Sample records for tabun-induced acute neurotoxicity

  1. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods.

    PubMed

    Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin

    2006-10-01

    The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.

  2. Comparison of Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to the Nerve Agents Cyclosarin and Tabun in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Comparison of extracellular striatal acetylcholine and brain seizure activity following...lethality; nerve agents; organophosphorus compounds; seizure activity ; tabun 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs John C

  3. Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub-acute neurotoxicity of orally administered propionic acid.

    PubMed

    Al-Salem, Huda S; Bhat, Ramesa Shafi; Al-Ayadhi, Laila; El-Ansary, Afaf

    2016-04-23

    It is now well documented that postnatal exposure to certain chemicals has been reported to increase the risk of autism spectrum disorder. Propionic acid (PA), as a metabolic product of gut microbiotaandas a commonly used food additive, has been reported to mediate the effects of autism. Results from animal studies may help to identify environmental neurotoxic agents and drugs that can ameliorate neurotoxicity and may thereby aid in the treatment of autism. The present study investigated the ameliorative effects of natural bee pollen against acute and sub-acute brain intoxication induced by (PA) in rats. Twenty-four young male Western Albino ratswere enrolled in the present study. They were classified into four equal groups, eachwith6 rats. The control group received only phosphate buffered saline; the oral buffered PA-treated groups (II and III) received a neurotoxic dose of 750 mg/kg body weight divided in 3 dose of 250 mg/kg body weight/day serving asthe acute group and 750 mg/kg body weight divided in 10 equal dose of 75 mg/kg body weight/day as the sub-acute group. The fourth group received 50 mg bee pollen for 30 days after PA-acute intoxication. The obtained data showed that the PA-treated groups demonstrated multiple signs of brain toxicity, as indicated by a depletion of serotonin (5HT), dopamine and nor-adrenaline, together withan increase in IFN-γ and caspase 3. Bee pollen was effective in ameliorating the neurotoxic effect of PA. All measured parameters demonstrated minimal alteration in comparison with thecontrol animal than did those of acute and sub-acute PA-treated animals. In conclusion, bee pollen demonstrates anti-inflammatory and anti-apoptotic effects while ameliorating the impaired neurochemistry of PA-intoxicated rats.

  4. Comparison of extracellular striatal acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs.

    PubMed

    O'Donnell, John C; Acon-Chen, Cindy; McDonough, John H; Shih, Tsung-Ming

    2010-11-01

    Organophosphorus nerve agents like cyclosarin and tabun are potent cholinesterase inhibitors. The inhibition of acetylcholinesterase, which is responsible for breaking down acetylcholine (ACh) at the synapse and neuromuscular junction, leads to a build-up of extracellular ACh and a series of toxic consequences including hypersecretion, tremor, convulsion/seizure, respiratory distress, coma, and death. This study employed simultaneous and continuous electroencephalographic recording and striatal microdialysis collection for quantification of ACh changes (via subsequent HPLC analysis) during acute exposure to a 1.0 × LD(50) subcutaneous dose of either cyclosarin or tabun to investigate differences in cholinergic and behavioral effects. Information about the unique mechanisms and consequences of different nerve agents is intended to aid in the development of broad-spectrum medical countermeasures for nerve agents. At the dose administered, non-seizure and sustained seizure responses were observed in both agent groups and in the tabun-exposed group some subjects experienced an unsustained seizure response. Significant extracellular ACh increases were only observed in seizure groups. Cyclosarin and tabun were found to exhibit some unique cholinergic and ictogenic characteristics. Lethality only occurred in subjects experiencing sustained seizure, and there was no difference in lethality between agent groups that progressed to sustained seizure.

  5. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  6. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp; Goto, Yasuaki; Kato, Masaru

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons frommore » glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.« less

  7. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways

    PubMed Central

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B1 (FB1) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB1 induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354

  8. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    PubMed Central

    2010-01-01

    Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable

  9. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury.

    PubMed

    Mahadeo, Kris M; Dhall, Girish; Panigrahy, Ashok; Lastra, Carlos; Ettinger, Lawrence J

    2010-02-01

    From as early as the 1970s methotrexate has been associated with disseminated necrotizing leukoencephalopathy and other neurotoxic sequelae. Yet, a clear mechanism for methotrexate-induced neurotoxicity has not been established. The authors describe the case of a 12-year-old male with acute lymphoblastic leukemia and a homozygous methylenetetrahydrofolate reductase C677T mutation, who developed subacute methotrexate-induced toxicity and cerebral venous thrombosis after receiving intrathecal methotrexate. The role of homocysteine as a possible mediator in methotrexate-induced neurotoxicity via direct endothelial injury is discussed.

  10. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    PubMed

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  11. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice

    PubMed Central

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E

    2010-01-01

    Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297

  12. Bilirubin-Induced Neurotoxicity in the Preterm Neonate.

    PubMed

    Watchko, Jon F

    2016-06-01

    Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    PubMed

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  14. Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies.

    PubMed

    Bosnjak, Zeljko J; Logan, Sarah; Liu, Yanan; Bai, Xiaowen

    2016-11-01

    Mounting evidence has demonstrated that general anesthetics could induce developmental neurotoxicity, including acute widespread neuronal cell death, followed by long-term memory and learning abnormalities. Propofol is a commonly used intravenous anesthetic agent for the induction and maintenance of anesthesia and procedural and critical care sedation in children. Compared with other anesthetic drugs, little information is available on its potential contributions to neurotoxicity. Growing evidence from multiple experimental models showed a similar neurotoxic effect of propofol as observed in other anesthetic drugs, raising serious concerns regarding pediatric propofol anesthesia. The aim of this review is to summarize the current findings of propofol-induced developmental neurotoxicity. We first present the evidence of neurotoxicity from animal models, animal cell culture, and human stem cell-derived neuron culture studies. We then discuss the mechanism of propofol-induced developmental neurotoxicity, such as increased cell death in neurons and oligodendrocytes, dysregulation of neurogenesis, abnormal dendritic development, and decreases in neurotrophic factor expression. Recent findings of complex mechanisms of propofol action, including alterations in microRNAs and mitochondrial fission, are discussed as well. An understanding of the toxic effect of propofol and the underlying mechanisms may help to develop effective novel protective or therapeutic strategies for avoiding the neurotoxicity in the developing human brain.

  15. Reversible metronidazole-induced neurotoxicity after 10 weeks of therapy.

    PubMed

    AlDhaleei, Wafa; AlMarzooqi, Ayesha; Gaber, Nouran

    2018-04-20

    Metronidazole is a commonly used antimicrobial worldwide. The most common side effects that have been reported are nausea, vomiting and hypersensitivity reactions. However, neurotoxicity has been reported with the use of metronidazole but rather rare. The most common neurological manifestation is peripheral neuropathy involvement in the form of sensory loss. It is worth mentioning that central neurotoxicity is a rare side effect of metronidazole use but reversible. The manifestations vary from a headache, altered mental status to focal neurological deficits. The diagnosis is mainly by neuroimaging in the setting of acute neurological change in the patient status. Here, we report a case of metronidazole-induced neurotoxicity in a 38-year-old male patient who was admitted with a brain abscess and was started on metronidazole for more than 10 weeks. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.

    2008-03-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less

  17. Platinum-Induced Neurotoxicity and Preventive Strategies: Past, Present, and Future

    PubMed Central

    Avan, Abolfazl; Postma, Tjeerd J.; Ceresa, Cecilia; Avan, Amir; Cavaletti, Guido; Giovannetti, Elisa

    2015-01-01

    Neurotoxicity is a burdensome side effect of platinum-based chemotherapy that prevents administration of the full efficacious dosage and often leads to treatment withdrawal. Peripheral sensory neurotoxicity varies from paresthesia in fingers to ataxic gait, which might be transient or irreversible. Because the number of patients being treated with these neurotoxic agents is still increasing, the need for understanding the pathogenesis of this dramatic side effect is critical. Platinum derivatives, such as cisplatin and carboplatin, harm mainly peripheral nerves and dorsal root ganglia neurons, possibly because of progressive DNA-adduct accumulation and inhibition of DNA repair pathways (e.g., extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase/stress-activated protein kinase, and p38 mitogen-activated protein kinass), which finally mediate apoptosis. Oxaliplatin, with a completely different pharmacokinetic profile, may also alter calcium-sensitive voltage-gated sodium channel kinetics through a calcium ion immobilization by oxalate residue as a calcium chelator and cause acute neurotoxicity. Polymorphisms in several genes, such as voltage-gated sodium channel genes or genes affecting the activity of pivotal metal transporters (e.g., organic cation transporters, organic cation/carnitine transporters, and some metal transporters, such as the copper transporters, and multidrug resistance-associated proteins), can also influence drug neurotoxicity and treatment response. However, most pharmacogenetics studies need to be elucidated by robust evidence. There are supportive reports about the effectiveness of several neuroprotective agents (e.g., vitamin E, glutathione, amifostine, xaliproden, and venlafaxine), but dose adjustment and/or drug withdrawal seem to be the most frequently used methods in the management of platinum-induced peripheral neurotoxicity. To develop alternative options in the treatment of platinum-induced neuropathy, studies on in vitro

  18. MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity

    PubMed Central

    Twaroski, Danielle; Bosnjak, Zeljko J.; Bai, Xiaowen

    2015-01-01

    Growing evidence demonstrates that prolonged exposure to general anesthetics during brain development induces widespread neuronal cell death followed by long-term memory and learning disabilities in animal models. These studies have raised serious concerns about the safety of anesthetic use in pregnant women and young children. However, the underlying mechanisms of anesthetic-induced neurotoxicity are complex and are not well understood. MicroRNAs are endogenous, small, non-coding RNAs that have been implicated to play important roles in many different disease processes by negatively regulating target gene expression. A possible role for microRNAs in anesthetic-induced developmental neurotoxicity has recently been identified, suggesting that microRNA-based signaling might be a novel target for preventing the neurotoxicity. Here we provide an overview of anesthetic-induced developmental neurotoxicity and focus on the role of microRNAs in the neurotoxicity observed in both human stem cell-derived neuron and animal models. Aberrant expression of some microRNAs has been shown to be involved in anesthetic-induced developmental neurotoxicity, revealing the potential of microRNAs as therapeutic or preventive targets against the toxicity. PMID:26146587

  19. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  20. Local Anesthetic-Induced Neurotoxicity.

    PubMed

    Verlinde, Mark; Hollmann, Markus W; Stevens, Markus F; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-03-04

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.

  1. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin

    PubMed Central

    Satomi, Machiko; Asama, Toshiyuki; Ebisawa, Yoshiaki; Chisato, Naoyuki; Suno, Manabu; Karasaki, Hidenori; Furukawa, Hiroyuki; Matsubara, Kazuo

    2010-01-01

    Calcium and magnesium replacement is effective in reducing oxaliplatin-induced neurotoxicity. However, cetuximab treatment has been associated with severe hypomagnesaemia. Therefore, we retrospectively investigated whether cetuximab-induced hypomagnesaemia exacerbated oxaliplatin-induced neurotoxicity. Six patients with metastatic colorectal cancer who were previously treated with oxaliplatin-fluorouracil combination therapy were administered cetuximab in combination with irinotecan alone or irinotecan and fluorouracil as a second-line treatment. All patients had normal magnesium levels before receiving cetuximab. The Common Terminology Criteria for Adverse Events version 3.0 was used to evaluate the grade of neurotoxicity, hypomagnesaemia, hypocalcaemia, and hypokalemia every week. All six patients had grade 1 or higher hypomagnesaemia after starting cetuximab therapy. The serum calcium and potassium levels were within the normal range at the onset of hypomagnesaemia. Oxaliplatin-induced neurotoxicity occurred in all patients at the beginning of cetuximab therapy, with grade 1 neurotoxicity in five patients and grade 2 in one patient. After cetuximab administration, the neurotoxicity worsened in all six patients, and three progressed to grade 3. Among the three patients with grade 3 neurotoxicity, two required a dose reduction and one had to discontinue cetuximab therapy. A discontinuation or dose reduction in cetuximab therapy was associated with exacerbated oxaliplatin-induced neurotoxicity due to cetuximab-induced hypomagnesaemia in half of patients who had previously received oxaliplatin. Therefore, when administering cetuximab after oxaliplatin therapy, we suggest serially evaluating serum magnesium levels and neurotoxicity. PMID:22811813

  2. Comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplovitz, I.; Stewart, J.R.

    1994-12-31

    This study compared the efficacy of H16 and 2-PAM against nerve agent (soman tabun sarin and VX) -induced lethality in the atropinesterase-free rabbits pretreated with vehicle (controls) or pyridostigmine. Treatment was administered at signs or 2 min after agent challenge and consisted ofoxime (l00umol/lkg) + atropine 13 mg(kg) (alone or together with diazepam). Twenty-four-h LD50 values were calculated for soman- and tabun-intoxicated animals, whereas 24-h survival was noted in animals given 10 LD50s of sarin or VX. In pyridostigmine and control rabbits intoxicated with soman and treated with oxime + atropine (alone or together with diazepam), HI6 was 35 timesmore » more effective than 2-PAM. In contrast 1116 was less effective than 2-PAM against tabun poisoning. In pyridostigmine-pretreated animals exposed to tabun, efficacy was increased more than 3-fold when compare to tabun-challenged animals treated with atropine + H16 alone. Both oximes were highly effective against satin and VX. These findings suggest that Hifi could replace 2-PAM as therapy for nerve agent poisoning because it is superior to 2-PAM against soman, and when used in pyridostigmine-pretreated animals it affords excellent protection against all four nerve agents when used in combination with atropine (alone or together with diazepam) therapy.« less

  3. Influence of WIN 55,212-2 on the anticonvulsant and acute neurotoxic potential of clobazam and lacosamide in the maximal electroshock-induced seizure model and chimney test in mice.

    PubMed

    Florek-Luszczki, Magdalena; Zagaja, Miroslaw; Luszczki, Jarogniew J

    2014-12-01

    The influence of WIN 55,212-2 mesylate (WIN) on the anticonvulsant activity and acute neurotoxic potential of clobazam (CLB) and lacosamide (LCM) was studied in the maximal electroshock-induced seizure (MES) model and chimney test in mice. indicate that WIN administered intraperitoneally, at doses of 2.5 and 5 mg/kg significantly enhanced the anticonvulsant action of CLB in the MES test by reducing its median effective dose (ED50) from 20.80 mg/kg to 12.05 mg/kg (P<0.05), and 8.22 mg/kg (P<0.001), respectively. In contrast, WIN (1.25 mg/kg) did not significantly potentiate the anticonvulsant activity of CLB against MES-induced seizures. Similarly, WIN at doses of 1.25, 2.5 and 5 mg/kg had no significant impact on the anticonvulsant action of LCM in the MES test. On the other hand, WIN (5 mg/kg) had no impact on the acute neurotoxic effects of CLB and LCM in the chimney test and the median toxic doses (TD50) for CLB and LCM were almost unchanged. Thus, WIN (5 mg/kg) elevated the protective index values for CLB (from 1.41 to 3.07) and LCM (from 3.60 to 4.91). In conclusion, WIN potentiates suppression of tonic-clonic seizures produced by CLB in the mouse MES model, without affecting acute neurotoxic adverse effects of CLB in the chimney test in mice, which is favorable from a preclinical point of view. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Manganese-induced Neurotoxicity: From C. elegans to Humans

    PubMed Central

    Chen, Pan; Chakraborty, Sudipta; Peres, Tanara V.; Bowman, Aaron B.; Aschner, Michael

    2014-01-01

    Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity. PMID:25893090

  5. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    PubMed

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  6. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    PubMed

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A comparison of reactivating and therapeutic efficacy of bispyridinium acetylcholinesterase reactivator KR-22934 with the oxime K203 and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Musilek, Kamil; Kuca, Kamil; Bajgar, Jiri; Jung, Young-Sik

    2011-03-01

    The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).

  8. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    PubMed

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  9. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    PubMed

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  10. Cumulative Genetic Risk Predicts Platinum/Taxane-Induced Neurotoxicity

    PubMed Central

    McWhinney-Glass, Sarah; Winham, Stacey J.; Hertz, Daniel L.; Revollo, Jane Yen; Paul, Jim; He, Yijing; Brown, Robert; Motsinger-Reif, Alison A.; McLeod, Howard L.

    2013-01-01

    Purpose The combination of a platinum and taxane are standard of care for many cancers, but the utility is often limited due to debilitating neurotoxicity. We examined whether single nucleotide polymorphisms (SNPs) from annotated candidate genes will identify genetic risk for chemotherapy-induced neurotoxicity. Patients and Methods A candidate-gene association study was conducted to validate the relevance of 1261 SNPs within 60 candidate genes in 404 ovarian cancer patients receiving platinum/taxane chemotherapy on the SCOTROC1 trial. Statistically significant variants were then assessed for replication in a separate 404 patient replication cohort from SCOTROC1. Results Significant associations with chemotherapy-induced neurotoxicity were identified and replicated for four SNPs in SOX10, BCL2, OPRM1, and TRPV1. The Population Attributable Risk for each of the four SNPs ranged from 5–35%, with a cumulative risk of 62%. According to the multiplicative model, the odds of developing neurotoxicity increase by a factor of 1.64 for every risk genotype. Patients possessing 3 risk variants have an estimated odds ratio of 4.49 (2.36–8.54) compared to individuals with 0 risk variants. Neither the four SNPs nor the risk score were associated with progression free survival or overall survival. Conclusions This study demonstrates that SNPs in four genes have a significant cumulative association with increased risk for the development of chemotherapy-induced neurotoxicity, independent of patient survival. PMID:23963862

  11. Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity.

    PubMed

    Miner, Nicholas B; Elmore, Josh S; Baumann, Michael H; Phillips, Tamara J; Janowsky, Aaron

    2017-12-01

    Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2h apart, of MA (2.5, 5, or 10mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects. Published by Elsevier B.V.

  12. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

    PubMed

    Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu

    2003-07-01

    Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.

  13. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    PubMed

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  14. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  15. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2015-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061

  16. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain.

    PubMed

    Hosamani, Ravikumar; Krishna, Gokul; Muralidhara

    2016-12-01

    Bacopa monnieri (BM), an ayurvedic medicinal plant, has attracted considerable interest owing to its diverse neuropharmacological properties. Epidemiological studies have shown significant correlation between paraquat (PQ) exposure and increased risk for Parkinson's disease in humans. In this study, we examined the propensity of standardized extract of BM to attenuate acute PQ-induced oxidative stress, mitochondrial dysfunctions, and neurotoxicity in the different brain regions of prepubertal mice. To test this hypothesis, prepubertal mice provided orally with standardized BM extract (200 mg/kg body weight/day for 4 weeks) were challenged with an acute dose (15 mg/kg body weight, intraperitoneally) of PQ after 3 hours of last dose of extract. Mice were sacrificed after 48 hours of PQ injection, and different brain regions were isolated and subjected to biochemical determinations/quantification of central monoamine (dopamine, DA) levels (by high-performance liquid chromatography). Oral supplementation of BM for 4 weeks resulted in significant reduction in the basal levels of oxidative markers such as reactive oxygen species (ROS), malondialdehyde (MDA), and hydroperoxides (HP) in various brain regions. PQ at the administered dose elicited marked oxidative stress within 48 hours in various brain regions of mice. However, BM prophylaxis significantly improved oxidative homeostasis by restoring PQ-induced ROS, MDA, and HP levels and also by attenuating mitochondrial dysfunction. Interestingly, BM supplementation restored the activities of cholinergic enzymes along with the restoration of striatal DA levels among the PQ-treated mice. Based on these findings, we infer that BM prophylaxis renders the brain resistant to PQ-mediated oxidative perturbations and thus may be better exploited as a preventive approach to protect against oxidative-mediated neuronal dysfunctions.

  17. Tabun scavengers based on hydroxamic acid containing cyclodextrins.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Bierwisch, Anne; Koller, Marianne; Reiter, Georg; Worek, Franz; Kubik, Stefan

    2013-04-28

    Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.

  18. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    PubMed

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Repin-induced neurotoxicity in rodents.

    PubMed

    Robles, M; Choi, B H; Han, B; Santa Cruz, K; Kim, R C

    1998-07-01

    Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an alpha-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD

  20. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

    PubMed Central

    Farina, Marcelo; Rocha, João B. T.; Aschner, Michael

    2011-01-01

    Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle. PMID:21683713

  1. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.

    PubMed

    Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András

    2017-01-01

    Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.

  2. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    ERIC Educational Resources Information Center

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  3. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-05-01

    The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.

  4. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  5. The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.

    PubMed

    Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang

    2016-01-01

    HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.

  6. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    PubMed

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  7. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine.

    PubMed

    Bence, Aimee K; Worthen, David R; Stables, James P; Crooks, Peter A

    2003-02-01

    Agmatine, an endogenous cationic amine, exerts a wide range of biological effects, including modulation of glutamate-activated N-methyl-D-aspartate (NMDA) receptor function in the central nervous system (CNS). Since glutamate and the NMDA receptor have been implicated in the initiation and spread of seizure activity, the capacity of agmatine to inhibit seizure spread was evaluated in vivo. Orally administered agmatine (30 mg/kg) protected against maximal electroshock seizure (MES)-induced seizure spread in rats as rapidly as 15 min and for as long as 6 h after administration. Inhibition of MES-induced seizure spread was also observed when agmatine was administered intraperitoneally. Agmatine's antiseizure activity did not appear to be dose-dependent. An in vivo neurotoxicity screen indicated that agmatine was devoid of any acute neurological toxicity at the doses tested. These preliminary data suggest that agmatine has promising anticonvulsant activity.

  8. Mechanistic Insights into Neurotoxicity Induced by Anesthetics in the Developing Brain

    PubMed Central

    Lei, Xi; Guo, Qihao; Zhang, Jun

    2012-01-01

    Compelling evidence has shown that exposure to anesthetics used in the clinic can cause neurodegeneration in the mammalian developing brain, but the basis of this is not clear. Neurotoxicity induced by exposure to anesthestics in early life involves neuroapoptosis and impairment of neurodevelopmental processes such as neurogenesis, synaptogenesis and immature glial development. These effects may subsequently contribute to behavior abnormalities in later life. In this paper, we reviewed the possible mechanisms of anesthetic-induced neurotoxicity based on new in vitro and in vivo findings. Also, we discussed ways to protect against anesthetic-induced neurotoxicity and their implications for exploring cellular and molecular mechanisms of neuroprotection. These findings help in improving our understanding of developmental neurotoxicology and in avoiding adverse neurological outcomes in anesthesia practice. PMID:22837663

  9. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity

    PubMed Central

    Case, A. J.; Agraz, D.; Ahmad, I. M.; Zimmerman, M. C.

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity. PMID:26770655

  10. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity.

    PubMed

    Case, A J; Agraz, D; Ahmad, I M; Zimmerman, M C

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.

  11. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  12. σ Receptor antagonist attenuation of methamphetamine-induced neurotoxicity is correlated to body temperature modulation.

    PubMed

    Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R

    2013-01-01

    Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.

  13. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus.

    PubMed

    Wang, Xinli; Cai, Jiali; Zhang, Jiliang; Wang, Chonggang; Yu, Ang; Chen, Yixin; Zuo, Zhenghong

    2008-10-20

    Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.

  14. Oxygen-Inducible Glutamate Oxaloacetate Transaminase as Protective Switch Transforming Neurotoxic Glutamate to Metabolic Fuel During Acute Ischemic Stroke

    PubMed Central

    Rink, Cameron; Gnyawali, Surya; Peterson, Laura

    2011-01-01

    Abstract This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275–1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O2 inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site. In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration. Antioxid. Redox Signal. 14, 1777–1785. PMID:21361730

  15. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brainmore » growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive

  16. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    PubMed

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  17. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-02

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish

  18. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

    PubMed

    Castelli, M Paola; Madeddu, Camilla; Casti, Alberto; Casu, Angelo; Casti, Paola; Scherma, Maria; Fattore, Liana; Fadda, Paola; Ennas, M Grazia

    2014-01-01

    Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our

  19. Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon

    EPA Science Inventory

    Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, a...

  20. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway.

    PubMed

    Wen, Di; An, Meiling; Gou, Hongyan; Liu, Xia; Liu, Li; Ma, Chunling; Cong, Bin

    2016-12-01

    As a powerful addictive psychostimulant drug, coupled with its neurotoxicity, methamphetamine (METH) abuse may lead to long-lasting abnormalities in brain structure and function. We found that pretreatment of cholecystokinin-8 (CCK-8) inhibited METH-induced brain cellular dopaminergic (DA) damage in the striatum and substantia nigra, and related behavioural deficits and hyperthermia. However, the mechanism of CCK-8 action on METH-induced toxicity is not clear. The aim of this study was to explore whether the possible protective effect of CCK-8 on METH-induced neurotoxicity involved anti-oxidative stress mechanisms. The subtypes of CCK receptors mediating the regulatory action of CCK-8 were also investigated. The present results revealed that CCK-8 dose-dependently inhibited METH-induced cytotoxic effect by activating the CCK2 receptor subtype in PC12 cells and CCK2 receptor stable transfected-HEK293 cells. Pre-treatment of CCK-8 before METH stimulation significantly attenuated the generation of reactive oxygen species and NADPH oxidase activation in PC12 cells. In conclusion, our study demonstrated a protective effect of CCK-8 on METH-induced neurotoxicity in vitro and suggested that a possible mechanism of this action was dependent on the activation of the CCK2 receptor to reduce the neurotoxicity and oxidative stress induced by METH stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    PubMed

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  2. Functional neuroimaging of amphetamine-induced striatal neurotoxicity in the pleiotrophin knockout mouse model.

    PubMed

    Soto-Montenegro, María Luisa; Vicente-Rodríguez, Marta; Pérez-García, Carmen; Gramage, Esther; Desco, Manuel; Herradón, Gonzalo

    2015-03-30

    Amphetamine-induced neurotoxic effects have traditionally been studied using immunohistochemistry and other post-mortem techniques, which have proven invaluable for the definition of amphetamine-induced dopaminergic damage in the nigrostriatal pathway. However, these approaches are limited in that they require large numbers of animals and do not provide the temporal data that can be collected in longitudinal studies using functional neuroimaging techniques. Unfortunately, functional imaging studies in rodent models of drug-induced neurotoxicity are lacking. The aim of this study was to evaluate in vivo the changes in brain glucose metabolism caused by amphetamine in the pleiotrophin knockout mouse (PTN-/-), a genetic model with increased vulnerability to amphetamine-induced neurotoxic effects. We showed that administration of amphetamine causes a significantly greater loss of striatal tyrosine hydroxylase content in PTN-/- mice than in wild-type (WT) mice. In addition, [(18)F]-FDG-PET shows that amphetamine produces a significant decrease in glucose metabolism in the striatum and prefrontal cortex in the PTN-/- mice, compared to WT mice. These findings suggest that [(18)F]-FDG uptake measured by PET is useful for detecting amphetamine-induced changes in glucose metabolism in vivo in specific brain areas, including the striatum, a key feature of amphetamine-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies.

    PubMed

    Zanghi, Christine N; Jevtovic-Todorovic, Vesna

    The year 2016 marked the 15th anniversary since anesthesia-induced developmental neurotoxicity and its resulting cognitive dysfunction were first described. Since that time, multiple scientific studies have supported these original findings and investigated possible mechanisms behind anesthesia-induced neurotoxicity. This paper reviews the existing mechanistic literature on anesthesia-induced neurotoxicity in the context of a holistic approach that emphasizes the importance of both neuronal and non-neuronal cells during early postnatal development. Sections are divided into key stages in early neural development; apoptosis, neurogenesis, migration, differentiation, synaptogenesis, gliogenesis, myelination and blood brain barrier/cerebrovasculature. In addition, the authors combine the established literature in the field of anesthesia-induced neurotoxicity with literature from other related scientific fields to speculate on the potential role of non-neuronal cells and to generate new future hypotheses for understanding anesthetic toxicity and its application to the practice of pediatric anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Emerging Neurotoxic Mechanisms in Environmental Factors-Induced Neurodegeneration

    PubMed Central

    Kanthasamy, Anumantha; Jin, Huajun; Anantharam, Vellareddy; Sondarva, Gautam; Rangasamy, Velusamy; Rana, Ajay; Kanthasamy, Arthi

    2012-01-01

    Exposure to environmental neurotoxic metals, pesticides and other chemicals is increasingly recognized as a key risk factor in the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. Oxidative stress and apoptosis have been actively investigated as neurotoxic mechanisms over the past two decades, resulting in a greater understanding of neurotoxic processes. Nevertheless, emerging evidence indicates that epigenetic changes, protein aggregation and autophagy are important cellular and molecular correlates of neurodegenerative diseases resulting from chronic neurotoxic chemical exposure. During the Joint Conference of the 13th International Neurotoxicology Association and the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, the recent progress made toward understanding epigenetic mechanisms, protein aggregation, autophagy, and deregulated kinase activation following neurotoxic chemical exposure and the relevance to neurodegenerative conditions were one of the themes of the symposium. Dr. Anumantha G. Kanthasamy described the role of acetylation of histones and non-histone proteins in neurotoxicant-induced neurodegenerative processes in the nigral dopaminergic neuronal system. Dr. Arthi Kanthasamy illustrated the role of autophagy as a key determinant in cell death events during neurotoxic insults. Dr. Ajay Rana provided evidence for posttranslational modification of α-synuclein protein by the Mixed Linage Kinase (MLK) group of kinases to initiate protein aggregation in cell culture and animal models of Parkinson’s disease. These presentations outlined emerging cutting edge mechanisms that might set the stage for future mechanistic investigations into new frontiers of molecular neurotoxicology. This report summarizes the views of symposium participants, with emphasis on future directions for study of environmentally and occupationally linked chronic

  5. Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.

    PubMed

    An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing

    2014-05-01

    Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.

  6. Δ9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Castelli, M. Paola; Casu, Angelo; Casti, Paola; Scherma, Maria; Fattore, Liana; Fadda, Paola; Ennas, M. Grazia

    2014-01-01

    Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the

  7. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  8. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  9. AGE-DEPENDENT HEAPATIC AND PLASMA METABOLISM OF DELTAMETHRIN IN VITRO: ROLE IN ACUTE NEUROTOXICITY.

    EPA Science Inventory

    Deltamethrin (DLM) is a relatively potent and a widely used pyrethroid insecticide. Inefficient metabolism is proposed to be the reason for the greater sensitivity of immature rats to DLM acute neurotoxicity. The aim of this study was to test this hypothesis by characterizing the...

  10. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterationsmore » in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.« less

  11. Resveratrol Suppresses Rotenone-induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway.

    PubMed

    Wang, Hui; Dong, Xiaoguang; Liu, Zengxun; Zhu, Shaowei; Liu, Haili; Fan, Wenchuang; Hu, Yanlai; Hu, Tao; Yu, Yonghui; Li, Yizhao; Liu, Tianwei; Xie, Chengjia; Gao, Qing; Li, Guibao; Zhang, Jing; Ding, Zhaoxi; Sun, Jinhao

    2018-06-01

    Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect. However, the mechanism underlying the neuroprotective effect of resveratrol against rotenone-induced neurotoxicity remains elusive. Here, we treated PC12 cells with rotenone to induce neurotoxicity, and the neurotoxic cells were subjected to resveratrol treatment. The CCK8 and LDH activity assays demonstrated that resveratrol could suppress neurotoxicity induced by rotenone (P < 0.01). The DCFH-DA assay indicated that resveratrol reduced the production of reactive oxygen species (ROS). JC-1 and Hoechst 33342/PI staining revealed that resveratrol attenuated mitochondrial dysfunction and cell apoptosis. Moreover, resveratrol reversed rotenone-induced decrease in SIRT1 expression and Akt1 phosphorylation (P < 0.05). Furthermore, when the SIRT1 and Akt1 activity was inhibited by niacinamide and LY294002, respectively, the neuroprotective effect of resveratrol was remarkably attenuated, which implied that SIRT1 and Akt1 could mediate this process and may be potential molecular targets for intervening rotenone-induced neurotoxicity. In summary, our study demonstrated that resveratrol reduced rotenone-induced oxidative damage, which was partly mediated through activation of the SIRT1/Akt1 signaling pathway. Our study launched a promising avenue for the potential application of resveratrol as a neuroprotective therapeutic agent in Parkinson disease. Anat Rec, 301:1115-1125, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  13. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    PubMed

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    PubMed

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Neurotoxicity induced by methamphetamine-heroin combination in PC12 cells.

    PubMed

    Tian, Xiang; Ru, Qin; Xiong, Qi; Yue, Kai; Chen, Lin; Ma, Baomiao; Gan, Weimin; Si, Yuanren; Xiao, Huqiao; Li, Chaoying

    2017-04-24

    Simultaneous administration of psychostimulants and opioids is a major drug abuse problem worldwide. The combination of psychostimulants and opioids produces more serious effects than either drug alone and is responsible for numerous deaths. In recent years, owing to its increased use, methamphetamine (METH), a psychostimulant, has become a popular choice for use in combination with opioids, especially heroin. However, little is known about the neurotoxicity of METH/heroin combination. The aims of this study were to evaluate whether METH/heroin combination was more neurotoxic than either drug alone and analyze the possible neurotoxic mechanisms using rat pheochromocytoma (PC12) cells. Our data showed that METH/heroin combination exhibited a significant decrease in cell viability than either drug alone, and the coefficient of drug interaction (CDI) indicated that the combination appeared to produce synergistic effects. Further studies showed that METH/heroin combination induced apoptosis and decreased the mitochondrial potential significantly, compared to either drug alone. This was demonstrated by a significant decrease in the expression of Bcl-2 and an increase in expression of Bax, accompanied by increase in the activities of caspase-3 and caspase-9. These results suggest that the combination of METH and heroin is more neurotoxic than either drug alone, and it induces apoptosis via the mitochondrial apoptotic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Tseng, I-Ling; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property. PMID:23638060

  17. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells.

    PubMed

    Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang

    2015-10-01

    Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.

  18. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress

    PubMed Central

    Dai, Chongshan; Ciccotosto, Giuseppe D.; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-01-01

    Background: Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods: The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results: Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions: To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. PMID:28204513

  19. Vasospasm is a significant factor in cyclosporine-induced neurotoxicity: case report.

    PubMed

    Braakman, Hilde M H; Lodder, Jan; Postma, Alida A; Span, Lambert F R; Mess, Werner H

    2010-05-11

    The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial. We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved. This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.

  20. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity.

    PubMed

    Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J

    2015-12-01

    Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.

  1. Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.

    PubMed

    Hara, Hirokazu; Maeda, Asuka; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-01-01

    There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.

  2. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  3. GRIN2A polymorphisms and expression levels are associated with lead-induced neurotoxicity.

    PubMed

    Wu, Yu; Wang, Yiqing; Wang, Miaomiao; Sun, Na; Li, Chunping

    2017-04-01

    Lead acts as an antagonist of the N-methyl-d-aspartate receptor (NMDAR). GRIN2A encodes an important subunit of NMDARs and may be a critical factor in the mechanism of lead neurotoxicity. Changes in GRIN2A expression levels or gene variants may be mechanisms of lead-induced neurotoxicity. In this study, we hypothesized that GRIN2A might contribute to lead-induced neurotoxicity. A preliminary HEK293 cell experiment was performed to analyze the association between GRIN2A expression and lead exposure. In addition, in a population-based study, serum GRIN2A levels were measured in both lead-exposed and control populations. To detect further the influence of GRIN2A gene single nucleotide polymorphisms (SNPs) in lead-induced neurotoxicity, 3 tag SNPs (rs2650429, rs6497540, and rs9302415) were genotyped in a case-control study that included 399 lead-exposed subjects and 398 controls. Lead exposure decreased GRIN2A expression levels in HEK293 cells ( p < 0.001) compared with lead-free cells. Lead-exposed individuals had lower serum GRIN2A levels compared with controls ( p < 0.001), and we found a trend of decreasing GRIN2A level with an increase in blood lead level ( p < 0.001). In addition, we found a significant association between rs2650429 CT and TT genotypes and risk of lead poisoning compared with the rs2650429 CC genotype (adjusted odds ratio = 1.42, 95% confidence interval = 1.01-2.00]. Therefore, changes in GRIN2A expression levels and variants may be important mechanisms in the development of lead-induced neurotoxicity.

  4. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice.

    PubMed

    Yasuda, Makiko; Gan, Lin; Chen, Brenden; Kadirvel, Senkottuvelan; Yu, Chunli; Phillips, John D; New, Maria I; Liebow, Abigail; Fitzgerald, Kevin; Querbes, William; Desnick, Robert J

    2014-05-27

    The acute hepatic porphyrias are inherited disorders of heme biosynthesis characterized by life-threatening acute neurovisceral attacks. Factors that induce the expression of hepatic 5-aminolevulinic acid synthase 1 (ALAS1) result in the accumulation of the neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which recent studies indicate are primarily responsible for the acute attacks. Current treatment of these attacks involves i.v. administration of hemin, but a faster-acting, more effective, and safer therapy is needed. Here, we describe preclinical studies of liver-directed small interfering RNAs (siRNAs) targeting Alas1 (Alas1-siRNAs) in a mouse model of acute intermittent porphyria, the most common acute hepatic porphyria. A single i.v. dose of Alas1-siRNA prevented the phenobarbital-induced biochemical acute attacks for approximately 2 wk. Injection of Alas1-siRNA during an induced acute attack significantly decreased plasma ALA and PBG levels within 8 h, more rapidly and effectively than a single hemin infusion. Alas1-siRNA was well tolerated and a therapeutic dose did not cause hepatic heme deficiency. These studies provide proof-of-concept for the clinical development of RNA interference therapy for the prevention and treatment of the acute attacks of the acute hepatic porphyrias.

  5. Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Tenberken, Oliver; Thiermann, Horst; Worek, Franz; Kubik, Stefan; Reiter, Georg

    2012-12-16

    The ability of 13 β-cyclodextrin and 2 glucose derivatives containing substituents with oxime groups as nucleophilic components to accelerate the degradation of tabun at physiological pH has been evaluated. To this end, a qualitative and a quantitative enzymatic assay as well as a highly sensitive enantioselective GC-MS assay were used. In addition, an assay was developed that provided information about the mode of action of the investigated compounds. The results show that attachment of pyridinium-derived substituents with an aldoxime group in 3- or 4-position to a β-cyclodextrin ring affords active compounds mediating tabun degradation. Activities differ depending on the structure, the number, and the position of the substituent on the ring. Highest activity was observed for a β-cyclodextrin containing a 4-formylpyridinium oxime residue in 6-position of one glucose subunit, which detoxifies tabun with a half-time of 10.2 min. Comparison of the activity of this compound with that of an analog in which the cyclodextrin ring was replaced by a glucose residue demonstrated that the cyclodextrin is not necessary for activity but certainly beneficial. Finally, the results provide evidence that the mode of action of the cyclodextrin involves covalent modification of its oxime group rendering the scavenger inactive after reaction with the first tabun molecule. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. Themore » molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide

  7. Effects of rutin on acrylamide-induced neurotoxicity

    PubMed Central

    2014-01-01

    Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity. PMID:24524427

  8. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    PubMed

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  9. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae.

    PubMed

    Li, Ruiwen; Zhang, Ling; Shi, Qipeng; Guo, Yongyong; Zhang, Wei; Zhou, Bingsheng

    2018-06-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in various environmental media and biota, and has been demonstrated as neurotoxic. Autophagy has been proposed as a protective mechanism against toxicant-induced neurotoxicity. The purpose of the present study was to investigate the effect of TDCIPP exposure on autophagy, and its role in TDCIPP-induced developmental neurotoxicity. Zebrafish embryos (2-120 h post-fertilization [hpf]) were exposed to TDCIPP (0, 5, 50 and 500 μg/l) and a model neurotoxic chemical, chlorpyrifos (CPF, 100 μg/l). The developmental endpoints, locomotive behavior, cholinesterase activities, gene and protein expression related to neurodevelopment and autophagy were measured in the larvae. Our results demonstrate that exposure to TDCIPP (500 μg/l) and CPF causes developmental toxicity, including reduced hatching and survival rates and increased malformation rate (e.g., spinal curvature), as well as altered locomotor behavior. The expression of selected neurodevelopmental gene and protein markers (e.g., mbp, syn2a, and α1-tubulin) was significantly down-regulated in CPF and TDCIPP exposed zebrafish larvae. Treatment with CPF significantly inhibits AChE and BChE, while TDCIPP (0-500 μg/l) exerts no effects on these enzymes. Furthermore, the conversion of microtubule-associated protein I (LC3 I) to LC3 II was significantly increased in TDCIPP exposed zebrafish larvae. In addition, exposure to TDCIPP also activates transcription of several critical genes in autophagy (e.g. Becn1, atg3, atg5, map1lc3b and sqstm1). To further investigate the role of autophagy in TDCIPP induced developmental neurotoxicity, an autophagy inducer (rapamycin, Rapa, 1 nM) and inhibitor (chloroquine, CQ, 1 μM) were used. The results demonstrate that the hatching rate, survival rate, and the expression of mbp and а1-tubulin proteins were all significantly increased in larvae

  10. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  11. Oxidative stress in MeHg-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  12. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress.

    PubMed

    Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-06-01

    Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions

  14. Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats

    PubMed Central

    Karasova, Jana Zdarova; Kassa, Jiri; Jung, Young-Sik; Musilek, Kamil; Pohanka, Miroslav; Kuca, Kamil

    2008-01-01

    The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%). PMID:19330072

  15. Induced pluripotent stem cell-derived neuron as a human model for testing environmentally induced developmental neurotoxicity

    EPA Science Inventory

    Induced pluripotent stem cell-derived neurons as a human model for testing environmentally induced developmental neurotoxicity Ingrid L. Druwe1, Timothy J. Shafer2, Kathleen Wallace2, Pablo Valdivia3 ,and William R. Mundy2. 1University of North Carolina, Curriculum in Toxicology...

  16. Neurotoxicity in Snakebite—The Limits of Our Knowledge

    PubMed Central

    Ranawaka, Udaya K.; Lalloo, David G.; de Silva, H. Janaka

    2013-01-01

    Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue. PMID:24130909

  17. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    PubMed

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced

  18. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    PubMed

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lithium prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.

    PubMed

    Huang, Yingjuan; Qin, Jian; Chen, Meihui; Chao, Xiaojuan; Chen, Ziwei; Ramassamy, Charles; Pi, Rongbiao; Jin, Minghua

    2014-04-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer's disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.

  20. Impaired Formation of Stimulus–Response, But Not Action–Outcome, Associations in Rats with Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Son, Jong-Hyun; Latimer, Christine; Keefe, Kristen A

    2011-01-01

    Methamphetamine (METH) induces neurotoxic changes, including partial striatal dopamine depletions, which are thought to contribute to cognitive dysfunction in rodents and humans. The dorsal striatum is implicated in action–outcome (A–O) and stimulus–response (S–R) associations underlying instrumental learning. Thus, the present study examined the long-term consequences of METH-induced neurotoxicity on A–O and S–R associations underlying appetitive instrumental behavior. Rats were pretreated with saline or a neurotoxic regimen of METH (4 × 7.5–10 mg/kg). Rats trained on random ratio (RR) or random interval (RI) schedules of reinforcement were then subjected to outcome devaluation or contingency degradation, followed by an extinction test. All rats then were killed, and brains removed for determination of striatal dopamine loss. The results show that: (1) METH pretreatment induced a partial 45–50% decrease in striatal dopamine tissue content in dorsomedial and dorsolateral striatum; (2) METH-induced neurotoxicity did not alter acquisition of instrumental behavior on either RR or RI schedules; (3) outcome devaluation and contingency degradation similarly decreased responding in saline- and METH-pretreated rats trained on the RR schedule, suggesting intact A–O associations guiding behavior; (4) outcome devaluation after training on the RI schedule decreased extinction responding only in METH-pretreated rats, suggesting impaired S–R associations. Overall, these data suggest that METH-induced neurotoxicity, possibly due to impairment of the function of dorsolateral striatal circuitry, may decrease cognitive flexibility by impairing the ability to automatize behavioral patterns. PMID:21775980

  1. An autophagic mechanism is involved in the 6-hydroxydopamine-induced neurotoxicity in vivo.

    PubMed

    He, Xin; Yuan, Wei; Li, Zijian; Feng, Juan

    2017-10-05

    6-hydroxydopamine (6-OHDA) is one of the most common agents for modeling dopaminergic neuron degeneration in Parkinson's disease (PD). So far, the role of autophagy in 6-OHDA-induced neurotoxicity remains controversial and most evidence is collected from in vitro studies. In this study, we determined the role of autophagy activation in 6-OHDA-induced neurotoxicity in a rat model of PD. Following 6-OHDA treatment, we observed a concomitant activation of autophagy and apoptosis. To further explore the interaction between autophagy and apoptosis induced by 6-OHDA, autophagy inhibitor 3-methylademine (3-MA) or cysteine protease inhibitor Z-FA-fmk was applied. We found that both 3-MA and Z-FA-fmk could not only exert immediate protection against 6-OHDA-induced neuronal apoptosis, but also prevent dopaminergic neuron loss in the long-term, which was related to reduced autophagosome formation. Furthermore, by monitoring the sequential changes of mTOR-related signaling pathways, we found that reactive oxygen species (ROS)-mediated AKT/AMPK-mTOR signaling pathway participated in but was not the initial cause of autophagy activation by 6-OHDA. Collectively, our data suggest that 6-OHDA-induced autophagy activation contributes to its neurotoxicity and targeting autophagy activation or cysteine proteases could be promising for developing neuroprotective agents for PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Only extra-high dose of ketamine affects l-glutamate-induced intracellular Ca(2+) elevation and neurotoxicity.

    PubMed

    Shibuta, Satoshi; Morita, Tomotaka; Kosaka, Jun; Kamibayashi, Takahiko; Fujino, Yuji

    2015-09-01

    The neurotoxic effects of anesthetics on the developing brain are a concern. Although most of the anesthetics are GABAA agonists or NMDA antagonists, the differences in these effects on prospective glutamate-neurotoxicity in the brain is not fully understood. We examined the degree of L-glutamate-induced intracellular calcium ([Ca(2+)]i) elevation and neurotoxicity in neurons exposed to anesthetics. Primary cortical neurons from E17 rats were preincubated with 1-100 μM of ketamine or thiopental sodium (TPS) for the first 72 h of culturing. Two weeks later, the neurons were exposed to L-glutamate. The extent of glutamate toxicity was evaluated using Ca(2+)-imaging and morphological experiments. Preincubation with 100 μM ketamine but not with other concentrations of ketamine and TPS for the first 72 h in culture significantly enhanced L-glutamate-induced [Ca(2+)]i elevation 2 weeks later. Morphology experiments showed that vulnerability to L-glutamate-mediated neurotoxicity was only altered in neurons preincubated with 100 μM ketamine but not with TPS. Although preincubation with high concentration of ketamine showed enhancement of L-glutamate-induced [Ca(2+)]i elevation 2 weeks later, long-term exposure to TPS or ketamine at clinical doses during developmental periods may not result in a dose-related potentiation of exogenous glutamate-induced neurotoxicity, once the intravenous anesthetics are discontinued. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  4. Attenuation of methamphetamine-induced nigrostriatal dopaminergic neurotoxicity in mice by lipopolysaccharide pretreatment.

    PubMed

    Lin, Yin Chiu; Kuo, Yu-Min; Liao, Pao-Chi; Cherng, Chianfang G; Su, Su-Wen; Yu, Lung

    2007-04-30

    Immunological activation has been proposed to play a role in methamphetamine-induced dopaminergic terminal damage. In this study, we examined the roles of lipopolysaccharide, a pro-inflammatory and inflammatory factor, treatment in modulating the methamphetamine-induced nigrostriatal dopamine neurotoxicity. Lipopolysaccharide pretreatment did not affect the basal body temperature or methamphetamine-elicited hyperthermia three days later. Such systemic lipopolysaccharide treatment mitigated methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions in a dose-dependent manner. As the most potent dose (1 mg/kg) of lipopolysaccharide was administered two weeks, one day before or after the methamphetamine dosing regimen, methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions remained unaltered. Moreover, systemic lipopolysaccharide pretreatment (1 mg/kg) attenuated local methamphetamine infusion-produced dopamine and 3,4-dihydroxyphenylacetic acid depletions in the striatum, indicating that the protective effect of lipopolysaccharide is less likely due to interrupted peripheral distribution or metabolism of methamphetamine. We concluded a critical time window for systemic lipopolysaccharide pretreatment in exerting effective protection against methamphetamine-induced nigrostriatal dopamine neurotoxicity.

  5. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila

    PubMed Central

    Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge

    2015-01-01

    Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689

  6. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.

    PubMed

    Niu, Qiang; Chen, Jingwen; Xia, Tao; Li, Pei; Zhou, Guoyu; Xu, Chunyan; Zhao, Qian; Dong, Lixin; Zhang, Shun; Wang, Aiguo

    2018-02-01

    Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  8. Neurotoxicity of Vanadium.

    PubMed

    Ngwa, Hilary Afeseh; Ay, Muhammet; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-01-01

    Vanadium (V) is a transition metal that presents in multiple oxidation states and numerous inorganic compounds and is also an ultra-trace element considered to be essential for most living organisms. Despite being one of the lightest metals, V offers high structural strength and good corrosion resistance and thus has been widely adopted for high-strength steel manufacturing. High doses of V exposure are toxic, and inhalation exposure to V adversely affects the respiratory system. The neurotoxicological properties of V are just beginning to be identified. Recent studies by our group and others demonstrate the neurotoxic potential of this metal in the nigrostriatal system and other parts of the central nervous system (CNS). The neurotoxic effects of V have been mainly attributed to its ability to induce the generation of reactive oxygen species (ROS). It is noteworthy that the neurotoxicity induced by occupational V exposure commonly occurs with co-exposure to other metals, especially manganese (Mn). This review focuses on the chemistry, pharmacology, toxicology, and neurotoxicity of V.

  9. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  10. The Ganglioside GM-1 Inhibits Bupivacaine-Induced Neurotoxicity in Mouse Neuroblastoma Neuro2a Cells.

    PubMed

    Liang, Yujie; Ji, Jiemei; Lin, Yunan; He, Yajun; Liu, Jingchen

    2016-08-01

    Studies indicate that bupivacaine-induced neurotoxicity results from apoptosis. Gangliosides have been shown to promote neuronal repair and recovery of neurological function after spinal cord injury. Previously, we confirmed that in vivo administration of the ganglioside GM-1 attenuated bupivacaine-induced neurotoxicity in various animal models; however, the underlying mechanism remains unclear. Cells of the neuroblastoma line N2a (Neuro2a cells) were divided into three experimental groups: control, bupivacaine-treated, and bupivacaine-treated with GM-1 pretreatment. Cell viability and apoptosis were assessed through CCK-8 assays, Hoechst staining, and flow cytometry analysis of Annexin-V/propidium iodide double labeling. Real-time polymerase chain reaction and western blotting assessed the expression of caspase-3, caspase-8, and caspase-9. Bupivacaine-induced apoptosis worsened with increasing dose and exposure time. Bupivacaine induced increased expression of caspase-3 and caspase-9, but not caspase-8, indicating that the mitochondrial pathway but not the death receptor apoptosis pathway was activated. GM-1 pretreatment inhibited bupivacaine-induced apoptosis and the expression of caspase-3 and caspase-9 in a dose-dependent manner. Bupivacaine induced neurotoxicity by activating apoptosis via the mitochondrial pathway, and this was inhibited by GM-1 pretreatment. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Vincristine-induced peripheral neuropathy in a neonate with congenital acute lymphoblastic leukemia.

    PubMed

    Baker, Steven K; Lipson, David M

    2010-04-01

    We report the case of a 46-day-old boy with a fulminant vincristine-induced peripheral neuropathy after treatment for congenital acute lymphoblastic leukemia. Flaccid paralysis developed at the end of the first phase of induction, requiring intubation and ventilation for 51 days. Treatment was initiated with levocarnitine, N-acetylcysteine, and pyridoxine and progressive reversal of the neuropathy occurred over the next 4 months. Potential differences in pathogenesis and presentation of vincristine neurotoxicity and Guillian-Barre syndrome in the neonate are discussed.

  12. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    PubMed

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    PubMed

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. De Novo Synthesized Estradiol Protects against Methylmercury-Induced Neurotoxicity in Cultured Rat Hippocampal Slices

    PubMed Central

    Ishihara, Yasuhiro; Komatsu, Shota; Munetsuna, Eiji; Onizaki, Masahiro; Ishida, Atsuhiko; Kawato, Suguru; Mukuda, Takao

    2013-01-01

    Background Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined. Methodology/Principal Findings Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs. Conclusions/Significance Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity. PMID:23405170

  15. Diallyl trisulfide attenuated n-hexane induced neurotoxicity in rats by modulating P450 enzymes.

    PubMed

    Wang, Shuo; Li, Ming; Wang, Xujing; Li, Xianjie; Yin, Hongyin; Jiang, Lulu; Han, Wenting; Irving, Gleniece; Zeng, Tao; Xie, Keqin

    2017-03-01

    Chronic exposure to n-hexane can induce serious nerve system impairments without effective preventive medicines. Diallyl trisulfide (DATS) is a garlic-derived organosulfur compound, which has been demonstrated to have many beneficial effects. The current study was designed to evaluate whether DATS could restrain n-hexane induced neurotoxicity in rats and to explore the underlying mechanisms. Rats were treated with n-hexane (3 g/kg, p.o.) and different doses of DATS (10, 20 and 30 mg/kg, p.o.) for 8 weeks. Behavioral assessment showed that DATS could inhibit n-hexane induced neurotoxicity, demonstrated by the improvement of the grip strength and decline of gait scores. Toxicokinetic analysis revealed that the C max and AUC 0-t of 2,5-hexanedione (product of n-hexane metabolic activation) and 2,5-hexanedione protein adducts in serum were significantly declined in DATS-treated rats, and the levels of pyrrole adducts in tissues were significantly reduced. Furthermore, DATS activated CYP1A1 and inhibited n-hexane induced increased expression and activity of CYP2E1 and CYP2B1. Collectively, these findings indicated that DATS protected the rats from n-hexane-induced neurotoxicity, which might be attributed to the modulation of P450 enzymes by DATS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity.

    PubMed

    Li, Dongwei; Liu, Qingping; Jia, Dong; Dou, Deqiang; Wang, Xiaofei; Kang, Tingguo

    2014-01-01

    The potential protective effects of arctigenin on 1-methyl-4-phenylpyridinium ion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity were examined, and the results indicated that arctigenin could improve the movement behaviors and upregulate dopamine and γ-aminobutyric acid levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity mouse model. A further in vitro experiment showed that the pretreatment with arctigenin on cultured human neuroblastoma SH-SY5Y cells could obviously attenuate the decrease of cell survival rates caused by treatment with 1-methyl-4-phenylpyridinium ion by way of acting against cell apoptosis through the decrease of Bax/Bcl-2 and caspase-3, and by antioxidative action through reduction of the surplus reactive oxygen species production and downregulation of mitochondrial membrane potential. It is for the first time that a neuroprotective activity of arctigenin in both in vitro and in vivo experiments was reported, enlightening that arctigenin could be useful as a potential therapeutic agent for Parkinson's disease. Georg Thieme Verlag KG Stuttgart · New York.

  17. Role of microglia in methamphetamine-induced neurotoxicity

    PubMed Central

    Xu, Enquan; Liu, Jianuo; Liu, Han; Wang, Xiaobei; Xiong, Huangui

    2017-01-01

    Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury. However, the mechanisms underlying Meth-induced microglial activation remain to be determined. In this review, we attempt to address the effects of Meth on human immunodeficiency virus (HIV)-associated microglia activation both in vitro and in-vivo. Meth abuse not only increases HIV transmission but also exacerbates progression of HIV-associated neurocognitive disorders (HAND) through activation of microglia. In addition, the therapeutic potential of anti-inflammatory drugs on ameliorating Meth-induced microglia activation and resultant neuronal injury is discussed. PMID:28694920

  18. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  19. Severe neurotoxicity following intrathecal methotrexate with nitrous oxide sedation in a child with acute lymphoblastic leukemia.

    PubMed

    Löbel, U; Trah, J; Escherich, G

    2015-03-01

    Systemic and intrathecal methotrexate is widely used in treatment protocols for childhood acute lymphoblastic leukemia. Its side effects vary in characteristics, intensity and time of onset, and depend on the administration route. Interactions with several drugs are known. Side effects of nitrous oxide sedation, often used for moderately painful procedures, typically occur after long time use and include neurological symptoms. We present a child who experienced a severe and long-lasting neurotoxicity after the third intrathecal application of methotrexate with short sedation by nitrous oxide during induction therapy for acute lymphoblastic leukemia. Symptoms completely resolved after 12 months. © 2014 Wiley Periodicals, Inc.

  20. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity

    PubMed Central

    Khazdair, Mohammad Reza

    2015-01-01

    Nigella sativa (N. sativa) is an annual plant and widely used as medicinal plant throughout the world. The seeds of the plant have been used traditionally in various disorders and as a spice to ranges of Persian foods. N. sativa has therapeutic effects on tracheal responsiveness (TR) and lung inflammation on induced toxicity by Sulfur mustard. N. sativa has been widely used in treatment of various nervous system disorders such as Alzheimer disease, epilepsy, and neurotoxicity. Most of the therapeutic properties of this plant are due to the presence of some phenolic compounds especially thymoquinone (TQ), which is major bioactive component of the essential oil. The present review is an effort to provide a comprehensive study of the literature on scientific researches of pharmacological activities of the seeds of this plant on induced neurotoxicity. PMID:26604923

  1. Lesions of basal ganglia due to disulfiram neurotoxicity.

    PubMed Central

    Laplane, D; Attal, N; Sauron, B; de Billy, A; Dubois, B

    1992-01-01

    Three cases of disulfiram induced Parkinsonism and frontal lobe-like syndrome associated with bilateral lesions of the lentiform nuclei on CT scan are reported. Symptoms developed either after an acute high dose of disulfiram (one case) or after several days to weeks of disulfiram treatment (two cases) and persisted over several years in two patients. These observations suggest that basal ganglia are one of the major targets of disulfiram neurotoxicity. The mechanisms of the lesions of basal ganglia may involve carbon disulfide toxicity. Images PMID:1431956

  2. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson's disease.

    PubMed

    Abbaoui, Abdellatif; Chatoui, Hicham; El Hiba, Omar; Gamrani, Halima

    2017-11-01

    Numerous findings indicate an involvement of heavy metals in the neuropathology of several neurodegenerative disorders, especially Parkinson's disease (PD). Previous studies have demonstrated that Copper (Cu) exhibits a potent neurotoxic effect on dopaminergic neurons and triggers profound neurobehavioral alterations. Curcumin is a major component of Curcuma longa rhizomes and a powerful medicinal plant that exerts many pharmacological effects. However, the neuroprotective action of curcumin on Cu-induced dopaminergic neurotoxicity is yet to be investigated. The aim of the present study was to evaluate the impact of acute Cu-intoxication (10mg/kg B.W. i.p) for 3days on the dopaminergic system and locomotor performance as well as the possible therapeutic efficacy of curcumin I (30mg/kg B.W.). Intoxicated rats showed a significant loss of Tyrosine Hydroxylase (TH) expression within substantia nigra pars compacta (SNc), ventral tegmental area (VTA) and the striatal outputs. This was correlated with a clear decrease in locomotor performance. Critically, curcumin-I co-treatment reversed these changes and showed a noticeable protective effect; both TH expression and locomotor performance was reinstated in intoxicated rats. These results demonstrate altered dopaminergic innervations following Cu intoxication and a new therapeutic potential of curcumin against Cu-induced dopaminergic neurotransmission failure. Curcumin may therefore prevent heavy metal related Parkinsonism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity.

    PubMed

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H; Rosenberger, Thad A; Haughey, Norman J; Masino, Susan A; Geiger, Jonathan D

    2012-07-01

    HIV-1-associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  4. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    PubMed Central

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  5. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    PubMed

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  6. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    PubMed

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  7. Critical consideration of the multiplicity of experimental and organismic determinants of pyrethroid neurotoxicity: a proof of concept.

    PubMed

    Wolansky, M J; Tornero-Velez, R

    2013-01-01

    Pyrethroids (PYR) are pesticides with high insecticidal activity that may disrupt neuronal excitability in target and nontarget species. The accumulated evidence consistently showed that this neurophysiologic action is followed by alterations in motor, sensorimotor, neuromuscular, and thermoregulatory responses. Nevertheless, there are some equivocal results regarding the potency of PYR in lab animals. The estimation of potency is an important step in pesticide chemical risk assessment. In order to identify the variables influencing neurobehavioral findings across PYR studies, evidence on experimental and organismic determinants of acute PYR-induced neurotoxicity was reviewed in rodents. A comprehensive analysis of these studies was conducted focusing on test material and dosing conditions, testing conditions, animal models, and other determinants such as testing room temperature. Variations in the severity of the neurotoxicity, under lab-controlled conditions, was explained based upon factors including influence of animal species and age, test material features such as chemical structure and stereochemistry, and dosing conditions such as vehicle, route of exposure, and dose volume. If not controlled, the interplay of these factors may lead to large variance in potency estimation. This review examined the scope of acute toxicological data required to determine the safety of pesticide products, and factors and covariates that need to be controlled in order to ensure that predictivity and precaution are balanced in a risk assessment process within a reasonable time-frame, using acute PYR-induced neurotoxicity in rodents as an exemplar.

  8. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain.

    PubMed

    Arroyo, Daniela S; Gaviglio, Emilia A; Peralta Ramos, Javier M; Bussi, Claudio; Avalos, Maria P; Cancela, Liliana M; Iribarren, Pablo

    2018-01-01

    Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo , induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B + CD45 + cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions.

  9. Exploration of Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging

    DTIC Science & Technology

    2008-05-01

    report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated...Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging 5b. GRANT NUMBER W81XWH-06-1-0033 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Jeri...Janowsky, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: janowskj@ohsu.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  10. The Role of Endogenous Serotonin in Methamphetamine-Induced Neurotoxicity to Dopamine Nerve Endings of the Striatum

    PubMed Central

    Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.

    2010-01-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968

  11. [The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany].

    PubMed

    López-Muñoz, F; Alamo, C; Guerra, J A; García-García, P

    The discovery and development of the so-called 'nerve agents' (neurotoxic substances to be used as weapons) took place in the Third Reich, largely thanks to the vast amount of progress being made in pharmacology in Germany at that time, both in academic and industrial terms. Furthermore, successive National Socialist governments set up a collaborative network made up of the academia, the chemical industry and military chiefs that also favoured this line of research. The first neurotoxic substance to be incorporated into the category of 'chemical warfare agent' did so almost wholly by chance. As part of the work being carried out on organophosphate-type pesticides and insecticides, Gerald Schrader, a chemist at the I.G. Farben company, synthesised tabun (ethyl N,N-dimethylphosphoramidocyanidate) and an incident involving accidental contamination of laboratory staff with this substance highlighted its potential toxicity. The same group of researchers later synthesised another substance with the same properties, sarin (isopropyl methylphosphonofluoridate). Both agents were studied for use as chemical weapons by Wolfgang Wirth. At the same time, a group led by Richard Kuhn, who won the Nobel Prize in Chemistry in 1938, synthesised pinacolyl methylphosphonofluoridate, otherwise known as soman. Pharmacological studies confirmed that the neurotoxic mechanism of action of these substances was the irreversible inhibition of the enzyme acetylcholinesterase, which is responsible for metabolising acetylcholine. Results also showed that an excess of this neurotransmitter led to a continuous over-stimulation of the cholinergic (nicotinic and muscarinic) receptors, which is what triggers the appearance of the wide range of symptoms of poisoning and their swift fatal effect.

  12. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans.

    PubMed

    Sammi, Shreesh Raj; Agim, Zeynep Sena; Cannon, Jason R

    2018-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity.

    PubMed

    Cheng, Jai-Hong; Tsai, Chia-Ling; Lien, Yi-Yang; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-06-07

    Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 10(5) Da and 1.1 × 10(5) Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.

  14. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M

    2010-11-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  15. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling

    PubMed Central

    Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhn, Donald M.

    2009-01-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration. PMID:18410508

  16. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  17. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models.

    PubMed

    Boehmerle, Wolfgang; Huehnchen, Petra; Lee, Sabrina Lin Lin; Harms, Christoph; Endres, Matthias

    2018-04-30

    Paclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca 2+ ) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca 2+ release channels in the endoplasmic reticulum (ER) and Ca 2+ permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity. We observed that in small to medium size dorsal root ganglia neurons (DRGN) the inositol-trisphosphate receptor (InsP 3 R) type 1 was often concentrated in the periphery of cells, which is in contrast to homogenous ER distribution. G protein-coupled designer receptors were used to further elucidate phosphoinositide mediated Ca 2+ signaling: This approach showed strong InsP 3 mediated Ca 2+ signals close to the plasma membrane, which can be amplified by Ca 2+ entry through TRPV4 channels. In addition, our results support a physical interaction and partial colocalization of InsP 3 R1 and TRPV4 channels. In the context of paclitaxel-induced neurotoxicity, blocking Ca 2+ influx through TRPV4 channels reduced cell death in cultured DRGN. Pretreatment of mice with the pharmacological TRPV4 inhibitor HC067047 prior to paclitaxel injections prevented electrophysiological and behavioral changes associated with paclitaxel-induced neuropathy. In summary, these results underline the relevance of TRPV4 signaling for the pathogenesis of paclitaxel-induced neuropathy and suggest novel preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The role of system Xc- in methamphetamine-induced dopaminergic neurotoxicity in mice.

    PubMed

    Dang, Duy-Khanh; Shin, Eun-Joo; Tran, Hai-Quyen; Kim, Dae-Joong; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Sato, Hideyo; Nabeshima, Toshitaka; Yoneda, Yukio; Kim, Hyoung-Chun

    2017-09-01

    The cystine/glutamate antiporter (system Xc - , Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells.

    PubMed

    Huang, Jia; Xiao, Lan; Wei, Jing-Xiang; Shu, Ya-Hai; Fang, Shi-Qi; Wang, Yong-Tang; Lu, Xiu-Min

    2017-04-01

    As a neurotropic substance, ethanol can damage nerve cells through an increase in the production of free radicals, interference of neurotrophic factor signaling pathways, activation of endogenous apoptotic signals and other molecular mechanisms. Previous studies have revealed that a number of natural drugs extracted from plants offer protection of nerve cells from damage. Among these, arctigenin (ATG) is a lignine extracted from Arctium lappa (L.), which has been found to exert a neuroprotective effect on scopolamine‑induced memory deficits in mice with Alzheimer's disease and glutamate-induced neurotoxicity in primary neurons. As a result, it may offer beneficial effects on ethanol-induced neurotoxicity. However, the effects of ATG on ethanol‑induced nerve damage remain to be elucidated. To address this issue, the present study used rat pheochromocytoma PC12 cells to investigate the neuroprotective effects of ATG on ethanol-induced cell damage by performing an MTT reduction assay, cell cycle analysis, Hoechst33342/propidium iodide fluorescence staining and flow cytometry to examine apoptosis. The results showed that 10 µM ATG effectively promoted the proliferation of damaged cells, and increased the distribution ratio of the cells at the G2/M and S phases (P<0.05). In addition, the apoptosis and necrosis of the PC12 cells were significantly decreased following treatment with ATG. Therefore, it was concluded that 10 µM ATG had a protective effect on ethanol‑induced injury in PC12 cells.

  20. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs

    PubMed Central

    Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.

    2005-01-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048

  1. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.

    PubMed

    Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M

    2005-02-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.

  2. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain

    PubMed Central

    Arroyo, Daniela S.; Gaviglio, Emilia A.; Peralta Ramos, Javier M.; Bussi, Claudio; Avalos, Maria P.; Cancela, Liliana M.; Iribarren, Pablo

    2018-01-01

    Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo, induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B+ CD45+ cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions. PMID:29719536

  3. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured inmore » 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis.« less

  4. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marreilha dos Santos, A.P., E-mail: apsantos@ff.ul.pt; Lucas, Rui L.; Andrade, Vanda

    2012-02-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared tomore » rats treated with Mn alone), concomitant with reduced brain E{sub 2} prostaglandin (PGE{sub 2}) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.« less

  5. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  6. Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease

    PubMed Central

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462

  7. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD).

  8. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum

    PubMed Central

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A.; Handshoe, Jonathan W.; Cui, Jiajun; Xu, Wenhua

    2015-01-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR−/− mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR−/− mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR−/− mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD). PMID:25592072

  9. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    PubMed Central

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  10. An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects.

    PubMed

    Bale, Ambuja S; Lee, Janice S

    2016-01-01

    The purpose of this article is to briefly review the published literature on the developmental neurotoxic effects, including potential mechanisms, of four butanols: n-butanol, sec-butanol, tert-butanol, isobutanol, and identify data gaps and research needs for evaluation of human health risks in this area. Exposure potential to these four butanols is considerable given the high production volume (>1 billion lb) of n- and tert-butanol and moderate production volumes (100-500 million lb) of sec- and isobutanol. With the impetus to derive cleaner gasoline blends, butanols are being considered for use as fuel oxygenates. Notable signs of neurotoxicity and developmental neurotoxicity have been observed in some studies where laboratory animals (rodents) were gestationally exposed to n- or tert-butanol. Mechanistic data relevant to the observed developmental neurotoxicity endpoints were also reviewed to hypothesize potential mechanisms associated with the developmental neurotoxicity outcome. Data from the related and highly characterized alcohol, ethanol, were included to examine consistencies between this compound and the four butanols. It is widely known that alcohols, including butanols, interact with several ion channels and modulate the function of these targets following both acute and chronic exposures. In addition, n- and sec-butanol have been demonstrated to inhibit fetal rat brain astroglial cell proliferation. Further, rat pups exposed to n-butanol in utero were also reported to have significant increases in brain levels of dopamine and serotonin, but decreases in serotonin levels were noted with gestational exposure to tert-butanol. tert-Butanol was reported to inhibit muscarinic receptor-stimulated phosphoinositide metabolism which has been hypothesized to be a possible target for the neurotoxic effects of ethanol during brain development. The mechanistic data for the butanols support developmental neurotoxicity that has been observed in some of the rodent

  11. Studies on striatal neurotoxicity caused by the 3,4-methylenedioxymethamphetamine/ malonate combination: implications for serotonin/dopamine interactions.

    PubMed

    Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto

    2006-03-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.

  12. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans.

    PubMed

    Li, Haifeng; Shi, Ruona; Ding, Fei; Wang, Hongyu; Han, Wenjing; Ma, Fangli; Hu, Minghua; Ma, Chung Wah; Huang, Zebo

    2016-01-01

    Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson's disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus , against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans . Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.

  13. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo

    PubMed Central

    Kaushal, Nidhi; Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it acts in part as an agonist. SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. PMID:22921523

  14. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo.

    PubMed

    Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

    2013-08-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  15. D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity.

    PubMed

    Muralikrishnan, Dhanasekharan; Samantaray, Supriti; Mohanakumar, Kochupurackal P

    2003-10-01

    Selegiline (L-deprenyl) is believed to render protection against l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity to a significant extent via a free radical scavenging mechanism, which is independent of its ability to inhibit monoamine oxidase-B (MAO-B) in the brain. We investigated the hydroxyl radical (.OH) scavenging action and neuroprotective effect of D-deprenyl, its less active isomer, in MPTP-induced dopaminergic neurotoxicity in mice to test whether the chemical structure of the molecule or its biological effects contribute to this property. To achieve this goal we studied the effects of D-deprenyl on: (1).OH production in a Fenton reaction; (2) MPTP-induced.OH generation and dopamine (DA) depletion in vivo, employing a sensitive HPLC-electrochemical procedure; and (3) formation of MPP(+) in vivo in the striatum following systemic administration of MPTP, employing an HPLC-photodiode array detection system. D-deprenyl inhibited ferrous citrate-induced.OH in vitro (0.45 microM) and MPTP-induced.OH in vivo in substantia nigra (SN) and in the striatum (1.0 mg/kg, i.p.). D-deprenyl did not, but L-deprenyl (0.5 mg/kg dose) did significantly inhibit formation of MPP(+) in the striatum 90 min following systemic MPTP injection. It failed to affect MAO-B activity at 0.5 mg/kg in the striatum, but effectively blocked MPTP-induced striatal DA depletion. The potency of D-deprenyl to scavenge MPTP-induced.OH in vivo and to render protection against the dopaminergic neurotoxicity without affecting dopamine turnover, MAO-B activity, or formation of MPP(+) in the brain indicates a direct involvement of.OH in the neurotoxic action of MPTP and antioxidant effect in the neuroprotective action of deprenyl. Copyright 2003 Wiley-Liss, Inc.

  16. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  17. Screening the ToxCast Phase II library for acute neurotoxicity using cortical neurons grown on multi-well microelectrode array (mwMEA) plates

    EPA Science Inventory

    We have used primary cortical neurons grown in multi-well microelectrode array (mwMEA) plates to screen the ToxCast Phase II library of 1055 unique compounds for the ability to cause acute neurotoxicity. Each compound was screened at a single high concentration of 40 µM...

  18. Memory Enhancing Effect of Black Pepper in the AlCl3 Induced Neurotoxicity Mouse Model is Mediated Through Its Active Component Chavicine.

    PubMed

    Iqbal, Ghazala; Iqbal, Anila; Mahboob, Aamra; Farhat, Syeda M; Ahmed, Touqeer

    Black pepper (Piper nigrum Linn.) has vital pharmacological properties with profound effects on central nervous system. Neurotoxic agents like Aluminum Chloride (AlCl3) cause the oxidative stress and result in improper processing of amyloid proteins leading to accumulation of amyloid β plaques. The study aimed to explore the neuroprotective potential of black pepper (BP) extract (12.5mg/kg/day) on memory enhancement and its effect on expression of amyloid precursor protein (APP) isoforms (APP770 and APP695) in AlCl3 induced neurotoxicity (250mg/kg) mouse model. The study included the isolation and identification of pure compound from BP (chavicine) which was found pharmacologically active. Morris water maze test, elevated plus maze, fear conditioning, context and cue dependent test and social preference tests were performed to investigate the learning and memory. Gene expression (APP isoforms) and in-vitro and ex-vivo DPPH free radical scavenging activity were performed to evaluate the role of BP. BP significantly improved memory in AlCl3 induced neurotoxicity mouse model along with effectively decreasing the expression of APP770 (amyloidogenic) isoform and improved level of APP695 (non-amyloidogenic) in hippocampus, amygdala and cortex. Fear extinction learning was considerably improved in BP treated group (7.83±2.03) than AlCl3 induced neurotoxicity group (39.75±4.25). In the hippocampus, BP significantly reduced the expression of APP770 (0.37±0.05) as compared to AlCl3 induced neurotoxicity group (0.72±0.06), and effectively increased (34.80±1.39) the percentage inhibition of DPPH free radicals as compared to AlCl3 induced neurotoxicity group (14±2.68). The study revealed that BP improves memory and chavicine is a lead compound producing pharmacological effects of BP.

  19. THC Prevents MDMA Neurotoxicity in Mice.

    PubMed

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-02-10

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4) were pretreated with THC (3 mg/kg x 4) at room (21 degrees C) and at warm (26 degrees C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1) receptor antagonist AM251 and the CB(2) receptor antagonist AM630, as well as in CB(1), CB(2) and CB(1)/CB(2) deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1) receptor antagonist AM251, neither in CB(1) and CB(1)/CB(2) knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2) cannabinoid antagonist and in CB(2) knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1) receptor, although CB(2) receptors may also contribute to

  20. THC Prevents MDMA Neurotoxicity in Mice

    PubMed Central

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-01-01

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this

  1. Altered Learning and Arc-Regulated Consolidation of Learning in Striatum by Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Pastuzyn, Elissa D; Chapman, David E; Wilcox, Karen S; Keefe, Kristen A

    2012-01-01

    Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl--aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague–Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist -2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24 h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function. PMID:22071872

  2. Altered learning and Arc-regulated consolidation of learning in striatum by methamphetamine-induced neurotoxicity.

    PubMed

    Pastuzyn, Elissa D; Chapman, David E; Wilcox, Karen S; Keefe, Kristen A

    2012-03-01

    Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague-Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24 h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function.

  3. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase.

    PubMed

    Gilley, Cynthia; MacDonald, Mary; Nachon, Florian; Schopfer, Lawrence M; Zhang, Jun; Cashman, John R; Lockridge, Oksana

    2009-10-01

    The goal was to test 14 nerve agent model compounds of soman, sarin, tabun, and cyclohexyl methylphosphonofluoridate (GF) for their suitability as substitutes for true nerve agents. We wanted to know whether the model compounds would form the identical covalent adduct with human butyrylcholinesterase that is produced by reaction with true nerve agents. Nerve agent model compounds containing thiocholine or thiomethyl in place of fluorine or cyanide were synthesized as Sp and Rp stereoisomers. Purified human butyrylcholinesterase was treated with a 45-fold molar excess of nerve agent analogue at pH 7.4 for 17 h at 21 degrees C. The protein was denatured by boiling and was digested with trypsin. Aged and nonaged active site peptide adducts were quantified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of the tryptic digest mixture. The active site peptides were isolated by HPLC and analyzed by MALDI-TOF-TOF mass spectrometry. Serine 198 of butyrylcholinesterase was covalently modified by all 14 compounds. Thiocholine was the leaving group in all compounds that had thiocholine in place of fluorine or cyanide. Thiomethyl was the leaving group in the GF thiomethyl compounds. However, sarin thiomethyl compounds released either thiomethyl or isopropyl, while soman thiomethyl compounds released either thiomethyl or pinacolyl. Thiocholine compounds reacted more rapidly with butyrylcholinesterase than thiomethyl compounds. Labeling with the model compounds resulted in aged adducts that had lost the O-alkyl group (O-ethyl for tabun, O-cyclohexyl for GF, isopropyl for sarin, and pinacolyl for soman) in addition to the thiocholine or thiomethyl group. The nerve agent model compounds containing thiocholine and the GF thiomethyl analogue were found to be suitable substitutes for true soman, sarin, tabun, and GF in terms of the adduct that they produced with human butyrylcholinesterase. However, the soman and sarin thiomethyl compounds

  4. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  5. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  6. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA.

    PubMed

    Pang, Wei; Lian, Fu-Zhi; Leng, Xue; Wang, Shu-Min; Li, Yi-Bo; Wang, Zi-Yu; Li, Kai-Ren; Gao, Zhi-Xian; Jiang, Yu-Gang

    2018-05-01

    A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.

  7. Reversible Lithium Neurotoxicity: Review of the Literature

    PubMed Central

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P < .001) and presented mainly with acute organic brain syndrome. In most cases, the therapeutic serum lithium levels were less than or equal to 1.5 mEq/L (P < .001), and dosage regimens were less than 2,000 mg/day. Specific drug combinations with lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The

  8. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of themore » same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).« less

  9. Biomarkers of adult and developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  10. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2008-10-01

    Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.

  11. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    PubMed

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-02-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.

  13. Chloride-dependency of amyloid beta protein-induced enhancement of glutamate neurotoxicity in cultured rat hippocampal neurons.

    PubMed

    Zhang, Nan-Yan; Kitagawa, Kaori; Wu, Bo; Xiong, Zheng-Mei; Otani, Hitomi; Inagaki, Chiyoko

    2006-05-15

    In our previous studies, pathophysiological concentrations of amyloid-beta (Abeta) proteins increased intracellular Cl(-) concentration ([Cl(-)]i) and enhanced glutamate neurotoxicity in primary cultured neurons, suggesting Cl(-)-dependent changes in glutamate signaling. To test this possibility, we examined the effects of isethionate-replaced low Cl(-) medium on the Abeta-induced enhancement of glutamate neurotoxicity in the primary cultured rat hippocampal neurons. In a normal Cl(-) (135 mM) medium, treatment with 10 nM Abeta25-35 for 2 days increased neuronal [Cl(-)]i to a level three times higher than that of control as assayed using a Cl(-)-sensitive fluorescent dye, while in a low Cl(-) (16 mM) medium such an Abeta25-35-induced increase in [Cl(-)]i was not observed. The Abeta treatment aggravated glutamate neurotoxicity in a normal Cl(-) medium as measured by mitochondrial reducing activity and lactate dehydrogenase (LDH) release, while in a low Cl(-) medium the Abeta treatment did not enhance glutamate toxicity. Upon such Abeta plus glutamate treatment under a normal Cl(-) condition, activated anti-apoptotic molecule Akt (Akt-pS473) level monitored by Western blot significantly decreased to 74% of control. Under a low Cl(-) condition, a resting Akt-pS473 level was higher than that under a normal Cl(-) condition and did not significantly change upon Abeta plus glutamate treatment. Tyrosine phosphorylation levels of 110 and 60 kDa proteins (pp110 and pp60) increased upon Abeta plus glutamate treatment under a normal Cl(-), but not low Cl(-), condition. These findings indicated that Abeta-induced enhancement of glutamate neurotoxicity is Cl(-)-dependent. Chloride-sensitive Akt pathway and tyrosine phosphorylation of proteins (pp110 and pp60) may be involved in this process.

  14. A Review of Experimental Evidence Linking Neurotoxic Organophosphorus Compounds and Inflammation

    PubMed Central

    Banks, Christopher N.; Lein, Pamela J.

    2012-01-01

    Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity. PMID:22342984

  15. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    PubMed

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  16. DEVELOPMENTAL NEUROTOXICITY OF PYRETHROID INSECTICIDES: CRITICAL REVIEW.

    EPA Science Inventory

    Pyrethroids are widely utilized insecticides whose primary action is the disruption of voltage-sensitive sodium channels (VSSC). Although these compounds have been in use for over 30 years and their acute neurotoxicity has been well characterized, there is considerably less info...

  17. Subchronic organophosphorus ester-induced delayed neurotoxicity in mallards

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.; Murray, H.C.

    1984-01-01

    Eighteen-week-old mallard hens received 0, 10, 30, 90, or 270 ppm technical grade EPN (phenylphosphonothioic acid O-ethyl-O-4-nitrophenyl ester) in the diet for 90 days. Ataxia was first observed in the 270-ppm group after 16 days, in the 90-ppm group after 20 days, in the 30-ppm group after 38 days; 10 ppm failed to produce ataxia. By the end of 90 days all 6 birds in the 270-ppm group exhibited ataxia or paralysis whereas 5 of 6 birds in the 90-ppm group and 2 of 6 birds in the 30-ppm group were visibly affected. Treatment with 30 ppm or more resulted in a significant reduction in body weight. Brain neurotoxic esterase activity was inhibited by averages of 16, 69, 73, and 74% in the 10-, 30-, 90-, and 270-ppm groups, respectively. Brain acetylcholinesterase, plasma cholinesterase, and plasma alkaline phosphatase were significantly inhibited as well. Distinct histopathological effects were seen in the 30-, 90-, and 270-ppm groups which included demyelination and degeneration of axons of the spinal cord. Additional ducks were exposed in a similar manner to 60-, 270-, or 540-ppm leptophos (phosphonothioic acid O-4-bromo-2,5-dichlorophenyl-O-methylphenyl ester) which resulted in similar behavioral, biochemical, and histopathological alterations. These findings indicate that adult mallards are probably somewhat less sensitive than chickens to subchronic dietary exposure to organophosphorus insecticides that induce delayed neurotoxicity.

  18. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    PubMed

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  19. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice

    PubMed Central

    Mendieta, Liliana; Granado, Noelia; Aguilera, José; Tizabi, Yousef

    2016-01-01

    Background: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson’s disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. Methods: For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. Results: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Conclusions: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers. PMID:26945022

  20. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.

    PubMed

    Lou, Haiyan; Jing, Xu; Wei, Xinbing; Shi, Huanying; Ren, Dongmei; Zhang, Xiumei

    2014-04-01

    There is increasing evidence that oxidative stress is critically involved in the pathogenesis of Parkinson's disease (PD), suggesting that pharmacological targeting of the antioxidant machinery may have therapeutic value. Naringenin, a natural flavonoid compound, has been reported to possess neuroprotective effect against PD related pathology; however the mechanisms underlying its beneficial effects are poorly defined. Thus, the purpose of the present study was to investigate the potential neuroprotective role of naringenin and to delineate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in models of PD both in vitro and in vivo. Naringenin treatment resulted in an increase in nuclear factor E2-related factor 2 (Nrf2) protein levels and subsequent activation of antioxidant response element (ARE) pathway genes in SH-SY5Y cells and in mice. Exposure of SH-SY5Y cells to naringenin provided protection against 6-OHDA-induced oxidative insults that was dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity or induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In mice, oral administration of naringenin resulted in significant protection against 6-OHDA-induced nigrostriatal dopaminergic neurodegeneration and oxidative damage. Our results indicate that activation of Nrf2/ARE signaling by naringenin is strongly associated with its neuroprotective effects against 6-OHDA neurotoxicity and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in PD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in

  2. Drug interactions may be important risk factors for methotrexate neurotoxicity, particularly in pediatric leukemia patients.

    PubMed

    Forster, Victoria J; van Delft, Frederik W; Baird, Susan F; Mair, Shona; Skinner, Roderick; Halsey, Christina

    2016-11-01

    Methotrexate administration is associated with frequent adverse neurological events during treatment for childhood acute lymphoblastic leukemia. Here, we present evidence to support the role of common drug interactions and low vitamin B 12 levels in potentiating methotrexate neurotoxicity. We review the published evidence and highlight key potential drug interactions as well as present clinical evidence of severe methotrexate neurotoxicity in conjunction with nitrous oxide anesthesia and measurements of vitamin B 12 levels among pediatric leukemia patients during therapy. We describe a very plausible mechanism for methotrexate neurotoxicity in pediatric leukemia patients involving reduction in methionine and consequential disruption of myelin production. We provide evidence that a number of commonly prescribed drugs in pediatric leukemia management interact with the same folate biosynthetic pathways and/or reduce functional vitamin B 12 levels and hence are likely to increase the toxicity of methotrexate in these patients. We also present a brief case study supporting out hypothesis that nitrous oxide contributes to methotrexate neurotoxicity and a nutritional study, showing that vitamin B 12 deficiency is common in pediatric leukemia patients. Use of nitrous oxide in pediatric leukemia patients at the same time as methotrexate use should be avoided especially as many suitable alternative anesthetic agents exist. Clinicians should consider monitoring levels of vitamin B 12 in patients suspected of having methotrexate-induced neurotoxic effects.

  3. Methamphetamine-induced striatal apoptosis in the mouse brain: Comparison of a binge to an acute bolus drug administration

    PubMed Central

    Zhu, Judy P.Q.; Xu, Wenjing; Angulo, Nieves; Angulo, Jesus A.

    2010-01-01

    Methamphetamine (METH) is a psychostimulant that induces neural damage in experimental animals and humans. A binge (usually in the 5–10 mg/kg dose range 4× at 2 h intervals) and the acute bolus drug administration (20–40 mg/kg) of METH have been employed frequently to study neurotoxicity in the brain. In this study we have compared these drug delivery schedules to determine their efficacy to induce striatal apoptosis. Exposure of male mice to a binge of METH at 10 mg/kg 4× at 2 h intervals (cumulative dose of 40 mg/kg) was approximately four times less effective in inducing apoptotic cell death (TUNEL staining) 24 h after METH treatment in the striatum than a single bolus administration of 30 mg/kg of METH. The residual TUNEL staining observed three days after METH treatment is proportionately equivalent between a binge and the acute bolus drug administration. Interestingly, a binge of METH induces a hyperthermic response of longer duration. This study demonstrates that an acute bolus drug administration of METH is more effective inducing striatal apoptosis in mice, and therefore, is more suitable for studies assessing the impact of METH on sites post-synaptic to the striatonigral dopamine terminals. PMID:16165214

  4. Effects of Housing on Methamphetamine-Induced Neurotoxicity and Spatial Learning and Memory.

    PubMed

    Gutierrez, Arnold; Jablonski, Sarah A; Amos-Kroohs, Robyn M; Barnes, Anna C; Williams, Michael T; Vorhees, Charles V

    2017-07-19

    Severe stress potentiates methamphetamine (MA) neurotoxicity. However, whether moderate stress increases or decreases the neurotoxic effects of MA is unknown. We assessed the effects of MA (4 × 10 mg/kg at 2 h intervals) in combination with prior barren-cage housing in adult male Sprague-Dawley rats on monoamines and glial fibrillary acid protein (GFAP) in one cohort and spatial learning and memory in the Morris water maze in another cohort. MA reduced dopamine (DA) and serotonin (5-HT) in the neostriatum and nucleus accumbens, 5-HT in the hippocampus, and increased GFAP in neostriatum and nucleus accumbens compared with saline controls. In neostriatum, barren-cage housing protected against MA-induced increases in GFAP, but it did not prevent DA and 5-HT reductions, although it did increase hippocampal norepinephrine. MA impaired spatial learning during acquisition, reversal, and shift phases and impaired reference memory on reversal and shift probe trials. Barren-cage housing enhanced performance during acquisition but not during reversal or shift or on probe trials. The data indicate that prior barren-cage housing moderates MA-induced neostriatal astrogliosis and initial spatial learning, but has no protective effect when the platform is smaller and relocated and therefore requires cognitive flexibility in relearning.

  5. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  6. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    PubMed

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  7. Antidepressant Imipramine Protects Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Coactivation of TrkA and TrkB.

    PubMed

    Guo, Jianrong; Wang, Huan; Tao, Qiang; Sun, Shiyu; Liu, Li; Zhang, Jianping; Yang, Dawei

    2017-11-01

    In our work, we used an in vitro culture model to investigate whether antidepressant imipramine (Ip) may protect bupivacaine (Bv)-induced neurotoxicity in mouse dorsal root ganglion (DRG). Adult mouse DRG was treated with 5 mM Bv in vitro to induce neurotoxicity. DRG was then pre-treated with Ip, prior to Bv, to examine its effects on protecting Bv-induced DRG apoptosis and neurite degeneration. Ip-induced dynamic changes in Trk receptors, including TrkA/B/C and phosphor (p-)TrkA/B/C, were examined by qPCR and Western blot. TrkA and TrkB were inhibited by siRNAs to further investigate their functional role in Ip- and Bv-treated DRG. Ip protected Bv-induced apoptosis and neurite loss in DRG. Ip did not alter TrkA/B/C expressions, whereas significantly augmented protein productions of p-TrkA and p-TrkB, but not p-TrkC. SiRNA-mediated TrkA or TrkB downregulation inhibited Trk receptors, and reduced p-TrkA and p-TrkB in DRG. TrkA or TrkB downregulation alone had no effect on Ip-induced protection in Bv-injured DRG. However, co-inhibition of TrkA and TrkB significantly ameliorated the protective effect of Ip on Bv-induced apoptosis and neurite loss in DRG. Imipramine protected bupivacaine-induced neurotoxicity in DRG, likely via the co-activation of TrkA and TrkB signaling pathways. J. Cell. Biochem. 118: 3960-3967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  9. Mechanistic insight into neurotoxicity induced by developmental insults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Christoffer; Ceccatelli, Sandra

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells tomore » investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.« less

  10. Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro.

    PubMed

    Chen, Cheng; Bai, Xue; Bi, Yanwen; Liu, Guixiang; Li, Hao; Liu, Zhen; Liu, Huaxiang

    2017-02-01

    Paclitaxel (PT)-induced neurotoxicity is a significant problem associated with successful treatment of cancers. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 has protective effects on neurite growth, cell viability, neuronal apoptosis and neuronal phenotypes in DRG neurons with PT-induced neurotoxicity is still unclear. In this study, primary cultured rat DRG neurons were used to assess the effects of IGF-1 on DRG neurons with PT-induced neurotoxicity. The results showed that PT exposure caused neurite retraction in a dose-dependent manner. PT exposure caused a decrease of cell viability and an increase in the ratio of apoptotic cells which could be reversed by IGF-1. The percentage of calcitonin gene-related peptide immunoreactive (CGRP-IR) neurons and neurofilament (NF)-200-IR neurons, mRNA, and protein levels of CGRP and NF-200 decreased significantly after treatment with PT. IGF-1 administration had protective effects on CGRP-IR neurons, but not on NF-200-IR neurons. Either extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 or phosphatidylinositol 3-kinase (PI3 K) inhibitor LY294002 blocked the effect of IGF-1. The results imply that IGF-1 may attenuate apoptosis to improve neuronal cell viability and promote neurite growth of DRG neurons with PT-induced neurotoxicity. Moreover, these results support an important neuroprotective role of exogenous IGF-1 on distinct subpopulations of DRG neurons which is responsible for skin sensation. The effects of IGF-1 might be through ERK1/2 or PI3 K/Akt signaling pathways. These findings provide experimental evidence for IGF-1 administration to alleviate neurotoxicity of distinct subpopulations of DRG neurons induced by PT.

  11. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  12. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ying; Tsinghua University School of Medicine, Haidian District, Beijing 100084; Yang, Shi-gao

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phasesmore » of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.« less

  13. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice.

    PubMed

    Mendieta, Liliana; Granado, Noelia; Aguilera, José; Tizabi, Yousef; Moratalla, Rosario

    2016-08-01

    The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  14. Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy.

    PubMed

    Prasad, Sathya N; Muralidhara

    2012-10-01

    Acrylamide (ACR) intoxication in its monomeric form leads to neuronal damage in both experimental animals and humans. Oxidative stress is one of the principle mechanisms related to the neurotoxicity of ACR exposure. Hence, the present study aimed to recapitulate the potential of ACR to cause oxidative stress and neurotoxic effects in Drosophila melanogaster. Exposure of adult male flies (Oregon K strain) to ACR (1-10 mM, 7 d) in the diet resulted in a concentration and time dependent mortality, while the survivors exhibited significant locomotor deficits. Further, ACR exposure (1-5 mM, 3 d) caused robust oxidative stress as evidenced by markedly elevated levels of reactive oxygen species and hypdroperoxides in head/body regions. Enhanced lipid peroxidation, perturbations in the activities of antioxidant enzymes accompanied with depletion of reduced glutathione levels in head region at high concentrations suggested induction of oxidative stress. Further, marked diminution in the activities of complexes I-III, Succinic dehydrogenase, with concomitant reduction in MTT suggested the propensity of ACR to impair mitochondrial function. Furthermore, ACR-induced neurotoxic effects were discernible in terms of diminished ATPase activity, enhanced activity of acetylcholinesterase and dopamine depletion. In a satellite study, employing a co-exposure paradigm, we tested the propensity of spice actives namely eugenol (EU) and isoeugenol (IE) to ameliorate ACR-induced neurotoxicity. EU/IE enriched diet offered marked protection against ACR-induced mortality, locomotor dysfunctions and oxidative stress. Furthermore, the spice actives prevented the depletion of reduced GSH levels, maintained the activity of AChE enzyme and dopamine levels in head region. Collectively, these findings clearly demonstrate that ACR induced neurotoxicity in Drosophila may be mediated through oxidative stress mechanisms and the potential of spice actives to abrogate the condition. These data suggest

  15. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less

  16. Levetiracetam selectively potentiates the acute neurotoxic effects of topiramate and carbamazepine in the rotarod test in mice.

    PubMed

    Luszczki, Jarogniew J; Andres, Marta M; Czuczwar, Piotr; Cioczek-Czuczwar, Anna; Wojcik-Cwikla, Joanna; Ratnaraj, Neville; Patsalos, Philip N; Czuczwar, Stanislaw J

    2005-12-01

    The effect of levetiracetam (LEV) on the acute neurotoxic profiles of various antiepileptic drugs (carbamazepine [CBZ], phenytoin [PHT], phenobarbital [PB], valproate [VPA], lamotrigine [LTG], topiramate [TPM], oxcarbazepine [OXC], and felbamate [FBM]) was evaluated in the rotarod test, allowing the determination of median toxic doses (TD50 values) with respect to impairment of motor coordination in mice. The TD50 of LEV administered singly was 1601 mg/kg. Whilst LEV at 150 mg/kg, being its TID50 (a dose increasing the electroconvulsive threshold by 50%), was without effect with regards to motor coordination impairment associated with PHT, PB, VPA, LTG, OXC, and FBM, it significantly enhanced that associated with CBZ and TPM co-administration. Thus LEV (150 mg/kg) significantly decreased the TD50 of CBZ from 53.6 to 37.3 mg/kg (P<0.01) and that of TPM from 423 to 246 mg/kg (P<0.01). In addition LEV (75 mg/kg) significantly decreased the TD50 of TPM from 423 to 278 (P<0.01). That concurrent measurement of total brain LEV, CBZ, and TPM concentrations showed that concentrations were not significantly different when AEDs were administered singly compared to when they were administered in combination would suggest that there is no pharmacokinetic interaction between these AEDs. Thus, the observed potentialization of the acute neurotoxic effects of CBZ and TPM by LEV is the consequence of a pharmacodynamic interaction. These data support both experimental and clinical published data advocating that LEV may interact with some AEDs by pharmacodynamic mechanisms.

  17. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A Case of Neurotoxicity Following 5-Fluorouracil-based Chemotherapy

    PubMed Central

    Ki, Seung Seog; Jeong, Jin Mo; Kim, Seong Ho; Jeong, Sook Hyang; Lee, Jin Hyuk; Han, Chul Ju; Kim, You Cheol; Lee, Jhin Oh; Hong, Young Joon

    2002-01-01

    5-Fluorouracil (5-FU) is a commonly used chemotherapeutic agent. However, its neurotoxicity is rare and not well recognized. We report a case of 5-FU neurotoxicity with organic brain syndrome and progression to multifocal leukoencephalopathy in a 44-year-old male patient having malignant gastrointestinal stromal tumor. 5-FU-induced neurotoxicity should, therefore, be considered as an important differential diagnosis in cancer patients with neurological abnormality and history of chemotherapy. PMID:12014219

  19. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik; Kassa, Jiri

    2011-02-01

    These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.

  20. The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro.

    PubMed

    Lu, Lin; Dong, Haixia; Liu, Guixiang; Yuan, Bin; Li, Yizhao; Liu, Huaxiang

    2014-11-01

    Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC (50 μmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC (50 μmol/L) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (>25 μm), whereas ddC mainly affected small diameter DRG neurons (≤25 μm). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies.

  1. The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro

    PubMed Central

    Lu, Lin; Dong, Haixia; Liu, Guixiang; Yuan, Bin; Li, Yizhao; Liu, Huaxiang

    2014-01-01

    Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC (50 μmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC (50 μmol/L) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (>25 μm), whereas ddC mainly affected small diameter DRG neurons (≤25 μm). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies. PMID:25489421

  2. Acute neurotoxicity after yohimbine ingestion by a body builder.

    PubMed

    Giampreti, Andrea; Lonati, Davide; Locatelli, Carlo; Rocchi, Loretta; Campailla, Maria Teresa

    2009-09-01

    Yohimbine is an alkaloid obtained from the Corynanthe yohimbe tree and other biological sources. Yohimbine is currently approved in the United States for erectile dysfunction and has undergone resurgence in street use as an aphrodisiac and mild hallucinogen. In recent years yohimbine use has become common in body-building communities for its presumed lipolytic and sympathomimetic effects. We describe a 37-year-old bodybuilder in which severe acute neurotoxic effects occurred in 2 h after yohimbine ingestion. The patient presented with malaise, vomiting, loss of consciousness, and repeated seizures after ingestion of 5 g of yohimbine during a body-building competition in a gymnasium. His Glasgow Coma Score was 3, requiring orotracheal intubation. Two hours after admission, vital signs were blood pressure 259/107 mmHg and heart rate 140 beats/min. Treatment with furosemide, labetalol, clonidine, and urapidil and gastrointestinal decontamination were performed. Twelve hours later the patient was extubated with normal hemodynamic parameters and neurological examination. The yohimbine blood levels at 3, 6, 14, and 22 h after ingestion were 5,240; 2,250; 1,530; and 865 ng/mL, respectively, with a mean half-life of 2 h. Few data are available about yohimbine toxicity and the related blood levels. This is a case of a large ingestion of yohimbine in which severe hemodynamic and neurological manifestations occurred and elevated blood levels of yohimbine were detected.

  3. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca(2+), Cl(-), DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  4. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    PubMed

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  5. Age-related differences in neurotoxicity produced by organophosphorus and N-methyl carbamate pesticides

    EPA Science Inventory

    Potential pesticide effects in infants and toddlers have received much attention in the scientific literature and the public media, including the concern for increased response to acute or shortterm exposures. Age-related differences in the acute neurotoxicity of acetylcholinest...

  6. Assessment of Styrene Oxide Neurotoxicity Using In Vitro Auditory Cortex Networks

    PubMed Central

    Gopal, Kamakshi V.; Wu, Calvin; Moore, Ernest J.; Gross, Guenter W.

    2011-01-01

    Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical “protection” by 40 μM bicuculline suggests binding of SO to GABA receptors. PMID:23724250

  7. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  8. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    PubMed

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    PubMed

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  10. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    PubMed Central

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  11. Evidence for hydroxyl radical scavenging action of nitric oxide donors in the protection against 1-methyl-4-phenylpyridinium-induced neurotoxicity in rats.

    PubMed

    Banerjee, Rebecca; Saravanan, Karuppagounder S; Thomas, Bobby; Sindhu, Kizhake M; Mohanakumar, Kochupurackal P

    2008-06-01

    In the present study we provide evidence for hydroxyl radical (*OH) scavenging action of nitric oxide (NO*), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO* donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro *OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced *OH production in the mitochondria. We also tested whether co-administration of NO* donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced *OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in *OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO*, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of *OH in the nigrostriatal degeneration caused by MPP+, indicate the *OH scavenging ability of NO*, and demonstrate protection by NO* donors against MPP+-induced dopaminergic neurotoxicity in rats.

  12. Mitochondrial dysfunction contribute to diabetic neurotoxicity induced by streptozocin in mice: protective effect of Urtica dioica and pioglitazone.

    PubMed

    Shokrzadeh, Mohammad; Mirshafa, Atefeh; Yekta Moghaddam, Niusha; Birjandian, Behnoosh; Shaki, Fatemeh

    2018-04-18

    Uncontrolled chronic hyperglycemia in diabetic patients could result in various complications, including neurotoxicity. Urtica dioica L. (UD) is known for its hypoglycemic and antioxidant effects. In this study, we evaluated the efficacy of UD and pioglitazone (PIO) in reduction of neurotoxicity and oxidative stress in streptozocin-induced diabetic mice. Male mice were divided into seven groups: control, diabetic, dimethyl sulfoxide-treated control, PIO-treated, UD-treated, UD-PIO-treated, and vitamin E-treated. For induction of diabetes, streptozocin was injected in a single dose (65 mg/kg, i.p.). All treatments were performed for 5 weeks. Neurotoxicity was evaluated through hot plate and formalin test. Then, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated with different centrifuge technique. Also, oxidative stress markers (reactive oxygen species, lipid peroxidation, protein carbonyl, glutathione) were measured in brain. Mitochondrial function was evaluated by MTT test in brain isolated mitochondria. Elevation of oxidative stress markers and mitochondrial damage were observed in diabetic mice compared to control group. Administration of PIO and UD ameliorated the oxidative stress and mitochondrial damage (p < 0.05) in diabetic mice. Also increase in pain score was shown in diabetic mice that treatment with UD and PIO diminished elevation of pain score in diabetic mice. Interestingly, simultaneous administration of PIO and UD showed synergism effect in attenuation of oxidative stress and hyperglycemia. UD showed a therapeutic potential for the attenuation of oxidative stress and diabetes-induced hyperglycemia that can be considered as co-treatment in treatment of diabetic neurotoxicity.

  13. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology.

    PubMed

    Li, Zeyan; Wang, Hui; Wang, Qian; Sun, Jinhao

    2016-12-01

    Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.

  14. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity.

    PubMed

    Wu, Beiqing; Huang, Yunlong; Braun, Alexander L; Tong, Zenghan; Zhao, Runze; Li, Yuju; Liu, Fang; Zheng, Jialin C

    2015-11-06

    HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate. MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs. These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.

  15. Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons.

    PubMed

    Yu, Zhanyang; Zhang, Yu; Liu, Ning; Yuan, Jing; Lin, Li; Zhuge, Qichuan; Xiao, Jian; Wang, Xiaoying

    2016-07-01

    Neuroglobin (Ngb) is a tissue globin specifically expressed in brain neurons. Recent studies by our laboratory and others have demonstrated that Ngb is protective against stroke and related neurological disorders, but the mechanisms remain poorly understood. We previously identified cytochrome c1 (Cyc1) as an Ngb-interacting molecule by yeast two-hybrid screening. Cyc1 is a subunit of mitochondria complex III, which is a component of mitochondrial respiratory chain and a major source of reactive oxygen species (ROS) production under both physiological and pathological conditions. In this study, we for the first time defined Ngb-Cyc1 binding, and investigated its roles in oxygen-glucose deprivation (OGD)/reoxygenation-induced neurotoxicity and ROS production in primary neurons. Immunocytochemistry and co-immunoprecipitation validated Ngb-Cyc1 binding, which was significantly increased by OGD and Ngb overexpression. We found 4 h OGD with/without 4 h reoxygenation significantly increased complex III activity, but this activity elevation was significantly attenuated in three groups of neurons: Ngb overexpression, specific complex III inhibitor stigmatellin, or stigmatellin plus Ngb overexpression, whereas there was no significant differences between these three groups, suggesting Ngb-Cyc1 binding may function in suppressing OGD-mediated complex III activity elevation. Importantly, these three groups of neurons also showed significant decreases in OGD-induced superoxide anion generation and neurotoxicity. These results suggest that Ngb can bind to mitochondrial complex III subunit Cyc1, leading to suppression of OGD-mediated complex III activity and subsequent ROS production elevation, and eventually reduction of OGD-induced neurotoxicity. This molecular signaling cascade may be at least part of the mechanisms of Ngb neuroprotection against OGD-induced neurotoxicity.

  16. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  17. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds.

    PubMed

    Voorhees, Jaymie R; Rohlman, Diane S; Lein, Pamela J; Pieper, Andrew A

    2016-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.

  18. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    PubMed Central

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  19. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum.

    PubMed

    Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A

    2014-08-01

    Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced

  20. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS PHARMACOLOGICALLY EVOKED DOPAMINE TRANSIENTS IN THE DORSOMEDIAL AND DORSOLATERAL STRIATUM

    PubMed Central

    Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.

    2014-01-01

    Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced

  1. Expression and Activity of Nitric Oxide Synthase Isoforms in Methamphetamine-Induced Striatal Dopamine Toxicity

    PubMed Central

    Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.

    2013-01-01

    Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214

  2. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P-diphtheria toxoid conjugate.

    PubMed

    Schellenberger, Mario T; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Schroeder, Henri; Muller, Claude P

    2013-09-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P-DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  4. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment

    PubMed Central

    2013-01-01

    Background In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Methods Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. Results We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Conclusions Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD). PMID:24134394

  5. Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice.

    PubMed

    Iqbal, Ramsha; Jain, Gaurav K; Siraj, Fouzia; Vohora, Divya

    2018-07-01

    Evidence shows neurosteroids play a key role in regulating epileptogenesis. Neurosteroids such as testosterone modulate seizure susceptibility through its transformation to metabolites which show proconvulsant and anticonvulsant effects, respectively. Reduction of testosterone by aromatase generates proconvulsant 17-β estradiol. Alternatively, testosterone is metabolized into 5α-dihydrotestosterone (5α-DHT) by 5α-reductase, which is then reduced by 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR) to form anticonvulsant metabolite 3α-androstanediol (3α-Diol), a potent GABA A receptor modulating neurosteroid. The present study evaluated whether inhibition of aromatase inhibitor letrozole protects against seizures and neuronal degeneration induced by kainic acid (KA) (10 mg/kg, i.p.) in Swiss albino mice. Letrozole (1 mg/kg, i.p.) administered one hour prior to KA significantly increased the onset time of seizures and reduced the% incidence of seizures. Pretreatment with finasteride, a selective inhibitor of 5α-reductase and indomethacin, a selective inhibitor of 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR), reversed the protective effects of letrozole in KA-induced seizures in mice. Microscopic examination using cresyl violet staining revealed that letrozole did not modify KA-induced neurotoxicity in the CA1, CA3 and DG region of the hippocampus. Letrozole treatment resulted in the reduced levels of 17-β estradiol and elevated the levels of 5α-dihydrotestosterone (DHT) and 3α-Diol in the hippocampus. Finasteride and indomethacin attenuated letrozole-induced elevations of 5α-DHT and 3α-Diol. Our results indicate the potential anticonvulsant effects of letrozole against KA-induced seizures in mice that might be mediated by inhibiting aromatization of testosterone to 17β-estradiol, a proconvulsant hormone and by redirecting the synthesis to anticonvulsant metabolites, 5α-DHT and 3α-Diol. Acute aromatase inhibition, thus, might be used as an

  6. Fish oil protects the peripheral and central nervous systems against cisplatin-induced neurotoxicity.

    PubMed

    Kamisli, Suat; Ciftci, Osman; Cetin, Asli; Kaya, Kursat; Kamisli, Ozden; Celik, Hamit

    2014-04-01

    The protective effects of fish oil (FO) on cisplatin (CP)-induced central and peripheral neurotoxicity were investigated in rats. Rats (n = 28) were divided equally into four groups, the first group was kept as a control. In the second and third groups, CP and FO were given at doses of 7 mg/kg and 1 softgel/rat/day, respectively. In the fourth group, CP and FO were given together at the same doses. Although CP caused significant oxidative damage, via induction of lipid peroxidation and reduction in the antioxidant defense system potency, FO treatment largely reversed these effects. CP also resulted in histopathological damage, such as apoptosis, and electromyographical changes in the sciatic nerve. FO treatment partially prevented the histopathological and electromyographical effects of CP. CP has severe central and peripheral neurotoxic effects in rats and these effects were largely prevented by FO treatment. Thus, it appears that co-administration of FO with CP may be a useful approach to attenuate the negative effects of CP on the nervous system.

  7. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures.

    PubMed

    Duarte, Daniel J; Rutten, Joost M M; van den Berg, Martin; Westerink, Remco H S

    2017-03-01

    Exposure to tricresyl phosphates (TCPs), via for example contaminated cabin air, has been associated with health effects including the so-called aerotoxic syndrome. While TCP neurotoxicity is mainly attributed to ortho-isomers like tri-ortho-cresyl phosphate (ToCP), recent exposure and risk assessments indicate that ToCP levels in cabin air are very low. However, the neurotoxic potential of non-ortho TCP isomers and TCP mixtures is largely unknown. We therefore measured effects of exposure (up to 48h) to different TCP isomers, mixtures and the metabolite of ToCP (CBDP: cresyl saligenin phosphate) on cell viability and mitochondrial activity, spontaneous neuronal electrical activity, and neurite outgrowth in primary rat cortical neurons. The results demonstrate that exposure to TCPs (24-48h, up to 10μM) increases mitochondrial activity, without affecting cell viability. Effects of acute TCP exposure (30min) on neuronal electrical activity are limited. However, electrical activity is markedly decreased for the majority of TCPs (10μM) following 48h exposure. Additional preliminary data indicate that exposure to TCPs (48h, 10μM) did not affect the number of neurites per cell or average neurite length, except for TmCP and the analytical TCP mixture (Sigma) that induced a reduction of average neurite length. The combined neurotoxicity data demonstrate that the different TCPs, including ToCP, are roughly equipotent and a clear structure-activity relation is not apparent for the studied endpoints. The no-observed-effect-concentrations (1μM) are well above current exposure levels indicating limited neurotoxic health risk, although exposures may have been higher in the past. Moreover, prolonged and/or repeated exposure to TCPs may exacerbate the observed neurotoxic effects, which argues for additional research. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Glial activation and post-synaptic neurotoxicity: the key events in Streptozotocin (ICV) induced memory impairment in rats.

    PubMed

    Rai, Shivika; Kamat, Pradeep K; Nath, Chandishwar; Shukla, Rakesh

    2014-02-01

    In the present study the role of glial activation and post synaptic toxicity in ICV Streptozotocin (STZ) induced memory impaired rats was explored. In experiment set up 1: Memory deficit was found in Morris water maze test on 14-16 days after STZ (ICV; 3mg/Kg) administration. STZ causes increased expression of GFAP, CD11b and TNF-α indicating glial activation and neuroinflammation. STZ also significantly increased the level of ROS, nitrite, Ca(2+) and reduced the mitochondrial activity in synaptosomal preparation illustrating free radical generation and excitotoxicity. Increased expression and activity of Caspase-3 was also observed in STZ treated rat which specify apoptotic cell death in hippocampus and cortex. STZ treatment showed decrease expression of post synaptic markers CaMKIIα and PSD-95, while, expression of pre synaptic markers (synaptophysin and SNAP-25) remains unaltered indicating selective post synaptic neurotoxicity. Oral treatment with Memantine (10mg/kg) and Ibuprofen (50 mg/kg) daily for 13 days attenuated STZ induced glial activation, apoptotic cell death and post synaptic neurotoxicity in rat brain. Further, in experiment set up 2: where memory function was not affected i.e. 7-9 days after STZ treatment. The level of GFAP, CD11b, TNF-α, ROS and nitrite levels were increased. On the other hand, apoptotic marker, synaptic markers, mitochondrial activity and Ca(2+) levels remained unaffected. Collective data indicates that neuroinflammatory process and oxidative stress occurs earlier to apoptosis and does not affect memory function. Present study clearly suggests that glial activation and post synaptic neurotoxicity are the key factors in STZ induced memory impairment and neuronal cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Modeling Chemotherapeutic Neurotoxicity with Human Induced Pluripotent Stem Cell-Derived Neuronal Cells

    PubMed Central

    Wheeler, Heather E.; Wing, Claudia; Delaney, Shannon M.; Komatsu, Masaaki; Dolan, M. Eileen

    2015-01-01

    There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN), the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs) as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05). The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011). The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05), demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN. PMID:25689802

  10. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation.

    PubMed

    Huang, Tai-Chun; Lu, Kwok-Tung; Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β-amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production.

  11. Resveratrol Protects Rats from Aβ-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation

    PubMed Central

    Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β–amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production. PMID:22220203

  12. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway.

    PubMed

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-12-11

    Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on

  13. [Neurological syndromes linked with the intake of plants and fungi containing a toxic component (I). Neurotoxic syndromes caused by the ingestion of plants, seeds and fruits].

    PubMed

    Carod-Artal, F J

    A wide range of plants, seeds and fruits used for nutritional and medicinal purposes can give rise to neurotoxic symptoms. We review the neurological pathology associated with the acute or chronic consumption of plants, seeds and fruits in human beings and in animals. Of the plants that can trigger acute neurotoxic syndromes in humans, some of the most notable include Mandragora officinalis, Datura stramonium, Conium maculatum (hemlock), Coriaria myrtifolia (redoul), Ricinus communis, Gloriosa superba, Catharanthus roseus, Karwinskia humboldtiana and Podophyllum pelatum. We also survey different neurological syndromes linked with the ingestion of vegetable foodstuffs that are rich in cyanogenic glycosides, Jamaican vomiting sickness caused by Blighia sapida, Parkinson dementia ALS of Guam island and exposition to Cycas circinalis, Guadeloupean parkinsonism and exposition to Annonaceae, konzo caused by ingestion of wild manioc and neurolathyrism from ingestion of Lathyrus sativus, the last two being models of motor neurone disease. Locoism is a chronic disease that develops in livestock feeding on plants belonging to Astragalus and Oxytropis sp., Sida carpinifolia and Ipomea carnea, which are rich in swainsonine, a toxin that inhibits the enzyme alpha mannosidase and induces a cerebellar syndrome. The ingestion of neurotoxic seeds, fruits and plants included in the diet and acute poisoning by certain plants can give rise to different neurological syndromes, some of which are irreversible.

  14. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    PubMed

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate

  15. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  16. Nonacetaminophen Drug-Induced Acute Liver Failure.

    PubMed

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor

    PubMed Central

    Olmos, Gabriel; DeGregorio-Rocasolano, Nuria; Regalado, M Paz; Gasull, Teresa; Boronat, M Assumpció; Trullas, Ramón; Villarroel, Alvaro; Lerma, Juan; García-Sevilla, Jesús A

    1999-01-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells.Exposure (30 min) of energy deprived cells to L-glutamate (1–100 μM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 μM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine).Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 μM (EC100) L-glutamate with the rank order (EC50 in μM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole] (101)>RX821002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors.Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding.In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10–12 μM at 0 mV.It is concluded that imidazol(ine) drugs and agmatine are

  18. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    PubMed Central

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  19. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    PubMed

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  1. Manganese-Induced Neurotoxicity and Alterations in Gene Expression in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi

    2018-06-01

    Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.

  2. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    PubMed

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  3. Elucidating the neurotoxic effects of MDMA and its analogs.

    PubMed

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    PubMed

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for

  5. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    PubMed

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the

  6. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA): regulation by CB2 receptors and implications for neurotoxicity

    PubMed Central

    2011-01-01

    Background 3,4-Methylenedioxymethamphetamine (MDMA) produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β) and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra) levels and IL-1 receptor type I (IL-1RI) expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI) and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p.) and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p.) was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v.) was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity. PMID:21595923

  7. MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology.

    PubMed

    Mercer, Linda D; Higgins, Gavin C; Lau, Chew L; Lawrence, Andrew J; Beart, Philip M

    2017-05-01

    Toxicity of 3,4-methylenedioxymethamphetamine (MDMA) towards biogenic amine neurons is well documented and in primate brain predominantly affects serotonin (5-HT) neurons. MDMA induces damage of 5-HT axons and nerve fibres and intracytoplasmic inclusions. Whilst its pathobiology involves mitochondrially-mediated oxidative stress, we hypothesised MDMA possessed the capacity to activate autophagy, a proteostatic mechanism for degradation of cellular debris. We established a culture of ventral pons from embryonic murine brain enriched in 5-HT neurons to explore mechanisms of MDMA neurotoxicity and recruitment of autophagy, and evaluated possible neuroprotective actions of the clinically approved agent rilmenidine. MDMA (100 μM-1 mM) reduced cell viability, like rapamycin (RM) and hydrogen peroxide (H 2 O 2 ), in a concentration- and time-dependent manner. Immunocytochemistry revealed dieback of 5-HT arbour: MDMA-induced injury was slower than for RM and H 2 O 2 , neuritic blebbing occurred at 48 and 72 h and Hoechst labelling revealed nuclear fragmentation with 100 μM MDMA. MDMA effected concentration-dependent inhibition of [ 3 H]5-HT uptake with 500 μM MDMA totally blocking transport. Western immunoblotting for microtubule associated protein light chain 3 (LC3) revealed autophagosome formation after treatment with MDMA. Confocal analyses and immunocytochemistry for 5-HT, Hoechst and LC3 confirmed MDMA induced autophagy with abundant LC3-positive puncta within 5-HT neurons. Rilmenidine (1 μM) protected against MDMA-induced injury and image analysis showed full preservation of 5-HT arbours. MDMA had no effect on GABA neurons, indicating specificity of action at 5-HT neurons. MDMA-induced neurotoxicity involves autophagy induction in 5-HT neurons, and rilmenidine via beneficial actions against toxic intracellular events represents a potential treatment for its pathobiology in sustained usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice.

    PubMed

    Shin, Eun-Joo; Dang, Duy-Khanh; Tran, Hai-Quyen; Nam, Yunsung; Jeong, Ji Hoon; Lee, Young Hun; Park, Kyung Tae; Lee, Yong Sup; Jang, Choon-Gon; Hong, Jau-Shyong; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-11-01

    Para-methoxymethamphetamine (PMMA) is a para-ring-substituted amphetamine derivative sold worldwide as an illegal psychotropic drug. Although PMMA use has been reported to lead to severe intoxication and even death, little is known about the mechanism(s) by which PMMA exerts its neurotoxic effects. Here we found that PMMA treatment resulted in phosphorylation of protein kinase Cδ (PKCδ) and subsequent mitochondrial translocation of cleaved PKCδ. PMMA-induced oxidative stress was more pronounced in mitochondria than in the cytosol. Moreover, treatment with PMMA consistently resulted in significant reductions in mitochondrial membrane potential, mitochondrial complex I activity, and mitochondrial Mn superoxide dismutase-immunoreactivity. In contrast, PMMA treatment led to a significant increase in intramitochondrial Ca 2+ level. Treatment with PMMA also significantly increased ionized calcium binding adaptor molecule 1 (Iba-1)-labeled microglial activation and upregulated tumor necrosis factor alpha (TNF-α) gene expression. PKCδ knockout attenuated these mitochondrial effects and dampened the neurotoxic effects of PMMA. Importantly, TNF-α knockout mice were significantly protected from PMMA-induced increases in phospho-PKCδ expression, mitochondrial translocation of cleaved PKCδ, and Iba-1-labeled microgliosis. Both rottlerin, a pharmacological inhibitor of PKCδ, and etanercept, a pharmacological inhibitor of TNF-α, significantly protected against PMMA-mediated induction of apoptosis, as assessed by terminal deoxynucleotidyl transferase dUDP nick end labeling (TUNEL) assays. In addition, PKCδ knockout and TNF-α knockout both resulted in decreased PMMA-mediated induction of dopaminergic loss. Therefore, our results suggest that PKCδ mediates PMMA-induced neurotoxicity by facilitating oxidative stress (mitochondria > cytosol), mitochondrial dysfunction, microglial activation, and pro-apoptotic signaling. Our results also indicate that PMMA-induced PKC

  9. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells.

    PubMed

    Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong

    2018-04-23

    Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity induced by Aβ1-42.

    PubMed

    Zhao, Zhiwei; Dong, Zhanfei; Ming, Jie; Liu, Yan

    2018-06-01

    Alzheimer's disease is a severe neurodegenerative disease affecting elder worldwide and closely related to the neurotoxicity induced by amyloid β. To find efficient therapeutics, we have investigated the protective effects of cedrin from Cedrus deodara (Roxb.) G. Don on PC12 cells against the neurotoxicity induced by amyloid β 1-42 . The results have shown the viability of PC12 cells injured by amyloid β 1-42 can be improved by cedrin. Cedrin can reduce reacrive oxygen species overproduction, increase the activity of superoxide dismutase and decrease malondialdehyde content. Meanwhile, the loss of mitochondrial membrane potential and mitochondrial permeability transition pore opening in PC12 cells, and elevated Caspase-3 activity, downregulated Bcl-2 and upregulated Bax are meliorated. These results demonstrate the protective effect of cedrin is related to the inhibition of oxidative stress, improvement of mitochondrial dysfunction and suppression of apoptosis. This investigation gives evidences for the application of cedrin in practice and further investigation in vivo.

  11. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy.

    PubMed

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-11-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy. © FASEB.

  12. THE MUSCARINIC ANTAGONIST SCOPOLAMINE ATTENUATES CHLORPYRIFOS INDUCED HYPOTHERMIA IN THE DEVELOPING RAT.

    EPA Science Inventory

    Chlorpyrifos (CHP), an anticholinesterase organophosphate (OP) pesticide, induces acute hypothermia in adult and developing rats. Previously we demonstrated that thermoregulation in preweanling pups is markedly more sensitive to the neurotoxic effects of CHP than in adults. The c...

  13. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS NATURALLY OCCURRING PHASIC DOPAMINE SIGNALING

    PubMed Central

    Howard, Christopher D.; Daberkow, David P.; Ramsson, Eric S.; Keefe, Kristen A.; Garris, Paul A.

    2013-01-01

    Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson’s disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, prior studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called “spontaneous” phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these sub-second DA changes may play a role in enhancing reward-cue associations. METH-pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits. PMID:23574406

  14. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measuredmore » using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS

  15. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway.

    PubMed

    Yue, Rongcai; Li, Xia; Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations.

  16. The newly identified K+ channel blocker talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons.

    PubMed

    Wang, Yanxia; Song, Mingke; Hou, Lina; Yu, Zhihua; Chen, Hongzhuan

    2012-06-19

    Loss of cytosolic K(+) through up-regulated delayed rectifier K(+) channels play an important role in beta-amyloid (Aβ) induced neurotoxicity. Potent K(+) channel blocker, particular specific for I(K) channels has been suggested as an attractive candidate for the treatment of Alzheimer's disease (AD). Talatisamine is a novel I(K) channel blocker discovered by virtual screening and electrophysiological characterization. In the present study, we examined the neuroprotective effect of talatisamine against Aβ oligomers induced cytotoxicity in primarily cultured cortical neurons. The neurotoxicity related to K(+) loss caused by Aβ40 oligomers included enhanced I(K) density, increased cell membrane permeability, reduced cell viability, and impaired mitochondrial transmembrane potential. Decreased Bcl-2 and increased Bax level, activation of Caspase-3 and Caspase-9 were also observed after Aβ40 oligomers incubation. Talatisamine (120 μM) and TEA (5mM) inhibited the enhanced I(K) caused by Aβ40 oligomers, attenuated cytotoxicity of Aβ oligomers by restoring cell viability and suppressing K(+) loss related apoptotic response. Our results suggested that talatisamine may become a leading compound as I(K) channel blocker for neuroprotection. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.

    PubMed

    Pizzi, M; Consolandi, O; Memo, M; Spano, P

    1995-03-14

    Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.

  18. Neuroprotective effects of sodium hydrosulfide against β-amyloid-induced neurotoxicity

    PubMed Central

    Li, Xiao-Hui; Deng, Yuan-Yuan; Li, Fei; Shi, Jing-Shan; Gong, Qi-Hai

    2016-01-01

    Alzheimer's disease (AD) is known to be caused by the accumulation of amyloid-β peptide (Aβ). The accumulation of Aβ has been shown to cause learning and memory impairment in rats, and it has been shown that hydrogen sulfide donors, such as sodium hydrosulfide (NaHS) can attenuate these effects. However, the underlying mechanisms have not yet been fully eludicated. This study was designed to investigate whether NaHS attenuates the inflammation and apoptosis induced by Aβ. We demonstrated that NaHS attenuated Aβ25–35-induced neuronal reduction and apoptosis, and inhibited the activation of pro-caspase-3. It also decreased the protein expresion of phosphodiesterase 5 (PDE5) in the hippocampus of the rats. In addition, NaHS upregulated the expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, but it did not affect the expression of PPAR-β. Moreover, the Aβ25–35-exposed rats exhibited a decrease in IκB-α degradation and an increase in nuclear factor-κB (NF-κB) p65 phosphorylation levels, whereas these effects were attenuated by NaHS. Our data suggest that NaHS prevents Aβ-induced neurotoxicity via the upregulation of PPAR-α and PPAR-γ and the inhibition of PDE5. Hence NaHS may prove to be beneficial in the treatment of AD. PMID:27511125

  19. ANALYSIS OF THE MOTOR NEUROTOXICITY INDUCED BY ACUTE ORAL EXPOSURE TO MULTIPLE PYRETHROID COMPOUNDS IN THE RAT USING AN ADDITIVITY MODEL.

    EPA Science Inventory

    Use of pyrethroids has increased in the last decade, and co-exposure to multiple pyrethroids has been reported in humans. Pyrethroids produce neurotoxicity in mammals at dosages far below those producing lethality. The Food Quality Protection Act requires the EPA to consider cumu...

  20. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.

    PubMed

    Thomas, David M; Dowgiert, Jennifer; Geddes, Timothy J; Francescutti-Verbeem, Dina; Liu, Xiuli; Kuhn, Donald M

    2004-09-09

    Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.

  1. Amphetamine-metabolites of deprenyl involved in protection against neurotoxicity induced by MPTP and 2'-methyl-MPTP.

    PubMed

    Sziráki, I; Kardos, V; Patthy, M; Pátfalusi, M; Gaál, J; Solti, M; Kollár, E; Singer, J

    1994-01-01

    The ability of 1-deprenyl to protect against the parkinsonian effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been attributed to the inhibition of conversion of MPTP to MPP+ (1-methyl-4-phenylpyridinium) catalyzed by MAO-B. We report here that deprenyl-treatment in mice has an additional neuroprotective element associated with the rapid metabolization of 1-deprenyl to 1-methamphetamine and 1-amphetamine. 1-Methamphetamine and 1-amphetamine inhibit MPP(+)-uptake into striatal synaptosomes prepared from rats. Post-treatment by 1-deprenyl, 1-methamphetamine, 1-amphetamine (at times when MPTP is no longer present in the striatum of mice) protects against neurotoxicity in C57BL mice by blocking the uptake of MPP+ into dopaminergic neurons, and even against the neurotoxicity induced by 2'CH3-MPTP, which is partly bioactivated by MAO-A. These findings may have clinical implications since deprenyl has recently been found to delay the progression of Parkinson's disease.

  2. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    PubMed

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  3. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  4. Clinical Course of Oxaliplatin-Induced Neuropathy: Results From the Randomized Phase III Trial N08CB (Alliance)

    PubMed Central

    Pachman, Deirdre R.; Qin, Rui; Seisler, Drew K.; Smith, Ellen M.L.; Beutler, Andreas S.; Ta, Lauren E.; Lafky, Jacqueline M.; Wagner-Johnston, Nina D.; Ruddy, Kathryn J.; Dakhil, Shaker; Staff, Nathan P.; Grothey, Axel; Loprinzi, Charles L.

    2015-01-01

    Purpose Given that the clinical course of oxaliplatin-induced neuropathy is not well defined, the current study was performed to better understand clinical parameters associated with its presentation. Methods Acute and chronic neuropathy was evaluated in patients receiving adjuvant FOLFOX (fluorouracil, leucovorin, and oxaliplatin) on study N08CB (North Central Cancer Treatment Group, Alliance). Acute neuropathy was assessed by having patients complete daily questionnaires for 6 days with each cycle of FOLFOX. Before each dose of FOLFOX and as long as 18 months after chemotherapy cessation, chronic neurotoxicity was assessed with use of the 20-item, European Organisation for Research and Treatment of Cancer quality-of-life questionnaire for patients with chemotherapy-induced peripheral neuropathy. Results Three hundred eight (89%) of the 346 patients had at least one symptom of acute neuropathy with the first cycle of FOLFOX; these symptoms included sensitivity to touching cold items (71%), sensitivity to swallowing cold items (71%), throat discomfort (63%), or muscle cramps (42%). Acute symptoms peaked at day 3 and improved, although they did not always resolve completely between treatments. These symptoms were about twice as severe in cycles 2 through 12 as they were in cycle 1. For chronic neurotoxicity, tingling was the most severe symptom, followed by numbness and then pain. During chemotherapy, symptoms in the hands were more prominent than they were in the feet; by 18 months, symptoms were more severe in the feet than they were in the hands. Patients with more severe acute neuropathy during the first cycle of therapy experienced more chronic sensory neurotoxicity (P < .0001). Conclusion Acute oxaliplatin-induced neuropathy symptoms do not always completely resolve between treatment cycles and are only half as severe on the first cycle as compared with subsequent cycles. There is a correlation between the severities of acute and chronic neuropathies. PMID

  5. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    PubMed

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  6. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  8. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity.

    PubMed

    Cetin, Damla; Hacımuftuoglu, Ahmet; Tatar, Abdulgani; Turkez, Hasan; Togar, Basak

    2016-08-01

    Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.

  9. Hospital-based surveillance for acute pesticide poisoning caused by neurotoxic and other pesticides in Tanzania.

    PubMed

    Lekei, Elikana; Ngowi, Aiwerasia V; London, Leslie

    2014-12-01

    Acute pesticide poisoning (APP), particularly with neurotoxic agents, is often under-reported in developing countries. This study aimed to estimate the burden of APP in Tanzania due to neurotoxic and other pesticides in order to propose a surveillance system. The study reviewed hospital admission data for APP retrospectively (2000-2005) in 30 facilities in four regions of Tanzania. A prospective follow-up over 12 months in 2006 focused on 10 facilities with the highest reporting of APP. The majority of known poisoning agents were organophosphates or WHO class I and II pesticides. APP involving suicide was significantly more likely to be fatal in both retrospective (PRR fatal/non-fatal=3.8; 95% CI=1.8-8.0) and in prospective (PRR=8.7; 95% CI=1.1-65) studies. There was a significant association between suicide and gender (PRR female/male=1.5; 95% CI=1.1-2.0) in the prospective study. Occupational circumstances as a cause of APP, which was relatively small in both studies (8.5% in the retrospective and 10.2% in the prospective study) was less common amongst men compared to women (6.1% for males versus 12.0% for females) in the retrospective study but almost equal in prospective study (10.2% for males versus 10.1% for females). Contrasting retrospective to prospective studies, the annual incidence rate almost tripled (from 1.43 to 4.05 per 100,000) and mortality rate doubled (from 0.11 to 0.22 per 100,000). Case fatality declined accordingly from 7.8% to 5.6% in prospective study. The study revealed a substantial improvement in the completeness of data with prospective data collection. Missing data for circumstances and agents declined by 24.1% and 9.9%, respectively. Despite this improvement, routine reporting could only generate 33-50% of the information needed for a notification of banned or severely restricted chemicals under the Prior Informed Consent (PIC) convention. The two to threefold increase in rates with prospective data collection suggests significant

  10. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    PubMed

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  11. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  12. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice.

    PubMed

    Wu, Chun Fu; Liu, Yan Li; Song, Ming; Liu, Wen; Wang, Jin Hui; Li, Xian; Yang, Jing Yu

    2003-08-01

    In the present study, pseudoginsenoside-F(11) (PF(11)), a saponin that existed in American ginseng, was studied on its protective effect on methamphetamine (MA)-induced behavioral and neurochemical toxicities in mice. MA was intraperitoneally administered at the dose of 10 mg/kg four times at 2-h intervals, and PF(11) was orally administered at the doses of 4 and 8 mg/kg two times at 4-h intervals, 60 min prior to MA administration. The results showed that PF(11) did not significantly influence, but greatly ameliorated, the anxiety-like behavior induced by MA in the light-dark box task. In the forced swimming task, PF(11) significantly shortened the prolonged immobility time induced by MA. In the appetitively motivated T-maze task, PF(11) greatly shortened MA-induced prolonged latency and decreased the error counts. Similar results were also observed in the Morris water maze task. PF(11) significantly shortened the escape latency prolonged by MA. There were significant decreases in the contents of dopamine (DA), 3,4-dihydroxyphenacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoacetic acid (5-HIAA) in the brain of MA-treated mice. PF(11) could partially, but significantly, antagonize MA-induced decreases of DA. The above results demonstrate that PF(11) is effective in protection of MA-induced neurotoxicity and also suggest that natural products, such as ginseng, might be potential candidates for the prevention and treatment of the neurological disorders induced by MA abuse.

  13. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures

    PubMed Central

    Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.

    2015-01-01

    Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118

  14. L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1.

    PubMed

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of l-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2',7'-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    PubMed

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  16. Melatonin-mediated β-catenin activation protects neuron cells against prion protein-induced neurotoxicity.

    PubMed

    Jeong, Jae-Kyo; Lee, Ju-Hee; Moon, Ji-Hong; Lee, You-Jin; Park, Sang-Youel

    2014-11-01

    Activation of β-catenin in neurons regulates mitochondrial function and protects against protein misfolding disorders, including Alzheimer's disease and Huntington's disease. Melatonin, a natural secretory product of the pineal gland, exerts neuroprotective effects through the activation of β-catenin. In this study, melatonin increased β-catenin protein expression and activation in human neuroblastoma cell lines SH-SY5Y cells. Melatonin also inhibited PrP (106-126)-induced neurotoxicity and the inhibition attenuated by treatment of β-catenin inhibitor ICG-001. Activation of β-catenin blocked PrP (106-126)-mediated downregulation of anti-apoptotic protein survivin and Bcl-2. Reduction of mitochondrial membrane potential, translocation of Bax, and cytochrome c release which induced by PrP (106-126) treatment were inhibited by β-catenin activation, which contributed to prevented PrP (106-126)-induced neuronal cell death. In conclusion, β-catenin activation by melatonin prevented PrP (106-126)-induced neuronal cell death through regulating anti-apoptotic proteins and mitochondrial pathways. These results also suggest the therapeutic value of Wnt/β-catenin signaling in prion-related disorders as influenced by melatonin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    PubMed

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  18. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity

    PubMed Central

    Fretham, Stephanie JB; Caito, Samuel; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity. PMID:27795823

  19. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro.

    PubMed

    Wilson, Emma R; Kugathasan, Umaiyal; Abramov, Andrey Y; Clark, Alex J; Bennett, David L H; Reilly, Mary M; Greensmith, Linda; Kalmar, Bernadett

    2018-05-18

    Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca 2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca 2+ channels. The changes in intracellular Ca 2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca 2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Chemotherapy-Induced Peripheral Neurotoxicity and Ototoxicity: New Paradigms for Translational Genomics

    PubMed Central

    Fossa, Sophie D.; Sesso, Howard D.; Frisina, Robert D.; Herrmann, David N.; Beard, Clair J.; Feldman, Darren R.; Pagliaro, Lance C.; Miller, Robert C.; Vaughn, David J.; Einhorn, Lawrence H.; Cox, Nancy J.; Dolan, M. Eileen

    2014-01-01

    In view of advances in early detection and treatment, the 5-year relative survival rate for all cancer patients combined is now approximately 66%. As a result, there are more than 13.7 million cancer survivors in the United States, with this number increasing by 2% annually. For many patients, improvements in survival have been countered by therapy-associated adverse effects that may seriously impair long-term functional status, workplace productivity, and quality of life. Approximately 20% to 40% of cancer patients given neurotoxic chemotherapy develop chemotherapy-induced peripheral neurotoxicity (CIPN), which represents one of the most common and potentially permanent nonhematologic side effects of chemotherapy. Permanent bilateral hearing loss and/or tinnitus can result from several ototoxic therapies, including cisplatin- or carboplatin-based chemotherapy. CIPN and ototoxicity represent important challenges because of the lack of means for effective prevention, mitigation, or a priori identification of high-risk patients, and few studies have applied modern genomic approaches to understand underlying mechanisms/pathways. Translational genomics, including cell-based models, now offer opportunities to make inroads for the first time to develop preventive and interventional strategies for CIPN, ototoxicity, and other treatment-related complications. This commentary provides current perspective on a successful research strategy, with a focus on cisplatin, developed by an experienced, transdisciplinary group of researchers and clinicians, representing pharmacogenomics, statistical genetics, neurology, hearing science, medical oncology, epidemiology, and cancer survivorship. Principles outlined herein are applicable to the construction of research programs in translational genomics with strong clinical relevance and highlight unprecedented opportunities to understand, prevent, and treat long-term treatment-related morbidities. PMID:24623533

  1. Selenium protects cerebral cells by cisplatin induced neurotoxicity.

    PubMed

    Karavelioglu, Ergun; Boyaci, Mehmet Gazi; Simsek, Nejdet; Sonmez, Mehmet Akif; Koc, Rabia; Karademir, Mustafa; Guven, Mustafa; Eser, Olcay

    2015-06-01

    To evaluate the central nervous system toxicity of cisplatin and neuroprotective effect of selenium. Twenty-one male Wistar albino rats were divided into three groups: control (C), cisplatin (CS), cisplatin and selenium (CSE, n=7 in each group). Cisplatin (12 mg/kg/day, i.p.) was administered to CS and CSE groups for three days. Furthermore, CSE group received 3mg/kg/day (twice-a-day as 1.5 mg/kg) selenium via oral gavage five days before cisplatin injection and continued for 11 consecutive days. The same volumes of saline were administered to C group intraperitoneally and orally at same time. Heterochromatic and vacuolated neurons and dilated capillary vessels in the brain were observed in the histochemical examinations of cisplatin treated group. Rats that were given a dose of 3mg/kg/day selenium decreased the cisplatin induced histopathological changes in the brain, indicating a protective effect. In addition, cytoplasmic staining of the cell for bcl-2, both cytoplasmic and nuclear staining for bax were determined to be positive in the all groups. Bax positive cells were increased in the CS group compared to C group, in contrast to decreased bcl-2 positivity. Selenium limited apototic activity and histological changes due to the cisplatin related central neurotoxicity.

  2. In vitro techniques for the assessment of neurotoxicity.

    PubMed Central

    Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A

    1998-01-01

    Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected

  3. Neonatal anesthetic neurotoxicity: Insight into the molecular mechanisms of long-term neurocognitive deficits.

    PubMed

    Yu, Deshui; Li, Linji; Yuan, Weiguo

    2017-03-01

    Mounting animal studies have demonstrated that almost all the clinically used general anesthetics could induce widespread neuroapoptosis in the immature brain. Alarmingly, some published findings have reported long-term neurocognitive deficits in response to early anesthesia exposure which deeply stresses the potential seriousness of developmental anesthetic neurotoxicity. However, the connection between anesthesia induced neuroapoptosis and subsequent neurocognitive deficits remains controversial. It should be noted that developmental anesthesia related neurotoxicity is not limited to neuroapoptosis. Early anesthesia exposure caused transient suppression of neurogenesis, ultrastructural abnormalities in synapse and alteration in the development of neuronal networks also could contribute to the long-term neurocognitive dysfunction. Understanding the mechanisms of developmental anesthetic neurotoxicity, especially by which anesthesia impairs brain function months after exposure, may lead to development of rational preventive and therapeutic strategies. The focus of present review is on some of those potential mechanisms that have been proposed for anesthesia induced cognitive decline. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain.

    PubMed

    Pereira, Aline G; Jaramillo, Michael L; Remor, Aline P; Latini, Alexandra; Davico, Carla E; da Silva, Mariana L; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M

    2018-06-11

    Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout ® , which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L -1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis.

    PubMed

    Huang, Ya-Ni; Yang, Ling-Yu; Wang, Jing-Ya; Lai, Chien-Cheng; Chiu, Chien-Tsai; Wang, Jia-Yi

    2017-01-01

    Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.

  6. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    PubMed

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  7. Incensole acetate prevents beta-amyloid-induced neurotoxicity in human olfactory bulb neural stem cells.

    PubMed

    El-Magd, Mohammed A; Khalifa, Sara F; A Alzahrani, Faisal Abdulrahman; Badawy, Abdelnaser A; El-Shetry, Eman S; Dawood, Lamess M; Alruwaili, Mohammed M; Alrawaili, Hedib A; Risha, Engi F; El-Taweel, Fathy M; Marei, Hany E

    2018-06-15

    β-Amyloid peptide (Aβ) is a potent neurotoxic protein associated with Alzheimer's disease (AD) which causes oxidative damage to neurons. Incensole acetate (IA) is a major constituent of Boswellia carterii resin, which has anti-inflammatory and protective properties against damage of a large verity of neural subtypes. However, this neuroprotective effect was not studied on human olfactory bulb neural stem cells (hOBNSCs). Herein, we evaluated this effect and studied the underlying mechanisms. Exposure to Aβ 25-35 (5 and 10 μM for 24 h) inhibited proliferation (revealed by downregulation of Nestin and Sox2 gene expression), and induced differentiation (marked by increased expression of the immature neuronal marker Map2 and the astrocyte marker Gfap) of hOBNSCs. However, pre-treatment with IA (100 μM for 4 h) stimulated proliferation and differentiation of neuronal, rather than astrocyte, markers. Moreover, IA pretreatment significantly decreased the Aβ 25-35 -induced viability loss, apoptotic rate (revealed by decreased caspase 3 activity and protein expression, downregulated expression of Bax, caspase 8, cyto c, caspase3, and upregulated expression of Bcl2 mRNAs and proteins, in addition to elevated mitochondrial membrane potential and lowered intracellular Ca +2 ). IA reduced Aβ-mediated ROS production (revealed by decreased intracellular ROS and MDA level, and increased SOD, CAT, and GPX contents), and inhibited Aβ-induced inflammation (marked by down-regulated expression of IL1b, TNFa, NfKb, and Cox2 genes). IA also significantly upregulated mRNA and protein expression of Erk1/2 and Nrf2. Notably, IA increased the antioxidant enzyme heme oxygenase-1 (HO-1) expression and this effect was reversed by HO-1 inhibitor zinc protoporphyrin (ZnPP) leading to reduction of the neuroprotective effect of IA against Aβ-induced neurotoxicity. These findings clearly show the ability of IA to initiate proliferation and differentiation of neuronal progenitors in

  8. Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment.

    PubMed

    Volz, Trent J; Fleckenstein, Annette E; Hanson, Glen R

    2007-04-01

    To review studies delineating the neurotoxic effects of methamphetamine on monoamine transport in dopaminergic neurons of the striatum and nucleus accumbens. The scope of this review includes the English language dopamine transporter and vesicular monoamine transporter-2 primary literature to April 2006 identified by Pubmed, Science Citation Index and SciFinder Scholar literature searches. Changes in the function of the plasmalemmal dopamine transporter and the vesicular monoamine transporter-2 are key components of methamphetamine-induced persistent dopaminergic deficits. These deficits include persistent reductions in dopamine content, dopamine transporter density and tyrosine hydroxylase activity. The striatum is susceptible to these effects of methamphetamine while the nucleus accumbens is resistant. Differences in dopamine transporter density and activity, extracellular dopamine levels and antioxidant levels in these two brain regions may, in part, account for the resistance of the nucleus accumbens. These findings concerning the nature of methamphetamine-induced changes in plasmalemmal and vesicular dopamine transport have very important implications for drug targets and for understanding the etiology of dopaminergic neurodegenerative processes, such as those associated with methamphetamine addiction and Parkinson's disease.

  9. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  10. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid.

    PubMed

    Budni, J; Romero, A; Molz, S; Martín-de-Saavedra, M D; Egea, J; Del Barrio, L; Tasca, C I; Rodrigues, A L S; López, M G

    2011-09-08

    Folic acid (folate) is a vitamin of the B-complex group that is essential for cell replication. Folate is a major determinant of one-carbon metabolism, in which S-adenosylmethionine donates methyl groups that are crucial for neurological function. Many roles for folic acid have been reported, including neuroprotective and antidepressant properties. On the other hand, increased concentrations of corticoids have proven neurotoxic effects and hypersecretion of glucocorticoids has been linked to different mood disorders. The purpose of this study was to investigate the potential protective effect of folic acid on dexamethasone-induced cellular death in SH-SY5Y neuroblastoma cell line and the possible intracellular signaling pathway involved in such effect. Exposure to 1 mM dexamethasone for 48 h caused a significant reduction of cell viability measured as 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Exposure of SH-SY5Y cells for 72 h to increasing concentrations of folate (1-300 μM) was not cytotoxic. However, pretreatment with folate (10-300 μM) reduced dexamethasone-induced toxicity in a significant manner. To explore the putative intracellular signaling pathways implicated in the protective effect of folate we used different protein kinase inhibitors. The protective effect of folic acid on dexamethasone-induced neurotoxicity was reversed by the phosphatidylinositol-3 kinase/Akt (PI3K/Akt, LY294002), Ca²⁺/Calmodulin-dependent protein kinase II (CaMKII, KN-93), and protein kinase A (PKA, H-89) inhibitors, but not the mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2, PD98059) and protein kinase C (PKC, chelerythrine) inhibitors. In conclusion, the results of this study show that folic acid can protect against dexamethasone-induced neurotoxicity and its protective mechanism is related to a signaling pathway that involves PI3K/Akt, CaMKII, and PKA. Copyright © 2011. Published by Elsevier Ltd.

  11. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity

    PubMed Central

    Valerio Branca, Jacopo Junio; Maresca, Mario; Morucci, Gabriele; Becatti, Matteo; Paternostro, Ferdinando; Gulisano, Massimo; Ghelardini, Carla; Salvemini, Daniela

    2018-01-01

    Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer. Despite its beneficial effects in tumor reduction, the most prevalent side-effect of oxaliplatin treatment is a chemotherapy-induced neuropathy that frequently forces to discontinue the therapy. Indeed, along with direct damage to peripheral nerves, the chemotherapy-related neurotoxicity involves also the central nervous system (CNS) as demonstrated by pain chronicity and cognitive impairment (also known as chemobrain), a newly described pharmacological side effect. The presence of the blood brain barrier (BBB) is instrumental in preventing the entry of the drug into the CNS; here we tested the hypothesis that oxaliplatin might enter the endothelial cells of the BBB vessels and trigger a signaling pathway that induce the disassembly of the tight junctions, the critical components of the BBB integrity. By using a rat brain endothelial cell line (RBE4) we investigated the signaling pathway that ensued the entry of oxaliplatin within the cell. We found that the administration of 10 μM oxaliplatin for 8 and 16 h induced alterations of the tight junction (TJs) proteins zonula occludens-1 (ZO-1) and of F-actin, thus highlighting BBB alteration. Furthermore, we reported that intracellular oxaliplatin rapidly induced increased levels of reactive oxygen species and endoplasmic reticulum stress, assessed by the evaluation of glucose-regulated protein GRP78 expression levels. These events were accompanied by activation of caspase-3 that led to extracellular ATP release. These findings suggested a possible novel mechanism of action for oxaliplatin toxicity that could explain, at least in part, the chemotherapy-related central effects.

  12. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter

    PubMed Central

    Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880

  13. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Mindi; Xu Shangcheng; Lu Yonghui

    Mitochondrial dysfunction is thought to be a part of the mechanism underlying nickel-induced neurotoxicity. L-carnitine (LC), a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine in all mammalian species, manifests its neuroprotective effects by improving mitochondrial energetics and function. The purpose of this study was to investigate whether LC could efficiently protect against nickel-induced neurotoxicity. Here, we exposed a mouse neuroblastoma cell line (Neuro-2a) to different concentrations of nickel chloride (NiCl{sub 2}) (0.25, 0.5, 1, and 2 mM) for 24 h, or to 0.5 mM and 1 mM NiCl{sub 2} for various periods (0, 3, 6, 12,more » or 24 h). We found that nickel significantly increased the cell viability loss and lactate dehydrogenase (LDH) release in Neuro-2a cells. In addition, nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, disrupted the mitochondrial membrane potential ({Delta}{Psi}{sub m}), reduced adenosine-5'-triphosphate (ATP) concentrations and decreased mitochondrial DNA (mtDNA) copy numbers and mtRNA transcript levels. However, all of the cytotoxicities and mitochondrial dysfunctions that were triggered by nickel were efficiently attenuated by pretreatment with LC. These protective effects of LC may be attributable to its role in maintaining mitochondrial function in nickel-treated cells. Our results suggest that LC may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.« less

  14. Partial lesion of the serotonergic system by a single dose of MDMA results in behavioural disinhibition and enhances acute MDMA-induced social behaviour on the social interaction test.

    PubMed

    Ando, Romeo D; Benko, Anita; Ferrington, Linda; Kirilly, Eszter; Kelly, Paul A T; Bagdy, Gyorgy

    2006-06-01

    The acute effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) on anxiety-related behaviours were studied using indices of social interaction in Dark Agouti (DA) both drug naive rats and those pretreated with MDMA (15 mg/kg i.p.) 3 weeks earlier. The functional neuroanatomy of these MDMA effects was visualised using 2-deoxyglucose imaging of local cerebral glucose use (LCMRglu), whilst MDMA-induced serotonergic neurotoxicity was measured by radioligand binding with [3H]paroxetine. Acute MDMA alone markedly decreased most typical elements of social interaction but increased adjacent lying, a behaviour that also contains social elements. In animals pre-exposed to MDMA, decreased [3H]paroxetine binding indicated serotonergic terminal depletion, and in these animals significant increases in locomotor activity, exploratory behaviour and aggressive behaviour were found. Both behavioural effects and also the metabolic activation induced by acute MDMA were potentiated in rats previously exposed to the drug. In conclusion, a single dose of MDMA caused marked changes in social behaviour acutely that might be interpreted either as a decrease or increase in anxiety. Three weeks after MDMA a behavioural disinhibition similar to psychomotor agitation, a symptom connected to depression or mania, and a sensitization to the acute effects of MDMA are apparent in both the behavioural and brain metabolic effects of the drug.

  15. A putative role for homocysteine in the pathophysiology of acute bacterial meningitis in children.

    PubMed

    Coimbra, Roney Santos; Calegare, Bruno Frederico Aguilar; Candiani, Talitah Michel Sanchez; D'Almeida, Vânia

    2014-01-01

    Acute bacterial meningitis frequently causes cortical and hippocampal neuron loss leading to permanent neurological sequelae. Neuron death in acute bacterial meningitis involves the excessive activation of NMDA receptors and p53-mediated apoptosis, and the latter is triggered by the depletion of NAD + and ATP cellular stores by the DNA repair enzyme poly(ADP-ribose) polymerase. This enzyme is activated during acute bacterial meningitis in response to DNA damage induced, on its turn, by reactive oxygen and nitrogen species. An excess of homocysteine can also induce this cascade of events in hippocampal neurons. The present work aimed at investigating the possible involvement of homocysteine in the pathophysiology of meningitis by comparing its concentrations in cerebrospinal fluid (CSF) samples from children with viral or acute bacterial meningitis, and control individuals. Homocysteine and cysteine concentrations were assessed by high-performance liquid chromatography in CSF samples from nine patients with acute bacterial meningitis, 13 patients with viral meningitis and 18 controls (median age: 4 years-old; range: <1 to 13) collected by lumbar puncture at admission at the Children's Hospital Joao Paulo II - FHEMIG, from January 2010 to November 2011. We found that homocysteine accumulates up to neurotoxic levels within the central nervous system of patients with acute bacterial meningitis, but not in those with viral meningitis or control individuals. No correlation was found between homocysteine and cysteine concentrations and the cerebrospinal fluid standard cytochemical parameters. Our results suggest that HCY is produced intrathecally in response to acute bacterial meningitis and accumulates within the central nervous system reaching potentially neurotoxic levels. This is the first work to propose a role for HCY in the pathophysiology of brain damage associated with acute bacterial meningitis.

  16. Effects of Acute Confinement Stress-induced Hypothalamic-Pituitary Adrenal Axis Activation and Concomitant Peripheral and Central Transforming Growth Factor-β1 Measures in Nonhuman Primates.

    PubMed

    Coplan, Jeremy D; Gopinath, Srinath; Abdallah, Chadi G; Margolis, Jeffrey; Chen, Wei; Scharf, Bruce A; Rosenblum, Leonard A; Batuman, Olcay A; Smith, Eric L P

    2017-02-01

    Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine with anti-inflammatory, immunosuppressive and neuroprotective properties. The hypothalamic-pituitary-adrenal (HPA) axis and immune system exert bidirectional influences on each other, via cortisol and TGF-β1, but the exact nature of the interaction is not well characterized. The current study examined the effects, in bonnet macaques ( Macaca radiata ), of two consecutive acute confinement stress periods in an unfamiliar room while mildly restrained, first without and then with dexamethasone pretreatment (0.01 mg/kg IM). Preceding the confinement studies, a non-stress control condition obtained contemporaneous levels of cortisol and TGF-β1 in both plasma and cerebrospinal fluid (CSF) to match the confinement stress studies. Subjects were reared under either normative or variable foraging demand (VFD) conditions. Since there were no rearing effects at baseline or for any of the conditions tested -- either for cortisol or TGF-β -- the study analyses were conducted on the combined rearing groups. The stress condition increased both plasma and CSF cortisol levels whereas dexamethasone pretreatment decreased cortisol concentrations to below baseline levels despite stress. The stress condition decreased TGF-β1 concentrations only in CSF but not in serum. Together the data suggested that stress-induced reductions of a centrally active neuroprotective cytokine occurs in the face of HPA axis activation, potentially facilitating glucocortoid-induced neurotoxicity. Stress-induced reductions of neuroprotective cytokines prompts exploration of protective measures against glucocorticoid-induced neurotoxicity.

  17. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    PubMed

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity.

    PubMed

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

  19. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  20. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    PubMed

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  1. Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

    PubMed Central

    DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644

  2. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the

  3. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    PubMed

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  4. Corneal neurotoxicity due to topical benzalkonium chloride.

    PubMed

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-04-06

    The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.

  5. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  6. Dangguijakyak-san protects dopamine neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity under postmenopausal conditions.

    PubMed

    Lee, Jin-Moo; Hwang, Deok-Sang; Kim, Hyo Geun; Lee, Chang-Hoon; Oh, Myung Sook

    2012-02-15

    Dangguijakyak-san protects dopamine neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity under postmenopausal conditions. Dangguijakyak-san (DJS), a famous traditional herbal formula, has long been used to treat gynecological disorders, including postmenopausal symptoms. This study evaluated the effects and mechanism of DJS on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a postmenopausal mouse model induced by ovariectomy. Three weeks after ovariectomy, C57bl/6 female mice were divided randomly into (1) control, (2) MPTP (30 mg/kg/day, i.p., 5 days), (3) MPTP+estrogen (50 μg/kg/day, i.p., 5 days), and (4) MPTP+DJS (50 mg/kg/day, p.o., 5 days) groups. We investigated the behavioral recovery and dopamine neuron protection of DJS using the pole test and tyrosine hydroxylase (TH) immunohistochemistry. We also explored the mechanism by assessing the protein expression of Bax, Bcl-2, cytochrome c, and cleaved caspase-3. DJS treatment restored the movement behavior impaired by MPTP, showing a similar or better effect than estrogen. DJS protected TH-immunoreactive cells and fibers in the nigrostriatal region from MPTP toxicity. In addition, DJS inhibited the Bcl-2 decrease and Bax increase in mitochondria, cytochrome c release to the cytosol, and caspase-3 activation induced by MPTP. DJS showed behavior recovery and dopamine neuron protection against MPTP-induced toxicity via anti-apoptotic activities in ovariectomized female mice. These results suggest that DJS treatment is effective for postmenopausal neurodegenerative diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. TIME-COURSE OF ACUTE NEUROTOXICITY PRODUCED BY N-METHYL CARBAMATES IN PREWEANLING RATS.

    EPA Science Inventory

    N-methyl carbamate insecticides are reversible inhibitors of central and peripheral acetylcholinesterease (ChE). Despite their widespread and long-term use, we could find no studies of a systematic comparison of neurotoxicity in young animals across this group of chemicals. To ...

  8. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation

    PubMed Central

    Medina, Manel G; Ledesma, Maria Dolores; Domínguez, Jorge E; Medina, Miguel; Zafra, Delia; Alameda, Francesc; Dotti, Carlos G; Navarro, Pilar

    2005-01-01

    Tissue plasminogen activator (tPA) is the main activator of plasminogen into plasmin in the brain where it may have beneficial roles but also neurotoxic effects that could be plasmin dependent or not. Little is known about the substrates and pathways that mediate plasmin-independent tPA neurotoxicity. Here we show in primary hippocampal neurons that tPA promotes a catalytic-independent activation of the extracellular regulated kinase (Erk)1/2 signal transduction pathway through the N-methyl-D-aspartate receptor, G-proteins and protein kinase C. This results in GSK3 activation in a process that requires de novo synthesis of proteins, and leads to tau aberrant phosphorylation, microtubule destabilization and apoptosis. Similar effects are produced by amyloid aggregates in a tPA-dependent manner, as demonstrated by pharmacological treatments and in wt and tPA−/− mice neurons. Consistently, in Alzheimer's disease (AD) patients' brains, high levels of tPA colocalize with amyloid-rich areas, activated Erk1/2 and phosphorylated tau. This is the first demonstration of an intracellular pathway by which tPA triggers kinase activation, tau phosphorylation and neurotoxicity, suggesting a key role for this molecule in AD pathology. PMID:15861134

  9. A Possible Neuroprotective Action of a Vinylic Telluride against Mn-Induced Neurotoxicity

    PubMed Central

    Ávila, Daiana S.; Colle, Dirleise; Gubert, Priscila; Palma, Aline S.; Puntel, Gustavo; Manarin, Flávia; Noremberg, Simone; Nascimento, Paulo C.; Aschner, Michael; Rocha, João B. T.; Soares, Félix A. A.

    2010-01-01

    Manganese (Mn) is a metal required by biological systems. However, environmental or occupational exposure to high levels of Mn can produce a neurological disorder called manganism, which has similarities to Parkinson's disease. Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with a high antioxidant activity, especially in the brain. The present study was designed to investigate the effects of long-term low-dose exposure to Mn in drinking water on behavioral and biochemical parameters in rats and to determine the effectiveness of vinylic telluride in attenuating the effects of Mn. After 4 months of treatment with MnCl2 (13.7 mg/kg), rats exhibited clear signs of neurobehavioral toxicity, including a decrease in the number of rearings in the open field and altered motor performance in rotarod. The administration of DPTVP (0.150 μmol/kg, ip, 2 weeks) improved the motor performance of Mn-treated rats, indicating that the compound could be reverting Mn neurotoxicity. Ex vivo, we observed that Mn concentrations in the Mn-treated group were highest in the striatum, consistent with a statistically significant decrease in mitochondrial viability and [3H]glutamate uptake, and increased lipid peroxidation. Mn levels in the hippocampus and cortex were indistinguishable from controls, and no significant differences were noted in the ex vivo assays in these areas. Treatment with DPTVP fully reversed the biochemical parameters altered by Mn. Furthermore, DPTVP treatment was also associated with a reduction in striatal Mn levels. Our results demonstrate that DPTVP has neuroprotective activity against Mn-induced neurotoxicity, which may be attributed to its antioxidant activity and/or its effect on striatal Mn transport. PMID:20133376

  10. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  11. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  12. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black

  13. Drug induced acute pancreatitis: incidence and severity.

    PubMed Central

    Lankisch, P G; Dröge, M; Gottesleben, F

    1995-01-01

    To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial PO2 reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course. PMID:7489946

  14. Toxicity studies on agent GA (Phase 2): 90 day subchronic study of GA (Tabun) in cd rats. Appendices. Final report, July 1985-August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The purpose of the report is to provide essential toxicologic information on Tabun administration over a 90 day period. This toxicologic information may be used to adjust the maximum-tolerated dose for subsequent dominant-lethal and two-generation reproduction studies. The objectives were to determine the toxic effects of nerve agent exposure (e.g., target organs); and to determine the effects of nerve agent GA on sperm morphology and motility and vaginal cytology.

  15. INTERRELATIONSHIPS OF UNDERNUTRITION AND NEUROTOXICITY: FOOD FOR THOUGHT AND RESEARCH ATTENTION

    PubMed Central

    Spencer, Peter S.; Palmer, Valerie S.

    2012-01-01

    The neurotoxic actions of chemical agents on humans and animals are usually studied with little consideration of the subject’s nutritional status. States of protein-calorie, vitamin and mineral undernutrition are associated with a range of neurodevelopmental, neurological and psychiatric disorders, commonly with involvement of both the central and peripheral nervous system. Undernutrition can modify risk for certain chemical-induced neurologic diseases, and in some cases undernutrition may be a prerequisite for neurotoxicity to surface. In addition, neurologic disease associated with undernutrition or neurotoxicity may show similarities in clinical and neuropathological expression, especially in the peripheral nervous system. The combined effects of undernutrition and chemical neurotoxicity are most relevant to people of low-income who experience chronic hunger, parasitism and infectious disease, monotonous diets of plants with neurotoxic potential (notably cassava), environmental pollution from rapid industrial development, chronic alcohol abuse, and prolonged treatment with certain therapeutic drugs. Undernutrition alone or in combination with chemical exposure is also important in high-income societies in the setting of drug and alcohol abuse, old age, food faddism, post-bariatric surgery, and drug treatment for certain medical conditions, including cancer and tuberculosis. The nutritional demands of pregnancy and lactation increases the risk of fetal and infant undernutrition and chemical interactions therewith. PMID:22394483

  16. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.

    PubMed

    Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut

    2016-08-01

    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

    PubMed Central

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation. PMID:22778778

  18. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    PubMed

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  19. Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2014-01-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016

  20. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, David J.; Li Yong; Chao, Moses V.

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but maymore » incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.« less

  1. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-07-19

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  2. Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon.

    PubMed

    Moser, Virginia C

    2011-01-01

    Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, along with motor activity, for mevinphos, monocrotophos, dicrotophos, and phosphamidon. Long-Evans hooded male rats were tested as adults and at postnatal day (PND) 17; PND11 pups were also tested with dicrotophos only. All chemicals were administered via oral gavage and tests were conducted at times intended to span peak behavioral and ChE effects. All OPs tested produced a rapid onset and recovery from the behavioral effects. There were age-related differences in the inhibition of brain, but not necessarily RBC, ChE. Mevinphos was clearly more toxic, up to 4-fold, to the young rat. On the other hand, monocrotophos, dicrotophos, and phosphamidon were somewhat more toxic to the young rat, but the magnitude of the differences was < 2-fold lower. Motor activity was consistently decreased in adults for all chemicals tested; however, there was more variability with the pups and clear age-related differences were only observed for mevinphos. These data show that three of these four OPs were only moderately more toxic in young rats, and further support findings that age-related differences in pesticide toxicity are chemical-specific. Published by Elsevier Inc.

  3. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  4. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Esmaeili-Mahani, Saeed; Vazifekhah, Somayeh; Pasban-Aliabadi, Hamzeh; Abbasnejad, Mehdi; Sheibani, Vahid

    2013-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by progressive and selective death of midbrain dopaminergic neurons. Pharmacologic treatment of PD can be divided into symptomatic and neuroprotective therapies. Orexin-A (hypocretin-1) is a hypothalamic peptide that exerts its biological effects by stimulation of two specific, membrane-bound orexin receptors. Recent studies have shown that orexin-A has a protective role during neuronal damage. Here, we investigated the effects of orexin-A on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) was determined by fluorescence spectrophotometry method. Immunoblotting and DNA analysis were also employed to determine the levels of biochemical markers of apoptosis in the cells. The data showed that 6-OHDA could decrease the viability of the cells. In addition, intracellular ROS, activated caspase 3, Bax/Bcl-2 ratio, cytochrome c as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Pretreatment of cells with orexin-A (80pM) elicited protective effect and reduced biochemical markers of cell death. The results suggest that orexin-A has protective effects against 6-OHDA-induced neurotoxicity and its protective effects are accompanied by its antioxidant and anti-apoptotic properties and contribute to our knowledge of the pharmacology of orexin-A. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  6. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    PubMed

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  7. Antineuropathic Profile of N-Palmitoylethanolamine in a Rat Model of Oxaliplatin-Induced Neurotoxicity

    PubMed Central

    Di Cesare Mannelli, Lorenzo; Pacini, Alessandra; Corti, Francesca; Boccella, Serena; Luongo, Livio; Esposito, Emanuela; Cuzzocrea, Salvatore; Maione, Sabatino; Calignano, Antonio; Ghelardini, Carla

    2015-01-01

    Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy. PMID:26039098

  8. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  9. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells

    PubMed Central

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction. PMID:27861613

  10. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    PubMed

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  11. Pantoprazole-induced acute kidney injury: A case report.

    PubMed

    Peng, Tao; Hu, Zhao; Zheng, Hongnan; Zhen, Junhui; Ma, Chengjun; Yang, Xiangdong

    2018-06-01

    The present study reports a case of pantoprazole-induced acute kidney disease. The patient was diagnosed with acute kidney injury with wide interstitial inflammation and eosinophil infiltration. Following 1 month of glucocorticoid therapy, the patient's serum creatinine and urea nitrogen decreased to within normal ranges. The presentation, clinical course, diagnosis and prognosis of pantoprazole-induced acute kidney injury are discussed herein to highlight the importance of early and correct diagnosis for good prognosis. Disease characteristics include short-term increased serum creatinine levels that respond to glucocorticoid treatment. The patient had no history of chronic kidney disease or proteinuria and presented with increased serum creatinine following treatment with pantoprazole. Following the end of pantoprazole treatment, short-term RRT and long-term prednisolone was administered, then serum creatinine returned to normal. Pantoprazole-induced acute kidney injury is commonly misdiagnosed and late diagnosis results in poor patient prognoses. Misdiagnosis leads to the administration of treatments that may exacerbate the condition, so appropriate diagnosis and treatment for pantoprazole-induced acute kidney injury is necessary.

  12. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  14. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review.

    PubMed

    Shin, Eun-Joo; Tran, Hai-Quyen; Nguyen, Phuong-Tram; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-01-01

    Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.

  15. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  16. Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine

    PubMed Central

    Yu, Xu-jiao; Zhao, Wei; Li, Yu-jie; Li, Feng-xian; Liu, Zhong-jie; Xu, Hua-li; Lai, Lu-ying; Xu, Rui; Xu, Shi-yuan

    2017-01-01

    Local anaesthetics (LAs) may lead to neurological complications, but the underlying mechanism is still unclear. Many neurotoxicity research studies have examined different LAs, but none have comprehensively explored the distinct mechanisms of neurotoxicity caused by amide- (bupivacaine) and ester- (procaine) type LAs. Here, based on a CCK8 assay, LDH assay, Rhod-2-AM and JC-1 staining, 2′,7′-dichlorohy-drofluorescein diacetate and dihydroethidium probes, an alkaline comet assay, and apoptosis assay, we show that both bupivacaine and procaine significantly induce mitochondrial calcium overload and a decline in the mitochondrial membrane potential as well as overproduction of ROS, DNA damage and apoptosis (P < 0.05). There were no significant differences in mitochondrial injury and apoptosis between the bupivacaine and procaine subgroups (P > 0.05). However, to our surprise, the superoxide anionic level after treatment with bupivacaine, which leads to more severe DNA damage, was higher than the level after treatment with procaine, while procaine produced more peroxidation than bupivacaine. Some of these results were also affirmed in dorsal root ganglia neurons of C57 mice. The differences in the superoxidation and peroxidation induced by these agents suggest that different types of LAs may cause neurotoxicity via different pathways. We can target more accurate treatment based on their different mechanisms of neurotoxicity. PMID:28338089

  17. Resveratrol Confers Protection against Rotenone-Induced Neurotoxicity by Modulating Myeloperoxidase Levels in Glial Cells

    PubMed Central

    Chang, Chi Young; Choi, Dong-Kug; Lee, Dae Kee; Hong, Young Jun; Park, Eun Jung

    2013-01-01

    Myeloperoxidase (MPO) functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO) production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo −/− mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP+, another Parkinson’s disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury. PMID:23593274

  18. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Dang, Duy-Khanh; Shin, Eun-Joo; Kim, Dae-Joong; Tran, Hai-Quyen; Jeong, Ji Hoon; Jang, Choon-Gon; Ottersen, Ole Petter; Nah, Seung-Yeol; Hong, Jau-Shyong; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-02-01

    Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    PubMed Central

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. PMID:26729090

  20. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures.

    PubMed

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-12-28

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.

  1. Severe neurotoxicity following ingestion of tetraethyl lead.

    PubMed

    Wills, Brandon K; Christensen, Jason; Mazzoncini, Joe; Miller, Michael

    2010-03-01

    Organic lead compounds are potent neurotoxins which can result in death even from small exposures. Traditionally, these compounds are found in fuel stabilizers, anti-knock agents, and leaded gasoline. Cases of acute organic lead intoxication have not been reported for several decades. We report a case of a 13-year-old Iraqi male who unintentionally ingested a fuel stabilizer containing 80-90% tetraethyl lead, managed at our combat support hospital. The patient developed severe neurologic symptoms including agitation, hallucinations, weakness, and tremor. These symptoms were refractory to escalating doses of benzodiazepines and ultimately required endotracheal intubation and a propofol infusion. Adjunctive therapies included chelation, baclofen, and nutrition provided through a gastrostomy tube. The patient slowly recovered and was discharged in a wheelchair 20 days after ingestion, still requiring tube feeding. Follow-up at 62 days post-ingestion revealed near-resolution of symptoms with residual slurred speech and slight limp. This case highlights the profound neurotoxic manifestations of acute organic lead compounds.

  2. Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo.

    PubMed

    Sheline, Christian T; Zhu, Julia; Zhang, Wendy; Shi, Chunxiao; Cai, Ai-Li

    2013-01-01

    Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease. Zinc (Zn(2+)) accumulates after 3-NPA, 6-OHDA and MPP(+) in situ or in vivo. We will investigate the role of Zn(2+) neurotoxicity in 3-NPA, 6-OHDA and MPP(+). Murine striatal/midbrain tyrosine hydroxylase positive, or near-pure cortical neuronal cultures, or animals were exposed to 3-NPA or MPP(+) and 6-OHDA with or without neuroprotective compounds. Intracellular zinc ([Zn(2+)](i)), nicotinamide adenine dinucleotide (NAD(+)), NADH, glycolytic intermediates and neurotoxicity were measured. We showed that compounds or genetics which restore NAD(+) and attenuate Zn(2+) neurotoxicity (pyruvate, nicotinamide, NAD(+), increased NAD(+) synthesis, sirtuin inhibition or Zn(2+) chelation) attenuated the neuronal death induced by these toxins. The increase in [Zn(2+)](i) preceded a reduction in the NAD(+)/NADH ratio that caused a reversible glycolytic inhibition. Pyruvate, nicotinamide and NAD(+) reversed the reductions in the NAD(+)/NADH ratio, glycolysis and neuronal death after challenge with 3-NPA, 6-OHDA or MPP(+), as was previously shown for exogenous Zn(2+). To test efficacy in vivo, we injected 3-NPA into the striatum of rats and systemically into mice, with or without pyruvate. We observed early striatal Zn(2+) fluorescence, and pyruvate significantly attenuated the 3-NPA-induced lesion and restored behavioral scores. Together, these studies suggest that Zn(2+) accumulation caused by MPP(+) and 3-NPA is a novel preventable mechanism of the resultant neurotoxicity. Copyright © 2012 S. Karger AG, Basel.

  3. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    . Material and Methods: The SRD molecules were isolated from Lymphatic Systems of animals that were irradiated with high doses of irradiation and had a clinical and laboratory picture of the Cerebral Acute Radia-tion Syndrome, Cardiovascular Acute Radiation Syndrome, Gastrointestinal Acute Radiation Syndrome, and Hematological Acute Radiation Syndrome. Our classification of radiation tox-ins includes 4 major groups: 1.SRD-1, Cerebrovascular neurotoxic Radiation Toxins (CvARS); 2.SRD-2, Cardiovascular Radiation Toxins(CrARS); 3.SRD-3,Gastrointestinal neurotoxic Ra-diation Toxins (GiARS); 4.SRD-4, Hematopietic Radiation Toxins (HpARS). Radiation tox-ins possess both toxic and immunological properties. But mechanisms of immune-toxicity by which radiation toxins stimulate development of the ARS are poorly understood. We have studied lethal toxicity of radiation toxins and an ability of specific antibodies to neutralize toxic activity of radiation toxins by specific antibodies. Results: The Blocking Antiradiation Antibodies induce an immunologically specific effect and inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity. Antiradiation Antibodies prevent the radiation induced cytolysis of selected groups of cells that are sensitive to radiation. The Blocking Antiradiation Antibodies are immunologically specific and can be produced by immunization with the different radiation toxins isolated from irradiated mam-mals. We propose that Specific Antiradiation Antibodies targeted against the radiation induced Toxins. Specific Antiradiation Antibodies neutralize toxic properties of radiation toxins. Anti-radiation Antibodies in different phases of the Acute Radiation Syndromes can compete with cytotoxic lymphocytes and prevent cytolysis mediated by cytotoxic lymphocytes. Conclusions: Immunological inhibition of cytotoxic and neurotoxic properties of Specific Radiation Toxins are significant factors for improving

  4. The Acute, Delayed Neurotoxicity Evaluation of Two Jet Engine Oil Formulations

    DTIC Science & Technology

    1990-04-01

    humans after chronic exposure to these compounds. Similar neurotoxic effects have been demonstrated in adult chickens and cats after exposure to TOCP...salpingitis 0 1 0 0 0 0 0 0 0 0 0 0 Skin 2 3 3 2 4 3 1 2 2 3 1 5 Fibrosarcoma 0 0 1 0 0 0 0 0 0 0 0 0 *The number of animals in which the organ was examined...REFERENCES Beresford, W.A. and P. Glees. 1963. Degeneration in the Long Tracts of the Cords of the Chicken and Cat After Triorthocresyl phosphate

  5. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  6. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  7. Evaluating age-related sensitivity to carbaryl-induced behavorial changes by PBPK/PD modeling

    EPA Science Inventory

    Due to its reversible inhibition of cholinesterases (ChEs), acute neurotoxicity is the primary effect of concern for carbaryl. Sensitivity to acute behavioral neurotoxicity of carbaryl was observed to be greater in aged rats, which was not fully attributable to differences in ChE...

  8. Food-Induced Acute Pancreatitis.

    PubMed

    Manohar, Murli; Verma, Alok K; Upparahalli Venkateshaiah, Sathisha; Goyal, Hemant; Mishra, Anil

    2017-12-01

    Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.

  9. Methamphetamine, d-amphetamine and p-chloroamphetamine induced neurotoxicity differentially effect impulsive responding on the stop-signal task in rats

    PubMed Central

    Furlong, Teri M.; Leavitt, Lee S.; Keefe, Kristen A.; Son, Jong-Hyun

    2016-01-01

    Abused amphetamines, such as d-amphetamine (AMPH) and methamphetamine (METH), are highly addictive and destructive to health and productive lifestyles. The abuse of these drugs is associated with impulsive behavior, which is likely to contribute to addiction. The amphetamines also differentially damage dopamine (DA) and serotonin (5-HT) systems, which regulate impulsive behavior; therefore, exposure to these drugs may differentially alter impulsive behavior to effect the progression of addiction. We examined the impact of neurotoxicity induced by three amphetamines on impulsive action using a stop-signal task in rats. Animals were rewarded with a food pellet after lever pressing (i.e. a go trial), unless an auditory cue was presented and withholding lever press gained reward (i.e. a stop trial). Animals were trained on the task and then exposed to a neurotoxic regimen of either AMPH, p-chloroamphetamine (PCA), or METH. These regimens preferentially reduced DA transporter levels in striatum, 5-HT transporter levels in prefrontal cortex, or both, respectively. Assessment of performance on the stop-signal task beginning one week after the treatment revealed that AMPH produced a deficit in go-trial performance, whereas PCA did not alter performance on either trial type. In contrast, METH produced a deficit in stop-trial performance (i.e. impulsive action) but not go-trial performance. These findings suggest that the different neurotoxic consequences of substituted amphetamines are associated with different effects on inhibitory control over behavior. Thus, the course of addiction and maladaptive behavior resulting from exposure to these substances is likely to differ. PMID:26846719

  10. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    PubMed Central

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  11. Neurotoxic snakes of the Americas

    PubMed Central

    Rolan, Terry D.

    2015-01-01

    Abstract Snake envenomation is a global problem and often a matter of life or death. Emergency treatment is not always readily available or effective. There are numerous neurotoxic snakes in the Americas, chiefly elapids; some crotalids have also evolved neurotoxic venom. The variability of neurotoxins found in snake venom within the same species makes development and choice of proper antivenom a major challenge that has not been completely addressed. This article reviews the epidemiology, clinical effects, and current treatment of neurotoxic snake envenomation in the Americas. PMID:29443174

  12. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings.

    PubMed

    Baumann, Michael H; Wang, Xiaoying; Rothman, Richard B

    2007-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of "interspecies scaling" to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1-2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10-20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks.

  13. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  14. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neuronsmore » in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the

  15. In Zucker Diabetic Fatty rats, subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity

    PubMed Central

    Lirk, Philipp; Flatz, Magdalena; Haller, Ingrid; Hausott, Barbara; Blumenthal, Stephan; Stevens, Markus F.; Suzuki, Suzuko; Klimaschewski, Lars; Gerner, Peter

    2012-01-01

    Background and Objectives Application of local anesthetics may lead to nerve damage. Increasing evidence suggests that risk of neurotoxicity is higher in patients with diabetic peripheral neuropathy. Additionally, block duration may be prolonged in neuropathy. We sought to investigate neurotoxicity in vitro and block duration in vivo in a genetic animal model of diabetes mellitus type II. Methods In the first experiments, neurons harvested from control Zucker Diabetic Fatty (ZDF) rats were exposed to acute (24 hours) or chronic (72 hours) hyperglycemia, followed by incubation with lidocaine 40 mM (approximately 1%). In a second experiment, neurons harvested from control ZDF rats, or diabetic ZDF rats, were incubated with lidocaine, with or without SB203580, an inhibitor of the p38 Mitogen-Activated Protein Kinase. Finally, we performed sciatic nerve block (lidocaine 2%, 0.2 mL) in control or diabetic ZDF rats, and measured motor and nociceptive block duration. Results In vitro, neither acute nor chronic hyperglycemia altered neurotoxic properties of lidocaine. In vitro, incubation of neurons with lidocaine resulted in a slightly decreased survival ratio when neurons were harvested from diabetic (57 ± 19) as compared to control (64 ± 9 %) rats. The addition of SB203580 partly reversed this enhanced neurotoxic effect and raised survival to 71 ± 12 in diabetic and 66 ± 9 % in control rats, respectively. In vivo, even though no difference was detected at baseline testing, motor block was significantly prolonged in diabetic as compared to control rats (137 ± 16 min versus 86 ± 17 min). Conclusions In vitro, local anesthetic neurotoxicity was more pronounced on neurons from diabetic animals, but the survival difference was small. In vivo, subclinical neuropathy leads to substantial prolongation of block duration. We conclude that early diabetic neuropathy increases block duration, while the observed increase in toxicity was small. PMID:23011115

  16. The mechanism of potentiation of the glutamate-induced neurotoxicity by serum albumin. A possible role of nitric oxide.

    PubMed

    Sorokina, E G; Reutov, V P; Pinelis, V G; Vinskaya, N P; Vergun, O V; Khodorov, B I

    2000-01-01

    Potentiation of the delayed (Glu)-induced neurotoxicity by serum albumin (SA) was studied in experiments with cultured cerebellar granule cells. The delayed neuronal death (DND) was evaluated by counting neurons containing or excluding Trypan Blue 4 h after treatment with Glu. Cytoplasmic Ca2+ ([Ca2+]i) was measured in individual Fura-2-loaded neurons. It was shown that a 15-min application of bovine SA (4 mg/ml) together with Glu (100 microM, 10 microM glycine, Mg2+-free solution) enhanced DND in the culture 1.7 times (43.1+/-3.1%) with respect to the effect induced by Glu alone (24.6+/-0.6%). The bovine SA application did not change the dynamics of [Ca2+]i response during a short-term (1 min) and long-term (15 min) Glu-treatment. DND was prevented by simultaneous application of Glu and inhibitor of NO-synthase N omega-nitro-L-arginine methyl ester (L-NAME), 100 microM) (10.8+/-1.0%) as well as by the application of Glu with SA and L-NAME (9.8+/-1.2%). In order to evaluate the role of nitric oxide (NO) in the SA effect, the cells were incubated for 15 min with the NO-donors sodium nitroprusside (SNP, 10 and 100 microM) and sodium nitrite (NaNO2, 10 and 100 microM) together with SA and in its absence. SA also greatly enhanced the DND induced by SNP and NaNO2. Thus, the DND after simultaneous treatment with SA and SNP was 16.3+/-2.5% (10 microM) or 29.6+/-2.1% (100 microM), and 9.6+/-0.8% (10 microM) and 19.7+/-2.1% after treatment with SNP alone. Exposure to SA together with NaNO2 led to the DND increase up to 26.5+/-1.9% (10 microM) and 37.7+/-3.5% (100 microM) in comparison with 7.4+/-2.0% (10 microM) and 18.9+/-0.8% (100 microM) in experiments with NaNO2 alone. Taking into account the ability of NO and NO2 to oxidize unsaturated fatty acids and the ability of SA to bind them after their hydrolytic removal, we suggested that the SA-induced potentiation of Glu neurotoxicity resulted from exacerbation of the toxic effects of NO and other trace radicals on the

  17. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review

    PubMed Central

    Abou-Donia, Mohamed B.; Siracuse, Briana; Gupta, Natasha; Sokol, Ashly Sobel

    2017-01-01

    Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as “cholinergic crisis” (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam. PMID:27705071

  18. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  19. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    PubMed

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p < 0.001). The extract also dose-dependently reduced intracellular ROS production (p < 0.001). Moreover, the extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  20. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    PubMed Central

    2011-01-01

    Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6), tumor necrosis factor-α (TNF-α) as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC). Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as there was a remarkable

  1. Dual modulation of ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90-231.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Chiovitti, Katia; Villa, Valentina; Simi, Alessandro; Raggi, Federica; Paludi, Domenico; Russo, Claudio; Aceto, Antonio; Florio, Tullio

    2009-02-01

    Several in vitro and in vivo studies addressed the identification of molecular determinants of the neuronal death induced by PrP(Sc) or related peptides. We developed an experimental model to assess PrP(Sc) neurotoxicity using a recombinant polypeptide encompassing amino acids 90-231 of human PrP (hPrP90-231) that corresponds to the protease-resistant core of PrP(Sc) identified in prion-infected brains. By means of mild thermal denaturation, we can convert hPrP90-231 from a PrP(C)-like conformation into a PrP(Sc)-like structure. In virtue of these structural changes, hPrP90-231 powerfully affected the survival of SH-SY5Y cells, inducing caspase 3 and p38-dependent apoptosis, while in the native alpha-helix-rich conformation, hPrP90-231 did not induce cell toxicity. The aim of this study was to identify drugs able to block hPrP90-231 neurotoxic effects, focusing on minocycline, a tetracycline with known neuroprotective activity. hPrP90-231 caused a caspase 3-dependent apoptosis via the blockade of ERK1/2 activation and the subsequent activation of p38 MAP kinase. We propose that hPrP90-231-induced apoptosis is dependent on the inhibition of ERK1/2 responsiveness to neurotrophic factors, removing a tonic inhibition of p38 activity and resulting in caspase 3 activation. Minocycline prevented hPrP90-231-induced toxicity interfering with this mechanism: the pretreatment with this tetracycline restored ERK1/2 activity and reverted p38 and caspase 3 activities. The effects of minocycline were not mediated by the prevention of hPrP90-231 structural changes or cell internalization (differently from Congo Red). In conclusion, minocycline elicits anti-apoptotic effects against the neurotoxic activity of hPrP90-231 and these effects are mediated by opposite modulation of ERK1/2 and p38 MAP kinase activities.

  2. Aqueous extract of Lithospermi radix attenuates oxaliplatin-induced neurotoxicity in both in vitro and in vivo models.

    PubMed

    Cho, Eun-Sang; Yi, Jin-Mu; Park, Jong-Shik; Lee, You Jin; Lim, Chae Jun; Bang, Ok-Sun; Kim, No Soo

    2016-10-26

    Oxaliplatin can induce peripheral neuropathy (OXIPN) as an adverse side effect in cancer patients. Until now, no effective preventive or therapeutic drug has been developed; therefore, the dose-limiting factor of OXIPN is still an obstacle in the use of oxaliplatin to treat cancer patients. In the present study, we report for the first time that the aqueous extract of Lithospermi radix (WLR) can attenuate the OXIPN in both in vitro and in vivo neuropathic models. The protective effect of WLR on OXIPN was evaluated in vitro by quantifying nerve growth factor (NGF)-stimulated neurite outgrowth in PC12 cells treated with a combination of oxaliplatin and WLR. The neuroprotective potential of WLR was further confirmed by measuring the changes in nociceptive sensitivities to external mechanical stimuli in neuropathic animals induced by oxaliplatin. Histological and immunohistochemical studies were further done to examine the effect of WLR in mouse spinal cords and footpads. Oxaliplatin-induced neurotoxicity in NGF-stimulated PC12 cells. It could reduce the lengths and branching numbers of neuritis in NGF-stimulated PC12 cells. Co-treatment of WLR rescued the differentiated PC12 cells from the neurotoxicity of oxaliplatin. In a chronic OXIPN animal model, administration of oxaliplatin i.p. induced enhanced nociceptive sensitivity to mechanical stimuli (25.0 to 72.5 % of response rate) along with spinal activation of microglias and astrocytes and loss of intraepidermal nerve fibers in footpads, which is remarkably suppressed by oral administration of WLR (67.5 to 35 % of response rate at the end of experiment). Cytotoxicity of oxaliplatin determined in human cancer cells was not affected irrespective of the presence of WLR. In conclusion, we demonstrated that WLR can attenuate OXIPN in both in vitro and in vivo experimental models, which may be in part attributed to its anti-inflammatory activity in the spinal cord and its neuroprotective potential in the peripheral

  3. Gemifloxacin-associated neurotoxicity presenting as encephalopathy.

    PubMed

    Barrett, Matthew J; Login, Ivan S

    2009-04-01

    To report a case of acute encephalopathy associated with ingestion of gemifloxacin, a fluoroquinolone. A 67-year-old woman presented to the emergency department with an acute alteration in mental status. Twenty-four hours earlier she had taken one 320-mg tablet of her husband's gemifloxacin prescription to treat symptoms of a mild upper respiratory infection. During her initial evaluation at our institution, the woman was dysphasic, unable to follow commands, and agitated, suggesting encephalopathy. A thorough diagnostic investigation did not reveal any structural, metabolic, or infectious etiology. Her mental status returned to normal within 2 days without any definitive treatment. Fluoroquinolone-associated neurotoxicity may manifest as encephalopathy, seizures, confusion, or toxic psychosis. To date, none of these adverse effects, specifically encephalopathy, has been reported with gemifloxacin. An objective causality assessment revealed that encephalopathy was probably associated with gemifloxacin use. Seizures, either convulsive or nonconvulsive, may have contributed to our patient's presentation, but she denied seizures prior to this event and did not suffer a seizure in the 18 months following her discharge. However, her second electroencephalograph revealed an underlying predisposition to seizures, which gemifloxacin may have unmasked. This report illustrates that severe central nervous system adverse effects associated with some fluoroquinolones may also occur with gemifloxacin. Gemifloxacin and other fluoroquinolones should be considered in the etiologic evaluation of patients with acute encephalopathy.

  4. Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures

    PubMed Central

    Lein, Pamela J.; Barnhart, Christopher D.; Pessah, Isaac N.

    2012-01-01

    A major advantage of hippocampal slice preparations is that the cytoarchitecture and synaptic circuits of the hippocampus are largely retained. In neurotoxicology research, organotypic hippocampal slices have mostly been used as acute ex vivo preparations for investigating the effects of neurotoxic chemicals on synaptic function. More recently, hippocampal slice cultures, which can be maintained for several weeks to several months in vitro, have been employed to study how neurotoxic chemicals influence the structural and functional plasticity in hippocampal neurons. This chapter provides protocols for preparing hippocampal slices to be used acutely for electrophysiological measurements using glass microelectrodes or microelectrode arrays or to be cultured for morphometric assessments of individual neurons labeled using biolistics. PMID:21815062

  5. Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid - induced neurotoxicity in rodent model of autism

    PubMed Central

    2014-01-01

    Background Exposures to environmental toxins are now thought to contribute to the development of autism spectrum disorder. Propionic acid (PA) found as a metabolic product of gut bacteria has been reported to mimic/mediate the neurotoxic effects of autism. Results from animal studies may guide investigations on human populations toward identifying environmental contaminants that produce or drugs that protect from neurotoxicity. Forty-eight young male Western Albino rats were used in the present study. They were grouped into six equal groups 8 rats each. The first group received a neurotoxic dose of buffered PA (250 mg/Kg body weight/day for 3 consecutive days). The second group received only phosphate buffered saline (control group). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for one week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for one week prior to PA (protected groups). Heat shock protein70 (Hsp70), Gamma amino-butyric acid (GABA), serotonin, dopamine, oxytocin and interferon γ-inducible protein 16 together with Comet DNA assay were measured in brain tissues of the six studied groups. Results The obtained data showed that PA caused multiple signs of brain toxicity revealed in depletion of GABA, serotonin, and dopamine, are which important neurotransmitters that reflect brain function, interferon γ-inducible protein 16 and oxytocin. A high significant increase in tail length, tail DNA% damage and tail moment was reported indicating the genotoxic effect of PA. Administration of melatonin or coenzyme Q showed both protective and therapeutic effects on PA–treated rats demonstrated in a remarkable amelioration of most of the measured parameters. Conclusion In conclusion, melatonin and coenzyme Q have potential protective and restorative effects against PA-induced brain injury

  6. Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid - induced neurotoxicity in rodent model of autism.

    PubMed

    Al-Ghamdi, Mashael; Al-Ayadhi, Laila; El-Ansary, Afaf

    2014-02-25

    Exposures to environmental toxins are now thought to contribute to the development of autism spectrum disorder. Propionic acid (PA) found as a metabolic product of gut bacteria has been reported to mimic/mediate the neurotoxic effects of autism. Results from animal studies may guide investigations on human populations toward identifying environmental contaminants that produce or drugs that protect from neurotoxicity. Forty-eight young male Western Albino rats were used in the present study. They were grouped into six equal groups 8 rats each. The first group received a neurotoxic dose of buffered PA (250 mg/Kg body weight/day for 3 consecutive days). The second group received only phosphate buffered saline (control group). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for one week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for one week prior to PA (protected groups). Heat shock protein70 (Hsp70), Gamma amino-butyric acid (GABA), serotonin, dopamine, oxytocin and interferon γ-inducible protein 16 together with Comet DNA assay were measured in brain tissues of the six studied groups. The obtained data showed that PA caused multiple signs of brain toxicity revealed in depletion of GABA, serotonin, and dopamine, are which important neurotransmitters that reflect brain function, interferon γ-inducible protein 16 and oxytocin. A high significant increase in tail length, tail DNA% damage and tail moment was reported indicating the genotoxic effect of PA. Administration of melatonin or coenzyme Q showed both protective and therapeutic effects on PA-treated rats demonstrated in a remarkable amelioration of most of the measured parameters. In conclusion, melatonin and coenzyme Q have potential protective and restorative effects against PA-induced brain injury, confirmed by improvement in

  7. Flaxseed oil as a neuroprotective agent on lead acetate-induced monoamineric alterations and neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2012-09-01

    Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.

  8. Drug-Induced Acute Pancreatitis: A Review

    PubMed Central

    Jones, Mark R.; Hall, Oliver Morgan; Kaye, Adam M.; Kaye, Alan David

    2015-01-01

    Background The majority of drug-induced pancreatitis cases are mild to moderate in severity, but severe and even fatal cases can occur. Management of drug-induced pancreatitis requires withdrawal of the offending agent and supportive care. Methods This review focuses on differential diagnosis, clinical presentation, drug-mediated effects, treatments, and mechanisms of pancreatitis, with an emphasis on drug-induced pancreatitis. Results Although only a minority of cases associated with acute pancreatitis are linked to drugs, clinical presentation and mechanisms of injury to the pancreas are not well understood by clinicians in terms of individual drug effects in the mediation or modulation of injury to the pancreas. In recent years, a large number of commonly prescribed medications has been linked to drug-induced pancreatitis pathogenesis. Although mechanisms are proposed, the exact cause of injury is either not well understood or controversial. Conclusion Future investigation into the mechanisms of pancreatitis and an appreciation by clinicians of the drugs commonly linked to the condition will help establish earlier diagnosis and quicker cessation of offending drugs in the treatment of drug-induced acute pancreatitis. PMID:25829880

  9. Pembrolizumab-induced acute thrombosis: A case report.

    PubMed

    Kunimasa, Kei; Nishino, Kazumi; Kimura, Madoka; Inoue, Takako; Tamiya, Motohiro; Kumagai, Toru; Imamura, Fumio

    2018-05-01

    Acute thrombosis has not been reported in the literature so far in lung cancer patients as an immune-related adverse event (irAE) associated with PD-1 pathway inhibitors. Here, we for the first time present two NSCLC (non-small cell lung cancer) patients suffering from acute thrombosis as a pembrolizumab-induced irAE. Immediate treatment with continuous heparin infusion improved their symptoms and enabled them to continue pembrolizumab administration. Ethical approval was given by the ethics committee of Osaka International Cancer Institute and the informed consents were given by the patients. Serum D-dimer level testing, venous ultrasonography, enhanced computed tomography (CT). Continuous heparin infusion, direct oral anticoagulants (DOAC). Immediate continuous heparin infusion improved their symptoms and continuing pembrolizumab with direct oral anticoagulant successfully induced tumor shrinkage. Reinvigoration of exhausted T cells by pembrolizumab induced systemic inflammation possibly resulting in development of thrombosis. Although acute thrombosis is a rare irAE, it may lead to cessation of treatment and can be lethal.

  10. Acute Cerebellar Ataxia Induced by Nivolumab

    PubMed Central

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  11. Oxaliplatin-induced neurotoxicity is mediated through gap junction channels and hemichannels and can be prevented by octanol.

    PubMed

    Kagiava, Alexia; Theophilidis, George; Sargiannidou, Irene; Kyriacou, Kyriacos; Kleopa, Kleopas A

    2015-10-01

    Oxaliplatin-induced neurotoxicity (OIN) is a common complication of chemotherapy without effective treatment. In order to clarify the mechanisms of both acute and chronic OIN, we used an ex-vivo mouse sciatic nerve model. Exposure to 25 μM oxaliplatin caused a marked prolongation in the duration of the nerve evoked compound action potential (CAP) by nearly 1200% within 300 min while amplitude remained constant for over 20 h. This oxaliplatin effect was almost completely reversed by the gap junction (GJ) inhibitor octanol in a concentration-dependent manner. Further GJ blockers showed similar effects although with a narrower therapeutic window. To clarify the target molecule we studied sciatic nerves from connexin32 (Cx32) and Cx29 knockout (KO) mice. The oxaliplatin effect and neuroprotection by octanol partially persisted in Cx29 better than in Cx32 KO nerves, suggesting that oxaliplatin affects both, but Cx32 GJ channels more than Cx29 hemichannels. Oxaliplatin also accelerated neurobiotin uptake in HeLa cells expressing the human ortholog of Cx29, Cx31.3, as well as dye transfer between cells expressing the human Cx32, and this effect was blocked by octanol. Oxaliplatin caused no morphological changes initially (up to 3 h of exposure), but prolonged nerve exposure caused juxtaparonodal axonal edema, which was prevented by octanol. Our study indicates that oxaliplatin causes forced opening of Cx32 channels and Cx29 hemichannels in peripheral myelinated fibers leading to disruption of axonal K(+) homeostasis. The GJ blocker octanol prevents OIN at very low concentrations and should be further studied as a neuroprotectant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tolvaptan rescue contrast-induced acute kidney injury: A case report.

    PubMed

    Lee, Wei-Chieh; Fang, Hsiu-Yu; Fang, Chih-Yuan

    2018-04-01

    Contrast-induced acute kidney injury is one of the most serious adverse effects of contrast media and is related to three distinct but interacting mechanisms: medullary ischemia, formation of reactive oxygen species and direct tubular cell toxicity, especially in the patients with chronic kidney disease. The strategies of treatment, including stabilization of hemodynamic parameters and maintenance of normal fluid and electrolyte balance, were similar to the management of other types of acute kidney injury. A 58-year-old woman experienced acute oligouria after complex percutaneous coronary intervention for multiple vessel coronary artery disease. Chest radiography showed pulmonary congestion and hyponatremia was noted after fluid hydration for suspicious contrast-induced nephropathy. Oral tolvaptan, at 15mg per day, was used for three days. Urine output increased gradually and symptoms relieved one day later after using tolvaptan. Serum creatinine also improved to baseline level one week later after this event. Here, we reported an interesting case about contrast-induced acute kidney injury and hypervolemic hyponatremia, where tolvaptan was used to rescue the oliguric phase. Tolvaptan could be considered to use for contrast-induced acute kidney injury and had possibility of prevention from hemodialysis. Larger studies are still needed to investigate the role of tolvaptan in rescuing the oliguric phase in contrast-induced acute kidney injury.

  13. Imipenem/cilastatin-induced acute eosinophilic pneumonia.

    PubMed

    Foong, Kap Sum; Lee, Ashley; Pekez, Marijeta; Bin, Wei

    2016-03-04

    Drugs, toxins, and infections are known to cause acute eosinophilic pneumonia. Daptomycin and minocycline are the commonly reported antibiotics associated with acute eosinophilic pneumonia. In this study, we present a case of imipenem/cilastatin-induced acute eosinophilic pneumonia. The patient presented with fever, acute hypoxic respiratory distress, and diffuse ground-glass opacities on the chest CT a day after the initiation of imipenem/cilastatin. Patient also developed peripheral eosinophilia. A reinstitution of imipenem/cilastatin resulted in recurrence of the signs and symptoms. A bronchoscopy with bronchoalveolar lavage showed 780 nucleated cells/mm(3) with 15% eosinophil. The patient's clinical condition improved significantly after the discontinuation of imipenem/cilastatin therapy and the treatment with corticosteroid. 2016 BMJ Publishing Group Ltd.

  14. Disulfiram-induced acute organic brain syndrome.

    PubMed

    Kump, J G; Flaten, P A; Greenlaw, C W

    1979-08-01

    Reversible acute organic brain syndrome is described in a patient receiving disulfiram, 250 mg daily. Slowing of the electroencephalogram (3 to 4 cycles per second) in the occipital region resolved ten days after discontinuation of disulfiram. Acute organic brain syndrome induced by disulfiram is not rare but is often not correlated, and it should always be considered a possibility in patients receiving disulfiram therapy.

  15. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    PubMed Central

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  16. Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats.

    PubMed

    Nadeem, Rania I; Ahmed, Hebatalla I; El-Sayeh, Bahia M

    2018-04-18

    Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl 2 ; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl 2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl 2 -induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.

  17. Peripheral Neuropathy Induced by Microtubule-Targeted Chemotherapies: Insights into Acute Injury and Long-term Recovery.

    PubMed

    Wozniak, Krystyna M; Vornov, James J; Wu, Ying; Liu, Ying; Carozzi, Valentina A; Rodriguez-Menendez, Virginia; Ballarini, Elisa; Alberti, Paola; Pozzi, Eleonora; Semperboni, Sara; Cook, Brett M; Littlefield, Bruce A; Nomoto, Kenichi; Condon, Krista; Eckley, Sean; DesJardins, Christopher; Wilson, Leslie; Jordan, Mary A; Feinstein, Stuart C; Cavaletti, Guido; Polydefkis, Michael; Slusher, Barbara S

    2018-02-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice. Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR

  18. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.

    PubMed

    Thomas, David M; Walker, Paul D; Benjamins, Joyce A; Geddes, Timothy J; Kuhn, Donald M

    2004-10-01

    Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the study of microglial activation as part of the methamphetamine neurotoxic cascade. We report here that methamphetamine activates microglia in a dose-related manner and along a time course that is coincident with dopamine nerve ending damage. Prevention of methamphetamine toxicity by maintaining treated mice at low ambient temperature prevents drug-induced microglial activation. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which damages dopamine nerve endings and cell bodies, causes extensive microglial activation in striatum as well as in the substantia nigra. In contrast, methamphetamine causes neither microglial activation in the substantia nigra nor dopamine cell body damage. Dopamine transporter antagonists (cocaine, WIN 35,428 [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate], and nomifensine), selective D1 (SKF 82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide]), D2 (quinpirole), or mixed D1/D2 receptor agonists (apomorphine) do not mimic the effect of methamphetamine on microglia. Hyperthermia, a prominent and dangerous clinical response to methamphetamine intoxication, was also ruled out as the cause of microglial activation. Together, these data suggest that microglial activation represents an early step in methamphetamine-induced neurotoxicity. Other neurochemical effects resulting from methamphetamine-induced overflow of DA into the synapse, but which are not neurotoxic, do not play a role in this response.

  20. RISK CHARACTERIZATION OF PERSISTENT NEUROTOXIC CONTAMINANTS

    EPA Science Inventory

    Neurotoxicity is an adverse change in structure or function of the central and/or peripheral nervous system following exposure to a chemical, physical, or biological agent. Thousands of chemicals have been estimated to have neurotoxic potential. Many persistent and bioaccumulat...

  1. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  2. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    PubMed

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  3. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*.

    PubMed

    Possamai, Lucia A; McPhail, Mark J W; Quaglia, Alberto; Zingarelli, Valentina; Abeles, R Daniel; Tidswell, Robert; Puthucheary, Zudin; Rawal, Jakirty; Karvellas, Constantine J; Leslie, Elaine M; Hughes, Robin D; Ma, Yun; Jassem, Wayel; Shawcross, Debbie L; Bernal, William; Dharwan, Anil; Heaton, Nigel D; Thursz, Mark; Wendon, Julia A; Mitry, Ragai R; Antoniades, Charalambos G

    2013-11-01

    To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. A prospective observational study in two tertiary liver transplant units. Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. Hepatocellular apoptosis occurs

  4. Mephedrone Does not Damage Dopamine Nerve Endings of the Striatum but Enhances the Neurotoxicity of Methamphetamine, Amphetamine and MDMA

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Francescutti, Dina M.; Sykes, Catherine E.; Shah, Mrudang M.; Thomas, David M.; Kuhn, Donald M.

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its reuptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20 or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (4 injections of 2.5 or 5.0 mg/kg at 2 hr intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and MDMA on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. Because mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. PMID:23205838

  5. Apoptotic signaling pathways induced by acute administration of branched-chain amino acids in an animal model of maple syrup urine disease.

    PubMed

    Vilela, Thais C; Scaini, Giselli; Furlanetto, Camila B; Pasquali, Matheus A B; Santos, João Paulo A; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-02-01

    Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.

  6. Organophosphorus poisoning (acute).

    PubMed

    2007-03-01

    Acute organophosphorus poisoning occurs after dermal, respiratory, or oral exposure to either low-volatility pesticides (e.g. chlorpyrifos, dimethoate) or high-volatility nerve gases (e.g. sarin, tabun). Most cases occur in resource-poor countries as a result of occupational or deliberate exposure to organophosphorus pesticides. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for acute organophosphorus poisoning? We searched: Medline, Embase, The Cochrane Library and other important databases up to August 2006 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 22 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: activated charcoal, alpha2 adrenergic receptor agonists, atropine, benzodiazepines, butyrylcholinesterase replacement therapy, cathartics, extracorporeal clearance, gastric lavage, glycopyrronium bromide, ipecacuanha, magnesium sulphate, milk or other home remedies, N-methyl-D-aspartate receptor antagonists, organophosphorus hydrolases, oximes, sodium bicarbonate, washing the poisoned person and removing contaminated clothing.

  7. Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives.

    PubMed

    Barba-Bon, Andrea; Martínez-Máñez, Ramón; Sancenón, Félix; Costero, Ana M; Gil, Salvador; Pérez-Pla, Francisco; Llopis, Elisa

    2015-11-15

    We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products. Without organocatalysts, DCNP hydrolysis occurred mainly via an autocatalysis path. Addition of tertiary amines in sub-stoichiometric amounts largely enhanced DCNP depletion whereas non-tertiary polyamines reacted even faster. Glycols induced very slight increment in the DCNP hydrolysis, whereas DCNP hydrolysis increased sharply in the presence of certain aminoalcohols especially, 2-(2-aminoethylamino)ethanol. For the latter compound, DCNP depletion occurred ca. 80-fold faster than in the absence of organocatalysts. The kinetic studies revealed that DCNP hydrolysis in the presence of 2-(2-aminoethylamino)ethanol occurred via a catalytic process, in which the aminoalcohol was involved. DCNP hydrolysis generally depended strongly on the structure of the amine, and it was found that the presence of the OHCH2CH2N moiety in the organocatalyst structure seems important to induce a fast degradation of DCNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of (+)-Methamphetamine on Path Integration Learning, Novel Object Recognition, and Neurotoxicity in Rats

    PubMed Central

    Herring, Nicole R.; Schaefer, Tori L.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.

    2008-01-01

    Rationale Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems, but few associated cognitive effects. Objectives Since, questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Methods Rats were treated with one of two regimens, one the typical neurotoxic regimen (4 × 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho et al. 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 ×1.67 mg/kg once every 15 min); matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. Results On markers of neurotoxicity, MA showed decreased DA and 5-HT, and increased glial fibrillary acidic protein and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple-T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. Conclusions MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity. PMID:18509623

  9. Effect of +-methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats.

    PubMed

    Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-09-01

    Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems but few associated cognitive effects. Since questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Rats were treated with one of the two regimens: one based on the typical neurotoxic regimen (4 x 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho AK, Melega WP, Kuczenski R, Segal DS Synapse 39:161-166, 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 x 1.67 mg/kg once every 15 min) matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. On markers of neurotoxicity, MA showed decreased dopamine (DA) and 5-HT, increased glial fibrillary acidic protein, and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity.

  10. The Portland Neurotoxicity Scale: Validation of a Brief Self-Report Measure of Antiepileptic-Drug-Related Neurotoxicity

    ERIC Educational Resources Information Center

    Salinsky, Martin C.; Storzbach, Daniel

    2005-01-01

    The Portland Neurotoxicity Scale (PNS) is a brief patient-based survey of neurotoxicity complaints commonly encountered with the use of antiepileptic drugs (AEDs). The authors present data on the validity of this scale, particularly when used in longitudinal studies. Participants included 55 healthy controls, 23 epilepsy patient controls, and 86…

  11. Central neurotoxicity of immunomodulatory drugs in multiple myeloma.

    PubMed

    Patel, Urmeel H; Mir, Muhammad A; Sivik, Jeffrey K; Raheja, Divisha; Pandey, Manoj K; Talamo, Giampaolo

    2015-02-24

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  12. Central Neurotoxicity of Immunomodulatory Drugs in Multiple Myeloma

    PubMed Central

    Patel, Urmeel H.; Mir, Muhammad A.; Sivik, Jeffrey K.; Raheja, Divisha; Pandey, Manoj K.; Talamo, Giampaolo

    2015-01-01

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy. PMID:25852850

  13. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505).

    PubMed

    Pachman, Deirdre R; Qin, Rui; Seisler, Drew; Smith, Ellen M Lavoie; Kaggal, Suneetha; Novotny, Paul; Ruddy, Kathryn J; Lafky, Jacqueline M; Ta, Lauren E; Beutler, Andreas S; Wagner-Johnston, Nina D; Staff, Nathan P; Grothey, Axel; Dougherty, Patrick M; Cavaletti, Guido; Loprinzi, Charles L

    2016-12-01

    Oxaliplatin and paclitaxel are commonly used chemotherapies associated with acute and chronic neuropathies. There is a need to better understand the similarities and differences of these clinical syndromes. Neuropathy data were pooled from patients receiving adjuvant oxaliplatin and weekly paclitaxel or every 3 weeks of paclitaxel. Patients completed daily questionnaires after each chemotherapy dose and the European Organization for Research and Treatment of Cancer quality-of-life questionnaire for patients with chemotherapy-induced peripheral neuropathy before each chemotherapy cycle and for 12 months post-treatment. Acute neuropathy symptoms from both drugs peaked around day 3. Acute symptoms experienced in cycle 1 predicted occurrence in subsequent cycles. Paclitaxel-induced acute symptoms were similar in intensity in each cycle and largely resolved between cycles. Oxaliplatin-induced acute symptoms were about half as severe in the first cycle as in later cycles and did not resolve completely between cycles. Both drugs caused a predominantly sensory chronic neuropathy (with numbness and tingling being more common than pain). Oxaliplatin-induced neuropathy worsened after the completion of treatment and began to improve 3 months post-treatment. In contrast, paclitaxel-induced neuropathy began improving immediately after chemotherapy cessation. During treatment, the incidence of paclitaxel sensory symptoms was similar in the hands and feet; with oxaliplatin, the hands were affected more than the feet. Both paclitaxel- and oxaliplatin-induced acute neurotoxicity appeared to predict the severity of chronic neuropathy, more prominently with oxaliplatin. Knowledge of the similarities and differences between neuropathy syndromes may provide insight into their underlying pathophysiology and inform future research to identify preventative treatment approaches.

  14. Death adder envenoming causes neurotoxicity not reversed by antivenom--Australian Snakebite Project (ASP-16).

    PubMed

    Johnston, Christopher I; O'Leary, Margaret A; Brown, Simon G A; Currie, Bart J; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K

    2012-01-01

    Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5-74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5-15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5-168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4-245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The persistent neurological effects despite antivenom, suggests that

  15. Current Challenges in Neurotoxicity Risk Assessment ...

    EPA Pesticide Factsheets

    Neurotoxicity risk assessment must continue to evolve in parallel with advances in basic research. Along with this evolution is an expansion in the scope of neurotoxicity assessments of environmental health risks. Examples of this expansion include an increasing emphasis on complex animal models that better replicate human behavior and a wider array of molecular and mechanistic data relevant to interpreting the underlying cause(s) of toxicity. However, modern neurotoxicology studies are often more nuanced and complicated than traditional studies, and they often vary considerably in evaluation methods from one study to the next, impeding comparisons. This can pose particular difficulties for risk assessors, especially given the recent demand for chemical risk assessments to be more systematic and transparent. This presentation will introduce and provide some examples of specific challenges in neurotoxicity assessments of environmental chemicals. Some of these challenges are relatively new to the field, such as the incorporation of data on neuron-supportive glial cells into hazard characterization, while other challenges have persisted for several decades, but only recently are studies being designed to evaluate them, including analyses of latent neurotoxicity. The examples provided illustrate some future research areas of interest for scientists and risk assessors examining human neurotoxicity risk. This abstract will be presented to internal U.S. Food and Drug A

  16. Acute liver injury induced by weight-loss herbal supplements.

    PubMed

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  17. Acute liver injury induced by weight-loss herbal supplements

    PubMed Central

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-01-01

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss. PMID:21173910

  18. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  19. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    PubMed

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.

  20. Protective effect of thalidomide against N-methyl-D-aspartate-induced retinal neurotoxicity.

    PubMed

    Takada, Kazuhide; Munemasa, Yasunari; Kuribayashi, Junko; Fujino, Hiromi; Kitaoka, Yasushi

    2011-10-01

    Thalidomide, an inhibitor of tumor necrosis factor-α (TNF-α) production, has been indicated to be useful for many inflammatory and oncogenic diseases. In the present study, we examined whether thalidomide (50 mg/kg/day, p.o.) has a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity in rats. A morphometric analysis showed that systemic administration of thalidomide protects neural cells in the ganglion cell layer (GCL) in a dose-dependent manner and significantly decreases the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in GCL and in the inner nuclear layer (INL). ELISA showed that thalidomide significantly suppressed the elevation of TNF-α 6 and 24 hr after an NMDA injection. Western blot analysis revealed a significant increase in nuclear factor-κB (NF-κB) p65 level in the retinas treated with NMDA at 24 hr after the injection, but not at 6 or 72 hr. Furthermore, an increase in p-JNK and p-p38 levels was also observed in the retina after NMDA injection. Thalidomide suppressed the increased expressions of NF-κB p65, p-JNK, and p-p38 after NMDA injection. Immunohistochemical analysis showed that thalidomide attenuated NF-κB p65 immunoreactivity in the GCL induced by NMDA treatment. In the NMDA-treated group, translocation of NF-κB p65 from the cytoplasm to the nucleus was detected in TUNEL-positive cells exposed to NMDA treatment. These results suggest new indications for thalidomide against neurodegenerative diseases. Copyright © 2011 Wiley-Liss, Inc.

  1. Silibinin attenuates MPP⁺-induced neurotoxicity in the substantia nigra in vivo.

    PubMed

    Jung, Un Ju; Jeon, Min-Tae; Choi, Myung-Sook; Kim, Sang Ryong

    2014-05-01

    Parkinson's disease (PD) is characterized by degeneration of the nigrostriatal dopaminergic (DA) pathway. The cause of neuronal death in PD is largely unknown, but it is becoming clear that inflammation plays a significant role in the pathophysiology of PD. Silibinin is a major flavonoid in milk thistle which has an anti-inflammatory activity. We investigated whether silibinin could have neuroprotective effects on DA neurons in the 1-methyl-4-phenylpyridinium ion (MPP(+))-treated animal model of PD in vivo. To address this question, animals received intraperitoneal (i.p.) injections 10, 50, or 100 mg/kg of silibinin, starting 1 day before MPP(+) injection and continued daily until 6 days post-lesion for tyrosine hydroxylase (TH) staining, or until 1 hour prior to the MPP(+) injection to examine the expression levels of inflammatory proteins. Finally, their brains were harvested at the indicated time points for the analyses. Silibinin treatment with 10 mg/kg had no significantly neuroprotective effects in the substantia nigra (SN). However, 50 and 100 mg/kg of silibinin ameliorated the MPP(+)-induced neurotoxicity in the SN in a dose-dependent manner, and the increased levels of inflammatory molecules such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) by MPP(+) treatment were attenuated by treatment with 100 mg/kg of silibinin. These results indicate that silibinin could be a useful and beneficial natural product offering promise for the prevention of DA neuronal degeneration involved in PD.

  2. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    PubMed

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  3. Bioassay-guided Isolation of Neuroprotective Fatty Acids from Nigella sativa against 1-methyl-4-phenylpyridinium-induced Neurotoxicity

    PubMed Central

    Hosseinzadeh, Leila; Monaghash, Hoda; Ahmadi, Farahnaz; Ghiasvand, Nastaran; Shokoohinia, Yalda

    2017-01-01

    Objective: Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods: Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results: MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion: Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation

  4. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  6. Anesthetic Sevoflurane Causes Neurotoxicity Differently in Neonatal Naïve and Alzheimer's Disease Transgenic Mice

    PubMed Central

    Lu, Yan; Wu, Xu; Dong, Yuanlin; Xu, Zhipeng; Zhang, Yiying; Xie, Zhongcong

    2010-01-01

    Background Recent studies have suggested that children having surgery under anesthesia could be at an increased risk for the development of learning disabilities, but whether anesthetics contribute to this learning disability is unclear. We therefore set out to assess effects of sevoflurane, the most commonly used inhalation anesthetic, on caspase activation, apoptosis, β-amyloid protein levels, and neuroinflammation in brain tissues of neonatal naïve and Alzheimer's disease (AD) transgenic mice. Methods Six-day-old naïve and AD transgenic [B6.Cg-Tg(amyloid precursor protein swe, PSEN1dE9)85Dbo/J] mice were treated with sevoflurane. The mice were euthanized at the end of the anesthesia and brain tissues were harvested, and were then subjected to Western blot, immunocytochemistry, ELISA and real-time polymerase chain reaction. Results Here we show for the first time that sevoflurane anesthesia induced caspase activation and apoptosis, altered amyloid precursor protein processing, and increased β-amyloid protein levels in the brain tissues of the neonatal mice. Furthermore, the sevoflurane anesthesia led to a greater degree of neurotoxicity in the brain tissues of the AD transgenic mice as compared to the naïve mice, and increased tumor necrosis factor-α levels only in the brain tissues of the AD transgenic mice. Finally, inositol 1,4,5-trisphosphate receptor antagonist 2-APB attenuated the sevoflurane-induced caspase-3 activation and β-amyloid protein accumulation in vivo. Conclusion These results suggest that sevoflurane may induce the neurotoxicity in neonatal mice. AD transgenic mice could be more venerable to such neurotoxicity. These findings should promote more studies to determine the potential neurotoxicity of anesthesia in animals and humans, especially in children. PMID:20460993

  7. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-06

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Propofol and sodium thiopental protect against MK-801-induced neuronal necrosis in the posterior cingulate/retrosplenial cortex.

    PubMed

    Jevtovic-Todorovic, V; Wozniak, D F; Powell, S; Olney, J W

    2001-09-21

    N-Methyl-D-aspartate (NMDA) antagonists act by an anti-excitotoxic action to provide neuroprotection against acute brain injury, but these agents can also cause toxic effects. In low doses they induce reversible neuronal injury, but in higher doses they cause irreversible degeneration of cerebrocortical neurons. GABAmimetic drugs protect against the reversible neurotoxic changes in rat brain. Here we show that two GABAmimetic anesthetic agents--propofol and sodium thiopental--protect against the irreversible neurodegenerative reaction induced by the powerful NMDA antagonist, MK-801.

  9. Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells.

    PubMed

    Dingemans, Milou M L; de Groot, Aart; van Kleef, Regina G D M; Bergman, Ake; van den Berg, Martin; Vijverberg, Henk P M; Westerink, Remco H S

    2008-05-01

    Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. Our objective was to investigate the effects of a hydroxylated metabolite of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+]i) and vesicular catecholamine release in PC12 cells. We measured vesicular catecholamine release and [Ca2+]i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively. Acute exposure of PC12 cells to 6-OH-BDE-47 (5 microM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+]i, which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 microM). An additional late increase in [Ca2+]i was often observed at > or =1 microM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 microM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria. The hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+]i cannot be ruled out.

  10. Acute Cervical Dystonia Induced by Clebopride.

    PubMed

    Choi, Jin Kyo; Hong, Jin Yong

    2017-01-01

    Antidopaminergic drugs are known to induce extrapyramidal symptoms. Clebopride, a dopamine antagonist, also can produce parkinsonism, tardive dyskinesia, tardive dystonia, hemifacial dystonia, or oculogyric crisis; however, acute dystonic reaction caused by clebopride has not been reported in adults. We report two young men who experienced acute cervical dystonia within a few days of taking clebopride. The patients recovered after discontinuation of the drug. Physicians prescribing clebopride should be aware of the adverse effects of this drug.

  11. Acute Cervical Dystonia Induced by Clebopride

    PubMed Central

    2017-01-01

    Antidopaminergic drugs are known to induce extrapyramidal symptoms. Clebopride, a dopamine antagonist, also can produce parkinsonism, tardive dyskinesia, tardive dystonia, hemifacial dystonia, or oculogyric crisis; however, acute dystonic reaction caused by clebopride has not been reported in adults. We report two young men who experienced acute cervical dystonia within a few days of taking clebopride. The patients recovered after discontinuation of the drug. Physicians prescribing clebopride should be aware of the adverse effects of this drug. PMID:29333306

  12. Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA.

    PubMed

    Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Francescutti, Dina M; Sykes, Catherine E; Shah, Mrudang M; Thomas, David M; Kuhn, Donald M

    2013-04-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re-uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4-methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. © 2012 International Society for Neurochemistry.

  13. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phenotypic screening for developmental neurotoxicity ...

    EPA Pesticide Factsheets

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemicals for the potential to affect the developing brain are being explored. Typically, HTP screening uses biochemical and molecular assays to detect the interaction of a chemical with a known target or molecular initiating event (e.g., the mechanism of action). For developmental neurotoxicity, however, the mechanism(s) is often unknown. Thus, we have developed assays for detecting chemical effects on the key events of neurodevelopment at the cellular level (e.g., proliferation, differentiation, neurite growth, synaptogenesis, network formation). Cell-based assays provide a test system at a level of biological complexity that encompasses many potential neurotoxic mechanisms. For example, phenotypic assessment of neurite outgrowth at the cellular level can detect chemicals that target kinases, ion channels, or esterases at the molecular level. The results from cell-based assays can be placed in a conceptual framework using an Adverse Outcome Pathway (AOP) which links molecular, cellular, and organ level effects with apical measures of developmental neurotoxicity. Testing a wide range of concentrations allows for the distinction between selective effects on neurodevelopmental and non-specific

  15. Developmental fluoride neurotoxicity: a systematic review and meta-analysis.

    PubMed

    Choi, Anna L; Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-10-01

    Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children's neurodevelopment. We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg's funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. The standardized weighted mean difference in IQ score between exposed and reference populations was -0.45 (95% confidence interval: -0.56, -0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. The results support the possibility of an adverse effect of high fluoride exposure on children's neurodevelopment. Future research should include detailed individual-level information on prenatal

  16. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis

    PubMed Central

    Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-01-01

    Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. Methods: We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg’s funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. Results: The standardized weighted mean difference in IQ score between exposed and reference populations was –0.45 (95% confidence interval: –0.56, –0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. Conclusions: The results support the possibility of an adverse effect of high fluoride exposure on children’s neurodevelopment. Future research

  17. α-Lipoic acid protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Park, Sung-Joo; Seo, Sang-Wan; Choi, Ok-Sun; Park, Cheung-Seog

    2005-01-01

    AIM: α-Lipoic acid (ALA) has been used as an antioxidant. The aim of this study was to investigate the effect of α-lipoic acid on cholecystokinin (CCK)-octapeptide induced acute pancreatitis in rats. METHODS: ALA at 1 mg/kg was intra-peritoneally injected, followed by 75 μg/kg CCK-octapeptide injected thrice subcutaneously after 1, 3, and 5 h. This whole procedure was repeated for 5 d. We checked the pancreatic weight/body weight ratio, the secretion of pro-inflammatory cytokines and the levels of lipase, amylase of serum. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally induced pancreatitis. RESULTS: ALA significantly decreased the pancreatic weight/body weight ratio and serum amylase and lipase in CCK octapeptide-induced acute pancreatitis. However, the secretion of IL-1β, IL-6, and TNF-α were comparable in CCK octapeptide-induced acute pancreatitis. CONCLUSION: ALA may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:16097064

  18. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Gang

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less

  19. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon.

    PubMed

    Alam, Azeem; Suen, Ka Chun; Hana, Zac; Sanders, Robert D; Maze, Mervyn; Ma, Daqing

    Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Bucciarelli, Tonino; Scotti, Luca; Chiovitti, Katia; Villa, Valentina; D'Arrigo, Cristina; Aceto, Antonio; Florio, Tullio

    2011-03-01

    Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    PubMed

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  2. Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism.

    PubMed

    Singh, Shamsher; Jamwal, Sumit; Kumar, Puneet

    2015-08-01

    3-Nitropropionic acid (3-NP) is a fungal toxin well established model used for inducing symptoms of Huntington's disease. Curcumin a natural polyphenol has been reported to possess neuroprotective activity by decreasing oxidative stress. The aim of present study was to investigate neuroprotective effect of curcumin with piperine (bioavailability enhancer) against 3-NP induced neurotoxicity in rats. Administration of 3-NP (10 mg/kg for 21 days) showed loss in body weight, declined motor function and changes in biochemical (LPO, nitrite and glutathione level), neuroinflammatory (TNF-α and IL-1β level) and neurochemical (DA, NE, 5-HT, DOPAC, 5-HIAA and HVA). Chronic treatment with curcumin (25 and 50 mg/kg) and curcumin (25 mg/kg) with piperine (2.5 mg/kg) once daily for 21 days prior to 3-NP administration. All the behavioral parameters were studied at 1st, 7th, 14th, and 21st day. On 22nd day all the animals was scarified and striatum was separated. Curcumin alone and combination (25 mg/kg) with piperine (2.5 mg/kg) showed beneficial effect against 3-NP induced motor deficit, biochemical and neurochemical abnormalities in rats. Piperine (2.5 mg/kg) with curcumin (25 mg/kg) significantly enhances its protective effect as compared with curcumin alone treated group. The results of the present study indicate that protective effect of curcumin potentiated in the presence of piperine (bioavailability enhancer) against 3-NP-induced behavioral and molecular alteration.

  3. Developmental neurotoxicity of succeeding generations of insecticides

    PubMed Central

    Abreu-Villaça, Yael; Levin, Edward D.

    2016-01-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457

  4. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-08-16

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  5. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms

    PubMed Central

    Burke, Richard D.; Todd, Spencer W.; Lumsden, Eric; Mullins, Roger J.; Mamczarz, Jacek; Fawcett, William P.; Gullapalli, Rao P.; Randall, William R.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. PMID:28791702

  6. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.

    PubMed

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Robello, Mauro; Florio, Tullio

    2017-10-01

    Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrP Sc ). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca ++ ] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca ++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca ++ ] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca ++ ] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca ++ ] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE 2 release from glial cells. Thus, Ca ++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides

  7. miR-137 attenuates Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in Neuro2a cells.

    PubMed

    He, Dan; Tan, Jun; Zhang, Jiewen

    2017-08-26

    Accumulation of β-amyloid (Aβ) and neuroinflammation are implicated in the pathogenesis and development of Alzheimer's disease (AD). Neuron-enriched miR-137 was aberrantly downregulated and may be associated with the pathogenesis of AD. However, the detailed function of miR-137 in AD pathogenesis and the molecular mechanism have not been elucidated. The expressions of miR-137 and tumor necrosis factor alpha (TNFα)-induced protein 1 (TNFAIP1) at mRNA and protein levels in primary mouse cortical neurons and Neuro2a (N2a) cells exposed to different concentrations of Aβ 25-35 were examined by qRT-PCR and western blot. Luciferase reporter assay was used to confirm the potential target of miR-137. MTT assay, flow cytometry analysis, caspase-3 activity assay, Enzyme-linked immunosorbent assay (ELISA), and western blot were used to detect cell viability, apoptosis, caspase-3 activity, Nuclear factor-kappa B (NF-κB) activity and level, respectively. Aβ 25-35 downregulated miR-137 and upregulated TNFAIP1 in primary mouse cortical neurons and N2a cells. In addition, miR-137 was found to directly target TNFAIP1 and suppress its mRNA and protein levels. Moreover, miR-137 restoration and TNFAIP1 knockdown facilitate Aβ 25-35 -induced cell toxicity, apoptosis, caspase-3 activity, and activated NF-κB in N2a cells, which was partially abolished by TNFAIP1 overexpression. miR-137 attenuated Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in N2a cells, shedding light on the molecular mechanism of miR-137 underlying Aβ-induced neurotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    PubMed

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  9. Functional genomics of chlorine-induced acute lung injury in mice.

    PubMed

    Leikauf, George D; Pope-Varsalona, Hannah; Concel, Vincent J; Liu, Pengyuan; Bein, Kiflai; Brant, Kelly A; Dopico, Richard A; Di, Y Peter; Jang, An-Soo; Dietsch, Maggie; Medvedovic, Mario; Li, Qian; Vuga, Louis J; Kaminski, Naftali; You, Ming; Prows, Daniel R

    2010-07-01

    Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.

  10. EFFECTS OF PYRETHROIDS ON VOLTAGE-SENSITIVE CALCIUM CHANNELS: A CRITICAL EVALUATION OF STRENGTHS, WEAKNESSES, DATA NEEDS, AND RELATIONSHIP TO ASSESSMENT OF CUMULATIVE NEUROTOXICITY.

    EPA Science Inventory

    A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...

  11. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells.

    PubMed

    Jiménez, Andrés; Jordà, Elvira G; Verdaguer, Ester; Pubill, David; Sureda, Francesc X; Canudas, Anna M; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallàs, Mercè

    2004-04-15

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 microM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 microM) but not by 10 microM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (1-15 microM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors.

  12. N-Acetylcysteine Use in Non-Acetaminophen-Induced Acute Liver Failure.

    PubMed

    McPheeters, Chelsey M; VanArsdale, Vanessa M; Weant, Kyle A

    2016-01-01

    This article will review the available evidence related to the management of non-acetaminophen induced acute liver failure with N-acetylcysteine. Randomized controlled trials and a meta-analysis were included in this review. The efficacy of N-acetylcysteine in the treatment of acute liver failure from causes other than acetaminophen toxicity was evaluated. The efficacy of N-acetylcysteine in non-acetaminophen-induced acute liver failure is limited to specific patient populations. Patients classified as Coma Grade I or II are more likely to benefit from the use of this agent. The use of N-acetylcysteine is associated with improved transplant-free survival, not overall survival, in adults. N-Acetylcysteine does not improve the overall survival of patients with non-acetaminophen-induced acute liver failure but may be beneficial in those patients with Coma Grades I-II. Liver transplantation remains the only definitive therapy in advanced disease.

  13. Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16)

    PubMed Central

    Johnston, Christopher I.; O'Leary, Margaret A.; Brown, Simon G. A.; Currie, Bart J.; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K.

    2012-01-01

    Background Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Methodology/Principal Findings Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5–74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5–15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5–168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4–245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Conclusions/Significance Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The

  14. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypanmore » blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.« less

  15. Current approaches to prevention of contrast induced acute kidney injury.

    PubMed

    Blandon, Jimena; Mukherjee, Debabrata

    2011-10-01

    Contrast-induced acute kidney injury is one of the leading causes of hospital-acquired acute kidney injury. Thus far, no strategies have been clearly shown to be effective in preventing contrast-induced acute kidney injury beyond thorough patient selection, meticulous hydration of the patient, and minimizing the amount of contrast used. Additional studies are needed to define the optimal means of hydration, role of commonly advocated prophylaxis strategies such as N-acetylcysteine and develop newer more novel effective therapies to prevent or minimize the risk of kidney injury.

  16. Fibroblast Growth Factor 23–Induced Hypophosphatemia in Acute Leukemia

    PubMed Central

    Reinert, Rachel B; Bixby, Dale; Koenig, Ronald J

    2018-01-01

    Abstract Fibroblast growth factor 23 (FGF23)–induced hypophosphatemia is a rare paraneoplastic syndrome of phosphate wasting that, if unrecognized, may cause tumor-induced osteomalacia. It is classically associated with benign mesenchymal tumors but occasionally has been found in patients with other malignancies. Hypophosphatemia has been associated with acute leukemia but has not previously been reported to be due to inappropriate FGF23 secretion. Here, we describe FGF23-induced severe hypophosphatemia and renal phosphate wasting associated with a mixed-phenotype Philadelphia chromosome-like acute leukemia in a previously healthy 22-year-old man. He was found to have low serum 1,25-dihydroxyvitamin D and extremely high FGF23 levels, as well as inappropriate urinary phosphorus excretion. The hypophosphatemia improved with calcitriol and oral phosphate treatment but normalized only during chemotherapy-induced ablation of the blasts. FGF23 levels declined with a reduction in peripheral blast counts. Using real-time reverse transcription polymerase chain reaction, we found that the leukemia cells were the source of FGF23. To our knowledge, this is the first description of FGF23-induced hypophosphatemia associated with acute leukemia. We recommend that the FGF23 paraneoplastic syndrome be considered as a possible etiology of hypophosphatemia in patients with acute leukemia. PMID:29696242

  17. Induced hypernatraemia is protective in acute lung injury.

    PubMed

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hypothermia induced by adenosine 5'-monophosphate attenuates injury in an L-arginine-induced acute pancreatitis rat model.

    PubMed

    Wang, Yunlong; Guo, Weiting; Li, Yuan; Pan, Xinting; Lv, Wenshan; Cui, Lingling; Li, Changgui; Wang, Yangang; Yan, Shengli; Zhang, Jidong; Liu, Bin

    2014-04-01

    This study sought to investigate the effects of hypothermia induced by adenosine 5'-monophosphate (5'-AMP) on L-arginine (L-Arg)-induced acute pancreatitis in rats. The rats were divided into four groups: the control group, the acute pancreatitis group, the 5'-AMP pretreatment group, and the 5'-AMP posttreatment group. Rats in all groups, except for the control group, received two injections of 2.5 g/kg body weight (intraperitoneally) L-Arg, with an interval of 1 h between the injections. Subsequently, the rats were observed to assess whether hypothermia induced by 5'-AMP could effectively inhibit inflammation associated with L-Arg-induced acute pancreatitis in rats. Hypothermia induced by 5'-AMP produced protective effects in our acute pancreatitis model. These effects exhibited the following manifestations: (i) a significant reduction in rat mortality rates; (ii) a significant decrease in the occurrence of pancreatic edema; (iii) significant reductions in serum amylase (P < 0.001), interleukin-6 (P < 0.001), interleukin-1β (P < 0.001) and tumor necrosis factor-α (P < 0.001); (iv) the significant inhibition of nuclear factor-κB (NF-κB) activation in rats that were pre- and posttreated with 5'-AMP compared with rats that were only injected with L-Arg; and (v) significant decreases in the occurrence of pancreatic interstitial edema, inflammatory cell infiltration, hemorrhage, and acinar cell necrosis. Hypothermia induced by 5'-AMP could inhibit the acute inflammatory reaction and NF-κB activation associated with acute pancreatitis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  19. Cannabis-Induced Acute Pancreatitis: A Systematic Review.

    PubMed

    Barkin, Jodie A; Nemeth, Zsuzsanna; Saluja, Ashok K; Barkin, Jamie S

    2017-09-01

    Cannabis is the most frequently consumed illicit drug in the world, with higher prevalence under the age of 35 years. Cannabis was first reported as a possible cause of acute pancreatitis (AP) in 2004. The aim of this systematic review is to examine cannabis use as an etiology of AP. A search using PubMed/Medline, Embase, Scopus, and Cochrane was performed without language or year limitations to May 1, 2016. Search terms were "Cannabis" and "Acute Pancreatitis" with all permutations. The search yielded 239 results. Acute pancreatitis was defined by meeting 2 of 3 Revised Atlanta Classification criteria. Cannabis-induced AP was defined by preceding use of cannabis and exclusion of common causes of AP when reported. Sixteen papers met inclusion criteria dating from 2004 to 2016. There were 26 cases of cannabis-induced AP (23/26 men; 24/26 under the age of 35 y). Acute pancreatitis correlated with increased cannabis use in 18 patients. Recurrent AP related temporally to cannabis use was reported in 15 of 26. There are 13 reports of no further AP episodes after cannabis cessation. Cannabis is a possible risk factor for AP and recurrent AP, occurring primarily in young patients under the age of 35 years. Toxicology screens should be considered in all patients with idiopathic AP.

  20. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.

    PubMed

    Vicente-Rodríguez, Marta; Gramage, Esther; Herradón, Gonzalo; Pérez-García, Carmen

    2013-12-06

    The neurotrophic factors pleiotrophin (PTN) and midkine (MK) are highly upregulated in different brain areas relevant to drug addiction after administrations of different drugs of abuse, including psychostimulants. We have previously demonstrated that PTN and MK modulate amphetamine-induced neurotoxicity and that PTN prevents cocaine-induced cytotoxicity in NG108-15 and PC12 cells. In an effort to dissect the different mechanisms of action triggered by PTN and MK to exert their protective roles against psychostimulant neurotoxicity, we have now used a proteomic approach to study protein phosphorylation, in which we combined phosphoprotein enrichment, by immobilized metal affinity chromatography (IMAC), with two-dimensional gel electrophoresis and mass spectrometry, in order to identify the phosphoproteins regulated in the striatum of PTN knockout, MK knockout and wild type mice treated with a single dose of cocaine (15mg/kg, i.p.). We identified 7 differentially expressed phosphoproteins: 5'(3')-deoxyribonucleotidase, endoplasmic reticulum resident protein 60 (ERP60), peroxiredoxin-6 (PRDX6), glutamate dehydrogenase 1 (GLUD1), aconitase and two subunits of hemoglobin. Most of these proteins are related to neurodegeneration processes and oxidative stress and their variations specially affect the PTN knockout mice, suggesting a protective role of endogenous PTN against cocaine-induced neural alterations. Further studies are needed to validate these proteins as possible targets against neural alterations induced by cocaine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Wei, Wei; Wang, Yuan

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism onmore » long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental

  2. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Tesarova, Sandra

    2011-07-01

    The ability of two combinations of oximes (HI-6+trimedoxime, HI-6+K203) to reduce soman-induced acute neurotoxic signs and symptoms was compared with the neuroprotective efficacy of the oxime HI-6 alone, using a functional observational battery. Soman-induced neurotoxicity and the neuroprotective effects of HI-6 alone and HI-6 combined with trimedoxime or K203 in rats poisoned with soman at a sublethal dose (90 μg/kg intramuscularly, i.m.; 80% of LD₅₀ value) were monitored by the functional observational battery at 24 hours following soman administration. The results indicate that both tested oxime mixtures combined with atropine were able to allow soman-poisoned rats to survive 24 hours following soman challenge, while 4 nontreated soman-poisoned rats and 1 soman-poisoned rat treated with oxime HI-6 alone combined with atropine died within 24 hours following soman poisoning. While the oxime HI-6 alone combined with atropine treatment was able to eliminate a few soman-induced neurotoxic signs and symptoms, both oxime mixtures showed higher neuroprotective efficacy in soman-poisoned rats. Especially, the combination of HI-6 with trimedoxime was able to eliminate most soman-induced neurotoxic signs and symptoms and markedly reduce acute neurotoxicity of soman in rats. Thus, both tested mixtures of oximes combined with atropine were able to increase the neuroprotective effectiveness of antidotal treatment of acute soman poisonings, compared to the individual oxime.

  3. Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye.

    PubMed

    Barba-Bon, Andrea; Costero, Ana M; Gil, Salvador; Martínez-Máñez, Ramón; Sancenón, Félix

    2014-11-21

    A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol group able to undergo phosphorylation with nerve gases, (ii) a carbonyl group as a reactive site for cyanide; and (iii) a triisopropylsilyl (TIPS) protecting group that is known to react with fluoride. The reaction of P4 with DCNP in acetonitrile resulted in both the phosphorylation of the phenoxy group and the release of cyanide, which was able to react with the carbonyl group of P4 to produce a colour modulation from pink to orange. In contrast, phosphorylation of P4 with DFP in acetonitrile released fluoride that hydrolysed the TIPS group in P4 to yield a colour change from pink to blue. Probe P4 was able to discriminate between DFP and DCNP with remarkable sensitivity; limits of detection of 0.36 and 0.40 ppm for DCNP and DFP, respectively, were calculated. Besides, no interference from other organophosphorous derivatives or with presence of acid was observed. The sensing behaviour of P4 was also retained when incorporated into silica gel plates or onto polyethylene oxide membranes, which allowed the development of simple test strips for the colorimetric detection of DCNP and DFP in the vapour phase. P4 is the first probe capable of colorimetrically differentiating between a Tabun mimic (DCNP) and a Sarin and Soman mimic (DFP).

  4. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  5. THYROID HORMONE INSUFFICIENCY AND BRAIN DEVELOPMENT -- DETERMINATION OF NEUROTOXICITY AT LOW LEVELS OF HORMONE DISRUPTION.

    EPA Science Inventory

    Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...

  6. Comparison of the Developmental and Acute Neurotoxicity of a Library of Organophosphorus Pesticides Using a Vertebrate Behavioral Assay

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for neurotoxicity using behavioral tests in an in vivo, vertebrate, medium-throughput model (zebrafish; Danio rerio). Our behavioral testing paradigm assesses the e...

  7. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors

    PubMed Central

    Kehn-Hall, Kylene; Guendel, Irene; Carpio, Lawrence; Skaltsounis, Leandros; Meijer, Laurent; Al-Harthi, Lena; Steiner, Joseph P.; Nath, Avindra; Kutsch, Olaf; Kashanchi, Fatah

    2013-01-01

    The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC50 of 40 nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC50 of 4 nM in primary macrophages and 0.5 nM in astrocytes infected with HIV-1. 6BIOder displayed an IC50 value of 0.03 nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity. PMID:21514616

  8. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies.

    PubMed

    Abdel-Daim, Mohamed; El-Bialy, Badr E; Rahman, Haidy G Abdel; Radi, Abeer M; Hefny, Hany A; Hassan, Ahmed M

    2016-02-01

    Spirulina platensis (SP); a microalga with high antioxidant and anti-inflammatory activities, acts as a food supplement in human and as many animal species. Deltamethrin (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects and widely used for veterinary and agricultural purposes. Exposure to DLM leads to hepatotoxic, nephrotoxic and neurotoxic side effects for human and many species, including birds and fish. The present study was undertaken to examine the potential hepatoprotective, nephroprotective, neuroprotective and antioxidant effects of SP against sub-acute DLM toxicity in male mice. DLM intoxicated animals revealed a significant increase in serum hepatic and renal injury biomarkers as well as TNF-α level and AChE activity. Moreover, liver, kidney and brain lipid peroxidation and oxidative stress markers were altered due to DLM toxicity. Spirulina normalized the altered serum levels of AST, ALT, APL, LDH, γ-GT, cholesterol, uric acid, urea, creatinine AChE and TNF-α. Furthermore, it reduced DLM-induced tissue lipid peroxidation, nitric oxide and oxidative stress in a dose-dependent manner. Collectively, that Spirulina supplementation could overcome DLM-induced hepatotoxicty, nephrotoxicity and neurotoxicity by abolishing oxidative tissue injuries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Levetiracetam-induced acute psychosis in a child

    PubMed Central

    Zaki, Syed Ahmed; Gupta, Saurabh

    2014-01-01

    Levetiracetam is well-tolerated and commonly used as a broad spectrum antiepileptic in both partial and generalized seizures. Few cases of levetiracetam-induced psychosis in children are reported in the literature. The present case of levetiracetam-induced acute psychosis highlights the adverse effect of this drug and also emphasizes the need for close monitoring of children on levetiracetam. PMID:24987186

  10. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

    PubMed

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster.

    PubMed

    Hosamani, Ravikumar; Muralidhara

    2009-11-01

    Bacopa monnieri, Linn. (Brahmi, BM), traditionally used to improve mental health in Indian ayurvedic system of medicine is known to possess various neuropharmacolgical properties. In the recent past, Drosophila has been widely used as a model to study various neurodegenerative diseases. Environmental toxins like rotenone, a specific inhibitor of complex I is employed to increase oxidative stress mediated neuropathology and sporadic Parkinson's disease. In this study, we examined the neuroprotective properties of BM against rotenone induced oxidative damage and neurotoxicity. Flies (Oregon K strain, adult males) exposed to a standardized BM powder for 7 days in the diet exhibited significant diminution in the levels of endogenous oxidative markers viz., malondialdehyde, hydroperoxide and protein carbonyl content. Further, BM offered complete protection against rotenone (500 microM) induced oxidative stress and markedly inhibited dopamine depletion (head region, 33%; body region, 44%) in flies. Flies exposed to rotenone+BM exhibited a lower incidence of mortality (40-66% protection) and performed better in a negative geotaxis assay (45-65%) both suggesting the neuroprotective potential of BM. Interestingly, BM also conferred significant resistance (43-54% protection) in a paraquat oxidative stress bioassay. The neuroprotective effects of BM were highly comparable to those of a commercially available Brahmi preparation. Although the precise mechanism/s underlying the neuroprotective efficacy of BM are not clear, it is hypothesized that it is wholly or in part related to its ability to mitigate rotenone induced oxidative stress. Further, our approach confirms the utility of the Drosophila model in screening putative neuroprotective phytomedicines prior to their use in mammalian models.

  12. Prolactin is a peripheral marker of manganese neurotoxicity

    PubMed Central

    Marreilha dos Santos, AP; Lopes Santos, M; BatorÉu, Maria C; Aschner, M

    2011-01-01

    Excessive exposure to Mn induces neurotoxicity, referred to as manganism. Exposure assessment relies on Mn blood and urine analyses, both of which show poor correlation to exposure. Accordingly, there is a critical need for better surrogate biomarkers of Mn exposure. The aim of this study was to examine the relationship between Mn exposure and early indicators of neurotoxicity, with particular emphasis on peripheral biomarkers. Male Wistar rats (180–200 g) were injected intraperitoneally with 4 or 8 doses of Mn (10 mg/kg). Mn exposure was evaluated by analysis of Mn levels in brain and blood along with biochemical end-points (see below). Results Brain Mn levels were significantly increased both after 4 and 8 doses of Mn compared with controls (p<0.001). Blood levels failed to reflect a dose-dependent increase in brain Mn, with only the 8-dose treated group showing significant differences (p<0.001). Brain glutathione (GSH) levels were significantly decreased in the 8-dose-treated animals (p<0.001). A significant and dose-dependent increase in prolactin levels was found for both treated groups (p<0.001) compared to controls. In addition, a decrease in motor activity was observed in the 8-dose-treated group compared to controls. Conclusions 1) The present study demonstrates that peripheral blood level is a poor indicator of Mn brain accumulation and exposure; 2) Mn reduces GSH brain levels, likely reflecting oxidative stress; 3) Mn increases blood prolactin levels, indicating changes in the integrity of the dopaminergic system. Taken together these results suggest that peripheral prolactin levels may serve as reliable predictive biomarkers of Mn neurotoxicity. PMID:21262206

  13. Chronic Exposure to Dietary Sterol Glucosides is Neurotoxic to Motor Neurons and Induces an ALS-PDC Phenotype

    PubMed Central

    Tabata, R. C.; Wilson, J. M. B.; Ly, P.; Zwiegers, P.; Kwok, D.; Van Kampen, J. M.; Cashman, N.; Shaw, C. A.

    2008-01-01

    Epidemiological studies of the Guamanian variants of amyotrophic lateral sclerosis (ALS) and parkinsonism, amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC), have shown a positive correlation between consumption of washed cycad seed flour and disease occurrence. Previous in vivo studies by our group have shown that the same seed flour induces ALS and PDC phenotypes in out bred adult male mice. In vitro studies using isolated cycad compounds have also demonstrated that several of these are neurotoxic, specifically, a number of water insoluble phytosterol glucosides of which β-sitosterol β-d-glucoside (BSSG) forms the largest fraction. BSSG is neurotoxic to motor neurons and other neuronal populations in culture. The present study shows that an in vitro hybrid motor neuron (NSC-34) culture treated with BSSG undergoes a dose-dependent cell loss. Surviving cells show increased expression of HSP70, decreased cytosolic heavy neurofilament expression, and have various morphological abnormalities. CD-1 mice fed mouse chow pellets containing BSSG for 15 weeks showed motor deficits and motor neuron loss in the lumbar and thoracic spinal cord, along with decreased glutamate transporter labelling, and increased glial fibrillary acid protein reactivity. Other pathological outcomes included increased caspase-3 labelling in the striatum and decreased tyrosine-hydroxylase labelling in the striatum and substantia nigra. C57BL/6 mice fed BSSG-treated pellets for 10 weeks exhibited progressive loss of motor neurons in the lumbar spinal cord that continued to worsen even after the BSSG exposure ended. These results provide further support implicating sterol glucosides as one potential causal factor in the motor neuron pathology previously associated with cycad consumption and ALS-PDC. PMID:18196479

  14. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum.

    PubMed

    Xie, Xiao-Li; He, Jie-Tao; Wang, Zheng-Tao; Xiao, Huan-Qin; Zhou, Wen-Tao; Du, Si-Hao; Xue, Ye; Wang, Qi

    2018-06-01

    Methamphetamine (METH) is a widely abused psychostimulant. Lactulose is a non-absorbable sugar, which effectively decreases METH-induced neurotoxicity in rat. However, the exact mechanisms need further investigation. In this study, 5-week-old male Sprague Dawley rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Compared to the control group, in the METH alone group, cytoplasmic vacuolar degeneration in hepatocytes, higher levels of alanine transaminase, aspartate transaminase and ammonia, overproduction of reactive oxygen species (ROS) and increase of superoxide dismutase activity in the blood were observed. Moreover, in rat striatum, expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2) and heme oxygenase-1 were suppressed in the nucleus, although over-expression of Nrf2 were observed in cytoplasm. Over-expressions of BECN1 and LC3-II indicated initiation of autophagy, while overproduction of p62 might suggest deficient autophagic vesicle turnover and impaired autophagy. Furthermore, accumulation of p62 cloud interact with Keap1 and then aggravate cytoplasmic accumulation of Nrf2. Consistently, over-expressions of cleaved caspase 3 and poly(ADP-ribose) polymerase-1 suggested the activation of apoptosis. The pretreatment with lactulose significantly decreased rat hepatic injury, suppressed hyperammonemia and ROS generation, alleviated the impaired autophagy in striatum, rescued the antioxidant system and repressed apoptosis. Taken together, with decreased blood ammonia, lactulose pretreatment reduced METH-induced neurotoxicity through alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors.

    PubMed

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2014-12-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    PubMed Central

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  17. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  18. Role of L-thyroxin in counteracting rotenone induced neurotoxicity in rats.

    PubMed

    Salama, Mohamed; Helmy, Basem; El-Gamal, Mohamed; Reda, Amr; Ellaithy, Amr; Tantawy, Dina; Mohamed, Mie; El-Gamal, Aya; Sheashaa, Hussein; Sobh, Mohamed

    2013-03-01

    A key feature of Parkinson's disease is the dopaminergic neuronal cell loss in the substantia nigra pars compacta. Many triggering pathways have been incriminated in the pathogenesis of this disease including inflammation, oxidative stress, excitotoxicity and apoptosis. Thyroid hormone is an essential agent for the growth and maturation of neurons; moreover, it has variable mechanisms for neuroprotection. So, we tested the efficacy of (L)-thyroxin as a neuroprotectant in rotenone model of Parkinson's disease in rats. Thirty Sprague Dawley rats aged 3 months were divided into 3 equal groups. The first received daily intraperitoneal injections of 0.5% carboxymethyl cellulose (CMC) 3 mL/Kg. The second group received rotenone suspended in 0.5% CMC intraperitoneally at a dose of 3 mg/kg, daily. The third group received the same rotenone regimen subcutaneous l-thyroxine at a dose of 7.5 μg daily. All animals were evaluated regarding locomotor disturbance through blinded investigator who monitored akinesia, catalepsy, tremors and performance in open field test. After 35 days the animals were sacrificed and their brains were immunostained against anti-tyrosine hydroxylase and iba-1. Photomicrographs for coronal sections of the substantia nigra and striatum were taken and analyzed using image J software to evaluate cell count in SNpc and striatal fibers density and number of microglia in the nigrostriatal system. The results were then analyzed statistically. Results showed selective protective effects of thyroxin against rotenone induced neurotoxicity in striatum, however, failed to exert similar protection on SN. Moreover, microglial elevated number in nigrostriatal system that was induced by rotenone injections was diminished selectively in striatum only in the l-thyroxin treated group. One of the possible mechanisms deduced from this work was the selective regulation of microglia in striatal tissues. Thus, this study provides an insight into thyroxin neuroprotection

  19. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Valentine, William M.; Aschner, Michael

    2013-01-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson’s disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. Additionally, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526

  20. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  1. Neurotoxicity and Behavior

    EPA Science Inventory

    Neurotoxicity is important to consider as a component of occupational and environmental safety and health programs. The failure to do so has contributed to a number of cases in which workers, consumers of manufactured products, and people exposed in the environment were irreparab...

  2. Oxidative Stress Is Associated with Neuroinflammation in Animal Models of HIV-1 Tat Neurotoxicity

    PubMed Central

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A. S.; Van Bockstaele, Elisabeth J.; Strayer, David S.

    2014-01-01

    HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. Tat injection caused oxidative stress. Administration of Tat in the CP induced an increase in numbers of Iba-1- and CD68-positive cells, as well as an infiltration of astrocytes. We also tested the effect of more protracted Tat exposure on neuroinflammation using an experimental model of chronic Tat exposure. SV(Tat): a recombinant SV40-derived gene transfer vector was inoculated into the rat CP, leading to chronic expression of Tat, oxidative stress, and ongoing apoptosis, mainly located in neurons. Intra-CP SV(Tat) injection induced an increase in microglia and astrocytes, suggesting that protracted Tat production increased neuroinflammation. SV(SOD1) or SV(GPx1) significantly reduced neuroinflammation following Tat administration into the CP. Thus, Tat-induced oxidative stress, CNS injury, neuron loss and inflammation may be mitigated by antioxidant gene delivery. PMID:26784879

  3. Roles of Autophagy in MPP+-Induced Neurotoxicity In Vivo: The Involvement of Mitochondria and α-Synuclein Aggregation

    PubMed Central

    Lin, Ming-Wei; Lei, Yen-Ping; Lin, Anya Maan-yuh

    2014-01-01

    Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain. PMID:24646838

  4. Neurotoxicity of Persistent Organic Pollutants: Possible Mode(s) of Action and Further Considerations

    PubMed Central

    Kodavanti, Prasada Rao S.

    2005-01-01

    Persistent organic pollutants (POPs) are long-lived toxic organic compounds and are of major concern for human and ecosystem health. Although the use of most POPs is banned in most countries, some organochlorine pesticides are still being used in several parts of the world. Although environmental levels of some POPs such as polychlorinated biphenyls (PCBs) have declined, newly emerging POPs such as polybrominated diphenyl ethers (PBDEs) have been increasing considerably. Exposure to POPs has been associated with a wide spectrum of effects including reproductive, developmental, immunologic, carcinogenic, and neurotoxic effects. It is of particular concern that neurotoxic effects of some POPs have been observed in humans at low environmental concentrations. This review focuses on PCBs as a representative chemical class of POPs and discusses the possible mode(s) of action for the neurotoxic effects with emphasis on comparing dose-response and structure-activity relationships (SAR) with other structurally related chemicals. There is sufficient epidemiological and experimental evidence showing that PCB exposure is associated with motor and cognitive deficits in humans and animal models. Although several potential mode(s) of actions were postulated for PCB-induced neurotoxic effects, changes in neurotransmitter systems, altered intracellular signalling processes, and thyroid hormone imbalance are predominant ones. These three potential mechanisms are discussed in detail in vitro and in vivo. In addition, SAR was conducted on other structurally similar chemicals to see if they have a common mode(s) of action. Relative potency factors for several of these POPs were calculated based on their effects on intracellular signalling processes. This is a comprehensive review comparing molecular effects at the cellular level to the neurotoxic effects seen in the whole animal for environmentally relevant POPs. PMID:18648619

  5. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    EPA Science Inventory

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  6. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs.

    PubMed

    Bal-Price, Anna K; Suñol, Cristina; Weiss, Dieter G; van Vliet, Erwin; Westerink, Remco H S; Costa, Lucio G

    2008-05-01

    costs within this tonnage band, the European Commission has advocated the use of alternative approaches. Neurotoxicity testing is not directly addressed within REACH, however when alerts are observed based on organ specific toxicity studies then neurotoxicity assessment has to be performed. This session at the 11th International Neurotoxicology Association Meeting provided a forum to openly discuss and debate the potential of in vitro testing strategies that could be relevant for neurotoxicity evaluation in the context of regulatory requirements. The EU FP6 project A-Cute-Tox was presented as an example of a possible in vitro testing strategy for prediction of human acute systemic toxicity. Other presentations focused on the characterization of the available in vitro models (cell lines and primary culture) and neuronal specific endpoints, with a special emphasis on electrical activity, metabonomics and modulation of vesicular neurotransmitter release as possible neuronal endpoints relevant for in vitro neurotoxicity testing. Finally, it was underlined that in vitro systems (strategies) that have the potential to be applied for neurotoxicity assessment have to be formally validated under standardised conditions that have been recognised by national and international validation bodies.

  7. Parecoxib Protects Mouse Cortical Neurons Against OGD/R Induced Neurotoxicity by Up-Regulating Bcl-2.

    PubMed

    Wang, Yueling; Ma, Wenjuan; Jia, Aijun; Guo, Qulian

    2015-06-01

    Ischemic stroke remains a significant problem that is the major cause of death and disability worldwide. Parecoxib is clinically used for short-term management of postoperative pain. Administration of parecoxib in rats has been reported to protect against the cerebral ischemia/reperfusion. However, the neuroprotective mechanism of parecoxib is still largely unknown. In this study, we found parecoxib could protect against neurotoxicity induced by 4 h oxygen-glucose deprivation (OGD) plus reoxgenation for 20 h, a widely used in vitro model of ischemia/reperfusion. In addition, we characterized the molecular mechanism of parecoxib's neuroprotection. We found parecoxib was able to activate CREB, and subsequently maintained the expression of Bcl-2, which is an important mitochondria-associated protein. Inhibition of endogenous Bcl-2 expression by transfection of Bcl-2-shRNA significantly attenuated the neuroprotective effects of parecoxib treatment. Furthermore, ATP production assay and mitochondrial membrane potential (ΔΨm) assay suggested that parecoxib exerted neuroprotective effect against OGD/R by maintaining the function of mitochondria. These data suggested that parecoxib treatment is a potential therapeutic approach for protecting against ischemia/reperfusion injury.

  8. Neurotoxicity of drugs of abuse--the case of methylenedioxyamphetamines (MDMA, ecstasy), and amphetamines.

    PubMed

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies.

  9. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance.

    PubMed

    Mariussen, Espen

    2012-09-01

    Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon-fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

  10. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  11. Knockdown of NogoA prevents MPP+‑induced neurotoxicity in PC12 cells via the mTOR/STAT3 signaling pathway.

    PubMed

    Zhong, Jianbin; Li, Xie; Wan, Limei; Chen, Zhibang; Zhong, Simin; Xiao, Songhua; Yan, Zhengwen

    2016-02-01

    NogoA is a myelin‑associated protein, which is important in the inhibition of axonal fiber growth and in regeneration following injury of the mammalian central nervous system. A previous study suggested that NogoA may be key in the process of Parkinson's disease (PD), which is the second most common chronic neurodegenerative disorder worldwide. The regulatory mechanism underlying the effect of NogoA on the process of PD remains to be fully elucidated. The present study aimed to investigate the effect and underlying mechanism of NogoA on cellular viability, apoptosis and autophagy induced by 1-methyl-4-phenylpyridinium (MPP+) in PC12 cells, a commonly used in vitro PD model. PC12 cells were treated with 1 mM MPP+ for 24 h and the cells were harvested for western blotting. The results demonstrated that the protien expression levels of NogoA were increased in the PC12 cells treated with MPP+. Subsequently, NogoA small interfering RNA was synthesized and transfected into PC12 cells to silence the expression of NogoA. NogoA knockdown significantly reduced the MPP+‑induced decrease in cell viability and apoptosis, detected using a cell counting kit‑8 and flow cytometric analysis, respectively. Interference in the expression of NogoA increased the MPP+‑induced decrease in mitochondrial membrane potential, determined quantitatively by flow cytometry using JC-1 dye, and the protein levels of Beclin‑1. In addition, MPP+ treatment activated the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Knockdown of NogoA significantly inhibited the expression levels of mTOR and STAT3. Furthermore, overexpression of NogoA had similar neurotoxic effects on the PC12 cells as MPP+ treatment. Treatment with rapamycin, an inhibitor of the mTOR/STAT3 signaling pathway had a similar effect to that of NogoA knockdown in the MPP+‑treated PC12 cells. Taken together, the results from the present study demonstrated that

  12. Energy drink-induced acute kidney injury.

    PubMed

    Greene, Elisa; Oman, Kristy; Lefler, Mary

    2014-10-01

    To report a case of acute renal failure possibly induced by Red Bull. A 40-year-old man presented with various complaints, including a recent hypoglycemic episode. Assessment revealed that serum creatinine was elevated at 5.5 mg/dL, from a baseline of 0.9 mg/dL. An interview revealed a 2- to 3-week history of daily ingestion of 100 to 120 oz of Red Bull energy drink. Resolution of renal dysfunction occurred within 2 days of discontinuation of Red Bull and persisted through 10 months of follow-up. Rechallenge was not attempted. Energy-drink-induced renal failure has been reported infrequently. We identified 2 case reports via a search of MEDLINE, one of which occurred in combination with alcohol and the other of which was not available in English. According to the Food and Drug Administration's (FDA's) Center for Food Safety and Applied Nutrition Adverse Event Reporting System, between 2004 and 2012, the FDA has received 166 reports of adverse events associated with energy drink consumption. Only 3 of the 166 (0.18%) described renal failure, and none were reported with Red Bull specifically. A defined mechanism for injury is unknown. Assessment of the Naranjo adverse drug reaction probability scale indicates a probable relationship between the development of acute renal failure and Red Bull ingestion in our patient. Acute kidney injury has rarely been reported with energy drink consumption. Our report describes the first English language report of acute renal failure occurring in the context of ingestion of large quantities of energy drink without concomitant alcohol. © The Author(s) 2014.

  13. Pathophysiology of Cisplatin-Induced Acute Kidney Injury

    PubMed Central

    Ozkok, Abdullah; Edelstein, Charles L.

    2014-01-01

    Cisplatin and other platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors. A known complication of cisplatin administration is acute kidney injury (AKI). The nephrotoxic effect of cisplatin is cumulative and dose-dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI may result in chronic kidney disease. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, oxidative stress, inflammation, and vascular injury in the kidney. There is predominantly acute tubular necrosis and also apoptosis in the proximal tubules. There is activation of multiple proinflammatory cytokines and infiltration of inflammatory cells in the kidney. Inhibition of the proinflammatory cytokines TNF-α or IL-33 or depletion of CD4+ T cells or mast cells protects against cisplatin-induced AKI. Cisplatin also causes endothelial cell injury. An understanding of the pathogenesis of cisplatin-induced AKI is important for the development of adjunctive therapies to prevent AKI, to lessen the need for dose decrease or drug withdrawal, and to lessen patient morbidity and mortality. PMID:25165721

  14. A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') on dopamine neurones in mouse brain

    PubMed Central

    Colado, M Isabel; Camarero, Jorge; Mechan, Annis O; Sanchez, Veronica; Esteban, Blanca; Elliott, J Martin; Green, A Richard

    2001-01-01

    Administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') to mice produces acute hyperthermia and long-term degeneration of striatal dopamine nerve terminals. Attenuation of the hyperthermia decreases the neurodegeneration. We have investigated the mechanisms involved in producing the neurotoxic loss of striatal dopamine. MDMA produced a dose-dependent loss in striatal dopamine concentration 7 days later with 3 doses of 25 mg kg−1 (3 h apart) producing a 70% loss. Pretreatment 30 min before each MDMA dose with either of the N-methyl-D-aspartate antagonists AR-R15896AR (20, 5, 5 mg kg−1) or MK-801 (0.5 mg kg−1×3) failed to provide neuroprotection. Pretreatment with clomethiazole (50 mg kg−1×3) was similarly ineffective in protecting against MDMA-induced dopamine loss. The free radical trapping compound PBN (150 mg kg−1×3) was neuroprotective, but it proved impossible to separate neuroprotection from a hypothermic effect on body temperature. Pretreatment with the nitric oxide synthase (NOS) inhibitor 7-NI (50 mg kg−1×3) produced neuroprotection, but also significant hypothermia. Two other NOS inhibitors, S-methyl-L-thiocitrulline (10 mg kg−1×3) and AR-R17477AR (5 mg kg−1×3), provided significant neuroprotection and had little effect on MDMA-induced hyperthermia. MDMA (20 mg kg−1) increased 2,3-dihydroxybenzoic acid formation from salicylic acid perfused through a microdialysis tube implanted in the striatum, indicating increased free radical formation. This increase was prevented by AR-R17477AR administration. Since AR-R17477AR was also found to have no radical trapping activity this result suggests that MDMA-induced neurotoxicity results from MDMA or dopamine metabolites producing radicals that combine with NO to form tissue-damaging peroxynitrites. PMID:11739248

  15. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Seo, Sang-Wan; Koo, Hyun-Na; An, Hyo-Jin; Kwon, Kang-Beom; Lim, Byung-Cheal; Seo, Eun-A; Ryu, Do-Gon; Moon, Goo; Kim, Hong-Yeoul; Kim, Hyung-Min; Hong, Seung-Heon

    2005-01-01

    AIM: Taraxacum officinale (TO) has been frequently used as a remedy for inflammatory diseases. The aim of this study was to investigate the effect of TO on cholecystokinin (CCK)-octapeptide-induced acute pancreatitis in rats. METHODS: TO at 10 mg/kg was orally administered, followed by 75 μg/kg CCK octapeptide injected subcutaneously three times after 1, 3 and 5 h. This whole procedure was repeated for 5 d. We determined the pancreatic weight/body weight ratio, the levels of pancreatic HSP60 and HSP72, and the secretion of pro-inflammatory cytokines. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally-induced pancreatitis. RESULTS: TO significantly decreased the pancreatic weight/body weight ratio in CCK octapeptide-induced acute pancreatitis. TO also increased the pancreatic levels of HSP60 and HSP72. Additionally, the secretion of IL-6 and TNF-α decreased in the animals treated with TO. CONCLUSION: TO may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:15641154

  16. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  17. Vildagliptin-induced acute lung injury: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Sato, Kazuhiro; Maruyama, Ryoko; Furukawa, Tomoyasu; Tanaka, Junta; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-08-12

    Dipeptidyl peptidase-4 inhibitors are a class of oral hypoglycemic drugs and are used widely to treat type 2 diabetes mellitus in many countries. Adverse effects include nasopharyngitis, headache, elevated serum pancreatic enzymes, and gastrointestinal symptoms. In addition, a few cases of interstitial pneumonia associated with their use have been reported in the Japanese literature. Here we describe a patient who developed drug-induced acute lung injury shortly after the administration of the dipeptidyl peptidase-4 inhibitor vildagliptin. A 38-year-old Japanese woman with diabetes mellitus developed acute respiratory failure 1 day after administration of vildagliptin. Chest computed tomography revealed nonsegmental ground-glass opacities in her lungs. There was no evidence of bacterial pneumonia or any other cause of her respiratory manifestations. After discontinuation of vildagliptin, she recovered fully from her respiratory disorder. She received insulin therapy for her diabetes mellitus, and her subsequent clinical course has been uneventful. The period of drug exposure in previously reported cases of patients with drug-induced interstitial pneumonia caused by dipeptidyl peptidase-4 inhibitor varied from several days to over 6 months. In the present case, our patient developed interstitial pneumonia only 1 day after the administration of vildagliptin. The precise mechanism of her vildagliptin-induced lung injury remains uncertain, but physicians should consider that dipeptidyl peptidase-4 inhibitor-induced lung injury, although rare, may appear acutely, even within days after administration of this drug.

  18. Spinning-induced Rhabdomyolysis and the Risk of Compartment Syndrome and Acute Kidney Injury

    PubMed Central

    DeFilippis, Ersilia M.; Kleiman, David A.; Derman, Peter B.; DiFelice, Gregory S.; Eachempati, Soumitra R.

    2014-01-01

    Exercise-induced rhabdomyolysis related to military training, marathon running, and other forms of strenuous exercise has been reported. The incidence of acute kidney injury appears to be lower in exercise-induced cases. We present 2 cases of exercise-induced rhabdomyolysis following spinning classes, one of which was further complicated by acute compartment syndrome requiring bilateral fasciotomies of the anterior thigh and acute kidney injury. With vigorous hydration and urine pH monitoring, both patients exhibited good mobility, sensation, and renal function on discharge. PMID:24982706

  19. Neurotoxic effects of gasoline and gasoline constituents.

    PubMed Central

    Burbacher, T M

    1993-01-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. PMID:8020437

  20. Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20.

    PubMed

    Gong, Ping; Basu, Niladri; Scheuhammer, Anton M; Perkins, Edward J

    2010-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is a relatively new energetic compound sharing some degree of structural similarity with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a known neurotoxic compound. Previously, we demonstrated using a noninvasive electrophysiological technique that CL-20 was a more potent neurotoxicant than RDX to the earthworm Eisenia fetida. In the present study, we investigated the effect of CL-20 exposure and subsequent recovery on muscarinic acetylcholine receptors (mAChRs) to further define the mechanism of reversible neurotoxicity of CL-20 in E. fetida. We used a noninvasive electrophysiological technique to evaluate neurotoxicity in CL-20-treated worms, and then measured how such exposures altered levels of whole-body mAChR in the same animals. A good correlation exists between these two types of endpoints. Effect on mAChR levels was most prominent at day 6 of exposure. After 7 days of recovery, both conduction velocity and mAChR were significantly restored. Our results show that sublethal concentrations of CL-20 significantly reduced mAChR levels in a concentration- and duration-dependent manner, which was accompanied with significant decreases in the conduction velocity of the medial and lateral giant nerve fibers. After 7-day post exposure recovery, worms restored both neurochemical (mAChR) and neurophysiological (conduction velocity) endpoints that were reduced during 6-day exposures to CL-20 concentrations from 0.02 to 0.22 microg/cm(2). Our findings support the idea that CL-20 induced neurotoxic effects are reversible, and suggest that CL-20 neurotoxicity may be mediated through the cholinergic system. Future studies will investigate other neurotransmission systems such as GABA, glutamate, and monoamine. Ion channels in the nerve membrane should be examined to further define the precise mechanisms underlying CL-20 neurotoxicity.

  1. [Drug-induced acute pancreatitis: about 10 cases].

    PubMed

    Maghrebi, Houcine; Rhaeim, Rami; Haddad, Anis; Makni, Amin; Mohamed, Jouini; Montasser, Kacem; Zoubeir, Ben Safta

    2017-01-01

    Drug-induced acute pancreatitis (AP) accounts for approximately 2% of acute pancreatitis. Its incidence is increasing, with more than 260 incriminated drugs. However, very few cases have been described in the literature due to accountability problem. We report our experience with 10 cases whose data were collected over a period of 7 years. Clinical presentation of AP was often equivocal. Ranson's score ranged from 0 to 5. We recorded 5 cases of edematous pancreatitis and 5 cases of necro-bleeding pancreatitis. These pancreatitis were often successfully treated without recurrence after discontinuation of the incriminated drug.

  2. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor.

    PubMed

    Fields, Cheryl A; Borak, Jonathan; Louis, Elan D

    2017-11-01

    The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (<50; 50-99; 100-199; ≥200 μg/L) included tremor, impaired coordination, and abnormal reflexes on PE, and reduced performance on NB tests of tremor, manual dexterity and motor speed. The data suggest response thresholds of U Hg ≈275 μg/L for PE findings and ≈20 μg/L for NB outcomes. These results indicate that PE is of particular value for assessing workers with U Hg >200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.

  3. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans

    PubMed Central

    Green, AR; King, MV; Shortall, SE; Fone, KCF

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity. LINKED ARTICLES This article is commented on by Parrott, pp. 1518–1520 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01941.x and to view the the

  4. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms.

    PubMed

    Burke, Richard D; Todd, Spencer W; Lumsden, Eric; Mullins, Roger J; Mamczarz, Jacek; Fawcett, William P; Gullapalli, Rao P; Randall, William R; Pereira, Edna F R; Albuquerque, Edson X

    2017-08-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  5. Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction.

    PubMed

    Uribe-Mariño, Andrés; Gassen, Nils C; Wiesbeck, Maximilian F; Balsevich, Georgia; Santarelli, Sara; Solfrank, Beate; Dournes, Carine; Fries, Gabriel R; Masana, Merce; Labermeier, Christiana; Wang, Xiao-Dong; Hafner, Kathrin; Schmid, Bianca; Rein, Theo; Chen, Alon; Deussing, Jan M; Schmidt, Mathias V

    2016-11-15

    The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1 loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction. Copyright © 2016 Society of Biological

  6. Neurochemical and behavioural correlates in cassava-induced neurotoxicity in rats.

    PubMed

    Mathangi, D C; Namasivayam, A

    2000-01-01

    Chronic cyanide intoxication from cassava has been implicated as the cause for a degenerative neuropathy known widely as tropical ataxic neuropathy. An attempt has been made in this study to identify the specific cause for neuropathy caused by cassava using Wistar strain albino rats as the experimental animal model. The results of cassava fed animals were compared with control animals, animals given cyanide, malnourished animals and malnourished animals fed cyanide, to identify the causative factors. This study revealed that though the behavioural pattern in motor coordination of the cassava fed animals was similar to the other groups studied, the neurochemical basis for the observed behavioural pattern was unique for cassava. Hence the neurotoxicity of cassava could be attributed to unmetabolized linamarin, more than its nutritional status and/or cyanide toxicity.

  7. Neurotoxicity of drugs of abuse - the case of methylenedioxy amphetamines (MDMA, ecstasy ), and amphetamines

    PubMed Central

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies. PMID:19877498

  8. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less

  9. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    PubMed

    Baldwin, H A; Colado, M I; Murray, T K; De Souza, R J; Green, A R

    1993-03-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro. 7. Several NMDA antagonists prevent methamphetamine-induced neurotoxicity; however chlormethiazole is not an NMDA antagonist. Inhibition of striatal dopamine function prevents methamphetamine-induced toxicity of both dopamine and 5

  10. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  11. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    PubMed

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  12. Acute organic brain syndrome due to drug-induced eosinophilia.

    PubMed

    Ng, S C; Lee, M K; Teh, A

    1989-11-01

    A 72 year old man developed acute organic brain syndrome associated with marked eosinophilia following self medication with a variety of drugs. Investigations revealed no other known causes of eosinophilia. Withdrawal of drugs resulted in dramatic drop in eosinophil count paralleled by clinical resolution of neurological problems. To our knowledge drug-induced eosinophilia has not previously been associated with acute organic brain syndrome.

  13. Prophylactic use of octreotide for asparaginase-induced acute pancreatitis.

    PubMed

    Sakaguchi, Sachi; Higa, Takeshi; Suzuki, Mitsuyoshi; Fujimura, Junya; Shimizu, Toshiaki

    2017-08-01

    In the present study, we sought to evaluate the prophylactic use of octreotide for asparaginase-induced acute pancreatitis. We reviewed the medical records of seven patients in two institutions who received prophylactic octreotide for re-administration of asparaginase after asparaginase-induced acute pancreatitis. Three patients completed asparaginase treatment without developing pancreatitis, and four experienced recurrence of pancreatitis. A literature search using PubMed identified four additional patients in whom asparaginase was successfully re-administered with octreotide. Prophylactic use of octreotide may, thus, be warranted for patients who would benefit from re-administration of asparaginase for cancer treatment; however, careful observation is needed to monitor for breakthrough recurrence of pancreatitis.

  14. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Ya-Yun; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Tseng, Yu-Ting

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treatedmore » cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  15. A 21st Century Update on Neurotoxicity Risk Assessment

    EPA Science Inventory

    In 1998, EPA published Guidelines for Neurotoxicity Risk Assessment as the basis for interpreting neurotoxicity results. At that time, the focus was on traditional toxicity testing and human clinical /epidemiological data. More recently, a change in approach to toxicity testing ...

  16. Benzodiazepines for neuroleptic-induced acute akathisia.

    PubMed

    Lima, A R; Soares-Weiser, K; Bacaltchuk, J; Barnes, T R

    2002-01-01

    Neuroleptic-induced akathisia is one of the most common and distressing early-onset adverse effects of antipsychotic drugs, being associated with poor compliance with treatment, and thus, ultimately, to an increase risk of relapse. This review assesses the role of benzodiazepines in the pharmacological treatment of this problem. To determine the effects of benzodiazepines versus placebo for people with neuroleptic-induced acute akathisia. Biological Abstracts (January 1982-March 1999), The Cochrane Library (Issue 3 1999), The Cochrane Schizophrenia Group's Register (May 2001), EMBASE (January 1980-March 1999), LILACS (January 1982-March 1999), MEDLINE (January 1964-March 1999), PsycLIT (January 1974-March 1999), and SCISEARCH were searched. Further references were sought from published trials and their authors. All randomised clinical trials comparing benzodiazepines with placebo for people with antipsychotic-induced acute akathisia. Two reviewers, working independently, selected, quality assessed and extracted data. These data were then analysed on an intention-to-treat basis. For homogeneous dichotomous data the fixed effects relative risk (RR), the 95% confidence intervals (CI) and, where appropriate, the number needed to treat (NNT) were calculated on an intention-to-treat basis. For continuous data, reviewers calculated weighted mean differences. Two small (total N=27) randomised controlled trials were included. By seven to 14 days, there was a reduction in symptoms for those patients receiving clonazepam compared with placebo (2 RCTs, N=26, RR 0.09 CI 0.01 to 0.6, NNT 1.2 CI 0.9 to 1.5). No significant difference was found for adverse events (2 RCTs, N=26, RR 3.00 CI 0.2 to 62) or the need for anticholinergic medication (2 RCTs, N=26, RR 1.56 CI 0.9 to 2.7). No one left the two studies early. Data on mental, social and family outcomes could not be pooled and there was little or no data on user satisfaction, deaths, violence, criminal behaviour and costs. Over

  17. Acute surgical abdomen due to phytobezoar-induced ileal obstruction.

    PubMed

    Salemis, Nikolaos S; Panagiotopoulos, Nikolaos; Sdoukos, Nikolaos; Niakas, Evangelos

    2013-01-01

    Phytobezoar-induced small bowel obstruction is an uncommon clinical entity accounting for 2-4.8% of all mechanical intestinal obstructions. In addition, presentation with features of acute surgical abdomen is extremely rare, accounting for only 1% of the patients. The aim of this report is to present a very rare case of a phytobezoar-induced small bowel obstruction in a male patient who presented with acute surgical abdomen. A correct preoperative diagnosis was made based on the patient's history and characteristic imaging features on the emergency computed tomography (CT) scan. A 55-year-old man with previous gastrectomy presented with typical manifestations of acute abdomen. CT scan demonstrated dilatated small bowel loops and an intraluminal ileal mass with a mottled appearance. At exploratory laparotomy, a phytobezoar was found impacted in the terminal ileum and was removed through an enterotomy. Phytobezoar should be considered in patients with previous gastric outlet surgery who present with bowel obstruction and features of acute surgical abdomen. The presence of a well-defined intraluminal mass with a mottled gas pattern on emergency CT scan is suggestive of an intestinal phytobezoar. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  19. Developmental neurotoxicity of industrial chemicals.

    PubMed

    Grandjean, P; Landrigan, P J

    2006-12-16

    Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.

  20. A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats☆

    PubMed Central

    Jin, Minghua; Song, Peilin; Li, Na; Li, Xuejun; Chen, Jiajun

    2012-01-01

    Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride. In this study, experimental rats were intragastrically administered 5, 10, or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning. After exposure, our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue, while the malondialdehyde and nitric oxide content, as well as nitric oxide synthase activity in rat brain tissue increased. The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased. DNA damage was aggravated in the cerebral cortex, and the ultrastructure of the right parietal cortex tissues was altered. The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate. Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues, and demonstrated that the poisoning was dose-dependent. PMID:25538742