extremely low-birth-weight infants. Post hoc subgroup analysis of data from the Trial of Indomethacin Prophylaxis in Preterms. Thirty-two neonatal intensive care units in Canada, the United States, Australia, New Zealand, and Hong Kong. A total of 1195 infants with birth weights of 500 to 999 g and known exposure to antenatal corticosteroids. We defined as adequate any exposure to antenatal corticosteroids that occurred at least 24 hours before delivery. Indomethacin or placebo intravenously once daily for the first 3 days. Death or survival to 18 months with cerebral palsy, cognitive delay, severe hearing loss, or bilateral blindness; severe periventricular and intraventricular hemorrhage; patent ductus arteriosus; and surgical closure of a patent ductus arteriosus. Of the 1195 infants in this analysis cohort, 670 had adequate and 525 had inadequate exposure to antenatal corticosteroids. There was little statistical evidence of heterogeneity in the effects of prophylactic indomethacin between the subgroups for any of the outcomes. The adjusted P values for interaction were as low as .15 for the outcome of death or impairment at 18 months and as high as .80 for the outcome of surgical duct closure. We find little evidence that the effects of prophylactic indomethacin vary in extremely low-birth-weight infants with and without adequate exposure to antenatal corticosteroids. Trial Registration clinicaltrials.gov Identifier: NCT00009646.

  10. Quantification of the Upper Extremity Motor Functions of Stroke Patients Using a Smart Nine-Hole Peg Tester

    PubMed Central

    Marik, Anikó Rita; Fazekas, Gábor

    2018-01-01

    This paper introduces a smart nine-hole peg tester (s-9HPT), which comprises a standard nine-hole peg test pegboard, but with light-emitting diodes (LEDs) next to each hole. The s-9HPT still supports the traditional nine-hole peg test operating mode, in which the order of the peg placement and removal can be freely chosen. Considering this, the s-9HPT was used in lab research to analyze the traditional procedure and possible new procedures. As this analysis required subjects with similar levels of dexterity, measurement data from 16 healthy subjects (seven females, nine males, 25–80 years old) were used. We consequently found that illuminating the LEDs in various patterns facilitated guided tests of diverse complexity levels. Next, to demonstrate the clinical application of the s-9HPT, the improvement in the hand dexterity of 12 hospitalized stroke patients (45–80 years old, six females and six males) was monitored during their rehabilitation. Here, we used traditional and guided tests validated by healthy subjects. Consequently, improvements were found to be patient specific. At the beginning of rehabilitation, traditional tests suitably indicate improvements, while guided tests are beneficial following improvements in motor functions. Further, the guided tests motivated certain patients, meaning the rehabilitation was more effective for these individuals. PMID:29850001

  11. Effect of low-power (He-Ne) laser on acute mucosal ulceration induced by indomethacin in rats

    NASA Astrophysics Data System (ADS)

    Djavid, Gholam-reza E.; Erfani, Rebecca; Amoohashemi, Nasim; Pazoki, Mahbobeh; Aghaee, Sanaz; Toroudi, Hamidreza P.

    2002-10-01

    Background: Low-level laser has been used for treatment of ulcer, as well as, pain relief and inflammatory processes. In the present work, the effect of low power laser on mucosal gastric ulceration-induced by indomethacin in rats has been investigated. Materials and Methods: 16 male Sprague Dawley rats were divided into control (8 rats) and laser exposed group (8 rats). After using ether for anesthesia, 30 mg/kg indomethacin was injected subcutaneously. Exposed stomachs received 30 J He-Ne laser. Five hours later animals were killed and their stomachs were checked and observed for presence of ulceration. Results and Discussion: Gastric mucosal ulceration index was significantly greater in the laser-exposed group than control group. (P=0.02) This experiment suggests that low power He-Ne laser intensified acute mucosal ulcer formation by indomethacin. Changes in the prostaglandin content ofthe stomach may be responsible for these results.

  12. Stochastic analysis of experimentally determined physical parameters of HPMC:NiCl{sub 2} polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thejas, Urs G.; Somashekar, R., E-mail: rs@physics.uni-mysore.ac.in; Sangappa, Y.

    A stochastic approach to explain the variation of physical parameters in polymer composites is discussed in this study. We have given a statistical model to derive the characteristic variation of physical parameters as a function of dopant concentration. Results of X-ray diffraction study and conductivity have been taken to validate this function, which can be extended to any of the physical parameters and polymer composites. For this study we have considered a polymer composites of HPMC doped with various concentrations of Nickel Chloride.

  13. Decorin causes autophagy in endothelial cells via Peg3

    PubMed Central

    Buraschi, Simone; Neill, Thomas; Goyal, Atul; Poluzzi, Chiara; Smythies, James; Owens, Rick T.; Schaefer, Liliana; Torres, Annabel; Iozzo, Renato V.

    2013-01-01

    Soluble decorin affects the biology of several receptor tyrosine kinases by triggering receptor internalization and degradation. We found that decorin induced paternally expressed gene 3 (Peg3), an imprinted tumor suppressor gene, and that Peg3 relocated into autophagosomes labeled by Beclin 1 and microtubule-associated light chain 3. Decorin evoked Peg3-dependent autophagy in both microvascular and macrovascular endothelial cells leading to suppression of angiogenesis. Peg3 coimmunoprecipitated with Beclin 1 and LC3 and was required for maintaining basal levels of Beclin 1. Decorin, via Peg3, induced transcription of Beclin 1 and microtubule-associated protein 1 light chain 3 alpha genes, thereby leading to a protracted autophagic program. Mechanistically, decorin interacted with VEGF receptor 2 (VEGFR2) in a region overlapping with its natural ligand VEGFA, and VEGFR2 was required for decorin-evoked Beclin 1 and microtubule-associated protein 1 light chain 3 alpha expression as well as for Peg3 induction in endothelial cells. Moreover, decorin induced VEGFR2-dependent mitochondrial fragmentation and loss of mitochondrial membrane potential. Thus, we have unveiled a mechanism for a secreted proteoglycan in inducing Peg3, a master regulator of macroautophagy in endothelial cells. PMID:23798385

  14. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    PubMed

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel

    2018-02-15

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, S a , to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The S a parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The S a parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gastric damage and granulocyte infiltration induced by indomethacin in tumour necrosis factor receptor 1 (TNF-R1) or inducible nitric oxide synthase (iNOS) deficient mice

    PubMed Central

    Souza, M H L P; Lemos, H. Paula; Oliveira, R B; Cunha, F Q

    2004-01-01

    Background: Tumour necrosis factor α (TNF-α) is involved in non-steroidal anti-inflammatory drug induced gastropathy. Nitric oxide (NO) is a mediator of gastrointestinal mucosal defence but, paradoxically, it also contributes to mucosal damage. Aims: We optimised the C57BL/6 mouse model of indomethacin induced gastropathy to evaluate the role of TNF-α and inducible nitric oxide synthase (iNOS) generated NO in gastric damage and granulocyte infiltration using tumour necrosis factor receptor 1 (TNF-R1−/−) or iNOS (iNOS−/−) deficient mice. Methods: Different doses of indomethacin (2.5, 5, 10, 20 mg/kg) were administered and animals were assessed 6, 12, or 24 hours later. Gastric damage was measured by the sum of all erosions in the gastric mucosa, and gastric granulocyte infiltration was determined by myeloperoxidase (MPO) activity. Other groups of wild-type mice received thalidomide, dexamethasone, fucoidin, l-NAME, or 1400W, and then indomethacin was administered. Additionally, indomethacin was administered to TNF-R1−/− or iNOS−/−. Gastric damage and MPO activity were evaluated 12 hours later. Results: Indomethacin induced dose and time dependent gastric damage and increase in MPO activity in wild-type mice, with the greatest effect at a dose of 10 mg/kg and after 12 hours. Treatment with thalidomide, dexamethasone, or fucoidin reduced gastric damage and MPO activity induced by indomethacin. After indomethacin administration, TNF-R1−/− had less gastric damage and MPO activity than controls. Genetic (knockout mice) or pharmacological (1400W and l-NAME) inhibition of iNOS activity reduced indomethacin induced gastric damage, despite no reduction in MPO activity. Conclusion: TNF-α, acting via TNF-R1, is involved in indomethacin induced gastric damage and granulocyte infiltration. Furthermore, iNOS generated NO is involved in gastric damage induced by indomethacin. PMID:15138204

  16. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2015-10-27

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  17. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    PubMed

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  18. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats.

    PubMed

    Helmy, Maged W; El-Gowelli, Hanan M; Ali, Rabab M; El-Mas, Mahmoud M

    2015-09-01

    Cyclosporine (CSA) and non-steroidal anti-inflammatory drugs (NSAIDs) are co-prescribed for some arthritic conditions. We tested the hypothesis that this combined regimen elicits exaggerated nephrotoxicity in rats via the up-regulation of endothelin (ET) receptor signalling. The effects of a 10 day treatment with CSA (20 mg · kg(-1) · day(-1)), indomethacin (5 mg · kg(-1) · day(-1)) or their combination on renal biochemical, inflammatory, oxidative and structural profiles were assessed. The roles of ETA receptor and COX-2 pathways in the interaction were evaluated. Oral treatment with CSA or indomethacin elevated serum urea and creatinine, caused renal tubular atrophy and interstitial fibrosis, increased renal TGF-β1, and reduced immunohistochemical expressions of ETA receptors and COX-2. CSA, but not indomethacin, increased renal ET-1, the lipid peroxidation product malondialdehyde (MDA) and GSH activity. Compared with individual treatments, simultaneous CSA/indomethacin exposure caused: (i) greater elevations in serum creatinine and renal MDA; (ii) loss of the compensatory increase in GSH; (iii) renal infiltration of inflammatory cells and worsening of fibrotic and necrotic profiles; and (iv) increased renal ET-1 and decreased ETA receptor and COX-2 expressions. Blockade of ETA receptors by atrasentan ameliorated the biochemical, structural, inflammatory and oxidative abnormalities caused by the CSA/indomethacin regimen. Furthermore, atrasentan partly reversed the CSA/indomethacin-evoked reductions in the expression of ETA receptor and COX-2 protein. The exaggerated oxidative insult and associated dysregulation of the ETA receptor/COX-2/TGF-β1 signalling might account for the aggravated nephrotoxicity caused by the CSA/indomethacin regimen. The potential renoprotective effect of ETA receptor antagonism might be exploited therapeutically. © 2015 The British Pharmacological Society.

  19. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion.

    PubMed

    Hain, Elisabeth G; Sparenberg, Maria; Rasińska, Justyna; Klein, Charlotte; Akyüz, Levent; Steiner, Barbara

    2018-05-26

    Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.

  20. PEG-protein interaction induced contraction of NalD chains.

    PubMed

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10-50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between -C-O-C- on PEG and -COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction.

  1. Phase transformation in thiamine hydrochloride tablets: Influence on tablet microstructure, physical properties, and performance.

    PubMed

    Chakravarty, Paroma; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2012-04-01

    The objective of this article was to monitor phase transformation in thiamine hydrochloride, from a nonstoichiometric hydrate (NSH) to a hemihydrate (HH), in stored tablets, prepared both by direct compression and wet granulation, and to relate the storage-induced phase transformation with changes in tablet microstructure, physical properties, and performance. Raman spectroscopy revealed complete NSH → HH transformation in tablets, within 30 h of storage at 40°C/75% relative humidity. When the tablets were prepared by wet granulation of NSH alone, there was a marked increase in both tablet volume and hardness on storage. However, when microcrystalline cellulose (MCC) was included in granulation, the resulting stored tablets also exhibited a pronounced increase in disintegration time. In contrast, tablets prepared by dry processing via compression of a NSH-MCC physical mixture did not exhibit any changes in properties, despite the in situ solid form conversion. Scanning electron microscopy revealed growth of needle-like HH crystals in all stored tablets and mercury porosimetry revealed considerable changes in the pore size distribution during storage. Longer storage led to crystal growth (Ostwald ripening), causing further gradual but less dramatic changes in properties. The phase transformation and the complex interparticulate associations in the tablet influenced the changes in tablet microstructure, compact physical properties, and product behavior. Copyright © 2011 Wiley Periodicals, Inc.

  2. Factors influencing decision regret regarding placement of a PEG among substitute decision-makers of older persons in Japan: a prospective study.

    PubMed

    Kuraoka, Yumiko; Nakayama, Kazuhiro

    2017-06-28

    A tube feeding decision aid designed at the Ottawa Health Research Institute was specifically created for substitute decision-makers who must decide whether to allow placement of a percutaneous endoscopic gastrostomy (PEG) tube in a cognitively impaired older person. We developed a Japanese version and found that the decision aid promoted the decision-making process of substitute decision-makers to decrease decisional conflict and increase knowledge. However, the factors that influence decision regret among substitute decision-makers were not measured after the decision was made. The objective of this study was to explore the factors that influence decision regret among substitute decision-makers 6 months after using a decision aid for PEG placement. In this prospective study, participants comprised substitute decision-makers for 45 inpatients aged 65 years and older who were being considered for placement of a PEG tube in hospitals, nursing homes and patients' homes in Japan. The Decisional Conflict Scale (DCS) was used to evaluate decisional conflict among substitute decision-makers immediately after deciding whether to introduce tube feeding and the Decision Regret Scale (DRS) was used to evaluate decisional regret among substitute decision-makers 6 months after they made their decision. Normalized scores were evaluated and analysis of variance was used to compare groups. The results of the multiple regression analysis suggest that PEG placement (P < .01) and decision conflict (P < .001) are explanatory factors of decision regret regarding placement of a PEG among substitute decision-makers. PEG placement and decision conflict immediately after deciding whether to allow PEG placement have an influence on decision regret among substitute decision-makers after 6 months.

  3. Ultrastructural modifications and changes in the expression of hormonal genes produced by indomethacin in the anterior pituitary gland of the rat.

    PubMed

    Romano, L A; Rivolta, C; Machiavelli, G A; Burdman, J A

    1995-10-01

    Indomethacin decreases the level of prolactin (50%) and growth hormone (70%) mRNA in the anterior pituitary gland of the rat. Actin mRNA increases (59%). Ultrastructurally there is a decrease in the number of secretory granules. Indomethacin also prevents the increase in prolactin secretory granules produced by the administration of estradiol. The results indicate that indomethacin inhibits hormonal synthesis in the APG at a transcriptional level. This effect appears selective because mRNA level for actin synthesis in the pituitary gland was higher than in nontreated rats.

  4. PEG-based degradable networks for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  5. PEG attachment to osteoblasts enhances mechanosensitivity.

    PubMed

    Hamamura, Kazunori; Weng, Yiming; Zhao, Jun; Yokota, Hiroki; Xie, Dong

    2008-06-01

    Fluid flow induces proliferation and differentiation of osteoblasts, and fibrous structure like a primary cilium on a cell surface contributes to flow sensing and flow-driven gene regulation. We address a question: Does attachment of synthetic polymers on a cell surface enhance mechanosensitivity of osteoblasts? Using MC3T3 osteoblast cells (C4 clone) and a PEG polymer, one of whose termini was covalently linked to a succinimidyl succinate group (functionalized PEG-PEGSS), we examined attachment of PEGSS to osteoblasts and evaluated its effects on the mRNA expression of stress-responsive genes. AFM images exhibited globular PEGSS conformation of approximately 100 nm in size, and SEM images confirmed the attachment of a cluster of pancake-like PEGSS molecules on the osteoblast surface. Compared to control cells incubated with unfunctionalized PEG, real-time PCR revealed that RNA upregulation of c-fos, egr1, ATF3 and Cox2 genes was magnified in the cells incubated with PEGSS. These results support a PEG-induced increase in mechanosensitivity of osteoblasts and indicate that the described approach would be useful to accelerate growth and development of osteoblasts for bone repair and tissue engineering.

  6. 3D Printed "Starmix" Drug Loaded Dosage Forms for Paediatric Applications.

    PubMed

    Scoutaris, Nicolaos; Ross, Steven A; Douroumis, Dennis

    2018-01-16

    Three- dimensional (3D) printing has received significant attention as a manufacturing process for pharmaceutical dosage forms. In this study, we used Fusion Deposition Modelling (FDM) in order to print "candy - like" formulations by imitating Starmix® sweets to prepare paediatric medicines with enhanced palatability. Hot melt extrusion processing (HME) was coupled with FDM to prepare extruded filaments of indomethacin (IND), hypromellose acetate succinate (HPMCAS) and polyethylene glycol (PEG) formulations and subsequently feed them in the 3D printer. The shapes of the Starmix® objects were printed in the form of a heart, ring, bottle, ring, bear and lion. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infra-red Spectroscopy (FT-IR) and confocal Raman analysis were used to assess the drug - excipient interactions and the content uniformity. Physicochemical analysis showed the presence of molecularly dispersed IND in the printed tablets. In vivo taste masking evaluation demonstrated excellent masking of the drug bitterness. The printed forms were evaluated for drug dissolution and showed immediate IND release independently of the printed shape, within 60 min. 3D printing was used successfully to process drug loaded filaments for the development of paediatric printed tablets in the form of Starmix® designs.

  7. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethylcellulose matrix tablets in situ-is it possible to detect phenomena related to drug dissolution within the hydrated matrices?

    PubMed

    Kulinowski, Piotr; Młynarczyk, Anna; Jasiński, Krzysztof; Talik, Przemysław; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P; Dorożyński, Przemysław

    2014-09-01

    So far, the hydrated part of the HPMC matrix has commonly been denoted as a "gel" or "pseudogel" layer. No MRI-based results have been published regarding observation of internal phenomena related to drug dissolution inside swelling polymeric matrices during hydration. The purpose of the study was to detect such phenomena. Multiparametric, spatially and temporally resolved T2 MR relaxometry, in situ, was applied to study formation of the hydration progress in HPMC matrix tablets loaded with L-dopa and ketoprofen using a 11.7 T MRI system. Two spin-echo based pulse sequences were used, one of them specifically designed to study short T2 signals. Two components in the T2 decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T2 values, were obtained. Based on the data, different region formation patterns (i.e. multilayer structure) were registered depending on drug presence and solubility. Inside the matrix with incorporated sparingly soluble drug a specific layer formation due to drug dissolution was detected, whereas a matrix with very slightly soluble drug does not form distinct external "gel-like" layer. We have introduced a new paradigm in the characterization of hydrating matrices using (1)H MRI methods. It reflects molecular mobility and concentration of water inside the hydrated matrix. For the first time, drug dissolution related phenomena, i.e. particular front and region formation, were observed by MRI methods.

  8. Twice-daily dosing of a repaglinide/metformin fixed-dose combination tablet provides glycaemic control comparable to rosiglitazone/metformin tablet.

    PubMed

    Raskin, P; Lewin, A; Reinhardt, R; Lyness, W

    2009-09-01

    To assess the use of a new repaglinide/metformin fixed-dose combination (FDC) tablet for the treatment of type 2 diabetes. In this 26-week, multicentre, open-label, parallel-group trial, subjects poorly controlled with mono- or dual-oral antidiabetic therapy were randomized 1 : 1 : 1 to receive a repaglinide/metformin FDC tablet either two times daily (BID) or three times daily (TID) or a rosiglitazone/metformin FDC tablet BID. The primary objective comprised two hypotheses tested in a hierarchical order: (i) that treatment with the repaglinide/metformin FDC BID is non-inferior to that of a rosiglitazone/metformin FDC tablet BID as measured by changes in haemoglobin A1c (HbA1c) (results presented here) and (ii) if true, that treatment with the repaglinide/metformin FDC BID was non-inferior to that of the repaglinide/metformin FDC TID as measured by changes in HbA1c (results presented in a companion paper). Additional efficacy and safety end-points were also assessed. Of the 561 subjects randomized, 383 completed the study. Reductions in HbA1c values became apparent at earlier times for repaglinide/metformin FDC BID treatment than rosiglitazone/metformin FDC BID, and final changes in HbA1c were not significantly different between treatment arms (p = 0.8186); thus, the predefined statistical criterion for non-inferiority was met. Overall adverse event profiles were comparable between treatment groups, and no major hypoglycaemic episodes were reported during the study. The repaglinide/metformin FDC BID regimen showed efficacy that was non-inferior to that of the rosiglitazone/metformin FDC BID regimen currently in clinical use and a more rapid reduction of HbA1c values. Thus, repaglinide/metformin FDC BID is a clinically feasible alternative to rosiglitazone/metformin FDC BID.

  9. PEG-Protein Interaction Induced Contraction of NalD Chains

    PubMed Central

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10–50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between –C-O-C– on PEG and –COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951

  10. Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages.

    PubMed

    Nagai, Kenta; Ueno, Yoshitaka; Tanaka, Shinji; Hayashi, Ryohei; Shinagawa, Kei; Chayama, Kazuaki

    2017-10-01

    Non-steroidal anti-inflammatory drugs often cause ulcers in the human small intestine, but few effective agents exist to treat such injury. Ganoderma lucidum Karst, also known as "Reishi" or "Lingzhi", is a mushroom. We previously reported that a water-soluble extract from G. lucidum fungus mycelia (MAK) has anti-inflammatory effects in murine colitis induced by trinitrobenzene sulfonic acid, and induction of granulocyte macrophage colony-stimulating factor (GM-CSF) by MAK may provide anti-inflammatory effects. However, its effects on indomethacin-induced small intestinal injuries are unknown. The present study investigated the preventative effects of MAK via immunological function and the polysaccharides from MAK on indomethacin-induced ileitis in mice. Peritoneal macrophages (PMs) were stimulated in vitro with MAK and adoptively transferred to C57BL/6 mice intraperitoneally, which were then given indomethacin. Intestinal inflammation was evaluated after 24h. We performed in vivo antibody blockade to investigate the preventive role of GM-CSF, which derived from PMs stimulated with MAK. We then used PMs stimulated with MAK pre-treated by pectinase in an adoptive transfer assay to determine the preventive role of polysaccharides. Indomethacin-induced small intestinal injury was inhibited by adoptive transfer of PMs stimulated in vitro with MAK. In this transfer model, pre-treatment with anti-GM-CSF antibody but not with control antibody reversed the improvement of small intestinal inflammation by indomethacin. Pectinase pretreatment impaired the anti-inflammatory effect of MAK. PMs stimulated by MAK appear to contribute to the anti-inflammatory response through GM-CSF in small intestinal injury induced by indomethacin. The polysaccharides may be the components that elicit the anti-inflammatory effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Indomethacin reduces short-circuit current and oxygen consumption in normal and chronically hypoxic rat colon.

    PubMed

    Saraví, Fernando D; Cincunegui, Liliana M; Saldeña, Teobaldo A; Carra, Graciela E; Ibáñez, Jorge E; Grzona, Esteban

    2006-09-01

    Chronic hypobaric hypoxia is a physiological environmental stressor. While its effects on most major organ systems have been extensively studied, few works have addressed hypoxia-induced changes in intestinal transport. The effects of cyclooxygenase blockade with indomethacin on short-circuit current (Isc) and oxygen consumption (QO2) of the distal colonic epithelium of control rats and rats submitted to hypoxia for 10 days at 0.52 atm were studied. Isolated mucosae were mounted in an Ussing chamber modified for measuring QO2 while preserving transepithelial vectorial transport. Amiloride was added to the mucosal hemichamber to block a sodium component of Isc present in hypoxic rats. In this condition, basal Isc did not differ between the hypoxic and the control group, but QO2 was higher in the former. Indomethacin (30 micromol/L) reduced Isc to the same extent in both groups, but QO2 reduction was larger in the hypoxic group. Pharmacological blockade of chloride secretion and a low-chloride solution abolished the indomethacin-induced reductions of Isc in both groups, and the reduction of QO2 in controls, and attenuated but did not suppress the QO2 reduction in the hypoxic group. Linear regression analysis of QO2 changes versus Isc changes yielded a significant correlation for both groups, with regression lines with the same slope, but a higher position in bypoxic animals. Results suggest that spontaneously releasedprostaglandins are equally important for maintaining colonic chloride secretion in hypoxic as in normoxic rats, but that, in the former, indomethacin has an additional effect on QO2 which is unrelated to ion transport.

  12. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates.

    PubMed

    El-Mashad, Abd El-Rahman; El-Mahdy, Heba; El Amrousy, Doaa; Elgendy, Marwa

    2017-02-01

    In this prospective study, we compared the efficacy and side effects of indomethacin, ibuprofen, and paracetamol in patent ductus arteriosus (PDA) closure in preterm neonates. Three hundred preterm neonates with hemodynamically significant PDA (hs-PDA) admitted at our neonatal intensive care unit were enrolled in the study. They were randomized into three groups. Group I (paracetamol group) received 15 mg/kg/6 h IV paracetamol infusion for 3 days. Group II (ibuprofen group) received 10 mg/kg IV ibuprofen infusion followed by 5 mg/kg/day for 2 days. Group III (indomethacin group) received 0.2 mg/kg/12 h indomethacin IV infusion for three doses. Laboratory investigations such as renal function test, liver function test, complete blood count, and blood gases were conducted in addition to echocardiographic examinations. All investigations were done before and 3 days after treatment. There was no significant difference between all groups regarding efficacy of PDA closure (P = 0.868). There was a significant increase in serum creatinine levels and serum blood urea nitrogen (BUN) in the ibuprofen and indomethacin groups (P < 0.001). There was a significant reduction in platelet count and urine output (UOP) in both ibuprofen and indomethacin groups (P < 0.001). There was a significant increase in bilirubin levels in only the ibuprofen group (P = 0.003). No significant difference of hemoglobin (HB) level or liver enzymes in all groups (P > 0.05). Ventilatory settings improved significantly in patients with successful closure of PDA than those with failed PDA closure (P < 0.001). Paracetamol is as effective as indomethacin and ibuprofen in closure of PDA in preterm neonates and has less side effects mainly on renal function, platelet count, and GIT bleeding. What is Known: • Hemodynamically significant patent ductus arteriosus has many complications for preterm and low birth weight neonates and better to be closed. Many drugs were used for medical

  13. Protein resistance of dextran and dextran-PEG copolymer films

    PubMed Central

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  14. Alcohol, indomethacin, and salbutamol. A comparative trial of their use in preterm labor.

    PubMed

    Spearing, G

    1979-02-01

    In a comparative trial, ethanol effectively arrested preterm labor for 48 hours for more in 32% of cases, a beta-adrenergic agent (salbutamol) in 60% of cases (not statistically significant), and a combination of ethanol and indomethacin in 70% of cases (statistically significant, P less than 0.5). Labor was delayed for 14 days or more in 36, 60, and 50%, respectively (not statistically significant). The numbers studied were small, and tests of statistical significance were of doubtful value. Salbutamol was more acceptable to patients and the staff than ethanol. The trial was suspended and eventually abandoned due to reports of prostaglandin synthetase inhibitors causing premature closure of the ductus arteriosus. In this series no problems were encountered with the use of indomethacin.

  15. Inlay osmotic pump tablets containing metformin and glipizide.

    PubMed

    Patel, R B; Patel, G N; Patel, H R; Patel, M M

    2011-10-01

    The goal of diabetes therapy today is to achieve and maintain as near normal glycemia as possible to prevent the long-term microvascular and macrovascular complications of an elevated blood glucose. A newly developed inlay osmotic pump tablet (IOPT) can deliver glipizide (GLZ) and metformin HCl (MET) gradually in controlled manner. The aim of present investigation was to prepare the IOPT that can deliver >75% of GLZ in 2 h, whereas MET released after 2 h and sustained up to 12 h. In the present work, HP-β-CD was used to modify the solubility of GLZ before incorporating in the osmotic system and MET was spray-dried with HPMC A15C to modify its release profile, flow property, and compressibility. Various parameters mainly G(75%) (75% GLZ release), t(LMET) (lag time of MET release from device), Q(10 h) (percent of MET released within 10 h), and RSQ(ZERO) (R(2) of release data fitted to zero-order equation) were used to compare different formulations. The effects of different formulation variables, that is, osmagents, concentration of hydrophilic polymer, diameter of drug releasing orifice, and coating composition on the drug release profile were investigated. The release rate of GLZ could be effectively modified by the addition of sodium carbonate and sodium chloride, whereas the release rate of MET was adjusted by dual-coating system and by addition of hydrophilic polymer. The developed inlay osmotic system could be effective in the multidrug therapy of diabetes by delivering both drugs in a controlled manner.

  16. Successful treatment of recalcitrant necrotizing eosinophilic folliculitis using indomethacin and cephalexin.

    PubMed

    Fallah, Haady; Dunlop, Kate; Kossard, Steven

    2006-11-01

    A 56-year-old man presented with a 4-month history of a painful and pruritic eruption consisting of crusted plaques and blisters on his face, scalp and chest. The patient suffered from headaches and malaise but was afebrile. Two skin biopsies revealed an epidermis which was eroded and covered by locules of serum and neutrophils. In the underlying dermis, there was a marked mixed inflammatory reaction including lymphocytes, neutrophils and numerous eosinophils. There was exocytosis of eosinophils into several follicles with areas of follicular mucinosis. A diagnosis of necrotizing eosinophilic folliculitis was made based upon the clinical and histopathological findings. The diagnosis was supported by the rapid response to a combination of indomethacin and cephalexin. The patient has taken continuous indomethacin (with rabeprazole and misoprostol cover) and cephalexin for 2 years. If treatment is withdrawn he experiences a flare of his disease within 2 weeks. This case highlights the potentially chronic nature of this disease.

  17. New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent.

    PubMed

    Maheshwari, R K; Rathore, Amit; Agrawal, Archana; Gupta, Megha A

    2011-07-01

    Hydrotropic solubilization process involves cooperative intermolecular interaction with several balancing molecular forces, rather than either a specific complexation event or a process dominated by a medium effect, such as co-solvency or salting-in. In the present investigation, hydrotropic solution of 2 M niacinamide was employed as the solubilizing agent to solubilize the poorly water-soluble drug, indomethacin, from the capsule dosage form for spectrophotometric determination in ultraviolet region. Hydrotropic agent used did not interfere in the spectrophotometric analysis. In preliminary solubility studies, it was found that there was more than fivefold enhancement in the aqueous solubility of indomethacin (poorly water-soluble drug) in 2 M niacinamide solution as compared to its aqueous solubility at 28 ± 1°C. The proposed method is new, simple, safe, environmentally friendly, economic, accurate and cost-effective and can be successfully employed in routine analysis.

  18. A method to optimize PEG-coating of red blood cells.

    PubMed

    Hashemi-Najafabadi, Sameereh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Rasaee, Mohammad Javad; Armstrong, Jonathan K; Moin, Mostafa; Pourpak, Zahra

    2006-01-01

    Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. A proposed method to overcome donor-recipient blood group incompatibility is to mask the blood group antigens by the covalent attachment of poly(ethylene glycol) (PEG) to the red blood cell (RBC) membrane. Despite much work in the development of PEG-coating of RBCs, there is a paucity of data on the optimization of the PEG-coating technique; it is the aim of this study to determine the optimum conditions for PEG coating using a cyanuric chloride reactive derivative of methoxy-PEG as a model polymer. Activated PEG of molecular mass 5 kDa was covalently attached to human RBCs under various reaction conditions. Inhibition of binding of a blood-type specific antiserum (anti-D) was employed to evaluate the effect of the PEG-coating, quantified by hemocytometry and flow-cytometry. RBC morphology was examined by light and scanning electron microscopy. Statistical analysis of experimental design together with microscopy results showed that the optimum PEGylation conditions are pH = 8.7, temperature = 14 degrees C, and reaction time = 30 min. An optimum concentration of reactive PEG could not be determined. At high polymer concentrations (>25 mg/mL) a predominance of type III echinocytes was observed, and as a result, a concentration of 15 mg/mL is the highest recommended concentration for a linear PEG of molecular mass 5 kDa.

  19. Quantitative analysis of PEG-functionalized colloidal gold nanoparticles using charged aerosol detection.

    PubMed

    Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-05-01

    Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction.

  20. Development of an Extended-Release Formulation for Apremilast and a Level A in Vitro-in Vivo Correlation Study in Beagle Dogs.

    PubMed

    Tang, Meiqiong; Hu, Ping; Huang, Shigui; Zheng, Qiang; Yu, Hao; He, Yun

    2016-11-01

    The primary objective of the present study was to develop extended-release matrix formulations of apremilast for the oral delivery and to study their in vitro and in vivo correlation. Five extended-release formulations containing hydroxypropylmethylcellulose (HPMC) as the retarding excipient with different release rate of apremilast were prepared. Dissolution tests of all the formulated tablets were performed in water, pH 4.0 and 6.8 buffer solutions. The in vitro release kinetics was studied and supported by Korsmeyer-Peppas's equation as it presented highest values of correlation coefficients (r 2 up to 0.966). Among all formulated tablets, F2 (HPMC 25%) and F4 (HPMC 35%) were selected to perform an in vivo study in beagle dogs to obtain various pharmacokinetic parameters, i.e., peak plasma concentration (C max ), time to peak plasma concentration (t max ), area under the plasma-concentration vs. time curve (AUC). Higher t max and t 1/2 , lower C max and elimination coefficient (K e ) were observed for both extended formulations compared to marketed immediate-release products (Otezla ® ). Level A in vitro-in vivo correlations were created with the help of Wagner-Nelson and numeric deconvolution methods. Both formulations showed good in vitro-in vivo correlations whose accuracies were further verified by an internal validation.

  1. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy.

    PubMed

    Liu, Jian; Ohta, Shin-Ichi; Sonoda, Akinaga; Yamada, Masatoshi; Yamamoto, Masaya; Nitta, Norihisa; Murata, Kiyoshi; Tabata, Yasuhiko

    2007-01-22

    A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.

  2. Tailoring the mucoadhesive and sustained release characteristics of mesalamine loaded formulations for local treatment of distal forms of ulcerative colitis.

    PubMed

    Ali, Hany S M; Hanafy, Ahmed F; El Achy, Samar N

    2016-10-10

    Direct delivery of sustained therapeutic levels of mesalamine (MS) via rectal systems to manage distal forms of ulcerative colitis was studied. The High molecular weight hydroxypropyl methylcellulose (HPMC K4M) polymer was combined with hydrophilic surfactants to control polymer hydration process allowing optimization of the mucoadhesive and controlled drug release properties for the rectal systems. Physical mixtures and granules of MS and HPMC K4M were prepared and in vitro characterized using scanning electron microscope, differential scanning calorimetry and X-ray diffraction techniques. Rectal formulations were prepared utilizing MS-HPMC K4M mixtures in different polyethylene glycol (PEG) combination bases. The developed rectal formulations were investigated for physical, mucoadhesion, in-vitro drug release and swelling characteristics. Results revealed acceptable physical characteristics of the prepared formulations with good content uniformity and minimum weight variation. Sustained release patterns of MS form HPMC K4M based formulations were observed. Formulations prepared using high proportions of the polymer or PEG 400 showed higher extent of mucoadhesion, swelling and greatly extended drug release time. Efficacy of an optimized formulation was assessed using the acetic acid induced colitis model in rats and compared to a reference polymer-free formulation of the drug. Clinical evaluation included bleeding from rectum, consistency of animal stool and colon/body weight ratio. Furthermore, histopathological analysis was carried out to evaluate the degree of inflammation and mucosal damage. Overall results showed a significant enhancement in the clinical pictures and colon histopathology of animals treated by the sustained release mucoadhesive formulation compared to the reference polymer free formulation and the non-treated colitis group. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    PubMed

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Elasticity of bilayers containing PEG lipids

    NASA Astrophysics Data System (ADS)

    Bivas, I.; Winterhalter, M.; Méléard, P.; Bothorel, P.

    1998-02-01

    The addition of lipids with a poly(ethylene glycol) head group (Stealth or grafted or PEG lipids) to a phosphatidylcholine bilayer changes the mechanical properties of the membrane. We calculate the dependences of the bending and stretching elasticities of the bilayer on the PEG lipid concentration and on the monomer number in its polymer chain. The role of the bending elasticity at blocked flip-flop of the pure bilayer is revealed.

  5. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Uptake and intracellular processing of PEG-liposomes and PEG-immunoliposomes by kupffer cells in vitro 1 *.

    PubMed

    Koning, G A; Morselt, H W; Kamps, J A; Scherphof, G L

    2001-01-01

    Specific targeting of drugs to for instance tumors or sites of inflammation may be achieved by means of immunoliposomes carrying site-specific antibodies on their surface. The presence of these antibodies may adversely affect the circulation kinetics of such liposomes as a result of interactions with cells of the mononuclear phagocyte system (MPS), mainly represented by macrophages in liver and spleen. The additional insertion of poly(ethylene glycol) chains on the surface of the immunoliposomes may, however, attenuate this effect. We investigated the influence of surface-coupled rat or rabbit antibodies and of PEG on the uptake of liposomes by rat Kupffer cells in culture with (3)H-cholesteryloleyl ether as a metabolically stable marker. Additionally, we assessed the effects of surface-bound IgG and PEG on the intracellular processing of the liposomes by the Kupffer cells, based on a double-label assay using the (3)H-cholesteryl ether as an absolute measure for liposome uptake and the hydrolysis of the degradable marker cholesteryl-(14)C-oleate as relative measure of degradation. Attachment of both rat and rabbit antibodies to PEG-free liposomes caused a several-fold increase in apparent size. The uptake by Kupffer cells, however, was 3-4 fold higher for the rat than for the rabbit IgG liposomes. The presence of PEG drastically reduced the difference between these liposome types. Uptake of liposomes without antibodies amounted to only about 10% (non-PEGylated) or less (PEGylated) of that of the immunoliposomes. In contrast to the marked effects of IgG and PEG on Kupffer cell uptake, the rate of intracellular processing of the liposomes remained virtually unaffected by the presence of these substances on the liposomal surface. These observations are discussed with respect to the design of optimally formulated liposomal drug preparations, combining maximal therapeutic efficacy with minimal toxicity.

  7. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    PubMed

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other

  8. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  9. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    PubMed

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Solid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.

    PubMed

    Ukmar, Tina; Kaučič, Venčeslav; Mali, Gregor

    2011-09-01

    Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of indomethacin gamma was used in first-principles DFT/GIPAW calculations of 1H and 13C isotropic chemical shifts. Two packages, freely available Quantum Espresso and commercially available CASTEP, were employed. They both provided values that excellently agreed with the measured values, and thus allowed unambiguous assignment of 1H and 13C spectral lines.

  11. Inhibition of epoxy-eicosanoid degradation improves the tocolytic effects of indomethacin in the uterus from pregnant women.

    PubMed

    Corriveau, Stéphanie; Berthiaume, Maryse; Rousseau, Eric; Pasquier, Jean-Charles

    2011-11-01

    The incidence of preterm birth is an increasing problem. Indomethacin, a non-specific cyclooxygenase inhibitor, has been largely used as tocolytic in the treatment of preterm labor. The aim of the present study was to assess a putative synergistic tocolytic effect between the inhibition of the production of prostanoids and stabilization of epoxides fatty acids, particularly arachidonate on spontaneous uterine contractile activity. The experimental work was performed on uterine biopsies from consenting women undergoing elective cesarean delivery at term. Isometric tension measurements were performed on fresh human myometrial strips. Contractile activities have been monitored upon individual and combined treatments of indomethacin, DDMS, an inhibitor of hydroxy-eicosanoids production and AUDA, an inhibitor of epoxy-eicosanoids degradation. Interestingly, a significant and consistent synergic effect was observed when indomethacin and AUDA were simultaneously added, raising the possibility of a combined clinical use of cyclooxygenase and sEH inhibitors in attempt to treat preterm labor. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs.

    PubMed

    Lim, Hyun-Tae; Balakrishnan, Prabagar; Oh, Dong Hoon; Joe, Kwan Hyung; Kim, Young Ran; Hwang, Doo Hyung; Lee, Yong-Bok; Yong, Chul Soon; Choi, Han-Gon

    2010-09-15

    To develop a novel sibutramine base-loaded solid dispersion with enhanced solubility and bioavailability, various solid dispersions were prepared using a spray drying technique with hydrophilic polymers such as gelatin, HPMC and citric acid. Their solubility, thermal characteristics and crystallinity were investigated. The dissolution and pharmacokinetics of the sibutramine base-loaded solid dispersion were then compared with a sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The solid dispersions prepared with gelatin gave higher drug solubility than those prepared without gelatin, irrespective of the amount of polymer. The sibutramine base-loaded solid dispersions containing hydrophilic polymer and citric acid showed higher drug solubility compared to sibutramine base and sibutramine hydrochloride monohydrate. Among the formulations tested, the solid dispersion composed of sibutramine base/gelatin/HPMC/citric acid at the weight ratio of 1/0.8/0.2/0.5 gave the highest solubility of 5.03+/-0.24 mg/ml. Our DSC and powder X-ray diffraction results showed that the drug was present in an altered amorphous form in this solid dispersion. The difference factor (f(1)) values between solid dispersion and commercial product were 2.82, 6.65 and 6.31 at pH 1.2, 4.0 and 6.8, respectively. Furthermore, they had the similarity factor (f(2)) value of 65.68, 53.43 and 58.97 at pH 1.2, 4.0 and 6.8, respectively. Our results suggested that the solid dispersion and commercial product produced a similar correlation of dissolution profiles at all pH ranges. The AUC, C(max) and T(max) of the parent drug and metabolite I and II from the solid dispersion were not significantly different from those of the commercial product, suggesting that the solid dispersion might be bioequivalent to the commercial product in beagle dogs. Thus, the sibutramine base-loaded solid dispersion prepared with gelatin, HPMC and citric acid is a promising candidate for improving the

  13. Effects of indomethacin on plasma homovanillic acid concentration in normal subjects: a study of prostaglandin-dopamine interactions.

    PubMed

    Kahn, R S; Davidson, M; Kanof, P; McQueeney, R T; Singh, R R; Davis, K L

    1991-01-01

    In laboratory animals, prostaglandins have been shown to act as endogenous neuromodulators of central dopamine (DA) activity. To examine the interaction between prostaglandins and DA in man, the effect of a prostaglandin synthesis inhibitor, indomethacin, was studied on plasma concentrations of the DA metabolite, homovanillic acid (pHVA). Indomethacin (150 mg PO) as compared to placebo significantly elevated mean pHVA concentrations in eight normal subjects. Results of this study support the hypothesis that, as in animals, inhibition of prostaglandin synthesis increases central DA turnover in man.

  14. Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study.

    PubMed

    Badri, Waisudin; Miladi, Karim; Robin, Sophie; Viennet, Céline; Nazari, Qand Agha; Agusti, Géraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2017-09-01

    This work focused on the preparation of polycaprolactone based nanoparticles containing indomethacin to provide topical analgesic and anti-inflammatory effect for symptomatic treatment of inflammatory diseases. Indomethacin loaded nanoparticles are prepared for topical application to decrease indomethacin side effects and administration frequency. Oppositely to already reported works, in this research non-invasive method has been used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study was carried out on fresh human skin. Nanoprecipitation was used to prepare nanoparticles. Nanoparticles were characterized using numerous techniques; dynamic light scattering, SEM, TEM, DSC and FTIR. Regarding ex-vivo skin penetration of nanoparticles, confocal laser scanning microscopy has been used. The results showed that NPs hydrodynamic size was between 220 to 245 nm and the zeta potential value ranges from -19 to -13 mV at pH 5 and 1 mM NaCl. The encapsulation efficiency was around 70% and the drug loading was about 14 to 17%. SEM and TEM images confirmed that the obtained nanoparticles were spherical with smooth surface. The prepared nanoparticles dispersions were stable for a period of 30 days under three temperatures of 4°C, 25°C and 40°C. In addition, CLSM images proved that obtained NPs can penetrate the skin as well. The prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising strategy would be able to decline the side effects of IND.

  15. How do tablet properties influence swallowing behaviours?

    PubMed

    Yamamoto, Shinya; Taniguchi, Hiroshige; Hayashi, Hirokazu; Hori, Kazuhiro; Tsujimura, Takanori; Nakamura, Yuki; Sato, Hideaki; Inoue, Makoto

    2014-01-01

    Behavioural performance of tablet swallowing was evaluated with different tablet conditions in terms of size, number and surface coating. Four different types of tablets were prepared: small or large, and with or without a surface coating. Fourteen normal male adults were instructed to swallow the prepared tablets with 15 ml of water. The number of tablets in one trial was changed from one to three. To evaluate swallowing and tablet transport, electromyographic activity was recorded in the left suprahyoid muscles, and videofluorographic images were examined. All tablet conditions (size, number and surface coating) affected the swallowing performance in terms of total number of swallows, electromyographic burst patterns and location of remaining tablets. Increases in the size and number of tablets increased the number of swallows and electromyographic burst area and duration. In addition, all of these parameters increased while swallowing tablets without a coating compared with tablets with a coating. Location of the remaining tablets was mainly within the mouth. This study only clarified the normal pattern of tablet swallowing under several conditions in healthy subjects, but the results may facilitate comprehensive evaluation and treatment planning in terms of administering medication to dysphagic patients. © 2013 Royal Pharmaceutical Society.

  16. Tolerance to early human milk feeding is not compromised by indomethacin in preterm infants with persistent ductus arteriosus.

    PubMed

    Bellander, M; Ley, D; Polberger, S; Hellström-Westas, L

    2003-09-01

    Early human milk feeding is beneficial for gut and brain development. Persistent ductus arteriosus (PDA) and indomethacin may compromise enteral function in preterm infants. For many years enteral milk feedings have continued in preterm infants receiving indomethacin for PDA. The aim of this study was to investigate whether this strategy is efficient in terms of risks and tolerance to early enteral feeding. This retrospective study included 64 inborn infants of <29 wk gestational age (GA), 32 infants who received indomethacin for symptomatic PDA (case infants) and 32 matched controls. Case infants had a mean (SD) GA of 26.3 wk (1.3) and body weight 839 g (203) versus controls GA 26.4 wk (1.2) and body weight 896 g (213) (p = 0.82 and 0.27, respectively). Case infants had higher respiratory morbidity; 90.6% versus 50% of controls needed mechanical ventilation (p = 0.000). Case infants received human milk from a median (range) age of 4.0 h (1.5-27.5), and controls from 5.3 h (2.0-38.0) (p = 0.092). The first dose of indomethacin was given at a mean age of 1.7 d (1.0). There were no differences between the two groups in feeding volumes or gastric residuals on days 1 to 7. Mean (SD) feeding volume on day 7 was 64 ml/kg (31) in case infants and 76 ml/kg (30) in controls (p = 0.23). Four infants developed necrotizing enterocolitis: two case infants and two controls (p = 1.00). Early enteral feeding with human milk, starting within the first hours of life, seems to be as well tolerated in preterm infants treated with indomethacin for PDA as in their matched controls.

  17. Review of bilayer tablet technology.

    PubMed

    Abebe, Admassu; Akseli, Ilgaz; Sprockel, Omar; Kottala, Niranjan; Cuitiño, Alberto M

    2014-01-30

    Therapeutic strategies based on oral delivery of bilayer (and multilayer) tablets are gaining more acceptance among brand and generic products due to a confluence of factors including advanced delivery strategies, patient compliance and combination therapy. Successful manufacturing of these ever more complex systems needs to overcome a series of challenges from formulation design to tablet press monitoring and control. This article provides an overview of the state-of-the-art of bilayer tablet technology, highlighting the main benefits of this type of oral dosage forms while providing a description of current challenges and advances toward improving manufacturing practices and product quality. Several aspects relevant to bilayer tablet manufacturing are addressed including material properties, lubrication, layer ordering, layer thickness, layer weight control, as well as first and final compression forces. A section is also devoted to bilayer tablet characterization that present additional complexities associated with interfaces between layers. The available features of the manufacturing equipment for bilayer tablet production are also described indicating the different strategies for sensing and controls offered by bilayer tablet press manufacturers. Finally, a roadmap for bilayer tablet manufacturing is advanced as a guideline to formulation design and selection of process parameters and equipment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    PubMed

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  19. Evaluation of the physicochemical and biopharmaceutical properties of fluoro-indomethacin.

    PubMed

    Mori, Michela M; Airaksinen, Anu J; Hirvonen, Jouni T; Santos, Hélder A; Caramella, Carla M

    2013-01-01

    Drug nanocarriers have shown great potential in therapy and as diagnostic probes, e.g. in imaging of cancer and inflammation. Imaging can be applied to localize the carrier or the drug itself in the body and/or tissues. In this particular case it is important that drug molecules have the characteristics for possible detection, e.g. after modification with positron emission tomography compliant radioisotopes, without affecting their pharmacological behavior. In order to easily and efficiently follow the ADME profile of the drug after loaded into nanocarriers, the drug can be radiolabelled with, e.g. 18F-label, in order to assess its biodistribution after enteral and parenteral administration in rats. However, this is only possible if the derivative compound behaves similarly to the parent drug compound. In this study, indomethacin (a poorly water-soluble drug) was chosen as a model compound and aimed to evaluate the physicochemical and biopharmaceutical properties of an analog of indomethacin (IMC), fluoro-indomethacin (F-IMC). Although some of the physicochemical and biopharmaceutical properties of IMC are already known, in order to establish a feasible comparison between IMC and F-IMC, the behavior of the former was also investigated in the same conditions as for F-IMC. In this context, both IMC and F-IMC were thermally and morphologically studied. Furthermore, the following properties were also studied for both compounds: pKa and logP, solubility and dissolution profiles at physiological pH values, and toxicity at different concentrations in Caco-2 cells. Finally, the transport across Caco- 2 monolayers of the IMC and F-IMC at physiological pH range was also investigated. The results obtained showed similar values in pKalogP, solubility, dissolution, cytotoxicity, and permeability for both compounds. Thus, there might be strong evidence that both IMC and F-IMC should have a similar ADME behavior and profiles in vivo. The results provide fundamental tools and

  20. Studies on the mechanism of printing film-coated tablets containing titanium dioxide in the film by using UV laser irradiation.

    PubMed

    Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi

    2010-04-01

    The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.

  1. Entirely S-protected chitosan: A promising mucoadhesive excipient for metronidazole vaginal tablets.

    PubMed

    Lupo, Noemi; Fodor, Benjamin; Muhammad, Ijaz; Yaqoob, Muhammad; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2017-12-01

    Synthesis and evaluation of an entirely S-protected chitosan as mucoadhesive excipient for vaginal drug delivery. N-acetyl-cysteine was linked to 6-mercaptonicotinamide via disulphide exchange reaction. The obtained ligand, NAC-6-MNA, was subsequently attached to chitosan by carbodiimide mediated amide bond formation in two concentrations. The synthesized S-protected chitosan was chemically characterized and mucoadhesive properties and stability against oxidation were investigated. Moreover, metronidazole tablets comprising the S-protected chitosan were evaluated regarding water uptake capacity, disintegration behaviour, residence time on vaginal mucosa, release of the encapsulated drug and antimicrobial activity. S-protected chitosan displayed 160±19 (CS-MNA-160) and 320±38 (CS-MNA-320)µmol of ligand per gram of polymer. At pH 4.2, CS-MNA-160 and CS-MNA-320 showed 5.2-fold and 6.2-fold increase in mucus viscosity in comparison to unmodified chitosan (One-way ANOVA, p<.001), whereas, 9.9-fold (CS-MNA-160) and 15.6-fold (CS-MNA-320) (One-way ANOVA, p<.001) increase in viscosity was measured at pH 6. The S-protected chitosan remained stable against oxidation in presence of 0.5%v/v hydrogen peroxide. Metronidazole tablets consisting in S-protected chitosan showed prolonged residence time on vaginal mucosa and improved water uptake capacity and disintegration time in comparison to tablets consisting of unmodified chitosan. Moreover, CS-MNA-320 metronidazole tablets displayed prolonged drug release and antimicrobial activity. On the basis of the achieved results, entirely S-protected chitosan represents a promising excipient for the development of metronidazole vaginal tablets. S-protected thiomers are polymers modified with thiol groups protected by aromatic ligands and characterized by strong mucoadhesive properties and high stability against oxidation. Up to date, the entirely S-protection of thiol groups was achieved via the synthesis of the ligand 2-((2-amino-2

  2. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway

    PubMed Central

    Chatterjee, Ananya; Chatterjee, Sirshendu; Biswas, Angshuman; Bhattacharya, Sayanti; Chattopadhyay, Subrata; Bandyopadhyay, Sandip K.

    2012-01-01

    The healing activity of gallic acid enriched ethanolic extract (GAE) of Phyllanthus emblica fruits (amla) against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX-) dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose) administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO) activity and inducible nitric oxide synthase (i-NOS) expression. Proangiogenic parameters such as the levels of prostaglandin (PG) E2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), von Willebrand Factor VIII, and endothelial NOS (e-NOS) were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day) and omeprazole (3 mg/kg/day) for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL). Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE2 synthesis and augmenting e-NOS/i-NOS ratio. PMID:22966242

  3. PEG tubes: dealing with complications.

    PubMed

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding.

  4. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    PubMed

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  6. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.

    PubMed

    Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian

    2014-09-01

    A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.

  7. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  8. Perioperative alendronate, risedronate, calcitonin and indomethacin treatment alters femoral stem fixation and periprosthetic bone mineral density in ovariectomized rats.

    PubMed

    Cankaya, Deniz; Tabak, Yalcin; Ozturk, Akif Muhtar; Gunay, Muhammed Cuneyd

    2015-07-01

    Many factors affect implant stability and periprosthetic bone mineral density (BMD) following total joint arthroplasty. We asked whether perioperative alendronate, risedronate, calcitonin and indomethacine administration altered (1) femoral stem shear strength and periprosthetic bone mineral density BMD in ovariectomized rats and (2) whether there were differences in the effect of these drugs. Thirty overiectomized rats were divided into five groups and implanted with intramedullary mini-cortical screws in the femur. Four groups were treated with alendronate, risedronate, salmon calcitonin and indomethacin for 4 weeks preoperatively and 8 weeks postoperatively. Although alendronate and risedronate increased the periprosthetic BMD more than calcitonin, they did not alter implant fixation compared to calcitonin. Indomethacin significantly decreased the BMD around the stem and implant stability compared to all other groups. This study showed that perioperative treatment with bisphosphonates and calcitonin improved the BMD around the stems and implant stability. Although bisphosphonates increased the BMD more than calcitonin, there was no difference in implant stability. Indomethacin markedly decreased the periprosthetic BMD and implant stability. The main clinical significance of our study was the finding about the need to strictly avoid long-term use of high-dose nonsteroidal antiinflammatory drugs for patients who have major joint arthritis and a previous history of arthroplasty.

  9. 15-PGDH inhibitors: the antiulcer effects of carbenoxolone, pioglitazone and verapamil in indomethacin induced peptic ulcer rats.

    PubMed

    Moustafa, Y M; El-Azab, M F; Fouda, A

    2013-01-01

    15-hydroxyprostaglandin dehydrogenase (15-PGDH) is the enzyme responsible for prostaglandins (PGs) metabolism. PGs have an important role in the protection of stomach mucosa against destructive stimuli. The aim of the present study is to investigate the inhibitory effect of carbenoxolone, pioglitazone and verapamil on 15-PGDH enzyme. The experiments were carried out in the Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt from May 2011 to August 2011. Adult male albino rats were fasted for 18 hours before administration of high dose of indomethacin (30 mg/kg, p.o.), except for the negative control group which received saline only, followed by pyloric ligation to induce acute gastric ulcers. The rats were pretreated orally with saline, pioglitazone (20 mg/kg), verapamil (25 mg/kg), carbenoxolone (30 mg/kg) or their combinations 30 minutes before indomethacin. The rats were sacrificed after four hours of pyloric ligation. The effects of the previous treatments on the ulcer index (Ui), the microscopic appearance of gastric mucosa, the gastric acid output, the gastric barrier mucus content, and 15-PGDH enzyme activity were determined. Indomethacin resulted in severe ulceration and increased gastric acid output (p < 0.05) compared to negative control. The rats pretreated with carbenoxolone, pioglitazone, verapamil had reduced ulcer index, gastric acid output and 15-PGDH activity (p < 0.05) compared to either indomethacin group or the negative control group. Individual treatments with carbenoxolone, pioglitazone or verapamil increased gastric barrier mucus (p < 0.05) compared to either indomethacin group or the negative control group. The combinations of verapamil with either carbenoxolone or pioglitazone caused further reduction in ulcer index, gastric acid output and 15-PGDH activity (p < 0.05), while causing further increase in gastric barrier mucus (p < 0.05) compared to their respective individual treatment group. The antiulcer properties of pioglitazone

  10. Healing property of the Piper betel phenol, allylpyrocatechol against indomethacin-induced stomach ulceration and mechanism of action.

    PubMed

    Bhattacharya, S; Banerjee, D; Bauri, A-K; Chattopadhyay, S; Bandyopadhyay, S-K

    2007-07-21

    To evaluate the protective activity of allylpyrocatechol (APC), the major antioxidant constituent of Piper betel, against the indomethacin-induced stomach ulceration in the rat model and correlates with its antioxidative and mucin protecting properties. Male Sprague-Dawley rats were divided into five groups. Normal control rats (group I) were given the vehicle oral dose of gum acacia in distilled water (1 mL per rat); ulcerated control and treated rats (groups II-V) were given a single dose of indomethacin (30 mg/kg body wt.); group II rats were sacrificed 4 h after indomethacin administration; groups III-V rats were given the vehicle (1 mL per rat) or APC (2 mg/kg body wt.) or misoprostol (1.43 mug/kg body wt.) once daily by oral intubation for 7 d starting from 4 h after the indomethacin administration. After 7 d, the stomach tissues were excised for histological examination and biochemical analysis. Treatment with APC (2 mg/kg body wt per day) and misoprostol (1.43 mug/kg body wt per day) for 7 d could effectively heal the stomach ulceration as revealed from the ulcer index and histopathological studies. Compared to the zero day ulcerated group, treatment with APC and misoprostol reduced the ulcer index by 93.4% and 85.4% respectively (P < 0.05). Both APC and misoprostol accelerated ulcer healing observed in natural recovery (P < 0.05), their respective healing capacities not being significantly different. The healing capacities of APC and misoprostol could be attributed to their antioxidant activity as well as the ability to enhance the mucin content of the gastric tissues. Compared to the ulcerated untreated rats, those treated with APC and misoprostol showed near normal MDA levels, while the protein levels were 86% and 78% of the normal value respectively (P < 0.05). Likewise, both APC and misoprostol increased the SOD, catalase, and mucin levels significantly (P < 0.05), the effect of APC being better. APC can protect indomethacin-induced gastric ulceration

  11. Catching the PEG-induced attractive interaction between proteins.

    PubMed

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  12. Indomethacin can downregulate the levels of inflammatory mediators in the hippocampus of rats submitted to pilocarpine-induced status epilepticus

    PubMed Central

    Vieira, Michele Juliane; Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Silva, José Antônio; Cavalheiro, Esper Abrão; da Graça Naffah-Mazzacoratti, Maria

    2014-01-01

    OBJECTIVE: Refractory status epilepticus is one of the most life-threatening neurological emergencies and is characterized by high morbidity and mortality. Additionally, the use of anti-inflammatory drugs during this period is very controversial. Thus, this study has been designed to analyze the effect of a low dose of indomethacin (a COX inhibitor) on the expression of inflammatory molecules. METHOD: The hippocampus of rats submitted to pilocarpine-induced long-lasting status epilepticus was analyzed to determine the expression of inflammatory molecules with RT-PCR and immunohistochemistry. RESULTS: Compared with controls, reduced levels of the kinin B2 receptors IL1β and TNFα were found in the hippocampus of rats submitted to long-lasting status epilepticus and treated with indomethacin. CONCLUSIONS: These data show that low doses of indomethacin could be employed to minimize inflammation during long-lasting status epilepticus. PMID:25318094

  13. Erosive potential of vitamin and vitamin+mineral effervescent tablets.

    PubMed

    Wegehaupt, Florian J; Lunghi, Nancy; Hogger, Vanessa M G; Attin, Thomas

    2016-01-01

    The extrinsic sources for erosion-causing acids are primarily acidic beverages and foodstuffs. Effervescent tablets also contain organic acids (e.g. citric, tartaric, malic) in order to form carbon dioxide by contact with water – with the help of the carbonate salts of the tablets. To adequately inform patients about the possible erosive potential of effervescent tablets, this study was undertaken in order to investigate the erosive potential of effervescent tablets (ET), containing either a combination of vitamins and minerals or vitamins only, commercially available in Switzerland. One hundred and ninety-two bovine enamel samples were prepared and allocated to 16 groups (A–H and 1–8; n = 12/group). Samples were eroded (120 s/erosive cycle) in freshly prepared solutions (200 ml/12 samples) comprised of tap water and a supplement as follows: none (control groups, A and 1); vitamin+mineral ET: Qualite and Prix (B), Optisana (C), Well and Active (D), Actilife All in One (E), Berocca (F), Isostar (G) and Qualite and Prix Mg + Vit C (H); vitamin ET: Actilife-Multivitamin (2), Sunlife Vitamin C (3), Optisana Vitamin C (4), Optisana Multivitamin (5), Well and Active Multivitamin (6), Kneipp Vitamin C+Zink (7) and Sunlife Multivitamin (8). Enamel loss was measured using profilometry after 10 and 20 erosive cycles. For the vitamin+mineral ET, no loss was observed in groups B–E. Significantly highest enamel loss (mean ± SD) after 20 cycles was observed for Isostar (5.26 ± 0.76 µm) and Qualite and Prix Mg + Vit C (5.12 ± 0.67 µm). All vitamine ET showed erosive enamel loss. Significantly highest loss was observed for Sunlife Multivitamin (8.45 ± 1.08 µm), while the lowest loss was observed for Actilife-Multivitamin (5.61 ± 1.08 µm) after 20 cycles. Some of the tested effervescent tablets showed a considerable erosive potential and patients should be informed accordingly.

  14. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX

  15. Electro-spun PLA-PEG-yarns for tissue engineering applications.

    PubMed

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-06-27

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics. Therefore, the aim of the study was the implementation of a process for electro-spun yarns. Polylactic acid (PLA) and polyethylene glycol (PEG) were spun from chloroform solutions with varying PLA/PEG ratios (100:0, 90:10, 75:25 and 50:50). The yarn samples produced were analyzed regarding their morphology, tensile strength, water uptake and cytocompatibility. It was found that the yarn diameter decreased when the funnel collector rotation was increasd, however, the fiber diameter was not influenced. The tensile strength was also found to be dependent on the PEG content. While samples composed of 100% PLA showed a tensile strength of 2.5±0.7 cN/tex, the tensile strength increased with a decreasing PLA content (PLA 75%/PEG 25%) to 6.2±0.5 cN/tex. The variation of the PEG content also influenced the viscosity of the spinning solutions. The investigation of the cytocompatibility with endothelial cells was conducted for PLA/PEG 90:10 and 75:25 and indicated that the samples are cytocompatible.

  16. Can Tablet Computers Enhance Faculty Teaching?

    PubMed Central

    Narayan, Aditee P.; Whicker, Shari A.; Benjamin, Robert W.; Hawley, Jeffrey; McGann, Kathleen A.

    2015-01-01

    Background Learner benefits of tablet computer use have been demonstrated, yet there is little evidence regarding faculty tablet use for teaching. Objective Our study sought to determine if supplying faculty with tablet computers and peer mentoring provided benefits to learners and faculty beyond that of non–tablet-based teaching modalities. Methods We provided faculty with tablet computers and three 2-hour peer-mentoring workshops on tablet-based teaching. Faculty used tablets to teach, in addition to their current, non–tablet-based methods. Presurveys, postsurveys, and monthly faculty surveys assessed feasibility, utilization, and comparisons to current modalities. Learner surveys assessed perceived effectiveness and comparisons to current modalities. All feedback received from open-ended questions was reviewed by the authors and organized into categories. Results Of 15 eligible faculty, 14 participated. Each participant attended at least 2 of the 3 workshops, with 10 to 12 participants at each workshop. All participants found the workshops useful, and reported that the new tablet-based teaching modality added value beyond that of current teaching methods. Respondents developed the following tablet-based outputs: presentations, photo galleries, evaluation tools, and online modules. Of the outputs, 60% were used in the ambulatory clinics, 33% in intensive care unit bedside teaching rounds, and 7% in inpatient medical unit bedside teaching rounds. Learners reported that common benefits of tablet computers were: improved access/convenience (41%), improved interactive learning (38%), and improved bedside teaching and patient care (13%). A common barrier faculty identified was inconsistent wireless access (14%), while no barriers were identified by the majority of learners. Conclusions Providing faculty with tablet computers and having peer-mentoring workshops to discuss their use was feasible and added value. PMID:26221443

  17. Can Tablet Computers Enhance Faculty Teaching?

    PubMed

    Narayan, Aditee P; Whicker, Shari A; Benjamin, Robert W; Hawley, Jeffrey; McGann, Kathleen A

    2015-06-01

    Learner benefits of tablet computer use have been demonstrated, yet there is little evidence regarding faculty tablet use for teaching. Our study sought to determine if supplying faculty with tablet computers and peer mentoring provided benefits to learners and faculty beyond that of non-tablet-based teaching modalities. We provided faculty with tablet computers and three 2-hour peer-mentoring workshops on tablet-based teaching. Faculty used tablets to teach, in addition to their current, non-tablet-based methods. Presurveys, postsurveys, and monthly faculty surveys assessed feasibility, utilization, and comparisons to current modalities. Learner surveys assessed perceived effectiveness and comparisons to current modalities. All feedback received from open-ended questions was reviewed by the authors and organized into categories. Of 15 eligible faculty, 14 participated. Each participant attended at least 2 of the 3 workshops, with 10 to 12 participants at each workshop. All participants found the workshops useful, and reported that the new tablet-based teaching modality added value beyond that of current teaching methods. Respondents developed the following tablet-based outputs: presentations, photo galleries, evaluation tools, and online modules. Of the outputs, 60% were used in the ambulatory clinics, 33% in intensive care unit bedside teaching rounds, and 7% in inpatient medical unit bedside teaching rounds. Learners reported that common benefits of tablet computers were: improved access/convenience (41%), improved interactive learning (38%), and improved bedside teaching and patient care (13%). A common barrier faculty identified was inconsistent wireless access (14%), while no barriers were identified by the majority of learners. Providing faculty with tablet computers and having peer-mentoring workshops to discuss their use was feasible and added value.

  18. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.

    PubMed

    Sun, Changquan Calvin

    2017-05-01

    To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.

  19. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  20. A comparative study of vitamin E TPGS/HPMC supersaturated system and other solubilizer/polymer combinations to enhance the permeability of a poorly soluble drug through the skin.

    PubMed

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-11-01

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across skin, because the concentration of the drug dissolved in the matrix has to be high in order to maintain zero order release kinetics of the drug. In case of poorly soluble drugs, due to thermodynamic challenges, there is a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of vitamin E TPGS/HPMC supersaturated solution and other solubilizer/polymer systems to improve the solubility of the drug and inhibit crystal growth in the transdermal formulation. Effect of several solubilizers, for example, Pluronic F-127, vitamin E TPGS and co-solvent, for example, propylene glycol (PG) were studied on the supersaturated systems of ibuprofen as model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC 3 cps) and polyvinylpyrrolidone (PVP K-30) were examined to evaluate their crystal inhibitory effects. Different analytical tools were used in this study to detect the growth of crystals in the systems. Vitamin E TPGS and HPMC 3 cps formulation produced the highest permeation rate of the drug as compared to other systems. In addition, the onset of crystallization time was shown to be longer with this formulation as compared to other solubilizer/polymer combinations.

  1. The effect of indomethacin on the muscarinic induced contractions in the isolated normal guinea pig urinary bladder.

    PubMed

    Rahnama'i, Mohammad S; van Koeveringe, Gommert A; van Kerrebroeck, Philip E V; de Wachter, Stefan G G

    2013-02-07

    To investigate the effect of prostaglandin depletion by means of COX-inhibition on cholinergic enhanced spontaneous contractions. The urethra and bladder of 9 male guinea pigs (weight 270-300 g) were removed and placed in an organ bath with Krebs' solution. A catheter was passed through the urethra through which the intravesical pressure was measured. The muscarinic agonist arecaidine, the non-selective COX inhibitor indomethacin, and PGE2 were subsequently added to the organ bath. The initial average frequency and amplitude of spontaneous contractions in the first 2 minutes after arecaidine application were labelled F(ini) and P(ini), respectively. The steady state frequency (F(steady)) and amplitude (P(steady)) were defined as the average frequency and amplitude during the 5 minutes before the next wash out. Application of 1 μM PGE2 increased the amplitude of spontaneous contractions without affecting frequency. 10 μM of indomethacin reduced amplitude but not frequency.The addition of indomethacin did not alter F(ini) after the first application (p = 0.7665). However, after the second wash, F(ini) was decreased (p = 0.0005). F(steady), P(steady) and P(ini) were not significantly different in any of the conditions. These effects of indomethacin were reversible by PGE2 addition.. Blocking PG synthesis decreased the cholinergically stimulated autonomous contractions in the isolated bladder. This suggests that PG could modify normal cholinergically evoked response. A combination of drugs inhibiting muscarinic receptors and PG function or production can then become an interesting focus of research on a treatment for overactive bladder syndrome.

  2. [Efficacy, influencing factors and safety of PEG-INF alpha-2a (PEG-INF-2a) in the treatment of chronic hepatitis C: analysis of 89 patients].

    PubMed

    Ma, Li-na; Chen, Xin-yue; Chen, Jie; Shen, Cheng-li; Wang, Jun-tao

    2006-06-01

    To investigate the efficacy, influencing factors and safety of PEG-INF alpha-2a (PEG-INF-2a) in the treatment of hepatitis C. Totally 89 patients with hepatitis C were included in this study and 46 patients were treated with PEG-INF-2a (180 microg or 135 microg/week) and RBV 900 mg/d, 43 patients were treated with IFNalpha-2a (5 MIU/qod) and RBV 900 mg/d. The time of treatment was 48 weeks, and all the patients were visited 24 weeks after treatment. There were no significant differences between the two groups in pretreatment HCV-RNA, HCV genotype and other clinical data. The main parameters to evaluate the efficacy were virological and biochemical responses. The side effects were intensively observed. Sustained virological response (SVR) rate in PEG-IFNalpha-2a group was significantly higher than that in IFNalpha-2a group (56.5% and 19.5% respectively, P<0.001). As the patients were divided according to HCV genotype 1 and high virus load, the SVR rate of PEG-INF alpha-2a group was higher than IFNalpha-2a group (P<0.001). However, there was no significant difference between two groups in the patients with non-genotype 1 and low viral load (P=0.664, 0.116). Similar side-effects were observed in PEG-IFNalpha-2a group and IFNalpha-2a group, but the rate of weight decline and the degree of leukocyte decrease were more significant in PEG-INF alpha-2a group than in IFNalpha-2a group (P=0.001). The efficacy of PEG-INF alpha-2a in the treatment of chronic hepatitis C is superior to that of conventional IFNalpha-2a, PEG-INF alpha-2a had good tolerance and safety profiles.

  3. [Tolerance, safety and efficacy of the one-day preparation of PEG3350 + bisacodyl compared to 2 days of PEG3350 + bisacodyl in pediatric patients].

    PubMed

    Portillo Canizalez, Ligia Marcela; Blanco Rodriguez, Gerardo; Teyssier Morales, Gustavo; Penchyna Grub, Jaime; Trauernicht Mendieta, Sean; Zurita-Cruz, Jessie Nallely

    Multiple intestinal preparations have been used in children undergoing colonoscopy, with variable limitation due to acceptance, tolerance, and proper cleaning. The objective of this study was to compare the tolerability, safety and efficacy of the colonoscopy preparation with 1 day with PEG 3350 (poliethylenglycol) (4g/kg/day) + bisacodyl compared to 2 days of preparation with PEG 3350 (2g/kg/day) + bisacodyl in pediatric patients. A clinical, randomized, and blind trial was performed. Patients aged 2 to 18 years scheduled for colonoscopy were included. Patients were randomized into two groups: 1 day of preparation with PEG 3350 4g/kg/day + bisacodyl and 2 days of preparation with PEG 3350 2g/kg/day + bisacodyl. Through a questionnaire, physical examination and endoscopic evaluation (Boston scale), the tolerance, safety and efficacy of the 2 preparations to be evaluated were determined. Student's t test was performed for quantitative variables and χ 2 for qualitative variables. There were no significant differences in compliance rates, adverse effects, and extent of colonoscopic evaluation. Tolerance and safety between the intestinal preparation for 1-day colonoscopy with PEG 3350 (4g/kg/day) + bisacodyl and the 2-day preparation with PEG 3350 (2g/kg/day) + bisacodyl were similar. The quality of cleanliness was good in both groups, being partially more effective in the 1-day group with PEG 3350 (4g/kg/day). Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet.

    PubMed

    Liu, Longxiao; Xu, Xiangning

    2008-03-20

    In this paper, a bilayer-core osmotic pump tablet (OPT) which does not require laser drilling to form the drug delivery orifice is described. The bilayer-core consisted of two layers: (a) push layer and (b) drug layer, and was made with a modified upper tablet punch, which produced an indentation at the center of the drug layer surface. The indented tablets were coated by using a conventional pan-coating process. Although the bottom of the indentation could be coated, the side face of the indentation was scarcely sprayed by the coating solution and this part of the tablet remained at least partly uncoated leaving an aperture from which drug release could occur. Nifedipine was selected as the model drug. Sodium chloride was used as osmotic agent, polyvinylpyrrolidone as suspending agent and croscarmellose sodium as expanding agent. The indented core tablet was coated by ethyl cellulose as semipermeable membrane containing polyethylene glycol 400 for controlling the membrane permeability. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f(2)). It was found that the optimal OPT was able to deliver nifedipine at an approximate zero-order up to 24 h, independent on both release media and agitation rates. The preparation of bilayer-core OPT was simplified by coating the indented core tablet, by which sophisticated technology of the drug layer identification and laser drilling could be eliminated. It might be promising in the field of preparation of bilayer-core OPT.

  5. Pharmaceutical and analytical evaluation of triphalaguggulkalpa tablets

    PubMed Central

    Savarikar, Shreeram S.; Barbhind, Maneesha M.; Halde, Umakant K.; Kulkarni, Alpana P.

    2011-01-01

    Aim of the Study: Development of standardized, synergistic, safe and effective traditional herbal formulations with robust scientific evidence can offer faster and more economical alternatives for the treatment of disease. The main objective was to develop a method of preparation of guggulkalpa tablets so that the tablets meet the criteria of efficacy, stability, and safety. Materials and Methods: Triphalaguggulkalpa tablet, described in sharangdharsanhita and containing guggul and triphala powder, was used as a model drug. Preliminary experiments on marketed triphalaguggulkalpa tablets exhibited delayed in vitro disintegration that indicated probable delayed in vivo disintegration. The study involved preparation of triphalaguggulkalpa tablets by Ayurvedic text methods and by wet granulation, dry granulation, and direct compression method. The tablets were evaluated for loss on drying, volatile oil content, % solubility, and steroidal content. The tablets were evaluated for performance tests like weight variation, disintegration, and hardness. Results: It was observed that triphalaguggulkalpa tablets, prepared by direct compression method, complied with the hardness and disintegration tests, whereas tablets prepared by Ayurvedic text methods failed. Conclusion: Direct compression is the best method of preparing triphalaguggulkalpa tablets. PMID:21731383

  6. Investigation of a 2-step agglomeration process performed in a rotary processor using polyethylene glycol solutions as the primary binder liquid.

    PubMed

    Kristensen, Jakob

    2006-10-27

    The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1:3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tablets of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.

  7. Quantitative measurement of indomethacin crystallinity in indomethacin-silica gel binary system using differential scanning calorimetry and X-ray powder diffractometry.

    PubMed

    Pan, Xiaohong; Julian, Thomas; Augsburger, Larry

    2006-02-10

    Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.

  8. Monitoring of RU Peg requested for Swift observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that

  9. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.

    PubMed

    Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard

    2015-02-20

    The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a

  10. PEG Enhancement for EM1 and EM2+ Missions

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG

  11. COMPARISON OF HYDROCORTISONE 10 MG TABLETS: TABLET HARDNESS OPTIMISED FOR ADULT USE HAS NEGATIVE CONSEQUENCES FOR PAEDIATRIC USE.

    PubMed

    Saimbi, Sarina; Madden, Valerie; Stirling, Heather; Yahyouche, Asma; Batchelor, Hannah

    2016-09-01

    Children's medicines are not always readily available as an age appropriate product and manipulation of adult products is often required. Recently the commercial manufacturing process for 10 mg hydrocortisone tablets has changed and the compression force increased due to tablets fracturing on removal from the blister pack. However, this change led to parents of children requiring hydrocortisone reporting that the tablets were more difficult to manipulate.This study evaluated 10 mg hydrocortisone tablets for their suitability for manipulation in order to deliver an appropriate dose to children (2 mg dose). The physical properties of tablets with the old and new compression force were compared as well as the accuracy of obtaining the paediatric dose. The tablets compared were hydrocortisone Auden 10 mg tablets (Brand A, PL16876/002)-these are the newer, harder tablets- and hydrocortisone 10 mg tablets (Brand B, PL17507/0097). Tablet physical properties including friability (Copley FRV200) and tablet hardness (Copley TBF1000) were compared. The accuracy of split doses (halve and quarter tablets) were recorded on a Sartorius analytical balance. The accuracy of the 2 mg paediatric dosing was assessed by crushing the tablet, adding 10 mL of water and extracting 2 mL. The concentration was measured using UV analysis (Jenway Genova Plus) according to a calibration curve (wavelength=246 nm). Two devices were used to crush the tablets: a spoon onto a plate and a commercially available crushing device (Apothecary Ezy Crush Pill Crusher With Ergo Grip). As anticipated Brand A tablets were harder (51.85 ±5.1 N) compared to Brand B (30.99±4.1 N). Brand A tablets passed the friability testing with <1% weight loss whereas Brand B failed as 5 tablets broke during testing.The accuracy of split doses using the score lines to halve and quarter the tablets showed that Brand A were generally better with smaller ranges for both halves (Range for A=41-55%; B=29

  12. Effect of different excipients on the physical characteristics of granules and tablets with carbamazepine prepared with polyethylene glycol 6000 by fluidized hot-melt granulation (FHMG).

    PubMed

    Kraciuk, Radosław; Sznitowska, Malgorzata

    2011-12-01

    The objective of this study was to investigate the properties of granules and tablets with carbamazepine which were prepared employing a fluidized hot-melt granulation (FHMG) technique. The FHMG process was carried out at 65°C. Macrogol 6000 (PEG 6000) was used as a binder at the content 10% (w/w) of the granulated mass. Granules containing up to 70% (w/w) of the drug and 20-90% (w/w) of a filler (lactose, mannitol, calcium hydrogen phosphate (Di-Cafos), pregelatinized starch, and microcrystalline cellulose (MCC)) were produced. When the drug content was 30% (w/w), the yield of the process was satisfying (>95%) and flowability of the granules was better than placebo granules or drug-loaded granules prepared by wet granulation. Type of a filler had strong impact on physical properties of granules, and size distribution of the particles was the most homogenous when lactose or Di-Cafos were used. The FHMG technique enabled preparation of granules with better compressability compared with the wet-granulated product or with non-granulated powders. Tablets with shorter disintegration time than 10 min were obtained with 2.0% crospovidone added as a disintegrant. In comparison to tablets prepared from the wet-granulated mass, employment of the FHMG method resulted in tablets with faster dissolution of carbamazepine (more than 80% of the drug released within 15 min). This was achieved with mannitol or lactose/MCC, as fillers.

  13. Culture-Independent Analysis of Indomethacin-Induced Alterations in the Rat Gastrointestinal Microbiota

    PubMed Central

    Dalby, Andrew B.; Frank, Daniel N.; St. Amand, Allison L.; Bendele, Alison M.; Pace, Norman R.

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances. PMID:17021222

  14. Avidin-biotin-PEG-CPA complexes as potential EPR-directed therapeutic protein carriers: preparation and characterization.

    PubMed

    Ke, Shan; Wright, John C; Kwon, Glen S

    2007-01-01

    Bovine carboxypeptidase A (CPA) conjugated with biotinylated poly(ethylene glycol) (PEG) has been synthesized and characterized in terms of stoichiometry and half-life of the avidin-biotin-PEG(s)-CPA complex. The half-lives for dissociation are 3.34 days for the avidin-biotin-PEG(3400)-CPA 1:1 complex, 3.65 days for the avidin-biotin-PEG(5000)-CPA 1:1 complex, 3.91 days for the avidin-biotin-PEG(3400)-CPA-PEG(2000) 1:1 complex, and 2.74 days for the avidin-biotin-PEG(5000)-CPA-PEG(2000) 1:1 complex. The slow dissociation demonstrates the stability of complexes using a PEGylated biotin terminus as a linker with avidin. The stoichiometry of the biotin-PEGylated CPA with avidin was determined by the 2,6-ANS method, and the results are consistent with measurements of the stoichiometry using size exclusion chromatography. The stoichiometries are 1:2 for the avidin-biotin-PEG(3400)-CPA complex and the avidin-biotin-PEG(3400)-CPA-PEG(2000) complex, 1:1 for the avidin-biotin-PEG(5000)-CPA complex, and 1:4 for the avidin-biotin-PEG(5000)-CPA-PEG(2000) complex. These findings stress both the importance of the length of a PEG chain as an appropriate spacer between the biotin terminus and a functional group, and the great potential of the avidin-biotin-PEGylated-protein complex as a therapeutic protein delivery system for solid tumor prodrug targeting.

  15. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells.

    PubMed

    Yan, Jinyin; Song, Bo; Hu, Wanning; Meng, Ying; Niu, Fengling; Han, Xiaochen; Ge, Yuhui; Li, Ning

    2018-05-01

    Doxorubicin (DOX) can be used to treat malignant tumors, but with multiple adverse effects. Graphene oxide-polyethylene glycol (GO-PEG) is a novel nanoscale carrier material and can elevate solubility and biocompatibility of drugs. This study prepared a GO-PEG-DOX complex, whose toxicity and antitumor effects were evaluated on mouse EMT-6 breast cancer cells. GO-PEG-DOX complex was prepared for calculating the drug carrier rate of DOX on GO-PEG by MV approach. EMT-6 cells were treated with 40 μg/mL GO-PEG, 1 μg/mL DOX, or 40 μg/mL +1 μg/mL GO-PEG-DOX for 72 h of incubation. Cells without treatment were considered the control group. Cell survival rate and apoptotic rate were tested at different time points. GO-PEG and GO-PEG-DOX complex were successfully prepared with satisfactory solubility. After 72 h of incubation, EMT-6 cells after GO-PEG-DOX treatment had significantly higher survival rate than GO-PEG group (p < 0.05). All three treatment groups had significantly elevated apoptotic rates than control group (p < 0.05). GO-PEG-DOX group had much more apoptosis (p < 0.05 compared with DOX group). Moreover, with elongated treatment time, all groups showed decreased survival rate (p < 0.05). GO-PEG did not reduce the cytotoxicity of DOX on EMT-6 cells. GO-PEG-DOX complex can increase the water solubility and targeting sensitivity of DOX, with facilitating effects on DOX-induced tumor cell apoptosis.

  16. Bilayer Tablet Formulation of Metformin HCl and Acarbose: A Novel Approach To Control Diabetes.

    PubMed

    Tiwari, Ruchi; Gupta, Ankita; Joshi, Meenakshi; Tiwari, Gaurav

    2014-01-01

    The present investigation studied a novel bilayer tablet having an extended release system of metformin HCl with Eudragit RS 100 and RL 100 and an immediate release system of acarbose with polyvinylpyrrolidone K30 (PVP K30) and polyethylene glycol 6000 (PEG 6000) in different ratios using solvent evaporation and cogrinding techniques. Solid dispersions (SDs) were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), scanning electron microscopy (SEM), as well as by content uniformity, in vitro dissolution studies, and release kinetics. The selected SD system was subjected to bilayer tablet preparation by direct compression. Compressed tablets were evaluated for drug content, weight variation, friability, hardness, and thickness, and they underwent in vitro dissolution studies. The progressive disappearance of IR, x-ray, and thermotropic drug signals in SDs and physical mixtures were related to increasing amount of polymer. SEM studies suggested the homogenous dispersion of drug in polymers. FT-IR studies confirmed the formation of hydrogen bonding between drug and polymer. All tablet formulations showed compliance with pharmacopoeial standards. The formulations gave an initial burst effect to provide the loading dose of the drug followed by extended release for 12 h (Higuchi model via a non-Fickian diffusion controlled release mechanism). Stability studies conducted for the optimized formulation did not show any change in physical properties, drug content, or in vitro drug release. The goal of diabetes therapy today is to achieve and maintain as near normal glycemia as possible to prevent the long-term microvascular and macrovascular complications of elevated blood glucose levels. Oral therapeutic options for the treatment of type 2 diabetes mellitus, until recently, have been severely limited. Metformin, a biguanide, targets additional mechanisms of hyperglycemia by inhibiting

  17. Healing property of the Piper betel phenol, allylpyrocatechol against indomethacin-induced stomach ulceration and mechanism of action

    PubMed Central

    Bhattacharya, S; Banerjee, D; Bauri, AK; Chattopadhyay, S; Bandyopadhyay, SK

    2007-01-01

    AIM: To evaluate the protective activity of allylpyrocatechol (APC), the major antioxidant constituent of Piper betel, against the indomethacin-induced stomach ulceration in the rat model and correlates with its antioxidative and mucin protecting properties. METHODS: Male Sprague-Dawley rats were divided into five groups. Normal control rats (group I) were given the vehicle oral dose of gum acacia in distilled water (1 mL per rat); ulcerated control and treated rats (groups II-V) were given a single dose of indomethacin (30 mg/kg body wt.); group II rats were sacrificed 4 h after indomethacin administration; groups III-V rats were given the vehicle (1 mL per rat) or APC (2 mg/kg body wt.) or misoprostol (1.43 μg/kg body wt.) once daily by oral intubation for 7 d starting from 4 h after the indomethacin administration. After 7 d, the stomach tissues were excised for histological examination and biochemical analysis. RESULTS: Treatment with APC (2 mg/kg body wt per day) and misoprostol (1.43 μg/kg body wt per day) for 7 d could effectively heal the stomach ulceration as revealed from the ulcer index and histopathological studies. Compared to the zero day ulcerated group, treatment with APC and misoprostol reduced the ulcer index by 93.4% and 85.4% respectively (P < 0.05). Both APC and misoprostol accelerated ulcer healing observed in natural recovery (P < 0.05), their respective healing capacities not being significantly different. The healing capacities of APC and misoprostol could be attributed to their antioxidant activity as well as the ability to enhance the mucin content of the gastric tissues. Compared to the ulcerated untreated rats, those treated with APC and misoprostol showed near normal MDA levels, while the protein levels were 86% and 78% of the normal value respectively (P < 0.05). Likewise, both APC and misoprostol increased the SOD, catalase, and mucin levels significantly (P < 0.05), the effect of APC being better. CONCLUSION: APC can protect

  18. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  19. Bioactive Hydrogels Made from Step-Growth Derived PEG-Peptide Macromers

    PubMed Central

    Miller, Jordan S.; Shen, Colette J.; Legant, Wesley R.; Baranski, Jan D.; Blakely, Brandon L.; Chen, Christopher S.

    2010-01-01

    Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400 Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)m-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500 kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by

  20. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    PubMed

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A critical review on tablet disintegration.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2016-09-01

    Tablet disintegration is an important factor for drug release and can be modified with excipients called tablet disintegrants. Tablet disintegrants act via different mechanisms and the efficacy of these excipients is influenced by various factors. In this review, the existing literature on tablet disintegration is critically reviewed. Potential disintegration mechanisms, as well as impact factors on the disintegration process will be discussed based on experimental evidence. Search terms for Scopus and Web of Science included "tablet disintegration", "mechanism tablet disintegration", "superdisintegrants", "disintegrants", "swelling force", "disintegration force", "disintegration mechanisms", as well as brand names of commonly applied superdisintegrants. References of identified papers were screened as well. Experimental data supports swelling and shape recovery as main mechanisms of action of disintegrants. Other tablet excipients and different manufacturing techniques greatly influence the disintegration process. The use of different excipients, experimental setups and manufacturing techniques, as well as the demand for original research led to a distinct patchwork of knowledge. Broader, more systematic approaches are necessary not only to structure the past but also future findings.

  2. Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.

    PubMed

    Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-01-20

    Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The gastroprotective effect of pogostone from Pogostemonis Herba against indomethacin-induced gastric ulcer in rats

    PubMed Central

    Chen, Xiao-Ying; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Zheng, Yi-Feng; Su, Zu-Qing; Zhang, Xie; Xie, Jian-Hui; Liang, Yong-Zhuo; Fu, Lu-Di; Lai, Xiao-Ping; Huang, Xiao-Qi

    2015-01-01

    Pogostemonis Herba, known as “Guang-Huo-Xiang” in Chinese, has been widely used in the treatment of gastrointestinal dysfunction. Pogostone is one of the major constituents of Pogostemonis Herba. The aim was to scientifically evaluate the possible gastroprotective effect and the underlying mechanisms of pogostone against indomethacin-induced gastric ulcer in rats. Rats were orally treated with vehicle, lansoprazole (30 mg/kg) or pogostone (10, 20 and 40 mg/kg) and subsequently exposed to acute gastric lesions induced by indomethacin. Gross evaluation, histological observation, gastric mucosal superoxide dismutase activity, glutathione content, catalase activity, malonaldehyde level and prostaglandin E2 production were performed. Immunohistochemistry and reverse transcription polymerase chain reaction for cyclooxygenase-1 and cyclooxygenase-2, as well as terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay, immunohistochemistry for heat-shock protein 70, B-cell lymphoma-2 and Bax were conducted. Results indicated that rats pretreated with pogostone showed remarkable protection from the gastric mucosa damage compared to vehicle-treated rats based on the ulcer index and inhibition percentage. Histologically, oral administration of pogostone resulted in observable improvement of gastric injury, characterized by reduction of necrotic lesion, flattening of gastric mucosa and alleviation of submucosal edema with hemorrhage. Pogostone pretreatment significantly raised the depressed activities of superoxide dismutase, glutathione and catalase, while reduced the elevated malonaldehyde level compared with indomethacin-induced group. Pogostone-pretreated group induced a significant increase in gastric mucosal prostaglandin E2 level and obvious up-regulation of protein levels and mRNA expressions of cyclooxygenase-1 and cyclooxygenase-2. Furthermore, antiapoptotic effect of pogostone was verified by terminal deoxynucleotidyltransferase-mediated d

  4. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.

    PubMed

    Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami

    2015-04-01

    PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.

  5. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin.

    PubMed

    Luque, M J; Tapia, J L; Villarroel, L; Marshall, G; Musante, G; Carlo, W; Kattan, J

    2014-01-01

    Develop a risk prediction model for severe intraventricular hemorrhage (IVH) in very low birth weight infants (VLBWI). Prospectively collected data of infants with birth weight 500 to 1249 g born between 2001 and 2010 in centers from the Neocosur Network were used. Forward stepwise logistic regression model was employed. The model was tested in the 2011 cohort and then applied to the population of VLBWI that received prophylactic indomethacin to analyze its effect in the risk of severe IVH. Data from 6538 VLBWI were analyzed. The area under ROC curve for the model was 0.79 and 0.76 when tested in the 2011 cohort. The prophylactic indomethacin group had lower incidence of severe IVH, especially in the highest-risk groups. A model for early severe IVH prediction was developed and tested in our population. Prophylactic indomethacin was associated with a lower risk-adjusted incidence of severe IVH.

  6. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content

    PubMed Central

    Li, Mingguang; Panagi, Zoi; Avgoustakis, Konstantinos; Reineke, Joshua

    2012-01-01

    Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties’ effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data. Biodistribution data for five poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulations prepared with varied content of monomethoxypoly (ethyleneglycol) (mPEG) (PLGA, PLGA-mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34) were collected in mice after intravenous injection. A physiologically based pharmacokinetic model was developed and evaluated to simulate the mass-time profiles of nanoparticle distribution in tissues. In anticipation that the biodistribution of new nanoparticle formulations could be predicted from the physiologically based pharmacokinetic model, multivariate regression analysis was performed to build the relationship between nanoparticle properties (size, zeta potential, and number of PEG molecules per unit surface area) and biodistribution parameters. Based on these relationships, characterized physicochemical properties of PLGA-mPEG495 nanoparticles (a sixth formulation) were used to calculate (predict) biodistribution profiles. For all five initial formulations, the developed model adequately simulates the experimental data indicating that the model is suitable for description of PLGA-mPEG nanoparticle biodistribution. Further, the predicted biodistribution profiles of PLGA-mPEG495 were close to experimental data, reflecting properly developed property–biodistribution relationships. PMID:22419876

  7. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.

    PubMed

    Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif

    2017-01-01

    Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our

  9. 21 CFR 520.1284 - Sodium liothyronine tablets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...

  10. 21 CFR 520.1284 - Sodium liothyronine tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...

  11. 21 CFR 520.1284 - Sodium liothyronine tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...

  12. 21 CFR 520.1284 - Sodium liothyronine tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...

  13. Formulation Development of Spherical Crystal Agglomerates of Itraconazole for Preparation of Directly Compressible Tablets with Enhanced Bioavailability.

    PubMed

    Fadke, Janki; Desai, Jagruti; Thakkar, Hetal

    2015-12-01

    The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm(2)) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in C max and AUC0-t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.

  14. Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity

    NASA Astrophysics Data System (ADS)

    Lin, Jinyan; Pan, Zhou; Song, Liang; Zhang, Yanmei; Li, Yang; Hou, Zhenqing; Lin, Changjian

    2017-12-01

    Despite the great efficacy of indomethacin (IND) as an anti-inflammatory agent, its clinical translation has been obstructed by the water insolubility, severe side effects, and exceedingly low bioavailability. Indomethacin prodrug-based nanoparticles (NPs) combining the strengths of both nanotechnology and prodrugs that might overcome this crucial problem are presented. Here, using the carbodiimide-mediated couple reaction, IND was conjugated to clinically approved poly(ethylene glycol) (PEG) polymer via peptide linkage that was cleavaged in the presence of cathepsin B, which was significantly induced after inflammatory. The synthesized IND-PEG-IND conjugate was characterized by UV-vis, FTIR, 1H NMR, XRD, and MALDI-TOF-MS analyses. For its intrinsic amphiphilic property, the IND prodrug self-assembled into NPs in aqueous solution and served two roles-as an anti-inflammatory prodrug and a drug carrier. The constructed IND-PEG-IND NPs had naoscaled particle size of approximately 80 nm, negative surface, spherical shape, good water-dispersity, and high and fixed drug-loading content of 20.1 wt%. In addition, IND-PEG-IND NPs demonstrated sustained and cathepsin B-controlled drug release behavior. More importantly, IND-PEG-IND NPs significantly reduced the acute totoxicity agaist normal osteoblast cells and displayed the more potent anti-inflammatory effect against macrophage cells compared to the free IND. Taken together, the nanoprodrug might exhibit increased potency for nanomedicine-prospective therapeutic use in clinical treatement of implant inflammatory diseases.

  15. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  16. Apple Polyphenol Suppresses Indomethacin-Induced Gastric Damage in Experimental Animals by Lowering Oxidative Stress Status and Modulating the MAPK Signaling Pathway.

    PubMed

    Lee, Yi-Chen; Cheng, Chun-Wen; Lee, Huei-Jane; Chu, Huei-Chuien

    2017-11-01

    Indomethacin is a nonsteroid anti-inflammatory drug (NSAID) that is used to alleviate pain and inflammation in clinical medicine. Previous studies indicated that NSAIDs can cause gastrointestinal mucosal complications, and it is associated with mucosal lipid peroxidation and oxidative damage. Based on the evidences, decreasing oxidative stress may be an ideal therapeutic strategy for preventing gastrointestinal ulcer. Apple (Rosaceae Malus sp.) is one of the most commonly consumed fruits worldwide. The abundant polyphenolic constituents have received increasing attention for decades. In both in vivo and in vitro studies, the reports showed that apple polyphenol (AP) seems to provide an indirect antioxidant protection by activating cellular antioxidant enzymes to defend against oxidative stress. To address this issue and develop AP into a healthy improvement supplement, we studied the effect and potential mechanisms of AP in indomethacin-treated animal. The results showed AP can decelerate the gastric lesion, significantly suppress lipid peroxidation, increase the level of glutathione and the activity of catalase, and regulate the MAPK signaling proteins. These findings imply that AP protects the gastric mucosa from indomethacin-caused lesions and the protection is at least partially attributable to its antioxidative properties. This alternative medical function of AP may be a safe and effective intervention for preventing indomethacin-induced gastric complications.

  17. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.

    PubMed

    Derycke, Annelies S L; De Witte, Peter A M

    2002-01-01

    Over the last few decades, photodynamic therapy evolved to a promising new treating modality for cancer. The photosensitizers used, induce light sensitivity to a normal light insensitive chemical or physical process. Third generation photosensitizers are derivatives of second generation photosensitizers introduced into or attached to chemical devices. This modification increases the biological specificity to deliver photosensitizers to a defined cell type. The aim of this study was to improve the specificity of hypericin for tumor cells using transferrin-conjugated PEG-liposomes. Transferrin was used as tumor-seeking molecule, since many tumor cells, among which HeLa cells, overexpress transferrin receptors on their surface. Hypericin, a potent second generation photosensitizer, was integrated in the lipid bilayers of the liposomes. The antiproliferative effect of the targeted PEG-liposomes was determined and compared with the results of non-targeted PEG-liposomes and free hypericin. Additionally, the intracellular accumulation assay was performed. All manipulations were done on HeLa cells. To interpret the results, the data were supplemented by findings concerning embedding stability. Targeting hypericin by transferrin-conjugated PEG-liposomes did not significantly favour the photocytotoxicity and the intracellular accumulation of hypericin, in comparison with non-targeted PEG-liposomes or free hypericin. Embedding stability experiments showed only limited stable embedding. Despite of their proven efficiency as a targeting carrier system, transferrin-conjugated PEG-liposomes seem less effective in targeting hypericin to tumor cells due to the amount of hypericin leaking out of the PEG-liposomes.

  18. Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka

    2016-02-15

    Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that localmore » mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.« less

  19. Steric and electrostatic surface forces on sulfonated PEG graft surfaces with selective albumin adsorption.

    PubMed

    Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J

    2013-06-01

    Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. 21 CFR 520.1445 - Milbemycin oxime tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Milbemycin oxime tablets. 520.1445 Section 520... tablets. (a) Specifications—(1) Dogs. Each tablet contains 2.3, 5.75, 11.5, or 23.0 milligrams of milbemycin oxime. (2) Cats. Each tablet contains 5.75, 11.5, or 23.0 milligrams of milbemycin oxime. (b...

  1. Improving Powder Tableting Performance through Materials Engineering

    NASA Astrophysics Data System (ADS)

    Osei-Yeboah, Frederick

    Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight

  2. Suppression of tunneling two-level systems in ultrastable glasses of indomethacin.

    PubMed

    Pérez-Castañeda, Tomás; Rodríguez-Tinoco, Cristian; Rodríguez-Viejo, Javier; Ramos, Miguel A

    2014-08-05

    Glasses and other noncrystalline solids exhibit thermal and acoustic properties at low temperatures anomalously different from those found in crystalline solids, and with a remarkable degree of universality. Below a few kelvin, these universal properties have been successfully interpreted using the tunneling model, which has enjoyed (almost) unanimous recognition for decades. Here we present low-temperature specific-heat measurements of ultrastable glasses of indomethacin that clearly show the disappearance of the ubiquitous linear contribution traditionally ascribed to the existence of tunneling two-level systems (TLS). When the ultrastable thin-film sample is thermally converted into a conventional glass, the material recovers a typical amount of TLS. This remarkable suppression of the TLS found in ultrastable glasses of indomethacin is argued to be due to their particular anisotropic and layered character, which strongly influences the dynamical network and may hinder isotropic interactions among low-energy defects, rather than to the thermodynamic stabilization itself. This explanation may lend support to the criticisms by Leggett and others [Yu CC, Leggett AJ (1988) Comments Condens Matter Phys 14(4):231-251; Leggett AJ, Vural DC (2013) J Phys Chem B 117(42):12966-12971] to the standard tunneling model, although more experiments in different kinds of ultrastable glasses are needed to ascertain this hypothesis.

  3. 21 CFR 520.1310 - Marbofloxacin tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Marbofloxacin tablets. 520.1310 Section 520.1310... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1310 Marbofloxacin tablets. (a) Specifications. Each tablet contains 25, 50, 100, or 200 milligrams (mg) marbofloxacin. (b...

  4. 21 CFR 520.2330 - Sulfisoxazole tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfisoxazole tablets. 520.2330 Section 520.2330... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2330 Sulfisoxazole tablets. (a) Specifications. Each tablet contains 260 milligrams (4 grains) of sulfisoxazole. (b) Sponsor. See...

  5. Analysis of PEG oligomers in black gel inks: Discrimination and ink dating.

    PubMed

    Sun, Qiran; Luo, Yiwen; Xiang, Ping; Yang, Xu; Shen, Min

    2017-08-01

    Carbon-based black gel inks are common samples in forensic practice of questioned document examination in China, but there are few analytical methods for this type of ink. In this study, a liquid chromatography-.high resolution mass spectrometry (LC-HRMS) method was established for the analysis of PEG oligomers in carbon-based black gel ink entries. The coupled instruments achieve both the identification and quantification of PEG oligomers in ink entries with reproducible results. Twenty carbon-based black gel inks, whose Raman spectra appeared identical, were analyzed using the LC-HRMS method. As a result, the twenty gel inks were classified into four groups according to the distribution of PEG oligomers. Artificially aging of PEG 400 and a gel ink showed that as PEG degraded, the relative amounts of low molecular weight PEG oligomers increased, while those of high molecular weight decreased. The degradation of PEG oligomers in a naturally aged gel ink was consistent with those in the artificially aged samples, but occurred more slowly. This study not only provided a new method for discriminating carbon-based black gel ink entries, but also offered a new approach for studying the relative ink dating of carbon-based black gel ink entries. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE PAGES

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.; ...

    2017-12-06

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  7. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  8. Synthesis and characterization of PEG-P(MAA-SS-VCL) nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, L. L.; Yang, K.; Mu, R. H.; Zhang, N.; Su, L.

    2016-07-01

    The PEG-P(MAA-SS-VCL) nanoparticles were obtained using disulfide containing dimethacrylate (SS) as cross-linking agent, using polyethylene glycol methyl acrylate (PEGMA), N-Vinyl-ε-caprolactam (VCL), and methacrylic acid (MAA) as monomers via homogeneous polymerization in aqueous. The PEG-P(MAA-SS-VCL) nanoparticles were characterized by FT-IR and TGA. The particle size and morphology variation in different environments were detected by dynamic light scattering (DLS) and scanning electron microscopy (SEM). It is the very method that PEG-P(MAA-SS-VCL) nanoparticles can be obtained in this study.

  9. 21 CFR 520.370 - Cefpodoxime tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cefpodoxime tablets. 520.370 Section 520.370 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a) Specifications. Each tablet contains cefpodoxime proxetil equivalent to 100 or 200 milligrams (mg) cefpodoxime...

  10. 21 CFR 520.1380 - Methocarbamol tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methocarbamol tablets. 520.1380 Section 520.1380... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1380 Methocarbamol tablets. (a) Chemical name. 3-(O-Methoxyphenoxy)-1,2-propanediol 1-carbamate. (b) Specifications. Each tablet...

  11. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.

    PubMed

    Kottala, Niranjan; Abebe, Admassu; Sprockel, Omar; Bergum, James; Nikfar, Faranak; Cuitiño, Alberto M

    2012-12-01

    Ambient air humidity and temperature are known to influence the mechanical strength of tablets. The objective of this work is to understand the influence of processing parameters and environmental conditions (humidity and temperature) on the strength of bilayer tablets. As part of this study, bilayer tablets were compressed with different layer ratios, dwell times, layer sequences, material properties (plastic and brittle), first and second layer forces, and lubricant concentrations. Compressed tablets were stored in stability chambers controlled at predetermined conditions (40C/45%RH, 40C/75%RH) for 1, 3, and 5 days. The axial strength of the stored tablets was measured and a statistical model was developed to determine the effects of the aforementioned factors on the strength of bilayer tablets. As part of this endeavor, a full 3 × 2(4) factorial design was executed. Responses of the experiments were analyzed using PROC GLM of SAS (SAS Institute Inc, Cary, North Carolina, USA). A model was fit using all the responses to determine the significant interactions (p < 0.05). Results of this study indicated that storage conditions and storage time have significant impact on the strength of bilayer tablets. For Avicel-lactose and lactose-Avicel tablets, tablet strength decreased with the increasing humidity and storage time. But for lactose-lactose tablets, due to the formation of solid bridges upon storage, an increase in tablet strength was observed. Significant interactions were observed between processing parameters and storage conditions on the strength of bilayer tablets.

  12. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.

  13. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol-1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  14. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    PubMed Central

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-01-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol−1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability. PMID:27580677

  15. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  16. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    PubMed

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  18. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    PubMed

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  19. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing

    PubMed Central

    Sjöström, Hans-Erik; Englund, Claire

    2016-01-01

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990

  20. Relationships between response surfaces for tablet characteristics of placebo and API-containing tablets manufactured by direct compression method.

    PubMed

    Hayashi, Yoshihiro; Tsuji, Takahiro; Shirotori, Kaede; Oishi, Takuya; Kosugi, Atsushi; Kumada, Shungo; Hirai, Daijiro; Takayama, Kozo; Onuki, Yoshinori

    2017-10-30

    In this study, we evaluated the correlation between the response surfaces for the tablet characteristics of placebo and active pharmaceutical ingredient (API)-containing tablets. The quantities of lactose, cornstarch, and microcrystalline cellulose were chosen as the formulation factors. Ten tablet formulations were prepared. The tensile strength (TS) and disintegration time (DT) of tablets were measured as tablet characteristics. The response surfaces for TS and DT were estimated using a nonlinear response surface method incorporating multivariate spline interpolation, and were then compared with those of placebo tablets. A correlation was clearly observed for TS and DT of all APIs, although the value of the response surfaces for TS and DT was highly dependent on the type of API used. Based on this knowledge, the response surfaces for TS and DT of API-containing tablets were predicted from only two and four formulations using regression expression and placebo tablet data, respectively. The results from the evaluation of prediction accuracy showed that this method accurately predicted TS and DT, suggesting that it could construct a reliable response surface for TS and DT with a small number of samples. This technique assists in the effective estimation of the relationships between design variables and pharmaceutical responses during pharmaceutical development. Copyright © 2017 Elsevier B.V. All rights reserved.