Sample records for tabun-inhibited cholinesterase interactions

  1. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration.

    PubMed

    Zorbaz, Tamara; Braïki, Anissa; Maraković, Nikola; Renou, Julien; de la Mora, Eugenio; Maček Hrvat, Nikolina; Katalinić, Maja; Silman, Israel; Sussman, Joel L; Mercey, Guillaume; Gomez, Catherine; Mougeot, Romain; Pérez, Belén; Baati, Rachid; Nachon, Florian; Weik, Martin; Jean, Ludovic; Kovarik, Zrinka; Renard, Pierre-Yves

    2018-04-19

    A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cholinesterases, a target of pharmacology and toxicology.

    PubMed

    Pohanka, Miroslav

    2011-09-01

    Cholinesterases are a group of serine hydrolases that split the neurotransmitter acetylcholine (ACh) and terminate its action. Of the two types, butyrylcholinesterase and acetylcholinesterase (AChE), AChE plays the key role in ending cholinergic neurotransmission. Cholinesterase inhibitors are substances, either natural or man-made that interfere with the break-down of ACh and prolong its action. Hence their relevance to toxicology and pharmacology. The present review summarizes current knowledge of the cholinesterases and their inhibition. Particular attention is paid to the toxicology and pharmacology of cholinesterase-related inhibitors such as nerve agents (e.g. sarin, soman, tabun, VX), pesticides (e.g. paraoxon, parathion, malathion, malaoxon, carbofuran), selected plants and fungal secondary metabolites (e.g. aflatoxins), drugs for Alzheimer's disease (e.g. huperzine, metrifonate, tacrine, donepezil) and Myasthenia gravis (e.g. pyridostigmine) treatment and other compounds (propidium, ethidium, decamethonium). The crucial role of the cholinesterases in neural transmission makes them a primary target of a large number of cholinesterase-inhibiting drugs and toxins. In pharmacology, this has relevance to the treatment of neurodegenerative disorders.

  3. Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats

    PubMed Central

    Karasova, Jana Zdarova; Kassa, Jiri; Jung, Young-Sik; Musilek, Kamil; Pohanka, Miroslav; Kuca, Kamil

    2008-01-01

    The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%). PMID:19330072

  4. Brain cholinesterase activities of passerine birds in forests sprayed with cholinesterase inhibiting insecticides

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; Shea, P.J.

    1979-01-01

    Brain cholinesterase activities were determined in passerines collected from northwestern forests that had been sprayed with trichlorfon, acephate, and carbaryl at 0.56, 1.13 and 2.26 kg/ha. Trichlorfon and carbaryl inhibited cholinesterase activity slightly in only a few birds, primarily canopy dwellers. In contrast, acephate caused marked inhibition of cholinesterase activity in nearly all birds collected. The inhibition was present even 33 days after spraying. Some birds from the acephate-sprayed forests exhibited clinical signs compatible with acute acetylcholinesterase inhibition.

  5. The kinetics of inhibition of erythrocyte cholinesterase by monomethylcarbamates

    PubMed Central

    Reiner, E.; Simeon-Rudolf, V.

    1966-01-01

    1. The kinetics of the interaction of erythrocyte cholinesterase with 1-naphthyl N-methylcarbamate, 2-isopropoxyphenyl N-methylcarbamate and phenyl N-methylcarbamate were studied. Rate constants for inhibition and rate constants for spontaneous reactivation were determined. The calculated rate constants for spontaneous reactivation agreed well with those obtained experimentally. 2. The degree of inhibition obtained after preincubation of enzyme and inhibitor was found to be independent of both the substrate concentration and the dilution of the inhibited enzyme. 3. The reaction between the enzyme and the inhibitor was consistent with carbamates being regarded as poor substrates of cholinesterases. There was no evidence for the formation of a reversible complex between the enzyme and the carbamate. PMID:5941343

  6. Comparison of extracellular striatal acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs.

    PubMed

    O'Donnell, John C; Acon-Chen, Cindy; McDonough, John H; Shih, Tsung-Ming

    2010-11-01

    Organophosphorus nerve agents like cyclosarin and tabun are potent cholinesterase inhibitors. The inhibition of acetylcholinesterase, which is responsible for breaking down acetylcholine (ACh) at the synapse and neuromuscular junction, leads to a build-up of extracellular ACh and a series of toxic consequences including hypersecretion, tremor, convulsion/seizure, respiratory distress, coma, and death. This study employed simultaneous and continuous electroencephalographic recording and striatal microdialysis collection for quantification of ACh changes (via subsequent HPLC analysis) during acute exposure to a 1.0 × LD(50) subcutaneous dose of either cyclosarin or tabun to investigate differences in cholinergic and behavioral effects. Information about the unique mechanisms and consequences of different nerve agents is intended to aid in the development of broad-spectrum medical countermeasures for nerve agents. At the dose administered, non-seizure and sustained seizure responses were observed in both agent groups and in the tabun-exposed group some subjects experienced an unsustained seizure response. Significant extracellular ACh increases were only observed in seizure groups. Cyclosarin and tabun were found to exhibit some unique cholinergic and ictogenic characteristics. Lethality only occurred in subjects experiencing sustained seizure, and there was no difference in lethality between agent groups that progressed to sustained seizure.

  7. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    PubMed

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  8. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  9. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  10. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods.

    PubMed

    Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin

    2006-10-01

    The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.

  11. Inhibition of cholinesterases by fluoride in vitro

    PubMed Central

    Cimasoni, Giorgio

    1966-01-01

    1. Series of colorimetric dynamic assays allowed the study of the inhibition of cholinesterases by F− ions in vitro, by using, as sources of enzyme, whole human blood, human serum, homogenized rat brain and two preparations of red blood cells (human and bovine) whose enzymic purity was ascertained. 2. The first evidence of inhibition of human serum pseudocholinesterase by fluoride was noticed at 15–25μm-fluoride. Ten times as much fluoride was needed to start inhibition of acetylcholinesterase of the red blood cells. 3. The action of fluoride on the enzymic reaction was immediate. The reversibility of the inhibition was shown by dialysis and dilution. 4. Kinetic measurements showed that the inhibition under study was not dependent on the substrate concentration and was of the uncompetitive type, similar to that observed in the presence of a heavy metal (cadmium). 5. The activity of serum cholinesterase did not change in the absence of Mg2+ and Ca2+ ions. Fluoride was shown to inhibit the enzyme in the absence of these ions as well as of phosphate. 6. Fluoride could inhibit cholinesterases in the presence of three different substrates and had no action on the non-enzymic hydrolysis. 7. It is thought that the halide is bound reversibly to the enzyme molecule, with the probable exclusion of the active site, but no firm conclusion could be reached on this point. PMID:6007454

  12. Comparison of methods for measuring cholinesterase inhibition by carbamates

    PubMed Central

    Wilhelm, K.; Vandekar, M.; Reiner, E.

    1973-01-01

    The Acholest and tintometric methods are used widely for measuring blood cholinesterase activity after exposure to organophosphorus compounds. However, if applied for measuring blood cholinesterase activity in persons exposed to carbamates, the accuracy of the methods requires verification since carbamylated cholinesterases are unstable. The spectrophotometric method was used as a reference method and the two field methods were employed under controlled conditions. Human blood cholinesterases were inhibited in vitro by four methylcarbamates that are used as insecticides. When plasma cholinesterase activity was measured by the Acholest and spectrophotometric methods, no difference was found. The enzyme activity in whole blood determined by the tintometric method was ≤ 11% higher than when the same sample was measured by the spectrophotometric method. PMID:4541147

  13. In vitro kinetic interactions of DEET, pyridostigmine and organophosphorus pesticides with human cholinesterases.

    PubMed

    Wille, Timo; Thiermann, Horst; Worek, Franz

    2011-04-25

    The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.; Liu, J.; Karanth, S.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed thesemore » concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very

  15. Exposure of nonbreeding migratory shorebirds to cholinesterase-inhibiting contaminants in the western hemisphere

    USGS Publications Warehouse

    Strum, K.M.; Hooper, M.J.; Johnson, K.A.; Lanctot, Richard B.; Zaccagnini, M.E.; Sandercock, B.K.

    2010-01-01

    Migratory shorebirds frequently forage and roost in agricultural habitats, where they may be exposed to cholinesterase-inhibiting pesticides. Exposure to organophosphorus and carbamate compounds, common anti-cholinesterases, can cause sublethal effects, even death. To evaluate exposure of migratory shorebirds to organophosphorus and carbamates, we sampled birds stopping over during migration in North America and wintering in South America. We compared plasma cholinesterase activities and body masses of individuals captured at sites with no known sources of organophosphorus or carbamates to those captured in agricultural areas where agrochemicals were recommended for control of crop pests. In South America, plasma acetylcholinesterase and butyrylcholinesterase activity in Buff-breasted Sandpipers was lower at agricultural sites than at reference sites, indicating exposure to organophosphorus and carbamates. Results of plasma cholinesterase reactivation assays and foot-wash analyses were inconclusive. A meta-analysis of six species revealed no widespread effect of agricultural chemicals on cholinesterase activity. however, four of six species were negative for acetylcholinesterase and one of six for butyrylcholinesterase, indicating negative effects of pesticides on cholinesterase activity in a subset of shorebirds. Exposure to cholinesterase inhibitors can decrease body mass, but comparisons between treatments and hemispheres suggest that agrochemicals did not affect migratory shorebirds' body mass. Our study, one of the first to estimate of shorebirds' exposure to cholinesterase-inhibiting pesticides, suggests that shorebirds are being exposed to cholinesterase- inhibiting pesticides at specific sites in the winter range but not at migratory stopover sites. future research should examine potential behavioral effects of exposure and identify other potential sitesand levels of exposure. ?? The Cooper Ornithological Society 2010.

  16. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity.

    PubMed

    Burčul, Franko; Generalić Mekinić, Ivana; Radan, Mila; Rollin, Patrick; Blažević, Ivica

    2018-12-01

    Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer's disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC 50 of 0.57 mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14 mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ∼99% inhibition at 50 μM.

  17. Reactivation of model cholinesterases by oximes and intermediate phosphyloximes: A computational study

    PubMed Central

    Vyas, Shubham; Hadad, Christopher M.

    2008-01-01

    Phosphyloximes (POX) are generated upon the reactivation of organophosphorus (OP) inhibited cholinesterases (ChEs) by pyridinium oximes. These POXs are known to be potent inhibitors of the ChEs following reactivation. However, they can also decompose to give an OP derivative and a cyano derivative of the oxime when a base abstracts the benzylic proton. Using density functional theory, thermodynamic properties were calculated for the reactivation and decomposition pathways of three different oximes (2-PAM, 3-PAM and 4-PAM) with six different OPs (cyclosarin, paraoxon, sarin, tabun, VR and VX). For reactivation purposes, 2-PAM is predicted to be more efficient than 3- and 4-PAM. Based on atomic charges and relative energies, 2-POXs were found to be more inclined towards the decomposition process. PMID:18582852

  18. Novel cholinesterase modulators and their ability to interact with DNA

    NASA Astrophysics Data System (ADS)

    Janockova, Jana; Gulasova, Zuzana; Musilek, Kamil; Kuca, Kamil; Kozurkova, Maria

    2013-11-01

    In the present work, an interaction of four cholinesterase modulators (1-4) with calf thymus DNA was studied via spectroscopic techniques (UV-Vis, fluorescent spectroscopy and circular dichroism). From UV-Vis spectroscopic analysis, the binding constants for DNA-pyridinium oximes complexes were calculated (K = 3.5 × 104 to 1.4 × 105 M-1). All these measurements indicated that the compounds behave as effective DNA-interacting agents. Electrophoretic techniques proved that ligand 2 inhibited topoisomerase I at a concentration 5 μM.

  19. [The reversible inhibition of cholinesterases from different biological sources by phosphonium betaines].

    PubMed

    Zhuzhovskiĭ, Iu G; Kuznetsova, L P; Sochilina, E E; Dmitrieva, E N; Gololobov, Iu G; Bykovskaia, E Iu

    1996-01-01

    The action of some phosphonium betains on cholinesterases from different biological sources has been studied. It has been shown, that all studied betains are reversible inhibitors of cholinesterase hydrolysis of acetyltiocholine. Inhibiting action of these compounds on acetylcholinesterases is about ten times weaker that of the majority of known phosphonium salts, while their action on butyrylcholinesterases has no peculiarities. There were found certain differences for each betain compounds in their action on cholinesterases from different biological sources. These results may be used for detail classification of cholinesterases and allow to extend knowledge in comparative enzymology.

  20. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENSMIPHOS OR PROFENOPHOS.

    EPA Science Inventory

    This manuscript examines the relationship between cholinesterase inhibition and behavioral effects produced by two pesticides, fenamiphos and profenophos. Both pesticides greatly inhibit blood cholinesterase but the brain is relatively spared up to lethal doses. Despite the sim...

  1. A comparison of reactivating and therapeutic efficacy of bispyridinium acetylcholinesterase reactivator KR-22934 with the oxime K203 and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Musilek, Kamil; Kuca, Kamil; Bajgar, Jiri; Jung, Young-Sik

    2011-03-01

    The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).

  2. Structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: a kinetics-molecular modeling approach.

    PubMed

    Torres, Juliana M; Lira, Aline F; Silva, Daniel R; Guzzo, Lucas M; Sant'Anna, Carlos M R; Kümmerle, Arthur E; Rumjanek, Victor M

    2012-09-01

    The natural indole alkaloids, the β-carbolines, are often associated with cholinesterase inhibition, especially their quaternary salts, which frequently have higher activity than the free bases. Due to lack of information explaining this fact in the literature, the cholinesterase inhibition by the natural product harmane and its two β-carbolinium synthetic derivative salts (N-methyl and N-ethyl) was explored, together with a combination of kinetics and a molecular modeling approach. The results, mainly for the β-carbolinium salts, demonstrated a noncompetitive inhibition profile, ruling out previous findings which associated cholinesterase inhibition by β-carbolinium salts to a possible mimicking of the choline moiety of the natural substrate, acetylcholine. Molecular modeling studies corroborate this kind of inhibition through analyses of inhibitor/enzyme and inhibitor/substrate/enzyme complexes of both enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Interaction of cholinesterase modulators with DNA and their cytotoxic activity.

    PubMed

    Janockova, Jana; Gulasova, Zuzana; Plsikova, Jana; Musilek, Kamil; Kuca, Kamil; Mikes, Jaromir; Culka, Lubomir; Fedorocko, Peter; Kozurkova, Maria

    2014-03-01

    This research was focused on a study of the binding properties of a series of cholinesterase reactivators compounds K075 (1), K027 (2) and inhibitors compounds K524, K009 and 7-MEOTA (3-5) with calf thymus DNA. The nature of the interactions between compounds 1-5 and DNA were studied using spectroscopic techniques (UV-vis, fluorescence spectroscopy and circular dichroism). The binding constants for complexes of cholinesterase modulators with DNA were determined from UV-vis spectroscopic titrations (K=0.5 × 10(4)-8.9 × 10(5)M(-1)). The ability of the prepared analogues to relax topoisomerase I was studied with electrophoretic techniques and it was proved that ligands 4 and 5 inhibited this enzyme at a concentration of 30 μM. The biological activity of the novel compounds was assessed through an examination of changes in cell cycle distribution, mitochondrial membrane potential and cellular viability. Inhibitors 3-5 exhibited a cytotoxic effect on HL-60 (human acute promyelocytic leukaemia) cell culture, demonstrated a tendency to affect mitochondrial physiology and viability, and also forced cells to accumulate in the G1/G0-phase of the cell cycle. The cholinesterase reactivators 1 and 2 were found relatively save from the point of view of DNA binding, whereas cholinesterase inhibitors 3-5 resulted as strong DNA binding agents that limit their plausible use. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.

    PubMed

    Hameed, Abdul; Zehra, Syeda T; Shah, Syed J A; Khan, Khalid M; Alharthy, Rima D; Furtmann, Norbert; Bajorath, Jürgen; Tahir, Muhammad N; Iqbal, Jamshed

    2015-11-01

    Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have a role in cholinergic deficit which evidently leads to Alzheimer's disease (AD). Inhibition of cholinesterases with small molecules is an attractive strategy in AD therapy. This study demonstrates synthesis of pyrido[2,3-b]pyrazines (6a-6q) series, their inhibitory activities against both cholinesterases, AChE and BChE, and molecular docking studies. The bioactivities data of pyrido[2,3-b]pyrazines showed 3-(3'-nitrophenyl)pyrido[2,3-b]pyrazine 6n a potent dual inhibitor among the series against both AChE and BChE with IC50 values of 0.466 ± 0.121 and 1.89 ± 0.05 μm, respectively. The analogues 3-(3'-methylphenyl)pyrido[2,3-b]pyrazine 6c and 3-(3'-fluorophenyl)pyrido[2,3-b]pyrazine 6f were found to be selective inhibition for BChE with IC50 values of 0.583 ± 0.052 μm and AChE with IC50 value of 0.899 ± 0.10 μm, respectively. Molecular docking studies of the active compounds suggested the putative binding modes with cholinesterases. The potent compounds among the series could potentially serves as good leads for the development of new cholinesterase inhibitors. © 2015 John Wiley & Sons A/S.

  5. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENAMIPHOS AND PROFENOPHOS.

    EPA Science Inventory

    The relationship between cholinesterase (ChE) inhibition and neurobehavioral changes was examined using two ChE-inhibiting organophosphorus pesticides, fenamiphos and profenophos. Both pesticides inhibit blood ChE, yet brain ChE is relatively spared (little to no inhibition up t...

  6. In vitro investigation of efficacy of new reactivators on OPC inhibited rat brain acetylcholinesterase.

    PubMed

    Atanasov, Vasil N; Petrova, Iskra; Dishovsky, Christophor

    2013-03-25

    Organophosphorus compounds (OPC) were developed as warfare nerve agents. They are also widely used as pesticides. The drug therapy of intoxication with OPC includes mainly combination of cholinesterase (ChE) reactivators and cholinolytics. There is no single ChE reactivator having an ability to reactivate sufficiently the inhibited enzyme due to the high variability of chemical structure of the inhibitors. The difficulties in reactivation of ChE activity and slight antidote effect regarding intoxication with some OPC are some of the reasons for continuous efforts to obtain new reactivators of ChE. The aim of the present study was to evaluate the efficacy of some ChE reactivators against OPC intoxication (tabun, paraoxon and dichlorvos) in in vitro experiments and to compare their activity to that known for some currently used oximes (obidoxime, HI-6, 2-PAM). Experiments were carried out using rat brain acetylcholinesterase (AChE). Reactivators showed different activity in the reactivation of rat brain AChE after dichlorvos, paraoxon and tabun inhibition. AChE was easier reactivated after paraoxon treatment. The best effect showed BT-07-4M, obidoxime, TMB-4 and BT-08 from the group of symmetric oximes, and Toxidin, BT-05 and BT-03 from asymmetric compounds. The reactivation of brain AChE inhibited with tabun demonstrated better activity of new compound BT-07-4M, TMB-4 and obidoxime from symmetric oximes, and BT-05 and BT-03 possessing asymmetric structure. All compounds showed low activity toward inhibition of AChE caused by dichlorvos. Comparison of two main structure types (symmetric/asymmetric) showed that the symmetric compounds reactivated better AChE, inhibited with this OPC, than asymmetric ones. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging.

    PubMed

    Nachon, Florian; Asojo, Oluwatoyin A; Borgstahl, Gloria E O; Masson, Patrick; Lockridge, Oksana

    2005-02-01

    Organophosphorus poisons (OP) bind covalently to the active-site serine of cholinesterases. The inhibited enzyme can usually be reactivated with powerful nucleophiles such as oximes. However, the covalently bound OP can undergo a suicide reaction (termed aging) yielding nonreactivatable enzyme. In human butyrylcholinesterase (hBChE), aging involves the residues His438 and Glu197 that are proximal to the active-site serine (Ser198). The mechanism of aging is known in detail for the nerve gases soman, sarin, and tabun as well as the pesticide metabolite isomalathion. Aging of soman- and sarin-inhibited acetylcholinesterase occurs by C-O bond cleavage, whereas that of tabun- and isomalathion-inhibited acetylcholinesterase occurs by P-N and P-S bond cleavage, respectively. In this work, the crystal structures of hBChE inhibited by the ophthalmic reagents echothiophate (nonaged and aged) and diisopropylfluorophosphate (aged) were solved and refined to 2.1, 2.25, and 2.2 A resolution, respectively. No appreciable shift in the position of the catalytic triad histidine was observed between the aged and nonaged conjugates of hBChE. This absence of shift contrasts with the aged and nonaged crystal structures of Torpedo californica acetylcholinesterase inhibited by the nerve agent VX. The nonaged hBChE structure shows one water molecule interacting with Glu197 and the catalytic triad histidine (His438). Interestingly, this water molecule is ideally positioned to promote aging by two mechanisms: breaking either a C-O bond or a P-O bond. Pesticides and certain stereoisomers of nerve agents are expected to undergo aging by breaking the P-O bond.

  8. Inhibition of cholinesterases by stereoisomers of Huperzine-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, A.; Qian, N.; Kovach, I.M.

    1993-05-13

    Huperzine-A, a potential drug for the treatment of Alzheimer's disease and possible pretreament for nerve agent toxicity, has recently been characterized as a reversible inhibitor of cholinesterases (Ashani et al., BBRC, 184:719-726, 1992). Long-term incubation of purified cholinesterases with Huperzine-A did not show any chemical modification of Huperzine-A. The dissociation constant, K(I), for fetal bovine serum acetylcholinesterase (FBS AChE) was approximately 20 nM, for Torpedo AChE was 215 nM, and for horse serum butyrylcholinesterase (BChE) was 40 micrometers M. Inhibition studies with the two stereoisomers of Huperzine-A have shown that naturally occurring (-)-Huperzine-A inhibited FBS AChE 35-fold more potently thanmore » (+)-Huperzine-A, with K(I) values of 6.2 nM and 210 nM, respectively. These results are in agreement with those reported previously using crude preparations of rat cortical AChE (McKinney et al., Eur. J. Pharmacol., 203, 303-305, 1991). (-)-Huperzine-A, on the other hand, was 80-fold more potent than (+)-Huperzine-A in inhibiting Torpedo AChE, with K(I), values of 0.25 micrometers M and 22 micrometer M, respectively. No significant differences in K(I) were observed for the two stereoisomers of Huperzine-A with horse serum BChE, indicating the lack of stereoselectivity of this compound for BChE. Molecular modeling studies involving docking of each of the two stereoisomers of Huperzine-A into the active-site gorge of Torpedo AChE also revealed that (-)-Huperzine-A gave a better fit than (+)-Huperzine-A.« less

  9. BEHAVIORAL AND NEUROCHEMICAL EFFECTS OF ACUTE CHLORPYRIFOS IN RATS: TOLERANCE TO PROLONGED INHIBITION OF CHOLINESTERASE

    EPA Science Inventory

    Chlorpyrifos (CPF), a commercially prevalent organophosphate (OP) pesticide, inhibits blood and brain cholinesterase for up to 10 weeks after acute s.c. injection in rats. his prolonged inhibition suggested that acute CPF may affect muscarinic receptors and behavior as does repea...

  10. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases.

    PubMed

    Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge

    2015-01-01

    Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects.

  11. A new method to characterize the kinetics of cholinesterases inhibited by carbamates.

    PubMed

    Xiao, Qiaoling; Zhou, Huimin; Wei, Hong; Du, Huaqiao; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco

    2017-09-10

    The inhibition of cholinesterases (ChEs) by carbamates includes a carbamylation (inhibition) step, in which the drug transfers its carbamate moiety to the active site of the enzyme and a decarbamylation (activity recovery) step, in which the carbamyl group is hydrolyzed from the enzyme. The carbamylation and decarbamylation kinetics decide the extent and the duration of the inhibition, thus the full characterization of candidate carbamate inhibitors requires the measurement of the kinetic constants describing both steps. Carbamylation and decarbamylation rate constants are traditionally measured by two separate set of experiments, thus making the full characterization of candidate inhibitors time-consuming. In this communication we show that by the analysis of the area under the inhibition-time curve of cholinesterases inhibited by carbamates it is possible to calculate the decarbamylation rate constant from the same data traditionally used to characterize only the carbamylation kinetics, therefore it is possible to obtain a full characterization of the inhibition with a single set of experiments. The characterization of the inhibition kinetics of human and dog plasma butyrylcholinesterase and of human acetylcholinesterase by bambuterol and bambuterol monocarbamate enantiomers was used to demonstrate the validity of the approach. The results showed that the proposed method provides reliable estimations of carbamylation and decarbamylation rate constants thus representing a simple and useful approach to reduce the time required for the characterization of carbamate inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cholinesterase-based biosensors.

    PubMed

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  13. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    PubMed Central

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  14. An evaluation of neonicotinoids' potential to inhibit human cholinesterases: Protein-ligand docking and interaction profiling studies.

    PubMed

    Teralı, Kerem

    2018-06-16

    Many so-called neuroactive insecticides target invertebrate neurotransmitter systems, including the cholinergic system. With their relatively low toxicity to vertebrates, neonicotinoids represent a new class of neuroactive insecticides that bind to nicotinic receptors for acetylcholine in the insect central nervous system and result in paralysis and eventual death due to receptor overstimulation. On the understanding that, today, cholinesterase inhibitors are used to obtain the symptomatic relief of Alzheimer disease (AD), the aforementioned direct cholinomimetic action of neonicotinoids could, perhaps, confer anti-AD drug-like attributes to these compounds. It is shown here, using protein-ligand docking and interaction profiling, that neonicotinoids penetrate deep into the active-site gorge of both acetylcholinesterase and butyrylcholinesterase and that they form relatively strong noncovalent bonds with multiple critical residues that normally bind/hydrolyze choline esters. With their gorge-spanning shape and dual-binding specificity, neonicotinoids (first-generation compounds in particular) represent promising leads for the development of reversible, mixed-type cholinesterase inhibitors in the fight against AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate.

    PubMed

    Bazire, Alexandre; Gillon, Emilie; Lockridge, Oksana; Vallet, Virginie; Nachon, Florian

    2011-04-01

    The organophosphorus insecticide, demeton-S-methyl (DSM), is considered as a good surrogate of the highly toxic nerve agent VX for skin absorption studies due to similar physico-chemical properties and in vitro percutaneous penetration profile. But, when skin distribution was estimated by measuring inhibition of cholinesterase activity, the results were poorly reproducible. The various grades of commercial DSM solutions were suspected to be the origin of the discrepancies. This hypothesis was tested by measuring inhibition of human acetyl- and butyrylcholinesterase by two commercial DSM solutions. The inhibition rate was independent on the enzyme concentration confirming pseudo-first order conditions. But complete inhibition of butyrylcholinesterase activity was achieved only when the DSM concentration was at least 1500-fold higher than the enzyme concentration. Besides, complete inhibition of acetylcholinesterase was never achieved. Mass spectrometry analysis of the inhibited butyrylcholinesterase adducts identified monomethoxyphosphorylated-serine, the aged product of inhibition by DSM or a derivative with a modified leaving group. Neither spontaneous reactivation nor aging of the dimethoxyphosphorylated-serine could account for the inhibition kinetics observed, suggesting an overly complicated kinetic scheme not compatible with the requirement of a titration experiment. In conclusion, cholinesterase-based analytical methods should be avoided for DSM titration in skin penetration studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [How aliphatic alcohols and ph affect reactional capability of the horse blood serum cholinesterase at its interaction with organophosphorus inhibitors].

    PubMed

    Basova, N E; Kormilitsin, B N; Perchenok, A Iu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2013-01-01

    There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, secbutanol, tretbetanol) and pH on various kinds of reactional capability the serum cholinesterase. At the alcohols-affected inhibition of the cholinesterase hydrolytic activity, the determining role was played not the total number carbon atoms in the alcohol molecule, but by the "effective length" of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of the reverse cholinesterase inhibition with onium ions tetramethylammonium and choline allows suggesting the absence of effect solvents on specific acetylcholine sorption in the enzyme active center. With aid of two rows of hydrophobic organophosphorus inhibitors (OPI), we have managed to estimate both the degree and the character itself of the modifying action of alcohols and pH on the process of irreversible inhibition of serum cholinesterase.

  17. Quantitative estimation of cholinesterase-specific drug metabolism of carbamate inhibitors provided by the analysis of the area under the inhibition-time curve.

    PubMed

    Zhou, Huimin; Xiao, Qiaoling; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco

    2017-09-10

    Several molecules containing carbamate groups are metabolized by cholinesterases. This metabolism includes a time-dependent catalytic step which temporary inhibits the enzymes. In this paper we demonstrate that the analysis of the area under the inhibition versus time curve (AUIC) can be used to obtain a quantitative estimation of the amount of carbamate metabolized by the enzyme. (R)-bambuterol monocarbamate and plasma butyrylcholinesterase were used as model carbamate-cholinesterase system. The inhibition of different concentrations of the enzyme was monitored for 5h upon incubation with different concentrations of carbamate and the resulting AUICs were analyzed. The amount of carbamate metabolized could be estimated with <15% accuracy (RE%) and ≤23% precision (RSD%). Since the knowledge of the inhibition kinetics is not required for the analysis, this approach could be used to determine the amount of drug metabolized by cholinesterases in a selected compartment in which the cholinesterase is confined (e.g. in vitro solutions, tissues or body fluids), either in vitro or in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Estimation of plasma tacrine concentrations using an in vitro cholinesterase inhibition assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriearty, P.L.; Kenny, W.; Kumar, V.

    THA (9-amino, 1,2,3,4-tetrahydroacridine; tacrine) is currently under study as a cholinesterase (ChE) inhibitor in Alzheimer disease. In this study, a sensitive radiometric assay for THA inhibition of human plasma ChE, suitable for detection of effects of orally administered drug, is described. The assay is sensitive in a range of 4-50 ng/ml plasma. Reversibility of the inhibition permits distinguishing of drug effects on ChE from changes in amount of enzyme synthesized during treatment.

  19. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.

    PubMed

    Shah, Muhammad Shakil; Khan, Shafi Ullah; Ejaz, Syeda Abida; Afridi, Saifullah; Rizvi, Syed Umar Farooq; Najam-Ul-Haq, Muhammad; Iqbal, Jamshed

    2017-01-22

    Super-activation of cholinesterases (acetylcholinesterase and butyrylcholinesterase) are linked to various neurological problems most precisely Alzheimer's disease (AD), which leads to senile dementia. Therefore, cholinesterases (AChE & BChE) inhibition are considered as a promising strategy for the treatment of Alzheimer's disease. FDA approved drugs for the treatment of AD, belong to a group of cholinesterase inhibitors. However, none of them is able to combat or completely abrogate the disease progression. Herein, we report a series of newly synthesized chalcone derivatives with anti-AD potential. For this purpose, a series of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones were tested for their cholinesterases (AChE & BChE) inhibitory activity. All compounds were found as selective inhibitor of AChE. In piperidyl chalcones derivatives compound 1e having IC 50 of 0.16 ± 0.008 μM and 2m in 2-pyrazoline chalcones with IC 50 of 0.13 ± 0.006 μM, were found to be the most potent inhibitors of AChE, exhibiting ≈142 and ≈ 173-fold greater inhibitory potential compared to the reference inhibitor i.e., Neostigmine (IC 50  ± SEM = 22.2 ± 3.2 μM). Molecular docking studies of most potent inhibitors were carried out to investigate the binding interactions inside the active site. Molecular docking study revealed that potent compounds and co-crystalized ligand had same binding orientation within the active site of target enzyme. Most of these compounds are selective inhibitors of AChE with a potential use against progressive neurodegenerative disorder and age related problems. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cholinesterase inhibition of birds inhabiting wheat fields treated with methyl parathion and toxaphene

    USGS Publications Warehouse

    Niethammer, K.R.; Baskett, T.S.

    1983-01-01

    Red-winged blackbirds (Agelaius phoeniceus) and dickcissels (Spiza americana) inhabiting wheat fields treated with 0.67 kg AI/ha methyl parathion and 1.35 kg AI/ha toxaphene showed brain cholinesterase (ChE) inhibition compared with birds inhabiting untreated fields. Maximum inhibition occurred about five days after insecticide application. ChE activities again approached normal 10 days after treatment. ChE inhibition for dickcissels and red-winged blackbirds differed significantly (p<0.05); maximum inhibition for the former species was 74%, and for the latter, 40%. These differences could not be explained by the diets of the two species, as they were similar.

  1. Resorcinol-, catechol- and saligenin-based bronchodilating β2-agonists as inhibitors of human cholinesterase activity.

    PubMed

    Bosak, Anita; Knežević, Anamarija; Gazić Smilović, Ivana; Šinko, Goran; Kovarik, Zrinka

    2017-12-01

    We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with K i constants ranging from 9.4 μM to 6.4 mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π-π interaction of salmeterol's benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.

  2. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April–May and August–September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  3. Mechanism of inhibition of cholinesterases by Huperzine A. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashani, Y.; Peggins, J.O.; Doctor, B.P.

    1992-04-30

    Huperzine A, an alkaloid isolated from Huperzia serrata was found to reversibly inhibit acetylcholinesterases (EC 3.1.7) and (EC 3.1.1.8) with i 3.1 on- and off-rates that depend on both the type and the source of enzyme. Long incubation of high concentrations of purified (1-8 PM) with huperzine-A did not show any chemical modification of huperzine-A. A low dissociation constant K sub 1 was obtained for mammalian acetylcholinesterase-huperzine (20-40 nM) compared to mammalian butyrylcholinesterase-huperzine (20-40 microns.) This indicates that the thermodynamic stability of huperzine-cholinesterase complex may depend on the number and type of aromatic amino acid residues in the catalytic pocketmore » region of the cholinesterase molecule.« less

  4. Brain cholinesterase inhibition in songbirds from pecan groves sprayed with phosaline and disulfoton

    USGS Publications Warehouse

    White, D.H.; Seginak, J.T.

    1990-01-01

    Disulfoton at 0.83 kg/ha caused moderate to severe brain cholinesterase (ChE) depression in 11 of 15 blue jays collected in pecan groves 6-7 hr after the application. Phosalone at 0.83 kg/ha to pecan groves caused only slight ChE inhibition in a few blue jays and red-bellied woodpeckers.

  5. Methylmercury-cholinesterase interactions in rats.

    PubMed Central

    Hastings, F L; Lucier, G W; Klein, R

    1975-01-01

    The interaction of methylmercury hydroxide (MMH) and cholinesterases was studied in male and female rats. MMH administered subcutaneously in doses of 10 mg/kg for 2 days reduced the level of plasma cholinesterase (ButChE) by 68% in females and 47% in males while brain acetylcholinesterase (AChE) was unaffected. Normal females had higher but more variable ButChE levels than normal males. In a time-course experiment, a single dose of MMH (10 mg/kg) reduced ButChE levels when mercury levels reached 22 mug/ml in the blood. A 10% reduction in brain AChE was observed at 72 hours; however, mercury reached a concentration of only 2.0 mug/g in brain tissue. The determination of the Michaelis constant Km and maximum velocity value Vmax for butyrylcholine and ButChE in control and MMH-treated (1 mg/kg) animals indicated that MMH reduced Vmax only. Since no loss in ButChE activity occurred when MMH and control plasma were incubated in vitro, MMH is not a direct inhibitor of ButChE. Because only the inactive monomeric form of ButChE contains free sulfhydryl groups, it is postulated that MMH combines covalently with the sulfur, preventing formation of active enzyme. By analogy, it is believed this is also the case with AChE. PMID:1227853

  6. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors.

    PubMed

    Tsurkan, Lyudmila G; Hatfield, M Jason; Edwards, Carol C; Hyatt, Janice L; Potter, Philip M

    2013-03-25

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors

    PubMed Central

    Tsurkan, Lyudmila G.; Hatfield, M. Jason; Edwards, Carol C.; Hyatt, Janice L.; Potter, Philip M.

    2012-01-01

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms, We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer’s disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. PMID:23123248

  8. Studies on combined effects of organophosphates or carbamates and morsodren in birds. II. Plasma and cholinesterase in quail fed morsodren and orally dosed with parathion or carbofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter, M.P.; Ludke, J.L.

    1978-04-01

    The degree of interaction between mercury and cholinesterase inhibiting pesticides was determined by comparing enzyme responses to sublethal dosages of parathion or carbofuran in quail fed 0.05, 0.5, or 5.0 ppM morsodren for 18 weeks. A statistically significant interaction was defined as greater brain cholinesterase inhibition in morsodren-fed than in clean-fed birds following pesticide dosage. The tissue residues of mercury that accumulated before significant mercury-parathion interactions occurred were higher than levels that might be expected in natural populations, but significant mercury-carbofuran interactions occurred in birds that had only accumulated 1.0 ppM liver mercury. The results indicate that indiscriminate usage ofmore » cholinesterase inhibiting pesticides is dangerous, since natural populations of fish-eating birds oftentimes contain this magnitude of mercury.« less

  9. Iminosugars as a new class of cholinesterase inhibitors.

    PubMed

    Decroocq, Camille; Stauffert, Fabien; Pamlard, Olivier; Oulaïdi, Farah; Gallienne, Estelle; Martin, Olivier R; Guillou, Catherine; Compain, Philippe

    2015-02-15

    To further extend the scope of iminosugar biological activity, a systematic structure-activity relationship investigation has been performed by synthesizing and evaluating as cholinesterase inhibitors a library of twenty-three iminoalditols with different substitutions and stereochemistry patterns. These compounds have been evaluated in vitro for the inhibition of cholinesterases (different sources of acetylcholinesterase and butyrylcholinesterase). Some compounds have IC50 values in the micromolar range and display significant inhibition selectivity for butyrylcholinesterase over acetylcholinesterase. These are the first examples of iminosugar-based inhibitors of cholinesterases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases.

    PubMed

    Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Buckle, Michael J C; Sukumaran, Sri Devi; Chung, Lip Yong; Othman, Rozana; Alhadi, Abeer A; Yehye, Wageeh A; Hadi, A Hamid A; Hassandarvish, Pouya; Khaledi, Hamid; Abdelwahab, Siddig Ibrahim

    2012-02-28

    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.

  11. Cholinesterase structure: Identification of residues and domains affecting organophosphate inhibition and catalysis. Annual report, 6 March 1995-5 March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.W.

    1996-04-01

    In the initial year of the grant, we have made excellent progress in several arenas: (1) A crystal structure of a mouse acetylcholinesterase-fasciculin 2 complex has been solved. (2) Studies with enantiomeric organophosphates have yielded vital information on their binding orientation in the ground and transition states. (3) Studies in oxime reactivation of inhibited cholinesterase have uncovered the basis for enhanced reactivity of HI-6 compared to 2-PAM. (4) The interactions of fasciculin 2 with acetylcholinesterase have been studied by kinetic and site-specific mutagenesis methods.

  12. Tabun scavengers based on hydroxamic acid containing cyclodextrins.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Bierwisch, Anne; Koller, Marianne; Reiter, Georg; Worek, Franz; Kubik, Stefan

    2013-04-28

    Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.

  13. Occupational determinants of serum cholinesterase inhibition among organophosphate-exposed agricultural pesticide handlers in Washington State

    PubMed Central

    Hofmann, Jonathan N; Keifer, Matthew C; De Roos, Anneclaire J; Fenske, Richard A; Furlong, Clement E; van Belle, Gerald; Checkoway, Harvey

    2010-01-01

    Objective To identify potential risk factors for serum cholinesterase (BuChE) inhibition among agricultural pesticide handlers exposed to organophosphate (OP) and N-methyl-carbamate (CB) insecticides. Methods We conducted a longitudinal study among 154 agricultural pesticide handlers who participated in the Washington State cholinesterase monitoring program in 2006 and 2007. BuChE inhibition was analyzed in relation to reported exposures before and after adjustment for potential confounders using linear regression. Odds ratios estimating the risk of ‘BuChE depression’ (>20% from baseline) were also calculated for selected exposures based on unconditional logistic regression analyses. Results An overall decrease in mean BuChE activity was observed among study participants at the time of follow-up testing during the OP/CB spray season relative to pre-season baseline levels (mean decrease of 5.6%, P < 0.001). Score for estimated cumulative exposure to OP/CB insecticides in the past 30 days was a significant predictor of BuChE inhibition (β = −1.74, P < 0.001). Several specific work practices and workplace conditions were associated with greater BuChE inhibition, including mixing/loading pesticides and cleaning spray equipment. Factors that were protective against BuChE inhibition included full-face respirator use, wearing chemical-resistant boots, and storing personal protective equipment in a locker at work. Conclusions Despite existing regulations, agricultural pesticide handlers continue to be exposed to OP/CB insecticides at levels resulting in BuChE inhibition. These findings suggest that modifying certain work practices could potentially reduce BuChE inhibition. Replication from other studies will be valuable. PMID:19819864

  14. Toxicodynamic analysis of the combined cholinesterase inhibition by paraoxon and methamidophos in human whole blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosgra, Sieto; Eijkeren, Jan C.H. van; Schans, Marcel J. van der

    2009-04-01

    Theoretical work has shown that the isobole method is not generally valid as a method for testing the absence or presence of interaction (in the biochemical sense) between chemicals. The present study illustrates how interaction can be tested by fitting a toxicodynamic model to the results of a mixture experiment. The inhibition of cholinesterases (ChE) in human whole blood by various dose combinations of paraoxon and methamidophos was measured in vitro. A toxicodynamic model describing the processes related to both OPs in inhibiting AChE activity was developed, and fit to the observed activities. This model, not containing any interaction betweenmore » the two OPs, described the results from the mixture experiment well, and it was concluded that the OPs did not interact in the whole blood samples. While this approach of toxicodynamic modeling is the most appropriate method for predicting combined effects, it is not rapidly applicable. Therefore, we illustrate how toxicodynamic modeling can be used to explore under which conditions dose addition would give an acceptable approximation of the combined effects from various chemicals. In the specific case of paraoxon and methamidophos in whole blood samples, it was found that dose addition gave a reasonably accurate prediction of the combined effects, despite considerable difference in some of their rate constants, and mildly non-parallel dose-response curves. Other possibilities of validating dose-addition using toxicodynamic modeling are briefly discussed.« less

  15. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  16. [Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].

    PubMed

    Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin

    2013-05-01

    The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.

  17. Research on cholinesterases in the Soviet Union and Russia: a historical perspective.

    PubMed

    Rozengart, Eugene V; Basova, Natalia E; Moralev, Serge N; Lushchekina, Sofya V; Masson, Patrick; Varfolomeev, Sergei D

    2013-03-25

    Research on cholinesterases and effects of their inhibition in the USSR and Russia since 1930-1940s till present is exposed in historical aspects. The first physiological and toxicological effects of cholinesterase inhibition were reported by Alexander Ginetsinsky during World War II, when academic institutions were evacuated from Leningrad to Kazan. The main scientific schools that initiated research on chemistry, enzymology and physiology of cholinesterases and their inhibitors were leaded by Alexandr and Boris Arbuzovs, Victor Rozengart, Viktor Yakovlev, Michael Michelson, Martin Kabachnik, Mikhail Voronkov, Ivan Knunyants, Alexandr Bretskin and others. They investigated the main physiological effects of cholinesterase inhibitors, and analyzed the catalytic mechanisms of cholinesterases and related enzymes. Their contributions are landmarks in the history of cholinesterase research. At the present time revival of research on cholinesterases in different universities and institutes is vivid, in particular at the Moscow State University, research institutes of Russian Academy of Sciences and Kazan Scientific Center. Copyright © 2013. Published by Elsevier Ireland Ltd.

  18. Cholinesterase inhibitors: a patent review (2007 - 2011).

    PubMed

    de los Ríos, Cristóbal

    2012-08-01

    Cholinesterase inhibitors participate in the maintenance of the levels of the neurotransmitter acetylcholine by inhibiting the enzymes implicated in its degradation, namely, butyrylcholinesterase and acetylcholinesterase. This pharmacological action has an important role in several diseases, including neurodegenerative diseases such as Alzheimer's. This article reviews recent advances in the development of cholinesterase enzyme inhibitors, covering the development of new chemical entities, new pharmaceutical formulations with known inhibitors or treatments in combination with other drug families. The development of cholinesterase inhibitors has to face several issues, including the fact that the principal indication for these drugs, Alzheimer's disease, is not currently believed to derivate from a cholinergic deficiency, although most of the drugs clinically used for these disease are cholinesterase inhibitors. Moreover, the adverse effects found when administering cholinesterase inhibitors limit their use in other diseases, such as gastrointestinal diseases, glaucoma, or analgesia.

  19. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.

    PubMed

    Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M

    2017-01-01

    The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer's disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35  μ mol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC 50  = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC 50  = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC 50  = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  20. INFLUENCE OF X-IRRADIATION UPON ACTIVITY OF CHOLINESTERASE IN LIVER AND SERUM. PARTS I-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioroi, M.

    1960-01-01

    The activity of cholinesterase in the liver, studied in rabbits and rats, was more inhibited when the liver was irradiated by a single x-ray dose than by fractionated doses. With l00, 300, and 600 r of whole-body irradiation, the activity of cholinesterase in the liver was stimulated; meanwhile in serum it was inhibited. With l000 and 2000 r, the activities in both serum and liver were severely inhibited. WWhen the diencephalon and spinal cord were irradiated with fractionated doses (l50 r twice a week), the activity of cholinesterase in both liver and serum showed no appreciable change. When whole-body irradiationmore » (l00 r per day) was given, the activity of cholinesterase in both liver and serum was somewhat stimulated. After liver irradiation (200 r per day; total dose 4000 r) the activity of cholinesterase in both liver and serum was inhibited. In patients who showed high activity of cholinesterase in serum before x-ray therapy, the activity was slightly inhibited after x-ray treatment, and patients who showed low activity before therapy were slightly stimulated after x irradiation. (Abstr. Japan Med., l: No. 13, l96l)« less

  1. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Plasma cholinesterase inhibition in the clay-colored robin (Turdus grayi) exposed to diazinon in maradol papaya crops in Yucatan, Mexico

    USGS Publications Warehouse

    Cobos, V.M.; Mora, M.A.; Escalona, G.

    2006-01-01

    The use of organophosphorous pesticides in agriculture can result in intoxication of birds foraging in sprayed crops. Effects on birds resulting from pesticide intoxication are varied and include behavioral and reproductive effects, including death. One widely used insecticide in Maradol papaya crops is diazinon which has been associated with various incidents of intoxication and death of wild birds. The objective of this study was to evaluate the impact of diazinon application to papaya crops on plasma cholinesterase activity of the clay-colored robin (Turdus grayi). We captured clay-colored robins foraging in a papaya crop the following day after the field had been sprayed with diazinon at a dose of 1.5 kg/ha during March and May, respectively. We took a blood sample from the brachialis vein of the birds captured and measured plasma enzymatic activity. The plasma samples from birds used as controls were taken during the same time period and were analyzed in a similar way. Enzymatic activity of males was greater than that of females (53,52%) and mean cholinesterase inhibition was 49.43%. Cholinesterase inhibition was greater during May than in March probably due to more continuous exposure and ingestion of the insecticide through food and possible absorption through the skin. This degree of enzymatic inhibition is possibly affecting the behavior of the clay-colored robin and could result in death in severe cases.

  3. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  4. Quantitative distributions of different cholinesterases and inhibition of acetylcholinesterase by metidathion and paraquat in alimentary canal of common carp.

    PubMed

    Láng, G; Kufcsák, O; Szegletes, T; Nemcsók, J

    1997-07-01

    1. The cholinesterases play an important role in the innervation of organs. The ratio of solubilized to membrane-bound cholinesterase and the quantitative distributions of acetylcholinesterase and butyrylcholinesterase were measured in different segments of the gut of carp (Cyprinus carpio) connected with different types of nerve-muscle synapses in different parts of the alimentary tract. 2. The inhibition of acetylcholinesterase (EC 3.1.1.7.) by the herbicide paraquat and the insecticide metidathion was measured in different parts of the gut of carp. 3. Metidathion and paraquat significantly decreased the activity of acetylcholinesterase in different segments of the alimentary tract of common carp, in a concentration-dependent manner.

  5. CHOLINESTERASE INHIBITION AND HYPOTHERMIA FOLLOWING EXPOSURE TO BINARY MIXTURES OF ANTICHOLINESTERASE AGENTS: LACK OF EVIDENCE FOR CAUSE-AND-EFFECT

    EPA Science Inventory

    Dose-additivity has been the default assumption in risk assessments of pesticides with a common mechanism of action but it has been suspected that there could be non-additive effects. Inhibition of plasma cholinesterase (ChE) activity and hypothermia were used as benchmarks of e...

  6. Behavioral changes and cholinesterase activity of rats acutely treated with propoxur.

    PubMed

    Thiesen, F V; Barros, H M; Tannhauser, M; Tannhauser, S L

    1999-01-01

    Early assessment of neurological and behavioral effects is extremely valuable for early identification of intoxications because preventive measures can be taken against more severe or chronic toxic consequences. The time course of the effects of an oral dose of the anticholinesterase agent propoxur (8.3 mg/kg) was determined on behaviors displayed in the open-field and during an active avoidance task by rats and on blood and brain cholinesterase activity. Maximum inhibition of blood cholinesterase was observed within 30 min after administration of propoxur. The half-life of enzyme-activity recovery was estimated to be 208.6 min. Peak brain cholinesterase inhibition was also detected between 5 and 30 min of the pesticide administration, but the half-life for enzyme activity recovery was much shorter, in the range of 85 min. Within this same time interval of the enzyme effects, diminished motor and exploratory activities and decreased performance of animals in the active avoidance task were observed. Likewise, behavioral normalization after propoxur followed a time frame similar to that of brain cholinesterase. These data indicate that behavioral changes that occur during intoxication with low oral doses of propoxur may be dissociated from signs characteristic of cholinergic over-stimulation but accompany brain cholinesterase activity inhibition.

  7. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer's disease.

    PubMed

    Eslami, Mahboobeh; Hashemianzadeh, Seyed Majid; Bagherzadeh, Kowsar; Seyed Sajadi, Seyed Abolfazl

    2016-01-01

    The infamous chronic neurodegenerative disease, Alzheimer's, that starts with short-term memory loss and eventually leads to gradual bodily function decline which has been attributed to the deficiency in brain neurotransmitters, acetylcholine, and butylcholine. As a matter of fact, design of compounds that can inhibit cholinesterases activities (acetylcholinesterase and butylcholinesterase) has been introduced as an efficient method to treat Alzheimer's. Among proposed compounds, bis(7)tacrine (B7T) is recognized as a noteworthy suppressor for Alzheimer's disease. Recently a new analog of B7T, cystamine-tacrine dimer is offered as an agent to detain Alzheimer's complications, even better than the parent compound. In this study, classical molecular dynamic simulations have been employed to take a closer look into the modes of interactions between the mentioned ligands and both cholinesterase enzymes. According to our obtained results, the structural differences in the target enzymes active sites result in different modes of interactions and inhibition potencies of the ligands against both enzymes. The obtained information can help to investigate those favorable fragments in the studied ligands skeletons that have raised the potency of the analog in comparison with the parent compound to design more potent multi target ligands to heal Alzheimer's disease.

  8. INHIBITION OF BRAIN CHOLINESTERASE AND THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS PRODUCED BY CARBARYL IN LONG EVANS RATS.

    EPA Science Inventory

    Carbaryl is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response often used to detect central nervous system (CNS) changes following expos...

  9. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.

    PubMed

    Darvesh, Sultan; Arora, Rakesh C; Martin, Earl; Magee, David; Hopkins, David A; Armour, J Andrew

    2004-08-01

    Cholinesterase inhibitors used to treat the symptoms of Alzheimer's disease (AD) inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), albeit to different degrees. Because central and peripheral neurons, including intrinsic cardiac neurons located on the surface of the mammalian heart, express both BuChE and AChE, we studied spontaneously active intrinsic cardiac neurons in the pig as a model to assess the effects of inhibition of AChE compared to BuChE. Neuroanatomical experiments showed that some porcine intrinsic cardiac neurons expressed AChE and/or BuChE. Enzyme kinetic experiments with cholinesterase inhibitors, namely, donepezil, galantamine, (+/-) huperzine A, metrifonate, rivastigmine, and tetrahydroaminoacridine, demonstrated that these compounds differentially inhibited porcine AChE and BuChE. Donepezil and (+/-) huperzine A were better reversible inhibitors of AChE, and galantamine equally inhibited both the enzymes. Tetrahydroaminoacridine was a better reversible inhibitor of BuChE. Rivastigmine caused more rapid inactivation of BuChE as compared to AChE. Neurophysiological studies showed that acetylcholine and butyrylcholine increase or decrease the spontaneous activity of the intrinsic cardiac neurons. Donepezil, galantamine, (+/-) huperzine A, and tetrahydroaminoacridine changed spontaneous neuronal activity by about 30-35 impulses per minute, while rivastigmine changed it by approximately 100 impulses per minute. It is concluded that (i) inhibition of AChE and BuChE directly affects the porcine intrinsic cardiac nervous system, (ii) the intrinsic cardiac nervous system represents a suitable model for examining the effects of cholinesterase inhibitors on mammalian neurons in vivo, and (iii) the activity of intrinsic cardiac neurons may be affected by pharmacological agents that inhibit cholinesterases.

  10. 10th International Meeting on Cholinesterases

    DTIC Science & Technology

    2009-10-01

    NATIVE, PHOSPHYLATED AND AGED HUMAN ACETYLCHOLINESTERASE AND BUTYRYLCHOLINESTERASE Page 9 Zrinka Kovarik ( Zagreb , Croatia): OXIME-ASSISTED...REACTIVATION OF PHOSPHORYLATED BUTYRYLCHOLINESTERASE Goran Šinko ( Zagreb , Croatia): INTERACTIONS OF PYRIDINIUM OXIMES WITH ACETYLCHOLINESTERASE...OF CHOLINESTERASES IN THE BRAIN Ninoslav Mimica ( Zagreb , Croatia): THE CHOLINESTERASE INHIBITORS – CURRENT CLINICAL VIEW AND CROATIAN REALITY

  11. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  12. Combined effect of short-term dehydration and sublethal acute oral dicrotophos exposure confounds the diagnosis of anticholinesterase exposure in common quail (Coturnix coturnix) using plasma cholinesterase activity.

    PubMed

    Heffernan, James; Mineau, Pierre; Falk, Ramona; Wickstrom, Mark

    2012-07-01

    Common Quail (Coturnix coturnix) were subjected to controlled and replicated experiments in the summer of 2008 to investigate the effects of short-term dehydration on cholinesterase activity in brain and plasma and the interaction between dehydration and exposure to the organophosphorus pesticide dicrotophos in these same tissues. Our objective was to determine if dehydration could confound the diagnosis of anticholinesterase exposure using inhibition of cholinesterase activity in quail tissues. The effect of dehydration was quantified using measures of plasma osmolality and hematocrit. Dicrotophos exposure caused significant inhibition of cholinesterase activity in brain, while the effects of dehydration and interaction were not significant. Dehydration caused significant duration-dependent increases in plasma osmolality and hematocrit. Dehydration also caused a significant increase in plasma cholinesterase activity. Variation in the change in plasma cholinesterase activity in response to dehydration was significantly and positively correlated with dehydration-induced variation in both the change in plasma osmolality and the change in hematocrit. These correlations suggest that plasma cholinesterase activity in quail is not limited to plasma but occupies some larger pool of the extracellular fluid volume, and we suggest lymph is part of that pool. The effects of dehydration on plasma cholinesterase activity masked the inhibitory effects of dicrotophos. Here, the combination of dehydration and dicrotophos exposure produced plasma cholinesterase activity that was not significantly different from reference and pre-exposure values, confounding the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail. A method to adjust plasma cholinesterase activities for the confounding effects of dehydration and enable the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail was developed. Clinicians and practitioners

  13. Phosphorylated Derivatives of Alkaloids and Nitrogen-containing Heterocycles — Cholinesterase Inhibitors

    NASA Astrophysics Data System (ADS)

    Sadykov, Abid S.; Dalimov, D. N.; Godovikov, Nikolai N.

    1983-10-01

    The review deals with the synthesis and anticholinesterase activities of phosphorylated derivatives of certain alkaloids and nitrogen-containing heterocycles. It is shown that the conformational properties of the alkaloid and nitrogen-containing heterocycle residues in the composition of the organophosphorus inhibitor (OPI) molecule play an important role in the inhibition of the catalytic activity of cholinesterases. The type of inhibition of cholinesterases also varies as a function of chemical structure. The bibliography includes 45 references.

  14. Cholinergic symptoms with low serum cholinesterase from therapeutic cholinesterase inhibitor toxicity.

    PubMed

    Leikin, Jerrold B; Braund, Victoria; DesLauris, Carol

    2014-07-01

    Although cholinesterase inhibitors have been frequently used in the treatment of Alzheimer disease, its effects on serum cholinesterase concentrations have been rarely described. We described significant depression of serum cholinesterase levels due to cholinesterase inhibitor toxicity from redundant use of donepezil and rivastigmine in a 78-year-old man. Recovery of serum cholinesterase level was noted upon drug discontinuation and cholinergic symptom resolution. Serum cholinesterase level can be used as a biomarker for central cholinesterase inhibitor toxicity.

  15. Comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplovitz, I.; Stewart, J.R.

    1994-12-31

    This study compared the efficacy of H16 and 2-PAM against nerve agent (soman tabun sarin and VX) -induced lethality in the atropinesterase-free rabbits pretreated with vehicle (controls) or pyridostigmine. Treatment was administered at signs or 2 min after agent challenge and consisted ofoxime (l00umol/lkg) + atropine 13 mg(kg) (alone or together with diazepam). Twenty-four-h LD50 values were calculated for soman- and tabun-intoxicated animals, whereas 24-h survival was noted in animals given 10 LD50s of sarin or VX. In pyridostigmine and control rabbits intoxicated with soman and treated with oxime + atropine (alone or together with diazepam), HI6 was 35 timesmore » more effective than 2-PAM. In contrast 1116 was less effective than 2-PAM against tabun poisoning. In pyridostigmine-pretreated animals exposed to tabun, efficacy was increased more than 3-fold when compare to tabun-challenged animals treated with atropine + H16 alone. Both oximes were highly effective against satin and VX. These findings suggest that Hifi could replace 2-PAM as therapy for nerve agent poisoning because it is superior to 2-PAM against soman, and when used in pyridostigmine-pretreated animals it affords excellent protection against all four nerve agents when used in combination with atropine (alone or together with diazepam) therapy.« less

  16. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN STUDIES.

    EPA Science Inventory


    Biomonitoring of organophosphorous and carbamate pesticides has focused primarily on the inhibition of blood cholinesterase. Blood biomonitoring, however, can be invasive, time-consuming, and costly, especially in young children and infants. Therefore, saliva biomonitoring ha...

  17. Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by di-isopropyl phosphorofluoridate

    PubMed Central

    Main, A. R.; Iverson, F.

    1966-01-01

    1. A procedure is described for determining the affinity constant Ka and the phosphorylation constant kp for the inhibition by di-isopropyl phosphorofluoridate of erythrocyte acetylcholinesterase and serum cholinesterase. The procedure depends on the use of a specially designed reaction vessel with which incubation times as short as 1·2sec. could be obtained at any convenient temperature. 2. The Ka of acetylcholinesterase decreased from 1·58 (±0·22)×10−3m at 5° to 1·17 (±0·10)×10−3m at 25° and the associated change in enthalpy was 2980 cal. 3. The kp of acetylcholinesterase increased from 11·9 (±0·7)min.−1 at 5° to 40·7 (±1·4)min.−1 at 25°, indicating an activational energy of 9600 cal. The change in entropy associated with Ka was 23·5 cal. degree−1 at 25°. 4. At 5°, the Ka and kp of serum cholinesterase were 9·95 (±1·10)×10−6m and 11·2 (±0·63)min.−1 respectively. 5. The 150-fold difference in the inhibitory power of di-isopropyl phosphorofluoridate for the two cholinesterases was attributed entirely to differences in affinity. PMID:5968549

  18. Characterization of plasma cholinesterase in rabbit and evaluation of the inhibitory potential of diazinon.

    PubMed

    Oropesa, Ana Lourdes; Pérez-López, Marcos; Soler, Francisco

    2014-02-01

    Several studies indicate that more than one cholinesterase form may be present in the blood of mammals. In this study the predominant plasma cholinesterase activity, the physiological cholinesterase activity as well as cholinesterase sex-dependent changes in non-exposed individuals of rabbit have been established. Plasma cholinesterase was characterized using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three cholinesterase inhibitors (eserine sulfate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylthiocholine and butyrylthiocholine, and the predominant enzymatic activity was acetylcholinesterase. Physiological plasma cholinesterase activity was 198.9 ± 5.8 nmol/min/ml for male and 205.2 ± 5.0 nmol/min/ml for female using acetylthiocholine as substrate. Thus, sex had no significant effect on the physiological cholinesterase activity (p>0.05). In addition, the in vivo and in vitro sensitivity of plasma cholinesterase to diazinon was also investigated. In rabbits exposed to single doses of diazinon (25 or 125 mg/kg) the higher inhibitions of plasma cholinesterase were reached 9h after oral administration (53% and 87% inhibition, respectively). Cholinesterase activity significantly recovered up to values similar to pre-administration between 3 and 7d depending on the administered dose and sex of the animals. Plasma cholinesterase activity decreased to 24%, 53% and 74% of the initial activity at 9h of in vitro exposure to 1.25, 3.13 and 6.25mg/l of diazinon, respectively, and it remained steadily depressed throughout the experimental period (10d). This study has demonstrated the sensitivity of cholinesterase activity in plasma of rabbits following both in vivo and in vitro exposure to sub-lethal concentrations of diazinon. © 2013 Published by Elsevier Inc.

  19. BRAIN CHOLINESTERASE INHIBITION PRODUCED BY PROPOXUR AND DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS IN LONG EVANS RATS.

    EPA Science Inventory

    Propoxur is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response following stimulation of the visual system with flashes of light. They ar...

  20. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L.

    PubMed

    Dalai, Manoj K; Bhadra, Santanu; Chaudhary, Sushil K; Bandyopadhyay, Arun; Mukherjee, Pulok K

    2014-04-01

    Clove (Syzygium aromaticum) is a well-known culinary spice with strong aroma; contains a high amount of oil known as clove oil. The major phyto-constituent of the clove oil is eugenol. Clove and its oil possess various medicinal uses in indigenous medicine as an antiseptic, anti-oxidant, analgesic and neuroprotective properties. Thus, it draws much attention among researchers from pharmaceutical, food and cosmetic industries. The aim of the present study was to determine the anti-cholinesterase activity of the methanol extract of clove, its oil and eugenol. In vitro anti-cholinesterase activity of S. aromaticum was performed by a thin layer chromatography bio autography, 96 well micro titer plate and kinetic methods. Reverse phase high performance liquid chromatography (RP-HPLC) analysis was carried out to identify the biomarker compound eugenol in clove oil. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition study revealed that eugenol possess better inhibition of the enzymes than extract and oil. Clove extract, its oil and eugenol showed better inhibition of AChE than BChE. Polyphenolic compound eugenol was detected through RP-HPLC analysis. The content of eugenol in essential oil was found to be 0.5 μg/ml. Kinetic analysis of the cholinesterase inhibition study of the extract; clove oil and eugenol have shown that they possess mixed type of inhibition for AChE and non-competitive type of inhibition for BChE. These results might be useful in explaining the effect of clove as anti-cholinesterase agent for the management of cognitive ailments like Alzheimer's disease.

  1. Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea.

    PubMed

    Bianco, Karina; Otero, Sofía; Oliver, Agustina Balazote; Nahabedian, Daniel; Kristoff, Gisela

    2014-11-01

    Organophosphorous and carbamates insecticides are ones of the most popular classes of pesticides used in agriculture. Its success relies on their high acute toxicity and rapid environmental degradation. These insecticides inhibit cholinesterase and cause severe effects on aquatic non-target species, particularly in invertebrates. Since the properties of cholinesterases may differ between species, it is necessary to characterize them before their use as biomarkers. Also organophosphorous and carbamates inhibit carboxylesterases and the use of both enzymes for biomonitoring is suggested. Azinphos-methyl is an organophosphorous insecticide used in several parts of the word. In Argentina, it is the most applied insecticide in fruit production in the north Patagonian region. It was detected with the highest frequency in superficial and groundwater of the region. This work aims to evaluate the sensitivity of B. straminea cholinesterases and carboxylesterases to the OP azinphos-methyl including estimations of 48 h NOEC and IC50 of the pesticide and subchronic effects at environmentally relevant concentrations. These will allow us to evaluate the possibility of using cholinesterase and carboxylesterase of B. straminea as sensitive biomarkers. Previously a partial characterization of these enzymes will be performed. As in most invertebrates, acetylthiocholine was the preferred hydrolyzed substrate of B. straminea ChE, followed by propionylthiocholine and being butyrylthiocholine hydrolysis very low. Cholinesterase activity of B. straminea was significantly inhibited by the selective cholinesterases inhibitor (eserine) and by the selective inhibitor of mammalian acethylcholinesterase (BW284c51). In contrast, iso-OMPA, a specific inhibitor of butyrylcholinesterase, did not inhibit cholinesterase activity. These results suggest that cholinesterase activity in total soft tissue of B. straminea corresponds to acethylcholinesterase. Carboxylesterases activity was one order of

  2. Molecular modeling and biological evaluation of 2-N,N-dimethylaminecyclohexyl 1-N‧,N‧-dimethylcarbamate isomers and their methylsulfate salts as cholinesterases inhibitors

    NASA Astrophysics Data System (ADS)

    Bocca, Cleverson C.; Rittner, Roberto; Höehr, Nelci F.; Pinheiro, Glaucia M. S.; Abiko, Layara A.; Basso, Ernani A.

    2010-11-01

    This work presents a detailed theoretical and experimental study on the inhibitory properties of 2- N,N-dimethylaminecyclohexyl 1- N',N'-dimethylcarbamate isomers and their methylsulfate salts against the cholinesterases enzymes. The in vitro inhibition test performed by the Ellman's method showed that the salt form compounds were more active than the neutral ones in cholinesterases inhibition. The trans salt showed good selectivity towards the inhibition of erythrocyte cholinesterase with a maximum limit around 90% and 55% for the plasma cholinesterase inhibition. Molecular modeling, docking and experimental results performed in this study showed to be important initial steps toward the development of a novel pharmaceuticals in the fight against Alzheimer's disease.

  3. Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Tenberken, Oliver; Thiermann, Horst; Worek, Franz; Kubik, Stefan; Reiter, Georg

    2012-12-16

    The ability of 13 β-cyclodextrin and 2 glucose derivatives containing substituents with oxime groups as nucleophilic components to accelerate the degradation of tabun at physiological pH has been evaluated. To this end, a qualitative and a quantitative enzymatic assay as well as a highly sensitive enantioselective GC-MS assay were used. In addition, an assay was developed that provided information about the mode of action of the investigated compounds. The results show that attachment of pyridinium-derived substituents with an aldoxime group in 3- or 4-position to a β-cyclodextrin ring affords active compounds mediating tabun degradation. Activities differ depending on the structure, the number, and the position of the substituent on the ring. Highest activity was observed for a β-cyclodextrin containing a 4-formylpyridinium oxime residue in 6-position of one glucose subunit, which detoxifies tabun with a half-time of 10.2 min. Comparison of the activity of this compound with that of an analog in which the cyclodextrin ring was replaced by a glucose residue demonstrated that the cyclodextrin is not necessary for activity but certainly beneficial. Finally, the results provide evidence that the mode of action of the cyclodextrin involves covalent modification of its oxime group rendering the scavenger inactive after reaction with the first tabun molecule. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Cholinesterase activity during embryonic development in the blood-feeding bug Triatoma patagonica.

    PubMed

    Visciarelli, E C; Chopa, C Sánchez; Picollo, M I; Ferrero, A A

    2011-09-01

    Triatoma patagonica Del Ponte (Hemiptera: Reduviidae), a vector of Chagas' disease, is widely distributed in Argentina and is found in sylvatic and peridomiciliary ecotopes, as well as occasionally in human dwellings after the chemical control of Triatoma infestans. Anti-cholinesteratic products can be applied in peridomiciliary areas and thus knowledge of cholinesterase activity during embryonic development in this species might contribute further information relevant to effective chemical control. Cholinesterase activity was characterized by reactions to eserine 10(-5) m, to increasing concentrations of substrate and to varying centrifugal speeds. Acetylcholinesterase activity was detected on day 4 and was significant from day 5. A reduction in cholinesterase activity towards acetylthiocholine (ATC) was observed on days 9 and 10 of development. Cholinesterase activity towards ATC and butyrylthiocholine (BTC) in homogenates of eggs was inhibited by eserine 10(-5) m. The shape of the curve indicating levels of inhibition at different concentrations of ATC was typical of acetylcholinesterase. Activity towards BTC did not appear to be inhibited by excess substrate, which parallels the behaviour of butyrylcholinesterases. Cholinesterase activity towards ATC was reduced in supernatant centrifuged at 15 000 g compared with supernatant centrifuged at 1100 g. The cholinesterase system that hydrolyzes mainly ATC seems to belong to the nervous system, as indicated by its behaviour towards the substrates assayed, its greater insolubility and the fact that it evolves parallel to the development of the nervous system. Knowledge of biochemical changes associated with the development and maturation of the nervous system during embryonic development would contribute to the better understanding of anti-cholinesteratic compounds with ovicidal action that might be used in control campaigns against vectors of Chagas' disease. © 2011 The Authors. Medical and Veterinary Entomology

  5. Reactivation of VX-inhibited cholinesterase by 2-PAM and HS-6 in rats.

    PubMed

    Harris, L W; Stitcher, D L

    1983-01-01

    Atropinized rats intoxicated with ethyl-S-2-diisopropyl aminoethyl methyl phosphonothioate (VX), 15 mg/kg iv, were divided into three groups and were treated with normal saline, iv, 30 mg/kg of 2-PAM C1, iv, and 30 mg/kg of HS-6, iv. One hr after administration of therapy they were decapitated and cholinesterase (ChE) activity was determined on blood, brain and diaphragm tissue. Both 2-PAM C1 and HS-6 markedly reactivated VX-inhibited blood and diaphragm ChE. Brain ChE activity was not significantly reactivated by either oxime. The effectiveness of these oximes in restoration of VX-inactivated ChE in vivo offers an explanation as to why conventional atropine/oxime therapy is so effective against VX intoxication.

  6. Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems.

    PubMed

    Darvesh, Sultan; Macdonald, Ian R; Martin, Earl

    2013-07-01

    Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer's disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer's disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. [Inhibitory effect of benzimidazole derivatives on cholinesterases of animals in the presence of different substrates].

    PubMed

    Basova, N E; Kormilitsyn, B N; Perchenok, A Iu; Rosengart, E V; Saakov, V S; Suvorov, A A

    2014-01-01

    Specifically synthesized group of benzimidazole derivatives possessing varying degrees of delocalization of the positive charge in the cation group of the molecule has been studied in order to search for potential cholinergically active compounds and to study the role of the Coulomb interaction in cholinesterase catalysis. These compounds were reversible inhibitors of cholinesterase (ChE) of human erythrocytes, horse serum, brain of the frog Rana temporaria and visual ganglia of the Pacific squid Todarodes pacificus in the presence of acetylthiocholine iodide and propionylthiocholine iodide as substrates. The differences in the nature of reversible inhibitory effect were observed. The effect of the inhibitor structure and substrate nature, specific for each of the studied inhibitors, on the character of the process of reversible inhibition was found.

  8. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory.

    PubMed

    Bentley, P; Driver, J; Dolan, R J

    2009-09-01

    Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.

  9. DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS BY PHYSOSTIGMINE, CARBARYL AND PROPOXUR AND THE RELATIONSHIP TO INHIBITION OF BRAIN CHOLINESTERASE

    EPA Science Inventory

    The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...

  10. Simulating the impact of cholinesterase-inhibiting pesticides on non-target wildlife in irrigated crops

    USGS Publications Warehouse

    Pisani, J.M.; Grant, W.E.; Mora, M.A.

    2008-01-01

    We present a simulation model for risk assessment of the impact of insecticide inhibitors of cholinesterase (ChE) applied in irrigated agricultural fields on non-target wildlife. The model, which we developed as a compartment model based on difference equations (??t = 1 h), consists of six submodels describing the dynamics of (1) insecticide application, (2) insecticide movement into floodable soil, (3) irrigation and rain, (4) insecticide dissolution in water, (5) foraging and insecticide intake from water, and (6) ChE inhibition and recovery. To demonstrate application of the model, we simulated historical and "worst-case" scenarios of the impact of ChE-inhibiting insecticides on white-winged doves (Zenaida asiatica) inhabiting natural brushland adjacent to cotton and sugarcane fields in the Lower Rio Grande Valley of Texas, USA. Only when a rain event occurred just after insecticide application did predicted levels of ChE inhibition surpass the diagnostic level of 20% exposure. The present model should aid in assessing the effect of ChE-inhibiting insecticides on ChE activity of different species that drink contaminated water from irrigated agricultural fields, and in identifying specific situations in which the juxtaposition of environmental conditions and management schemes could result in a high risk to non-target wildlife. ?? 2007 Elsevier B.V. All rights reserved.

  11. Cholinesterase Inhibition and Depression of the Photic After Discharge of Flash Evoked Potentials Following Acute or Repeated Exposures to a Mixture of Carbaryl and Propoxur

    EPA Science Inventory

    While information exists regarding inhibition of cholinesterase (ChE) activity, little is known about neurophysiological changes produced by a mixture of N-methyl carbamate pesticides. Previously, we reported that acute treatment with propoxur or carbaryl decreased the duration o...

  12. The progress in the cholinesterase quantification methods.

    PubMed

    Holas, Ondrej; Musilek, Kamil; Pohanka, Miroslav; Kuca, Kamil

    2012-12-01

    Determination of acetylcholinesterase and butyrylcholinesterase activity has become an important tool in drug design and discovery as well as in medicine and toxicology. There are a large number of compounds that are able to modulate cholinesterase activity. These compounds can be used for pharmacological management of various disorders (e.g., Alzheimer's disease, myasthenia Gravis). Moreover, organophosphate poisoning is frequently diagnosed via a cholinesterase activity assay. This broad variety of methods has been developed over the past decades for cholinesterase activity quantification. This review provides a summary of the methods that are based on specific properties of cholinesterases and their interactions with native or artificial substrates. The authors also aim to provide an overview of different techniques used for the determination of quantitative cholinesterase activity. Specifically, the authors describe and discuss the manometric, potentiometric, titrimetric, photometric, fluorometric, and radioisotopic methods. Existing methods are able to cover most of the problems that arise during cholinesterase activity determination. Colorimetry according to Ellman has proved to be the most useful and versatile approach. It may be used in various protocols for the determination of pesticide or nerve agent exposure or for the development of new drugs. Its possible improvement lies in optimization of hemoglobin-rich samples. The progress of the most common methods (including Ellman) depends on miniaturization and modern physical platforms (e.g., optical fibers, chip methods, or nanotechnologies).

  13. Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.

    PubMed

    Razik, Basma M Abd; Osman, Hasnah; Ezzat, Mohammed O; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Murugaiyah, Vikneswaran

    2016-01-01

    The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br. The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking. Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions. An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.

  14. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment.

    PubMed

    Swiercz, Radosław; Lutz, Piotr; Gralewicz, Sławomir; Grzelińska, Zofia; Piasecka-Zelga, Joanna; Wąsowicz, Wojciech

    2013-08-01

    Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentration (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks CORT synthesis by inhibiting steroid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl) ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. The purpose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. The following was observed in the MET-treated rats: i) no rise in plasma CORT concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  15. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet.

    PubMed

    Corbel, Vincent; Stankiewicz, Maria; Pennetier, Cédric; Fournier, Didier; Stojan, Jure; Girard, Emmanuelle; Dimitrov, Mitko; Molgó, Jordi; Hougard, Jean-Marc; Lapied, Bruno

    2009-08-05

    N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.

  16. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    PubMed Central

    Corbel, Vincent; Stankiewicz, Maria; Pennetier, Cédric; Fournier, Didier; Stojan, Jure; Girard, Emmanuelle; Dimitrov, Mitko; Molgó, Jordi; Hougard, Jean-Marc; Lapied, Bruno

    2009-01-01

    Background N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. Results By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. Conclusion These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health. PMID:19656357

  17. Relationship Between Brain and Plasma Carbaryl Levels and Cholinesterase Inhibition

    EPA Science Inventory

    Carbaryl is a N-methylcarbamate pesticide and, like others in this class, is a reversible inhibitor of cholinesterase (ChE) enzymes. Although studied for many years, there is a surprising lack of information relating tissue levels of carbaryl with ChE activity in the same animals...

  18. Distribution of cholinesterases in insects*

    PubMed Central

    Booth, G. M.; Lee, An-Horng

    1971-01-01

    The study of toxicology and other related fields has been largely based on in vitro techniques. These methods have provided quantitative information on the effects of inhibitors on enzymes, but none on the localized effects of inhibitors on selected sites of action within the animal. Histochemical study of frozen sections does provide data on the site of action of toxicants. The utility of histochemistry in conjunction with in vitro methods is discussed. The substrates acetylthiocholine and phenyl thioacetate were utilized in demonstrating cholinesterase. Neither substrate penetrated well into freshly dissected nerve cord preparations, but both compounds were hydrolysed by sectioned tissue. The leaving group of phenyl thioacetate was demonstrated to be benzenethiol. In general, acetylthiocholine was hydrolysed slightly more rapidly by insect cholinesterases. A unique cholinesterase was found in motor end-plates of cricket muscle, which hydrolyses acetylthiocholine and which was inhibited by physostigmine. No other insect muscle preparation showed this activity. Topical application of insecticides showed that a vital site of action in flies is the peripheral area of the thoracic ganglia and that in crickets the brain and nerve cord are involved at knock-down. Kinetic data indicate that acetylthiocholine has a greater affinity than does phenyl thioacetate for a variety of enzyme sources. Ultrastructural evidence shows that cholinesterases that hydrolyse acetylthiocholine are membrane-bound. Phenyl thioacetate was found to be useful as a model in designing new insecticides. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 13Fig. 14Fig. 15Fig. 16Fig. 9Fig. 10Fig. 11Fig. 12Fig. 1Fig. 2Fig. 3Fig. 4Fig. 17Fig. 18Fig. 19 PMID:5315359

  19. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves.

    PubMed

    Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao

    2017-11-01

    It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to the Nerve Agents Cyclosarin and Tabun in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Comparison of extracellular striatal acetylcholine and brain seizure activity following...lethality; nerve agents; organophosphorus compounds; seizure activity ; tabun 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs John C

  1. Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2

    PubMed Central

    Koehnke, Jesko; Jin, Xiangshu; Budreck, Elaine C.; Posy, Shoshana; Scheiffele, Peter; Honig, Barry; Shapiro, Lawrence

    2008-01-01

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3-Å crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions. PMID:18250328

  2. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors.

    PubMed

    de Aquino, Roney Anderson Nascimento; Modolo, Luzia Valentina; Alves, Rosemeire Brondi; de Fátima, Ângelo

    2013-12-28

    This study presents the synthesis of 15 new tacrine dimers as well as the Ki and IC50 results, studies of the kinetic mechanism, and molecular docking analysis of the dimers in relation to the cholinesterases hAChE, hBChE, EeAChE and eqBChE. In addition to spectroscopic characterization, X-ray structure determination was performed for two of the new compounds. These new dimers were found to be mixed nanomolar inhibitors of the evaluated targets with a broad and significant selectivity profile, and these properties are dependent on both the type of the linker and the volume of the hydroacridine alicyclic ring. The results indicate that the aromatic linkers play a significant role in generating specific interactions with the half-gorge region of the catalytic center. Thus, these types of linkers can positively modulate the electronic properties of the tacrine dimers studied with an improvement of their cholinesterase inhibition activity.

  3. In Vivo Reactivation by Oximes of Inhibited Blood, Brain and Peripheral Tissue Cholinesterase Activity Following Exposure to Nerve Agents in Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    L.W.Harris, D.L. Stitcher , Reactivation of VX-inhibited cholinesterase by 2-PAM and HS-6 in rats, Drug Chem. Toxicol. 6 (1983) 235–240. [9] P.M. Lundy, T.-M...rat, monkey and human, Arch. Toxicol. 68 (1994) 648–655. 2 gical In [ [ 14 T.-M. Shih et al. / Chemico-Biolo27] L.W. Harris, W.C. Heyl, D.L. Stitcher

  4. TESTING FOR DEPARTURES FROM ADDITIVITY FOR A 2:1 MIXTURE OF CHLORPYRIFOS AND CARBARYL ON CHOLINESTERASE ACTIVITY IN BRAIN, PLASMA, AND RED BLOOD CELLS OF LONG EVANS RATS.

    EPA Science Inventory

    Detecting and characterizing interactions among chemicals is an important environmental issue. This study was conducted to test for the existence of a significant departure from additivity for a mixture of two cholinesterase (ChE)-inhibiting pesticides: chlorpyrifos (CPF), an org...

  5. Inhibition of Cholinesterases and Some Pro-Oxidant induced Oxidative Stress in Rats Brain by Two Tomato (Lycopersicon Esculentum) Varieties

    PubMed Central

    Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.

    2015-01-01

    This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.

  6. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki valuesmore » obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.« less

  7. Zectran fed orally to mice...cholinesterase levels in blood determined

    Treesearch

    Jean Marie Lang; Raymond R. Miskus

    1967-01-01

    Zectran, a carbamate insecticide, is being field-tested against the spruce budworm. Taken in sufficient quantity, it can induce cholinesterase (ChE) inhibition in mammals. In laboratory experiments, Zectran was fed orally to mice. Results indicated that maximum ChE inhibition occurred 15 to 30 minutes after ingestion of Zectran, and that a ChE test is unreliable in the...

  8. Japanese quail acute exposure to methamidophos: experimental design, lethal, sub-lethal effects and cholinesterase biochemical and histochemical expression.

    PubMed

    Foudoulakis, Manousos; Balaskas, Christos; Csato, Attila; Szentes, Csaba; Arapis, Gerassimos

    2013-04-15

    We exposed the Japanese quail (Coturnix coturnix japonica) to the organophosphate methamidophos using acute oral test. Mortality and sub-lethal effects were recorded in accordance to internationally accepted protocols. In addition cholinesterases were biochemically estimated in tissues of the quail: brain, liver and plasma. Furthermore, brain, liver and duodenum cryostat sections were processed for cholinesterase histochemistry using various substrates and inhibitors. Mortalities occurred mainly in the first 1-2h following application. Sub-lethal effects, such as ataxia, ruffled feathers, tremor, salivation and reduced or no reaction to external stimuli were observed. Biochemical analysis in the brain, liver and plasma indicates a strong cholinesterase dependent inhibition with respect to mortality and sub-lethal effects of the quail. The histochemical staining also indicated a strong cholinesterase inhibition in the organs examined and the analysis of the stained sections allowed for an estimation and interpretation of the intoxication effects of methamidophos, in combination with tissue morphology visible by Haematoxylin and Eosin staining. We conclude that the use of biochemistry and histochemistry for the biomarker cholinesterase, may constitute a significantly novel approach for understanding the results obtained by the acute oral test employed in order to assess the effects of methamidophos and other chemicals known to inhibit this very important nervous system enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates.

    PubMed

    Chambers, Janice E; Meek, Edward C; Chambers, Howard W

    2016-06-01

    Current oxime reactivators for organophosphate-inhibited cholinesterase (ChE) do not effectively cross the blood-brain barrier and therefore cannot restore brain ChE activity in vivo. Our laboratories have studied highly relevant sarin and VX surrogates, which differ from their respective nerve agents only in the leaving group and thereby leave ChE phosphylated with the same chemical moiety as sarin and VX. Our laboratories have developed novel substituted phenoxyalkyl pyridinium oximes that lead to reduced ChE inhibition in the brains of rats challenged with a high sublethal dosage of the sarin surrogate, whereas 2-PAM did not, using a paradigm designed to demonstrate brain penetration. In addition, treatment of rats with these novel oximes is associated with attenuation of seizure-like behavior compared to rats treated with 2-PAM, providing additional evidence that the oximes penetrate the blood-brain barrier. Further, some of the oximes provided 24-h survival superior to 2-PAM, and shortened the duration of seizure-like behavior when rats were challenged with lethal dosages of the sarin and VX surrogates, providing additional support for the conclusion that these oximes penetrate the brain. © 2016 New York Academy of Sciences.

  10. Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehnke,J.; Jin, X.; Budreck, E.

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site regionmore » differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.« less

  11. Current Pyridostigmine Bromide and Huperzine A Studies and Future Cholinesterase Screening Using the WRAIR Whole Blood Cholinesterase Assay

    DTIC Science & Technology

    2004-11-15

    1 CURRENT PYRIDOSTIGMINE BROMIDE AND HUPERZINE A STUDIES AND FUTURE CHOLINESTERASE SCREENING USING THE WRAIR WHOLE BLOOD...selective (e.g. Huperzine A ) and non-selective (carbamate) inhibitors (e.g. pyridostigmine bromide, PB). We found that volunteers given pyridostigmine...profile of healthy elderly volunteers receiving Huperzine A . 52.7 ± 1.5% inhibition was observed at the end of an increasing dose regimen (final dose

  12. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer's disease: a review of recent clinical studies.

    PubMed

    Darreh-Shori, T; Soininen, H

    2010-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline associated with a deficit in cholinergic function. Inhibitors of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE), such as donepezil, galantamine or rivastigmine, are widely prescribed as symptomatic treatments for AD. These agents exhibit a wide variation in their pharmacological properties. Here we review clinical data from 1998 to 2009 investigating the effect of different cholinesterase inhibitor treatments on the levels and activities of cholinesterases in the cerebrospinal fluid (CSF) of AD patients. These studies suggest that treatment with rapidly-reversible cholinesterase inhibitors (e.g. donepezil, galantamine, tacrine) are associated with marked and significant upregulation of AChE activities and protein levels in the CSF of AD patients. In contrast, pseudo-irreversible cholinesterase inhibition (e.g. rivastigmine) is associated with a significant decrease in both CSF AChE and BuChE activities, with no upregulation of CSF protein levels. Additionally, donepezil is associated with a decrease in the level of the AChE-R isoform relative to the synaptic AChE-S isoform, whereas rivastigmine seems to increase this ratio. These findings suggest that these agents exert different effects on CSF cholinesterases. The clinical effects of these pharmacological differences are yet to be fully established.

  13. ACETYL CHOLINESTERASE AND BUTYRYL CHOLINESTERASE INhIBITORY ACTIVITIES OF ZALEYA PENTANDRA.

    PubMed

    Afzal, Samina; Chaudhry, Bashir Ahmad; Afzal, Khurram; Saeed, Javeria; Akash, Sajd Hamid; Qadir, Muhammad Imran

    2017-05-01

    The aim of this study was to reveal acetyl cholinesterase (AchE) and butyryl cholinesterase (BchE) inhibitory activities of Zaleya pentandra. The aerial parts of the plant were air, freeze-dried and powdered. The extraction was carried out with methanol at room temperature for 24 h. The extract was concentrated on rotavapor and fractioned by column chromatography. The isolation and purification afforded amorphous solid which was subjected to physical, chemical and spectroscopic techniques i.e., UV, IR, H-NMR, "C-NMR and HREI-MS for the structure elucidation of the isolated compound. The compound was concluded as "Pentandradione" a novel compound. AchE and BchE inhibitory activities were estimated. The result showed that the isolated extract possessed significant activity against butyryl cholinesterase as compared to standard eserine while the extract lacks acetyl cholinesterase inhibitory activity.

  14. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    NASA Astrophysics Data System (ADS)

    Antokhin, A. M.; Gainullina, E. T.; Taranchenko, V. F.; Ryzhikov, S. B.; Yavaeva, D. K.

    2010-10-01

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  15. A review on cholinesterase inhibitors for Alzheimer's disease.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-04-01

    Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the deficits in the cholinergic system and deposition of beta amyloid (Aβ) in the form of neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes, it has been targetted for the design of anti-Alzheimer's drugs. Cholinesterase inhibitors enhance cholinergic transmission directly by inhibiting the enzyme acetylcholinesterase (AChE) which hydrolyses acetylcholine. Furthermore, it has been also demonstrated that both acetylcholinesterase and butrylcholinesterase (BuChE) play an important role in Aβ-aggregation during the early stages of senile plaque formation. Therefore, AChE and BuChE inhibition have been documented as critical targets for the effective management of AD by an increase in the availability of acetylcholine in the brain regions and decrease in the Aβ deposition. This review discusses the different classes of cholinesterase inhibitors including tacrine, donepezil, rivastigmine, galantamine, xanthostigmine, para-aminobenzoic acid, coumarin, flavonoid, and pyrrolo-isoxazole analogues developed for the treatment of AD.

  16. Activity and determinants of cholinesterases and paraoxonase-1 in blood of workers exposed to non-cholinesterase inhibiting pesticides.

    PubMed

    Lozano-Paniagua, David; Gómez-Martín, Antonio; Gil, Fernando; Parrón, Tesifón; Alarcón, Raquel; Requena, Mar; Lacasaña, Marina; Hernández, Antonio F

    2016-11-25

    Pesticide exposure has been associated with different adverse health effects which may be modulated to some extent by paraoxonase-1 (PON1) activity and genetic polymorphisms. This study assessed seasonal variations in PON1 activity (using paraoxon -POase-, phenylacetate -AREase-, diazoxon -DZOase- and dihydrocoumarin -DHCase- as substrates), erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (using butyrylthiocholine -BuChE- and benzoylcholine -BeChE- as substrates. The study population consisted of intensive agriculture workers regularly exposed to pesticides other than organophosphates and non-exposed controls from Almería (Southeastern Spain). The effect of common genetic polymorphisms of PON1 and BCHE on paraoxonase-1 and cholinesterase activities toward different substrates was also assessed. Linear mixed models were used to compare esterase activities in agricultural workers and control subjects over the two study periods (high and low exposure to pesticides). The significant decrease in AChE and increase in BuChE and BeChE activities observed in workers with respect to control subjects was attributed to pesticide exposure. Workers also had higher levels of AREase, DZOase and, to a lesser extent, of POase, but showed decreased DHCase activity. While PON1 Q192R and PON1 -108C/T gene polymorphisms were significantly associated with all PON1 activities, PON1 L55M showed a significant association with AREase, DZOase and DHCase. BCHE-K (Karlow variant) was significantly associated with lower BeChE activity (but not with BuChE) and BCHE-A (atypical variant) showed no significant association with any cholinesterase activity. These findings suggest that increased PON1, BuChE and BeChE activities in exposed workers might result from an adaptive response against pesticide exposure to compensate for adverse effects at the biochemical level. This response appears to be modulated by PON1 and BCHE gene polymorphisms. Copyright © 2016 Elsevier Ireland Ltd

  17. Coumarins as cholinesterase inhibitors: A review.

    PubMed

    de Souza, Luana G; Rennã, Magdalena N; Figueroa-Villar, Jose D

    2016-07-25

    The first report in literature of the isolation of coumarin was in the year 1820. After this report, other papers were published demonstrating the isolation and synthesis of coumarin and analogues. These compounds have been studying along the years for several different pathologies. One of these pathologies was Alzheimer's disease (AD), being the main cause of dementia in the contemporary world. There are two hypotheses to explain the pathogenesis mechanism and disease symptoms, then having the "amyloid hypothesis" and the "cholinergic hypothesis". Some drugs for AD are based on the theory of "cholinergic hypothesis", which objective is to increase the concentration of ACh in the synaptic cleft by the inhibition of cholinesterases. Over the last twenty years, many studies with coumarins compounds were reported as cholinesterases inhibitors. The aim of the present review is to discuss the studies and development of new compounds for AD treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates

    PubMed Central

    Chambers, Janice E.; Meek, Edward C.; Chambers, Howard W.

    2016-01-01

    Current oxime reactivators for organophosphate-inhibited cholinesterase (ChE) do not effectively cross the blood–brain barrier and therefore cannot restore brain ChE activity in vivo. Our laboratories have studied highly relevant sarin and VX surrogates, which differ from their respective nerve agents only in the leaving group and thereby leave ChE phosphylated with the same chemical moiety as sarin and VX. Our laboratories have invented novel substituted phenoxyalkyl pyridinium oximes (U.S. Patent 9,227,937 B2) that lead to reduced ChE inhibition in the brains of rats challenged with a high sublethal dosage of the sarin surrogate, whereas 2-PAM did not, using a paradigm designed to demonstrate brain penetration. In addition, these novel oximes also showed an attenuation of seizure-like behavior compared to rats treated with 2-PAM, giving additional evidence of the ability of these oximes to penetrate the blood–brain barrier. Further, some of these oximes provided 24-hour survival superior to 2-PAM and shortened the duration of seizure-like behavior when rats were challenged with lethal dosages of the sarin and VX surrogates, providing additional support for the concept of these life-saving oximes penetrating the brain. PMID:27153507

  19. Distigmine Bromide Produces Sustained Potentiation of Guinea-Pig Urinary Bladder Motility by Inhibiting Cholinesterase Activity.

    PubMed

    Obara, Keisuke; Chino, Daisuke; Tanaka, Yoshio

    2017-01-01

    Distigmine is a cholinesterase (ChE) inhibitor used for the treatment of detrusor underactivity in Japan. Distigmine's pharmacological effects are known to be long-lasting, but the duration of its effect on urinary bladder contractile function has not been fully elucidated. The present study aimed to determine these effects in relation to the plasma concentrations of distigmine and its inhibition of ChE activities in blood, plasma, and bladder tissue. Intravesical pressures were recorded in anesthetized guinea-pigs for 12 h after the intravenous administration of saline or distigmine (0.01-0.1 mg/kg). Plasma distigmine concentrations were measured by liquid chromatograph-tandem mass spectrometry (LC-MS/MS), while ChE activities were assayed using 5,5'-dithiobis(2-nitrobenzoic acid). Distigmine (0.1 mg/kg) significantly increased the maximum intravesical pressure at micturition reflex for 12 h post-administration. In contrast, plasma distigmine was only detectable for 6 h post-administration in these animals and a one-compartment model calculated an elimination half-life of 0.7 h. However, bladder and blood acetylcholinesterase activities were significantly inhibited for 12 h after distigmine administration, although plasma ChE activities were not affected. The pharmacodynamic effects of distigmine thus persisted after its elimination from the circulation, indicating that it may bind to bladder acetylcholinesterase, producing sustained enzyme inhibition and enhancement of bladder contractility.

  20. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.

    PubMed

    Hadda, Taibi Ben; Talhi, Oualid; Silva, Artur S M; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Rauf, Abdur; Mabkhot, Yahia N; Bachari, Khaldoun; Warad, Ismail; Farghaly, Thoraya A; Althagafi, Ismail I; Mubarak, Mohammad S

    2018-01-01

    Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  2. Actions of the selective inhibitor of cholinesterase tetramonoisopropyl pyrophosphortetramide on the rat phrenic nerve-diaphragm preparation

    PubMed Central

    Heffron, P. F.

    1972-01-01

    1. Tetramonoisopropyl pyrophosphortetramide (iso-OMPA) added for 15 min to the rat isolated phrenic nerve-diaphragm in a concentration of 30 μM, produced a complete selective and stable inhibition of cholinesterase. A concentration of 3 μM produced near complete inhibition of cholinesterase, and a concentration of 300 μM also inhibited acetylcholinesterase marginally. 2. Inhibition of cholinesterase was associated with a sustained increase in the neuromuscular blocking action of exogenous butyrylcholine but not of exogenous acetylcholine. Iso-OMPA, 300 μM, in addition caused transient increases in the sensitivity of the rat diaphragm to exogenous acetylcholine and butyrylcholine. In the same concentration, it had a curare-like action on the frog rectus abdominis muscle preparation. 3. Iso-OMPA, 30 μM, caused reversible increases in the amplitude of the twitch response and tetanic responses, which were of a similar magnitude in the indirectly stimulated preparation and the directly stimulated curarized preparation. Caffeine had a similar effect on the twitch response and its effectiveness was increased by iso-OMPA, and vice-versa. Amongst anticholinesterases, octamethyl pyrophosphortetramide and tetraethylpyrophosphate also enhanced the amplitude of the tetanic response, but paraoxon, dyflos, and mipafox did not. 4. It is concluded that iso-OMPA, in concentrations (3 and 30 μM) which in 15 min give near maximal or maximal selective inhibition of cholinesterase, has no effect on the transmission of nerve impulses at the neuromuscular junction, but enhances reversibly the amplitude of the contractile response to stimulation by a direct action upon the muscle fibre, which involves a mechanism related to but not identical with that by which caffeine potentiates twitch tension. In higher concentrations, iso-OMPA has a curare-like action at the neuromuscular junction. PMID:4347708

  3. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages.

    PubMed

    Pessoa, P C; Luchmann, K H; Ribeiro, A B; Veras, M M; Correa, J R M B; Nogueira, A J; Bainy, A C D; Carvalho, P S M

    2011-10-01

    Nile tilapia Oreochromis niloticus at 9 days post-hatch were exposed in semi-static experiments to the carbamate insecticide carbofuran, which is applied in agricultural systems in Brazil. Although the molecular mechanism of carbofuran toxicity is well known, a detailed understanding of the ecological mechanisms through which carbofuran effects can propagate towards higher levels of biological organization in fish is incomplete. Mortality rates were quantified for larvae exposed for 96 h to 8.3, 40.6, 69.9, 140, 297 and 397 μg/L carbofuran, and the LC(50) 96 h was 214.7 μg/L. In addition, the biochemical biomarker cholinesterase inhibition and behavioral biomarkers related to vision, swimming, prey capture and predator avoidance were quantified in individual larvae, as well as their growth in weight. The behavioral parameters were quantified by analysis of digitally recorded videos of individual larvae within appropriate experimental setups. The activity of the enzyme cholinesterase decreased after exposure to carbofuran with a lowest observed effects concentration (LOEC) of 69.9 μg/L. Visual acuity deficits were detected after carbofuran exposure with a LOEC of 40.6 μg/L. Swimming speed decreased with carbofuran exposure, with a LOEC of 397.6 μg/L. The number of attacks to prey (Daphnia magna nauplii) decreased in larvae exposed to carbofuran, with a LOEC of 397.6 μg/L. Growth in weight was significantly reduced in a dose dependent manner, and all carbofuran groups exhibited a statistically significant decrease in growth when compared to controls (p<0.05). The number of predator attacks necessary to capture larvae decreased after exposure to carbofuran, and the LOEC was 69.9 μg/L. These results show that exposure of sensitive early life stages of tilapia O. niloticus to sublethal concentrations of carbofuran can affect fundamental aspects of fish larval ecology that are relevant to recruitment of fish populations, and that can be better understood by the

  5. Effect of Different Administration Paradigms on Cholinesterase Inhibition following Repeated Chlorpyrifos Exposure in Late Preweanling Rats

    PubMed Central

    Carr, Russell L.; Nail, Carole A.

    2008-01-01

    Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition. PMID:18703558

  6. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases.

    PubMed

    Saeed, Aamer; Mahesar, Parvez Ali; Zaib, Sumera; Khan, Muhammad Siraj; Matin, Abdul; Shahid, Mohammad; Iqbal, Jamshed

    2014-05-06

    The present study reports the synthesis of cinnamide derivatives and their biological activity as inhibitors of both cholinesterases and anticancer agents. Controlled inhibition of brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may slow neurodegeneration in Alzheimer's diseases (AD). The anticholinesterase activity of phenylcinnamide derivatives was determined against Electric Eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE) and some of the compounds appeared as moderately potent inhibitors of EeAChE and hBChE. The compound 3-(2-(Benzyloxy)phenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3i) showed maximum activity against EeAChE with an IC50 0.29 ± 0.21 μM whereas 3-(2-chloro-6-nitrophenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3k) was proved to be the most potent inhibitor of hBChE having IC50 1.18 ± 1.31 μM. To better understand the enzyme-inhibitor interaction of the most active compounds toward cholinesterases, molecular modelling studies were carried out on high-resolution crystallographic structures. The anticancer effects of synthesized compounds were also evaluated against cancer cell line (lung carcinoma). The compounds may be useful leads for the design of a new class of anticancer drugs for the treatment of cancer and cholinesterase inhibitors for Alzheimer's disease (AD). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY

    PubMed Central

    Karnovsky, Morris J.

    1964-01-01

    A method has been developed for localizing sites of cholinesterase activity in rat cardiac muscle by electron microscopy. The method utilizes thiocholine esters as substrates, and is believed to be dependent on the reduction of ferricyanide to ferrocyanide by thiocholine released by enzymatic activity. The ferrocyanide thus formed is captured by copper to form fine, electron-opaque deposits of copper ferrocyanide, which sharply delineate sites of enzymatic activity at the ultrastructural level. Cholinesterase activity in formalin-fixed heart muscle was localized: (a) in longitudinal elements of the sarcoplasmic reticulum, but not in the T, or transverse, elements; and (b) in the A band, with virtually no activity noted in the M band, or in the H zone. The I band was also negative. No activity was detected in the sarcolemma, or in invaginations of the sarcolemma at the level of the Z band. The perinuclear element of the sarcoplasmic (endoplasmic) reticulum was frequently strongly positive. Activity at all sites was completely abolished by omitting the substrates, or by inhibition with eserine 10-4 M and diisopropylfluorophosphate 10-5 M. Eserine 10-5 M completely inhibited reaction in the sarcoplasmic reticulum, and virtually abolished that in the A band. These observations, together with the use of the relatively specific substrates and suitable controls to eliminate non-enzymatic staining, indicate that cholinesterase activity was being demonstrated. The activity in rat heart against different substrates was that of non-specific cholinesterases, in accordance with biochemical data. The activity in the A band was considered to be probably due to myosincholinesterase. It is proposed that the localization of cholinesterases in myocardium at the ultrastructural level should be taken into account in considering the possible functions of these myocardial enzymes, and it is hoped that knowledge of their localization will open up new avenues of approach in considering

  8. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than ismore » DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.« less

  9. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation

    PubMed Central

    Bharucha, Adil E; Low, Phillip; Camilleri, Michael; Veil, Erica; Burton, Duane; Kudva, Yogish; Shah, Pankaj; Gehrking, Tonette; Zinsmeister, Alan R

    2014-01-01

    Objectives Chronic constipation in diabetes mellitus is associated with colonic motor dysfunction and is managed with laxatives. Cholinesterase inhibitors increase colonic motility. This study evaluated the effects of a cholinesterase inhibitor on gastrointestinal and colonic transit and bowel function in diabetic patients with constipation. Design After a 9-day baseline period, 30 patients (mean±SEM age 50±2 years) with diabetes mellitus (18 type 1, 12 type 2) and chronic constipation without defaecatory disorder were randomised to oral placebo or pyridostigmine, starting with 60 mg three times a day, increasing by 60 mg every third day up to the maximum tolerated dose or 120 mg three times a day; this dose was maintained for 7 days. Gastrointestinal and colonic transit (assessed by scintigraphy) and bowel function were evaluated at baseline and the final 3 and 7 days of treatment, respectively. Treatment effects were compared using analysis of covariance, with gender, body mass index and baseline colonic transit as covariates. Results 19 patients (63%) had moderate or severe autonomic dysfunction; 16 (53%) had diabetic retinopathy. 14 of 16 patients randomised to pyridostigmine tolerated 360 mg daily; two patients took 180 mg daily. Compared with placebo (mean±SEM 1.98±0.17 (baseline), 1.84±0.16 (treatment)), pyridostigmine accelerated (1.96±0.18 (baseline), 2.45±0.2 units (treatment), p<0.01) overall colonic transit at 24 h, but not gastric emptying or small-intestinal transit. Treatment effects on stool frequency, consistency and ease of passage were significant (p≤0.04). Cholinergic side effects were somewhat more common with pyridostigmine (p=0.14) than with placebo. Conclusions Cholinesterase inhibition with oral pyridostigmine accelerates colonic transit and improves bowel function in diabetic patients with chronic constipation. Clinical trial registration number TrialRegNo (NCT 00276406). PMID:22677718

  10. [To the 80-anniversary of cholinesterase. The cholinesterase club in Sechenov Institute of Evolutionary Physiology and Biochemistry].

    PubMed

    Rozengart, E V; Basova, N E; Moralev, S N

    2012-01-01

    For the second half of the XX century, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences was the center of the Russian cholinesterase investigations ("the Russian cholinesterase club"). The close cooperation with chemists-syntheticians of different scientific schools provided success and fruitfulness of this scientific search. All these years, there was preserved dualism of this investigation: a study of the mechanism of functioning and kinetics of cholinesterase catalysis as well as the comparative-enzymological character of studies of cholinesterases of the animals being at different levels of evolutionary development.

  11. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    PubMed

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  12. [Derivatives of lupinin and epilupinin as ligands of various cholinesterases].

    PubMed

    Basova, N E; Kormilitsyn, B N; Rozengart, E V; Saakov, V S; Suvorov, A A

    2012-01-01

    Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.

  13. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids.

    PubMed

    Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Murray, Ana Paula

    2018-05-17

    A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Side effects of low-dose pyridostigmine bromide are not related to cholinesterase inhibition.

    PubMed

    Cook, M R; Gerkovich, M M; Sastre, A; Graham, C

    2001-12-01

    Pretreatment with pyridostigmine bromide (PB) has become part of standard military procedures for protection against the effects of possible chemical warfare attack. The purpose of the work reported here was to quantify the type, intensity and frequency of side effects of low-dose PB, and to examine factors that predict the intensity and frequency of side effects. A double-blind, cross-over, placebo (PL)-controlled design was used. Of the 67 subjects, 33 received 30 mg PB every 8 h for 13 doses, and 34 received 60 mg on the same schedule. Order of PB and PL administration was counterbalanced. Overall, side effects were mild, even at the 60-mg dose level. More side effects were reported when volunteers were taking PB than when they were taking placebo. Women reported more symptoms than men. Neither cholinesterase inhibition nor plasma levels of PB predicted side effect scores during the PB week; the best predictor of side effect scores during the PB week was side effect scores during the PL week. PB is well tolerated by healthy young people, even when twice the recommended military dose is administered.

  15. Suitability of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to pesticides: In vitro characterization.

    PubMed

    Mennillo, Elvira; Casu, Valentina; Tardelli, Federica; De Marchi, Lucia; Freitas, Rosa; Pretti, Carlo

    2017-01-01

    Cholinesterases of Diopatra neapolitana were characterized for their activity in whole body and different body segments (apical, intermediate, posterior), substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (K m and V max ) and in vitro response to model inhibitors (eserine hemisulfate, isoOMPA, BW284C51) and carbamates (carbofuran, methomyl, aldicarb and carbaryl). Results showed that the rate of hydrolysis for acetyl- and propionylthiocholine was higher in the posterior segment than the apical/intermediate segments and whole body. Cholinesterases of D. neapolitana showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was poorly hydrolyzed indicating, together with the absence of inhibition by the specific inhibitor and the absence of reactive bands in native electrophoresis, a lack of an active butyrylcholinesterase, differently than that observed in other Annelida species. The degree of inhibition by selected carbamates of cholinesterase activity with propionylthiocholine as substrate was higher than that observed with ATChI-ChE activity; aldicarb showed the highest inhibitory effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The history of cholinesterase reactivation: hydroxylamine and pyridinium aldoximes.

    PubMed

    Petroianu, G A

    2012-10-01

    Hydroxylamine (NH2OH) the substance which will turn out to be of importance to those interested in the treatment of organophosporus cholinesterase inhibitor exposure, was synthesized by Wilhem Clemens Lossen in 1865 while working in Halle as an assistant in the laboratory of Wilhelm Heinrich Heintz. The Lossen synthesis generated hydroxylamine in aqueous solution. Anhydrous hydroxylamine was prepared almost simultaneously by Lobry de Bruyn and Crismer (1891). Using hydroxylamine as a starting point Meyer synthesized aldoximes and ketoximes (1897). Lange, a PhD student of Ladenburg, isolated 2-methyl-pyridine (alpha-picoline). Some fifty years later Wilson, working in the laboratory of Nachmansohn, demonstrated the ability of hydroxylamine to reactivate cholinesterase inhibited by organophosphates. Finally Wilson and Ginsburg using 2-methyl-pyridine as a starting point synthesized the first pyridinium aldoxime reactivator of clinical relevance, pralidoxime (1955).

  17. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase.

    PubMed

    Gilley, Cynthia; MacDonald, Mary; Nachon, Florian; Schopfer, Lawrence M; Zhang, Jun; Cashman, John R; Lockridge, Oksana

    2009-10-01

    The goal was to test 14 nerve agent model compounds of soman, sarin, tabun, and cyclohexyl methylphosphonofluoridate (GF) for their suitability as substitutes for true nerve agents. We wanted to know whether the model compounds would form the identical covalent adduct with human butyrylcholinesterase that is produced by reaction with true nerve agents. Nerve agent model compounds containing thiocholine or thiomethyl in place of fluorine or cyanide were synthesized as Sp and Rp stereoisomers. Purified human butyrylcholinesterase was treated with a 45-fold molar excess of nerve agent analogue at pH 7.4 for 17 h at 21 degrees C. The protein was denatured by boiling and was digested with trypsin. Aged and nonaged active site peptide adducts were quantified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of the tryptic digest mixture. The active site peptides were isolated by HPLC and analyzed by MALDI-TOF-TOF mass spectrometry. Serine 198 of butyrylcholinesterase was covalently modified by all 14 compounds. Thiocholine was the leaving group in all compounds that had thiocholine in place of fluorine or cyanide. Thiomethyl was the leaving group in the GF thiomethyl compounds. However, sarin thiomethyl compounds released either thiomethyl or isopropyl, while soman thiomethyl compounds released either thiomethyl or pinacolyl. Thiocholine compounds reacted more rapidly with butyrylcholinesterase than thiomethyl compounds. Labeling with the model compounds resulted in aged adducts that had lost the O-alkyl group (O-ethyl for tabun, O-cyclohexyl for GF, isopropyl for sarin, and pinacolyl for soman) in addition to the thiocholine or thiomethyl group. The nerve agent model compounds containing thiocholine and the GF thiomethyl analogue were found to be suitable substitutes for true soman, sarin, tabun, and GF in terms of the adduct that they produced with human butyrylcholinesterase. However, the soman and sarin thiomethyl compounds

  18. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study

    PubMed Central

    Hirbod, Kimia; Jalili-baleh, Leili; Nadri, Hamid; ebrahimi, Seyed esmaeil Sadat; Moradi, Alireza; Pakseresht, Bahar; Foroumadi, Alireza; Shafiee, Abbas; Khoobi, Mehdi

    2017-01-01

    Objective(s): To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman’s method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 μM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms. PMID:28868119

  19. Cholinesterase activity in Japanese quail dusted with carbaryl

    USGS Publications Warehouse

    Hill, E.F.

    1979-01-01

    Japanese quail (Coturnix coturnix japonica) were dusted with 5% carbaryl to determine if this topical treatment would alter plasma and brain cholinesterase activities. Within 6 hours after dusting, plasma cholinesterase activity was depressed compared with controls, the depression averaging 20% for females and 27% for males. By 24 hours the cholinesterase activity of females had returned to normal, but the cholinesterase activity of males remained depressed. Brain cholinesterase activity was not affected by the treatment, and there were no overt toxic signs.

  20. Synthesis and discovery of novel piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent cholinesterase inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Murugaiyah, Vikneswaran; Basiri, Alireza; Perumal, Subbu; Wahab, Habibah A; Bing, Choi Sy

    2013-04-01

    Three-component reaction of a series of 1-acryloyl-3,5-bisbenzylidenepiperidin-4-ones with isatin and L-proline in 1:1:1 and 1:2:2 molar ratios in methanol afforded, respectively the piperidone-grafted novel mono- and bisspiro heterocyclic hybrids comprising functionalized piperidine, pyrrolizine and oxindole ring systems in good yields. The in vitro evaluation of cholinesterase enzymes inhibitory activity of these cycloadducts disclosed that monospiripyrrolizines (8a-k), are more active with IC50 ranging from 3.36 to 20.07 μM than either the dipolarophiles (5a-k) or bisspiropyrrolizines (9a-k). The compounds, 8i and 8e with IC50 values of 3.36 and 3.50 μM, respectively showed the maximum inhibition of acethylcholinesterase (AChE) and butrylylcholinestrase (BuChE). Molecular modeling simulation, disclosed the binding interactions of the most active compounds to the active site residues of their respective enzymes. The docking results were in accordance with the IC50 values obtained from in vitro cholinesterase assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2016-10-01

    Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellman's spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Characterization and in vitro sensitivity of cholinesterases of gilthead seabream (Sparus aurata) to organophosphate pesticides.

    PubMed

    Albendín, G; Arellano, J M; Mánuel-Vez, M P; Sarasquete, C; Arufe, M I

    2017-04-01

    The characterization of cholinesterase activity in brain and muscle of gilthead seabream was carried out using four specific substrates and three selective inhibitors. In addition, K m and V max were calculated from the Michaelis-Menten equation for ASCh and BSCh substrates. Finally, the in vitro sensitivity of brain and muscle cholinesterases to three organophosphates (OPs) was also investigated by estimating inhibition kinetics. The results indicate that AChE is the enzyme present in the brain, whereas in muscle, a typical AChE form is present along with an atypical form of BChE. Very low ChE activity was found in plasma with all substrates used. The inhibitory potency of the studied OPs on brain and muscle AChEs based on bimolecular inhibition constants (k i ) was: omethoate < dichlorvos < azinphosmethyl-oxon. Furthermore, muscle BChE was found to be several orders of magnitude (from 2 to 4) more sensitive than brain and muscle AChE inhibition by dichlorvos and omethoate.

  3. Development of HuperTacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer's disease.

    PubMed

    Chioua, Mourad; Pérez, Marta; Bautista-Aguilera, Oscar M; Yañez, Matilde; López, Manuela G; Romero, Alejandro; Cacabelos, Ramón; de la Bellacasa, Raimon Puig; Brogi, Simone; Butini, Stefania; Borrell, José I; Marco-Contelles, Jose

    2015-01-01

    This paper describes our preliminary results on the ADMET, synthesis, biochemical evaluation, and molecular modeling of racemic HuperTacrines (HT), new hybrids resulting from the juxtaposition of huperzine A and tacrine for the potential treatment of Alzheimer's disease (AD). The synthesis of these HT was executed by Friedländer-type reactions of 2-amino-6-oxo-1,6-dihydropyridine-3-carbonitriles, or 7-amino-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitriles, with cyclohexanone. In the biochemical evaluation, initial and particular attention was devoted to test their toxicity on human hepatoma cells, followed by the in vitro inhibition of human cholinesterases (hAChE, and hBuChE), and the kinetics/mechanism of the inhibition of the most potent HT; simultaneous molecular modeling on the best HT provided the key binding interactions with the human cholinesterases. >From these analyses, (±)-5-amino-3-methyl- 3,4,6,7,8,9-hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT1) and (±)-5-amino-3-(2,6-dichlorophenyl)-3,4,6,7,8,9- hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT3) have emerged as characterized by extremely low liver toxicity reversible mixed-type, selective hAChE and, quite selective irreversible hBuChEIs, respectively, showing also good druglike properties for AD-targeted drugs.

  4. Distribution and determination of cholinesterases in mammals

    PubMed Central

    Holmstedt, Bo

    1971-01-01

    This paper reviews the distribution of cholinesterases in the central nervous system, the ganglia, the striated muscle, and the blood of mammals, and discusses the correlation between the histochemical localization and the function of neuronal cholinesterase. Different methods for the determination of cholinesterase levels are reviewed, with particular reference to their practical value for field work. The Warburg method and the Tintometer and Acholest colorimetric methods are compared on the basis of cholinesterase levels determined in normal persons and in those suffering from parathion intoxication. PMID:4999484

  5. BRAIN CHOLINESTERASE INHIBITION AND DEPRESSION OF THE PHOTIC AFTER DISCHARGE (PHAD) OF FLASH EVOKED POTENTIALS (FEPS) IN LONG EVANS RATS FOLLOWING ACUTE OR REPEATED EXPOSURES TO A MIXTURE OF CARBARYL AND PROPOXUR.

    EPA Science Inventory

    Carbaryl and propoxur are N-methyl carbamate pesticides (NMCs) which are part of the EPA’s cumulative risk assessments for NMCs. These NMCs inhibit cholinesterase (ChE) activity and may lead to cholinergic disruption of CNS function. We used decreases in the PhAD of FEPs to indic...

  6. Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    PubMed Central

    Roldán-Tapia, Lola; Leyva, Antonia; Laynez, Francisco; Santed, Fernando Sánchez

    2005-01-01

    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers. PMID:15929901

  7. Comparison of several oximes on reactivation of soman-inhibited blood, brain and tissue cholinesterase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, T.M.

    1993-12-31

    The ability of three oximes, HI-6, MMB-4 and ICD-467, to reactivate cholinesterase (ChE) inhibited by the organophosphorus compound soman was compared in blood (plasma and erythrocytes), brain regions (including spinal cord) and peripheral tissues of rats. Animals were intoxicated with soman (100 ttg/kg. SC; equivalent to 0.9 x LDs0 dose) and treated 1 min later with one of these oximes (100 or 200 ttmo1/kg, IM). Toxic sign scores and total tissue ChE activities were determined 30 min later. Soman markedly inhibited ChE activity in blood (93 - 96%), brain regions (ranging from 78% to 95%), and all peripheral tissues (rangingmore » from 48.9% to 99.8%) except liver (11.9%). In blood, treatment with HI-6 or ICD-467 resulted in significant reactivation of soman-inhibited ChE. in contrast, MMB-4 was completely ineffective. HI-6 and ICD-467 were equally effective at the high dose. At the low dose ICD-467 treatment resulted in significantly higher plasma ChE than Hl-6 treatment, whereas HI-6 treatment resulted in higher erythrocyte ChE than ICD-467 treatment. However, none of these three oximesreactivated or protected soman-inhibited ChE in the brain. In all peripheral tissues (except liver) studied, MMB-4 was not effective. 111-6 reactivated soman-inhibited ChE in all tis- sues except lung, heart, and skeletal muscle. ICD-467 was highly effective in reactivating ChE in all tissues and afforded a complete recovery of ChE to control levels in Intercostal muscle and salivary gland. Oxime treatments did not modify the toxic scores produced by soman.« less

  8. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.

    PubMed

    Carletti, Eugénie; Colletier, Jacques-Philippe; Schopfer, Lawrence M; Santoni, Gianluca; Masson, Patrick; Lockridge, Oksana; Nachon, Florian; Weik, Martin

    2013-02-18

    Tri-o-cresyl-phosphate (TOCP) is a common additive in jet engine lubricants and hydraulic fluids suspected to have a role in aerotoxic syndrome in humans. TOCP is metabolized to cresyl saligenin phosphate (CBDP), a potent irreversible inhibitor of butyrylcholinesterase (BChE), a natural bioscavenger present in the bloodstream, and acetylcholinesterase (AChE), the off-switch at cholinergic synapses. Mechanistic details of cholinesterase (ChE) inhibition have, however, remained elusive. Also, the inhibition of AChE by CBDP is unexpected, from a structural standpoint, i.e., considering the narrowness of AChE active site and the bulkiness of CBDP. In the following, we report on kinetic X-ray crystallography experiments that provided 2.7-3.3 Å snapshots of the reaction of CBDP with mouse AChE and human BChE. The series of crystallographic snapshots reveals that AChE and BChE react with the opposite enantiomers and that an induced-fit rearrangement of Phe297 enlarges the active site of AChE upon CBDP binding. Mass spectrometry analysis of aging in either H(2)(16)O or H(2)(18)O furthermore allowed us to identify the inhibition steps, in which water molecules are involved, thus providing insights into the mechanistic details of inhibition. X-ray crystallography and mass spectrometry show the formation of an aged end product formed in both AChE and BChE that cannot be reactivated by current oxime-based therapeutics. Our study thus shows that only prophylactic and symptomatic treatments are viable to counter the inhibition of AChE and BChE by CBDP.

  9. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    PubMed

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  10. COMPARISON OF ACUTE NEUROBEHAVIORAL AND CHOLINESTERASE INHIBITORY EFFECTS OF N-METHYL CARBAMATES IN RAT

    EPA Science Inventory

    There are few studies evaluating direct functional and biochemical consequences of exposure. In the present study of the acute toxicity of seven N-methyl carbamate pesticides, we evaluated the dose-response profiles of cholinesterase (ChE) inhibition in brain and erythrocytes (R...

  11. Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana.

    PubMed

    Jamila, Nargis; Khairuddean, Melati; Yeong, Khaw Kooi; Osman, Hasnah; Murugaiyah, Vikneswaran

    2015-02-01

    Context: Garcinia hombroniana Pierre, known as manggis hutan in Malaysia is a rich source of xanthones and benzophenones. This study was aimed to isolate and characterize potential cholinesterase inhibitors from the extracts of G. hombroniana bark and investigate their interactions with the enzymes. The dichloromethane extract afforded five triterpenoids which were characterized by NMR and mass spectral techniques. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds were also tested for their antioxidant capacity. The isolated triterpenoids were identified as: 2β-hydroxy-3α-O-caffeoyltaraxar-14-en-28-oic acid (1), taraxerol (2), taraxerone (3), betulin (4) and betulinic acid (5). Compound 1 was the most active dual inhibitor of both AChE and BChE. Compound 1 also showed good antioxidant activities. Compound 1 had dual and moderate inhibitory activity on AChE and BChE worthy for further investigations.

  12. Low Level Chlorpyrifos Exposure Increases Anandamide Accumulation in Juvenile Rat Brain in the Absence of Brain Cholinesterase Inhibition

    PubMed Central

    Carr, Russell L.; Graves, Casey A.; Mangum, Lee C.; Nail, Carole A.; Ross, Matthew K.

    2014-01-01

    The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0 mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPF by oral gavage. At 4 and 12 h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12 h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4 h, FAAH activity was significantly inhibited at 12 h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of

  13. Influence of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Jenda, Malgorzata; Silberring, Jerzy; Kotlinska, Jolanta H

    2014-07-15

    The influence of systemic administration of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (CPP) was examined in rats. Additionally, this study aimed to compare the effects of donepezil, which selectively inhibits acetylcholinesterase, and rivastigmine, which inhibits both acetylcholinesterase and butyrylcholinesterase on morphine reward. Morphine-induced CPP (unbiased method) was induced by four injections of morphine (5 mg/kg, i.p.). Donepezil (0.5, 1, and 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5, and 1 mg/kg, i.p.) were given 20 min before morphine during conditioning phase and 20 min before the expression or reinstatement of morphine-induced CPP. Our results indicated that both inhibitors of cholinesterase attenuated the acquisition and expression of morphine CPP. The results were more significant after rivastigmine due to a broader inhibitory spectrum of this drug. Moreover, donepezil (1 mg/kg) and rivastigmine (0.5 mg/kg) attenuated the morphine CPP reinstated by priming injection of 5mg/kg morphine. These properties of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist but not scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. All effects of cholinesterase inhibitors were observed at the doses that had no effects on locomotor activity of animals. Our results suggest beneficial role of cholinesterase inhibitors in reduction of morphine reward and morphine-induced seeking behavior. Finally, we found that the efficacy of cholinesterase inhibitors in attenuating reinstatement of morphine CPP provoked by priming injection may be due to stimulation of nicotinic acetylcholine receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V

    2014-09-25

    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors.

    PubMed

    Prasad, Suchita; Kumar, Bipul; Kumar, Shiv; Chand, Karam; Kamble, Shashank S; Gautam, Hemant K; Sharma, Sunil K

    2017-08-01

    Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC 50 values in the range of 0.24-10.19 μM and 0.64-30.08 μM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 μM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aβ 1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC 50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.

  16. Composites of silica with immobilized cholinesterase incorporated into polymeric shell

    NASA Astrophysics Data System (ADS)

    Payentko, Victoriya; Matkovsky, Alexander; Matrunchik, Yulia

    2015-02-01

    Synthetic approaches for new nanocomposite materials with relatively high cholinesterase activity have been developed. The peculiarity of the formation of such systems is the introduction of cholinesterase into polymer with subsequent incorporation on the ready-made silica particles and into the polysiloxane matrixes during sol-gel synthesis. Evaluation of the cholinesterase activity has been fulfilled through the imitation of the acetylcholine chloride decomposition reaction. Values of activity for cholinesterase nanocomposites demonstrated in this work are higher than those for the native cholinesterase. The higher activity of cholinesterase contained in nanocomposites was found for those prepared using highly dispersed silica.

  17. Biological Evaluation of Azomethine-dihydroquinazolinone Conjugates as Cancer and Cholinesterase Inhibitors.

    PubMed

    Iqbal, Jamshed; Saeed, Aamer; Shah, Syed J A; al-Rashida, Mariya; Shams-ul Mahmood

    2016-01-01

    In an attempt to discover novel anti-cancer agents and potent cholinesterase inhibitors, 11 azomethine-dihydroquinazolinone conjugates were evaluated against lung carcinoma cells and cholinesterases. Most of the compounds exhibited significant cytotoxicity at low micromolar concentrations and were less toxic to normal cells. After 24 h incubation period, 2i showed maximum cytotoxicity. The 4-bromine substituted compounds showed higher acetylcholinesterase (AChE) inhibitory activity than other screened compounds. The most active compound 2c, among the series, had an IC50 value 209.8 µM against AChE. The tested compounds showed less inhibition against butyrylcholinesterase. Molecular docking studies were performed in order to investigate the plausible binding modes of synthesized compounds. The compounds can be further optimized to treat cancer and Alzheimer's disease. These derivatives may open new pathways for introducing new therapies for curing cancer and senile dementia.

  18. The significance of low substrate concentration measurements for mechanistic interpretation in cholinesterases.

    PubMed

    Stojan, Jure

    2013-03-25

    Cholinesterases do not follow the Michaelis-Menten kinetics. In the past, many reaction schemes were suggested to explain their complex interactions during the substrate turnover. Covalent catalysis was recognized very early and therefore, double intermediate traditional reaction scheme for the hydrolysis of good substrates at low concentrations was postulated. However, at intermediate and high substrate concentrations homotropic pseudocooperative effects take place in all cholinesterases, due to the nature of their buried active center. In this study, the significance and usefulness of experimental data obtained at low substrate concentrations, where only one substrate molecule accesses the active site at a time, are to be specified for the overall mechanistic evaluations. Indeed, different interpretations are expected when data are processed with equations derived from different reaction schemes. Consequently, the scheme with two substrate binding sites which comprises the structurally evidenced fully occupied active site as ultimate cause for substantially decreased cholinesterase activity at extremely high substrate concentrations is considered here. A special emphasis is put on butyrylcholinesterase, the enzyme with the largest active site among cholinesterases, where the pseudocooperative effects appear at much higher concentrations than in acetylcholinesterases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides.

    PubMed

    Oropesa, Ana-Lourdes; Gravato, Carlos; Sánchez, Susana; Soler, Francisco

    2013-11-01

    Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01μmol/min/ml for adults and 0.28±0.03μmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Chen, Yao; Zhu, Jie; Mo, Jun; Yang, Hongyu; Jiang, Xueyang; Lin, Hongzhi; Gu, Kai; Pei, Yuqiong; Wu, Liang; Tan, Renxiang; Hou, Jing; Chen, Jingyi; Lv, Yang; Bian, Yaoyao; Sun, Haopeng

    2018-12-01

    Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer's disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure-activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC 50  = 10.2 ± 1.2, 16.5 ± 1.7, and 15.3 ± 1.8 nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.

  1. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik; Kassa, Jiri

    2011-02-01

    These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.

  2. Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model.

    PubMed

    Amri, Zahra; Ghorbel, Asma; Turki, Mouna; Akrout, Férièle Messadi; Ayadi, Fatma; Elfeki, Abdelfateh; Hammami, Mohamed

    2017-06-27

    To investigate beneficial effects of Pomegranate seeds oil (PSO), leaves (PL), juice (PJ) and (PP) on brain cholinesterase activity, brain oxidative stress and lipid profile in high-fat-high fructose diet (HFD) induced-obese rat. In vitro and in vivo cholinesterase activity, brain oxidative status, body and brain weight and plasma lipid profile were measured in control rats, HFD-fed rats and HFD-fed rats treated by PSO, PL, PJ and PP. In vitro study showed that PSO, PL, PP, PJ inhibited cholinesterase activity in dose dependant manner. PL extract displayed the highest inhibitory activity by IC50 of 151.85 mg/ml. For in vivo study, HFD regime induced a significant increase of cholinesterase activity in brain by 17.4% as compared to normal rats. However, the administration of PSO, PL, PJ and PP to HDF-rats decreased cholinesterase activity in brain respectively by 15.48%, 6.4%, 20% and 18.7% as compared to untreated HFD-rats. Moreover, HFD regime caused significant increase in brain stress, brain and body weight, and lipid profile disorders in blood. Furthermore, PSO, PL, PJ and PP modulated lipid profile in blood and prevented accumulation of lipid in brain and body evidenced by the decrease of their weights as compared to untreated HFD-rats. In addition administration of these extract protected brain from stress oxidant, evidenced by the decrease of malondialdehyde (MDA) and Protein carbonylation (PC) levels and the increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. These findings highlight the neuroprotective effects of pomegranate extracts and one of mechanisms is the inhibition of cholinesterase and the stimulation of antioxidant capacity.

  3. Brain cDNA clone for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTiernan, C.; Adkins, S.; Chatonnet, A.

    1987-10-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less

  4. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. Georg Thieme Verlag KG Stuttgart · New York.

  5. Tracking the origin and divergence of cholinesterases and neuroligins: the evolution of synaptic proteins.

    PubMed

    Lenfant, Nicolas; Hotelier, Thierry; Bourne, Yves; Marchot, Pascale; Chatonnet, Arnaud

    2014-07-01

    A cholinesterase activity can be found in all kingdoms of living organism, yet cholinesterases involved in cholinergic transmission appeared only recently in the animal phylum. Among various proteins homologous to cholinesterases, one finds neuroligins. These proteins, with an altered catalytic triad and no known hydrolytic activity, display well-identified cell adhesion properties. The availability of complete genomes of a few metazoans provides opportunities to evaluate when these two protein families emerged during evolution. In bilaterian animals, acetylcholinesterase co-localizes with proteins of cholinergic synapses while neuroligins co-localize and may interact with proteins of excitatory glutamatergic or inhibitory GABAergic/glycinergic synapses. To compare evolution of the cholinesterases and neuroligins with other proteins involved in the architecture and functioning of synapses, we devised a method to search for orthologs of these partners in genomes of model organisms representing distinct stages of metazoan evolution. Our data point to a progressive recruitment of synaptic components during evolution. This finding may shed light on the common or divergent developmental regulation events involved into the setting and maintenance of the cholinergic versus glutamatergic and GABAergic/glycinergic synapses.

  6. Cholinesterase inhibitors from the roots of Harpagophytum procumbens.

    PubMed

    Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun

    2014-01-01

    Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant.

  7. Comparative aspects of the purification and properties of cholinesterases

    PubMed Central

    Augustinsson, Klas-Bertil

    1971-01-01

    Recent years have seen great progress in the purification and characterization of cholinesterases. Investigation has indicated the existence of two principal groups: a fairly homogeneous group of acetylcholinesterases and a group of enzymes that utilize butyrylcholine, propionycholine, or benzoylcholine as substrates and that differ widely in their properties. This paper reviews the different types of cholinesterase and their sources, the importance of a proper choice of substrate in cholinesterase studies, methods for the purification of cholinesterases, and some of the properties of these enzymes. PMID:4938026

  8. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX.

    PubMed

    Chambers, Janice E; Chambers, Howard W; Funck, Kristen E; Meek, Edward C; Pringle, Ronald B; Ross, Matthew K

    2016-11-25

    Pyridinium oximes are strong nucleophiles and many are effective reactivators of organophosphate-inhibited cholinesterase (ChE). However, the current oxime reactivators are ineffective at crossing the blood-brain barrier and reactivating brain ChE in the intact organism. Our laboratories have developed a series of substituted phenoxyalkyl pyridinium oximes (US patent 9,227,937 B2) with the goal of identifying reactivators effective in crossing the blood-brain barrier. The first 35 of the series were found to have similar in vitro efficacy as reactivators of ChE inhibited by a sarin surrogate (phthalimidyl isopropyl methylphosphonate, PIMP) or a VX surrogate (nitrophenyl ethyl methylphosphonate, NEMP) in bovine brain preparations as previously observed in rat brain preparations. A number of these novel oximes have shown the ability to decrease the level of ChE inhibition in the brains of rats treated with a high sublethal dosage of either a sarin surrogate (nitrophenyl isopropyl methylphosphonate, NIMP) or the VX surrogate NEMP. Levels of reactivation at 2 h after oxime administration were up to 35% while the currently approved therapeutic, 2-PAM, yielded no reduction in brain ChE inhibition. In addition, there was evidence of attenuation of seizure-like behavior with several of the more effective novel oximes, but not 2-PAM. Therefore these novel oximes have demonstrated an ability to reactivate inhibited ChE in brain preparations from two species and in vivo data support their ability to enter the brain and provide a therapeutic action. These novel oximes have the potential to be developed into improved antidotes for nerve agent therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cholinesterase inhibition in meadow voles Microtus pennsylvanicus following field applications of Orthene

    USGS Publications Warehouse

    Jett, David A.

    1986-01-01

    Brain acetylcholinesterase activity in field-caught meadow voles (Microtus pennsylvanicus) was depressed after a field-spray of Orthene (acephate: acetylphosphoramidothioic acid O,S-dimethyl ester) by as much as 32% in 1982 and 38% in 1983. Short-term recovery was demonstrated and occurred in a time-dependent fashion in 1982. Plasma cholinesterase levels were move variable but also were depressed. Residues were detected in vegetation samples and in the gastrointestinal tracts of exposed voles. Residues in vegetation were diluted or absent 7 to 8 d following the treatment.

  10. Intrahippocampal cholinesterase inhibition induces epileptogenesis in mice without evidence of neurodegenerative events.

    PubMed

    Pernot, F; Carpentier, P; Baille, V; Testylier, G; Beaup, C; Foquin, A; Filliat, P; Liscia, P; Coutan, M; Piérard, C; Béracochea, D; Dorandeu, F

    2009-09-15

    The mechanisms of epileptogenesis remain largely unknown and are probably diverse. The aim of this study was to investigate the role of focal cholinergic imbalance in epileptogenesis. To address this question, we monitored electroencephalogram (EEG) activity up to 12 weeks after the injection of a potent cholinesterase (ChE) inhibitor (soman) at different doses (0.53, 0.75, 1, 2, 2.8, 4 and 11 nmol) into the right dorsal hippocampus of C57BL/6 mice. Different parameters were used to choose the dose for a focal model of epileptogenesis (mainly electrographic patterns and peripheral ChE inhibition). The pattern of neuronal activation was studied by Fos immunohistochemistry (IHC). Brain damage was evaluated by hemalun-phloxin, neuronal nuclei antigen IHC and silver staining. Glial fibrillary acidic protein IHC was used to evaluate astroglial reaction. Finally, long-term behavioral consequences were characterized. At the highest dose (11 nmol), soman quickly evoked severe signs, including initial seizures and promoted epileptogenesis in the absence of tissue damage. With lower doses, late-onset seizures were evidenced, after 1-4 weeks depending on the dose, despite the absence of initial overt seizures and of brain damage. Only a weak astroglial reaction was observed. Following injection of 1 nmol, Fos changes were first evidenced in the ipsilateral hippocampus and then spread to extrahippocampal areas. A selective deficit in contextual fear conditioning was also evidenced two months after injection. Our data show that focal hypercholinergy may be a sufficient initial event to promote epilepsy and that major brain tissue changes (cellular damage, edema, neuroinflammation) are not necessary conditions.

  11. CHOLINESTERASE IN DENERVATED END PLATES AND MUSCLE FIBRES

    PubMed Central

    Brzin, Miro; Majcen-Tkačev, Živa

    1963-01-01

    Parallel studies were made of cholinesterase activities and localizations in denervated rat and rabbit gastrocnemius muscle. Koelle's histochemical reaction was used for demonstrating the localization of cholinesterases. Enzyme activities in whole sliced muscle were measured by electrometric titration. The Cartesian ampulla-diver technique was used for cholinesterase activity determinations in end plate regions or in small pieces of the muscle fibre itself. No changes in the activity of cholinesterases (ChE) were found in the whole denervated muscle which would account for its chemical supersensitivity. The ChE distribution pattern was changed so that the end plate region became less active in the denervated muscle than in the normal one. The decrease in ChE activity in the end plates seems to be largely compensated for by an increase of this enzyme elsewhere in the muscle. A possible connection between the spatial spread of cholinesterase activity and the enlargement of the acetylcholine-sensitive surface is discussed. PMID:14086761

  12. Characterization of the In Vitro Kinetic Interaction of Chlorpyrifos-Oxon with Rat Salivary Cholinesterase: A Potential Biomonitoring Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Charles

    2003-02-12

    Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, theremore » are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.« less

  13. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment.

    PubMed

    Pinho, Brígida R; Ferreres, Federico; Valentão, Patrícia; Andrade, Paula B

    2013-12-01

    Alzheimer's disease (AD) is the most common cause of dementia, being responsible for high healthcare costs and familial hardships. Despite the efforts of researchers, no treatment able to delay or stop AD progress exists. Currently, the available treatments are only symptomatic, cholinesterase inhibitors being the most widely used drugs. Here we describe several natural compounds with anticholinesterase (acetylcholinesterase and butyrylcholinesterase) activity and also some synthetic compounds whose structures are based on those of natural compounds. Galantamine and rivastigmine are two cholinesterase inhibitors used in therapeutics: galantamine is a natural alkaloid that was extracted for the first time from Galanthus nivalis L., while rivastigmine is a synthetic alkaloid, the structure of which is modelled on that of natural physostigmine. Alkaloids include a high number of compounds with anticholinesterases activity at the submicromolar range. Quinones and stilbenes are less well studied regarding cholinesterase inhibition, although some of them, such as sargaquinoic acid or (+)-α-viniferin, show promising activity. Among flavonoids, flavones and isoflavones are the most potent compounds. Xanthones and monoterpenes are generally weak cholinesterase inhibitors. Nature is an almost endless source of bioactive compounds. Several natural compounds have anticholinesterase activity and others can be used as leader compounds for the synthesis of new drugs. © 2013 Royal Pharmaceutical Society.

  14. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  15. The NADPH oxidase inhibitor diphenyleneiodonium is also a potent inhibitor of cholinesterases and the internal Ca2+ pump

    PubMed Central

    Tazzeo, T; Worek, F; Janssen, LJ

    2009-01-01

    Background and purpose: Diphenyleneiodonium (DPI) is often used as an NADPH oxidase inhibitor, but is increasingly being found to have unrelated side effects. We investigated its effects on smooth muscle contractions and the related mechanisms. Experimental approach: We studied isometric contractions in smooth muscle strips from bovine trachea. Cholinesterase activity was measured using a spectrophotometric assay; internal Ca2+ pump activity was assessed by Ca2+ uptake into smooth muscle microsomes. Key results: Contractions to acetylcholine were markedly enhanced by DPI (10−4 M), whereas those to carbachol (CCh) were not, suggesting a possible inhibition of cholinesterase. DPI markedly suppressed contractions evoked by CCh, KCl and 5-HT, and also unmasked phasic activity in otherwise sustained responses. Direct biochemical assays confirmed that DPI was a potent inhibitor of acetylcholinesterase and butyrylcholinesterase (IC50∼8 × 10−6 M and 6 × 10−7 M, respectively), following a readily reversible, mixed non-competitive type of inhibition. The inhibitory effects of DPI on CCh contractions were not mimicked by another NADPH oxidase inhibitor (apocynin), nor the Src inhibitors PP1 or PP2, ruling out an action through the NADPH oxidase signalling pathway. Several features of the DPI-mediated suppression of agonist-evoked responses (i.e. suppression of peak magnitudes and unmasking of phasic activity) are similar to those of cyclopiazonic acid, an inhibitor of the internal Ca2+ pump. Direct measurement of microsomal Ca2+ uptake revealed that DPI modestly inhibits the internal Ca2+ pump. Conclusions and implications: DPI inhibits cholinesterase activity and the internal Ca2+ pump in tracheal smooth muscle. PMID:19788497

  16. [Methods for determination of cholinesterase activity].

    PubMed

    Dingová, D; Hrabovská, A

    2015-01-01

    Cholinesterases hydrolyze acetylcholine and thus they play a key role in a process of cholinergic neurotransmission. Changes in their activities are linked to many diseases (e.g Alzheimer disease, Parkinson disease, lipid disorders). Thus, it is important to determine their activity in a fast, simply and precise way. In this review, different approaches of studying cholinesterase activities (e.g pH-dependent, spectrophotometric, radiometric, histochemical methods or biosensors) are discussed. Comparisons, advantages or disadvantages of selected methods (e.g most widely used Ellman's assay, extremely sensitive Johnson Russell method or modern technique with golden nanoparticles) are presented. This review enables one to choose a suitable method for determination of cholinesterase activities with respect to laboratory equipment, type of analysis, pH, temperature scale or special conditions.

  17. Effects of Ionizing Radiation on Arylesterase and Cholinesterase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustinsson, Klas-Bertil; Jonsson, Gunnel; Sparrman, Berndt

    1961-01-01

    The effects of Co 60 gamma radiation on arylesterase and cholinesterase of human blood plasma were compared using solid preparations of purified enzymes containing various amounts of water. In the case of cholinesterase a water content of 12% exerted maximum protection against irradiation. Such a protection by water was not observed with arylesterase. Finally, in aqueous solutions cholinesterase was more resistant to irradiation by gamma rays than was arylesterase when irradiation was performed in an atmosphere of nitrogen.

  18. EFFECT OF GAMMA IRRADIATION AND AET ON RAT BLOOD CHOLINESTERASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.W.; Baker, R.D.; Covill, R.W.

    1961-03-01

    Whole-body gamma irradiation in the rat produced significant whole-blood cholinesterase depression on the tenth day at a dosage level of 75 r. The levels tested when plotted and extrapolared indicated threshold changes in cholinesterase activity would be in the vicinity of 20 to 30 r. AET alone, while producing some mild cholinesterase depression, failed to protect whole-blood cholinesterase activity from the effects of gamma irradiation at the levels of agent and irradiation tested. (auth)

  19. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila

    2016-02-11

    Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.

  20. Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio)

    USGS Publications Warehouse

    Gruber, S.J.; Munn, M.D.

    1998-01-01

    Cholinesterase (ChE) activity was used as a biomarker for assessing exposure of common carp (Cyprinus carpio) to organophosphate and carbamate insecticides from irrigated agricultural waters. Carp were collected from a lake (Royal Lake) that receives most of its water from irrigation return flows and from a reference lake (Billy Clapp Lake) outside of the irrigation system. Results indicated that the mean whole-brain ChE activity of carp from Royal Lake (3.47 μmol/min/g tissue) was 34.2% less than that of carp from Billy Clapp Lake (5.27 μmol/min/g tissue) (p = 0.003). The depressed ChE activity in brain tissue of Royal Lake carp was in response to ChE-inhibiting insecticides detected in water samples in the weeks prior to tissue sampling; the most frequently detected insecticides included chlorpyrifos, azinphos-methyl, carbaryl, and ethoprop. Neither sex nor size appears to be a covariable in the analysis; ChE activity was not correlated with fish length or weight in either lake and there was no significant difference in ChE activity between the two sexes within each lake. Although organophosphate and carbamate insecticides can break down rapidly in the environment, this study suggests that in agricultural regions where insecticides are applied for extended periods of the year, nontarget aquatic biota may be exposed to high levels of ChE-inhibiting insecticides for a period of several months.

  1. Cholinesterase inhibition reduces arrhythmias in asymptomatic Chagas disease.

    PubMed

    Castro, Renata R T; Porphirio, Graciema; Xavier, Sergio S; Moraes, Ruy S; Ferlin, Elton L; Ribeiro, Jorge P; da Nóbrega, Antonio C L

    2017-10-01

    Parasympathetic dysfunction may play a role in the genesis of arrhythmias in Chagas disease. This study evaluates the acute effects of pyridostigmine (PYR), a reversible cholinesterase inhibitor, on the occurrence of arrhythmias in patients with Chagas cardiac disease. Following a double-blind, randomized, placebo-controlled, cross-over protocol, 17 patients (age 50±2 years) with Chagas cardiac disease type B underwent 24-hour Holter recordings after oral administration of either pyridostigmine bromide (45 mg, 3 times/day) or placebo (PLA). Pyridostigmine reduced the 24-hours incidence (median [25%-75%]) of premature ventricular beats-PLA: 2998 (1920-4870), PYR: 2359 (940-3253), P=.044; ventricular couplets-PLA: 84 (15-159), PYR: 33 (6-94), P=.046. Although the total number of nonsustained ventricular tachycardia in the entire group was not different (P=.19) between PLA (1 [0-8]) and PYR (0 [0-4]), there were fewer episodes under PYR in 72% of the patients presenting this type of arrhythmia (P=.033). Acute administration of pyridostigmine reduced the incidence of nonsustained ventricular arrhythmias in patients with Chagas cardiac disease. Further studies that address the use of pyridostigmine by patients with Chagas cardiac disease under a more prolonged follow-up are warranted. © 2017 John Wiley & Sons Ltd.

  2. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  3. Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants.

    PubMed

    Nunes, Bruno; Resende, Sara Teixeira

    2017-05-01

    Biomonitoring of chemical contamination requires the use of well-established and validated tools, including biochemical markers that can be potentially affected by exposure to important environmental toxicants. Cholinesterases (ChEs) are present in a large number of species and have been successfully used for decades to discriminate the environmental presence of specific groups of pollutants. The success of cholinesterase inhibition has been due to their usefulness as a biomarker to address the presence of organophosphate (OP) and carbamate (CB) pesticides. However, its use in ecotoxicology has not been limited to such chemicals, and several other putative classes of contaminants have been implicated in cholinesterasic impairment. Nevertheless, the use of cholinesterases as a monitoring tool requires its full characterization in species to be used as test organisms. This study analyzed and differentiated the various cholinesterase forms present in two autochthonous organisms from the Ria de Aveiro (Portugal) area, namely the polychaete Diopatra neapolitana and the bivalve Solen marginatus, to be used in subsequent monitoring studies. In addition, this study also validated the putative use of the now characterized cholinesterasic forms by analyzing the in vitro effects of common anthropogenic contaminants, such as detergents, pesticides, and metals. The predominant cholinesterasic form found in tissues of D. neapolitana was acetylcholinesterase, while homogenates of S. marginatus were shown to possess an atypical cholinesterasic form, with a marked preference for propionylthiocholine. Cholinesterases from D. neapolitana were generally non-responsive towards the majority of the selected chemicals. On the contrary, strong inhibitory effects were reported for ChEs of S. marginatus following exposure to the selected pesticides.

  4. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease.

    PubMed

    Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong

    2017-12-01

    A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.

  5. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    PubMed

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  6. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors.

    PubMed

    Nisa, Mehr-Un; Munawar, Munawar A; Iqbal, Amber; Ahmed, Asrar; Ashraf, Muhammad; Gardener, Qurra-Tul-Ann A; Khan, Misbahul A

    2017-09-29

    A novel series of 5-(aroylhydrazinocarbonyl)escitalopram (58-84) have been designed, synthesized and tested for their inhibitory potential against cholinesterases. 3-Chlorobenzoyl- (71) was found to be the most potent compound of this series having IC 50 1.80 ± 0.11 μM for acetylcholinesterase (AChE) inhibition. For the butyrylcholinesterase (BChE) inhibition, 2-bromobenzoyl- (76) was the most active compound of the series with IC 50 2.11 ± 0.31 μM. Structure-activity relationship illustrated that mild electron donating groups enhanced enzyme inhibition while electron withdrawing groups reduced the inhibition except o-NO 2 . However, size and position of the substituents affected enzyme inhibitions. . In docking study of AChE, the ligands 71, 72 and 76 showed the scores of 5874, 5756 and 5666 and ACE of -64.92,-203.25 and -140.29 kcal/mol, respectively. In case of BChE, ligands 71, 76 and 81 depicted high scores 6016, 6150 and 5994 with ACE values -170.91, -256.84 and -235.97 kcal/mol, respectively. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae).

    PubMed

    Cespedes, Carlos L; Muñoz, Evelyn; Salazar, Juan R; Yamaguchi, Lydia; Werner, Enrique; Alarcon, Julio; Kubo, Isao

    2013-12-01

    Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellman's method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 μg/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 μg/ml, respectively) and its major components verbascoside 8 (50.9% and 70.0% at 200 μg/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2% and 85.3% at 100 and 200 μg/ml, against AChE, respectively and 99.1% and 99.7% at 100 and 200 μg/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, α-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5% and 72.1% against AChE and BChE at 200 μg/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9% and 67.9% against AChE and BChE at 200 μg/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-α-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes α-lupeol 3, β-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors.

  8. Reactivation of organophosphate-inhibited human acetylcholinesterase by isonitrosoacetone (MINA): a kinetic analysis.

    PubMed

    Worek, Franz; Thiermann, Horst

    2011-11-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. RELATIONSHIPS BETWEEN TISSUE LEVELS OF CARBARYL, A PROTOTYPICAL CARBAMATE PESTICIDE, AND CHOLINESTERASE INHIBITION IN LONG EVANS RATS.

    EPA Science Inventory

    As part of an effort to link pharmacokinetics with biochemical and physiological endpoints, the relationships between cholinesterase (ChE) activity and tissue levels of a prototypical N-methyl carbamate pesticide were examined. In a dose-response study, carbaryl (0, 3, 7.5, 15, 3...

  10. Natural genomic amplification of cholinesterase genes in animals.

    PubMed

    Chatonnet, Arnaud; Lenfant, Nicolas; Marchot, Pascale; Selkirk, Murray E

    2017-08-01

    Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  11. Variation of Cholinesterase-Based Biosensor Sensitivity to Inhibition by Organophosphate Due To Ionizing Radiation

    PubMed Central

    Pohanka, Miroslav; Koch, Miroslav

    2009-01-01

    A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715

  12. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Studies on combined effects of organophosphates and heavy metals in birds. I. Plasma and brain cholinesterase in coturnix quail fed methyl mercury and orally dosed with parathion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter, M.P.; Ludke, J.L.

    1975-03-01

    It was found that mercury potentiated the toxicity and biochemical effects of parathion. Male Coturnix quail (Coturnix coturnix japonica) were fed a sublethal concentration of morsodren (4 ppm as methyl mercury) for 18 weeks. This resulted in an accumulation of 21.0 ppm of mercury in the liver and 8.4 ppm in the carcass. Birds fed clean feed and those fed morsodren-treated feed were orally dosed with 2, 4, 6, 8, and 10 mg/kg parathion, and their 48-h survival times compared. The computed LD/sub 50/ was 5.86 mg/kg in birds not fed morsodren and 4.24 in those fed the heavy metal.more » When challenged with a sublethal, oral dose of parathion (1.0 mg/kg), morsodren-fed birds exhibited significantly greater inhibition of plasma and brain cholinesterase activity than controls dosed with parathion. Brain cholinesterase activity was inhibited 41 percent in morsodren-fed birds and 26 percent in clean-fed birds dosed with parathion, which suggested that the increase in parathion toxicity in the presence of morsodren was directly related to the inhibition of brain cholinesterase. (auth)« less

  14. Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals

    USGS Publications Warehouse

    Brewer, S.K.; Little, E.E.; DeLonay, A.J.; Beauvais, S.L.; Jones, S.B.; Ellersieck, Mark R.

    2001-01-01

    We selected four metrics of swimming behavior (distance swam, speed, rate of turning, and tortuosity of path) and the commonly used biochemical marker, brain cholinesterase (ChE) activity, to assess (1) the sensitivity and reliability of behavior as a potential biomarker in monitoring work, (2) the potential for these endpoints to be used in automated monitoring, and (3) the linkage between behavior and its underlying biochemistry. Malathion-exposed fish exhibited large decreases in distance and speed and swam in a more linear path than control fish after 24 h exposure. By 96 h exposure, fish still swam slower and traveled less distance; fish fully recovered after 48 h in clean water. Diazinon-exposed fish exhibited decreases in distance, speed, and turning rate compared to controls. After 48 h recovery in clean water, fish exposed to diazinon had not recovered to control levels. The behavioral responses provided measures of neurotoxicity that were easily quantifiable by automated means, implying that the inclusion of behavior in monitoring programs can be successful. Furthermore, correlations between behavior and biochemical endpoints, such as ChE inhibition, suggest that this approach can provide a meaningful link between biochemistry and behavior and can provide useful information on toxicant impacts.

  15. Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals.

    PubMed

    Brewer, S K; Little, E E; DeLonay, A J; Beauvais, S L; Jones, S B; Ellersieck, M R

    2001-01-01

    We selected four metrics of swimming behavior (distance swam, speed, rate of turning, and tortuosity of path) and the commonly used biochemical marker, brain cholinesterase (ChE) activity, to assess (1) the sensitivity and reliability of behavior as a potential biomarker in monitoring work, (2) the potential for these endpoints to be used in automated monitoring, and (3) the linkage between behavior and its underlying biochemistry. Malathion-exposed fish exhibited large decreases in distance and speed and swam in a more linear path than control fish after 24 h exposure. By 96 h exposure, fish still swam slower and traveled less distance; fish fully recovered after 48 h in clean water. Diazinon-exposed fish exhibited decreases in distance, speed, and turning rate compared to controls. After 48 h recovery in clean water, fish exposed to diazinon had not recovered to control levels. The behavioral responses provided measures of neurotoxicity that were easily quantifiable by automated means, implying that the inclusion of behavior in monitoring programs can be successful. Furthermore, correlations between behavior and biochemical endpoints, such as ChE inhibition, suggest that this approach can provide a meaningful link between biochemistry and behavior and can provide useful information on toxicant impacts.

  16. Tick Salivary Cholinesterase: A Probable Immunomodulator of Host-parasite Interactions.

    PubMed

    Temeyer, Kevin B; Tuckow, Alexander P

    2016-05-01

    The southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), is the most economically important cattle ectoparasite in the world. Rhipicephalus microplus and Rhipicephalus annulatus (Say) continue to threaten U.S. cattle producers despite eradication and an importation barrier based on inspection, dipping of imported cattle in organophosphate (OP) acaricide, and quarantine of infested premises. OP acaricides inhibit acetylcholinesterase (AChE), essential to tick central nervous system function. Unlike vertebrates, ticks possess at least three genes encoding AChEs, differing in amino acid sequence and biochemical properties. Genomic analyses of R. microplus and the related tick, Ixodes scapularis, suggest that ticks contain many genes encoding different AChEs. This work is the first report of a salivary cholinesterase (ChE) activity in R. microplus, and discusses complexity of the cholinergic system in ticks and significance of tick salivary ChE at the tick-host interface. It further provides three hypotheses that the salivary ChE plausibly functions 1) to reduce presence of potentially toxic acetylcholine present in the large bloodmeal imbibed during rapid engorgement, 2) to modulate the immune response (innate and/or acquired) of the host to tick antigens, and 3) to influence transmission and establishment of pathogens within the host animal. Ticks are vectors for a greater number and variety of pathogens than any other parasite, and are second only to mosquitoes (owing to malaria) as vectors of serious human disease. Saliva-assisted transmission (SAT) of pathogens is well-known; however, the salivary components participating in the SAT process remain to be elucidated. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  17. The enzymatic hydrolysis of imidazoleacryloylcholine (murexine) and imidazolepropionylcholine (dihydromurexine) by various cholinesterases

    PubMed Central

    Grelis, M. E.; Tabachnick, I. I. A.

    1957-01-01

    Several choline esters, including the imidazoleacryloyl and imidazolepropionyl compounds, have been hydrolysed by cholinesterases from various sources. The imidazolepropionyl ester was metabolized by cholinesterases obtained from human plasma, ox spleen, ox serum, and guinea-pig liver, but not by rat liver or bovine red cell cholinesterase. It is suggested the imidazolepropionylcholine or a closely related ester might be the natural substrate for “non-specific” cholinesterase. PMID:13460237

  18. Continuously recording body temperature in terrestrial chelonians

    USGS Publications Warehouse

    Nussear, K.E.; Esque, T.C.; Tracy, C.R.

    2002-01-01

    The degree of interaction between mercury and cholinesterase inhibiting pesticides was determined by comparing enzyme responses to sublethal dosages of parathion or carbofuran in quail fed 0.05, 0.5, or 5.0 ppm morsodren for 18 weeks. A statistically significant interaction was defined as greater brain cholinesterase inhibition in morsodren-fed than in clean-fed birds following pesticide dosage. The tissue residues of mercury that accumulated before significant mercury-parathion interactions occurred were higher than levels that might be expected in natural populations, but significant mercury-carbofuran interactions occurred in birds that had only accumulated 1.0 ppm liver mercury. The results indicate that indiscriminate usage of cholinesterase inhibiting pesticides are dangerous, since natural populations of fish-eating birds oftentimes contain this magnitude of mercury.

  19. Time course of cholinesterase inhibition in adult rats treated acutely with carbaryl, carbofuran, formetanate, methomyl, methiocarb, oxamyl or propoxur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, S.; Marshall, R.S.; Hunter, D.L.

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n = 4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); carbofuran (0.5 mg/kg in corn oil); formetanate HCl (10 mg/kg in water); methomyl (3 mg/kg in water); methiocarb (25 mg/kg in corn oil); oxamyl (1 mg/kg in water); or propoxur (20 mg/kg in corn oil). This level of dosing produced at least 40% brain ChE inhibition. Brain and blood were taken from 0.5 tomore » 24 h after dosing for analysis of ChE activity using two different methods: (1) a radiometric method which limits the amount of reactivation of ChE activity, and (2) a spectrophotometric method (Ellman method using traditional, unmodified conditions) which may encourage reactivation. The time of peak ChE inhibition was similar for all seven N-methyl carbamate pesticides: 0.5-1.0 h after dosing. By 24 h, brain and RBC ChE activity in all animals returned to normal. The spectrophotometric method underestimated ChE inhibition. Moreover, there was a strong, direct correlation between brain and RBC ChE activity (radiometric assay) for all seven compounds combined (r {sup 2} = 0.73, slope 1.1), while the spectrophotometric analysis of the same samples showed a poor correlation (r {sup 2} = 0.09). For formetanate, propoxur, methomyl, and methiocarb, brain and RBC ChE inhibitions were not different over time, but for carbaryl, carbofuran and oxamyl, the RBC ChE was slightly more inhibited than brain ChE. These data indicate (1) the radiometric method is superior for analyses of ChE activity in tissues from carbamate-treated animals (2) that animals treated with these N-methyl carbamate pesticides are affected rapidly, and recover rapidly, and (3) generally, assessment of RBC ChE is an accurate predictor of brain ChE inhibition for these seven pesticides.« less

  20. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease.

    PubMed

    Boulebd, Houssem; Ismaili, Lhassane; Martin, Helene; Bonet, Alexandre; Chioua, Mourad; Marco Contelles, José; Belfaitah, Ali

    2017-05-01

    Due to the multifactorial nature of Alzheimer's disease, there is an urgent search for new more efficient, multitarget-directed drugs. This paper describes the synthesis, antioxidant and in vitro biological evaluation of ten (benz)imidazopyridino tacrines (7-16), showing less toxicity than tacrine at high doses, and potent cholinesterase inhibitory capacity, in the low micromolar range. Among them, compound 10 is a nonhepatotoxic tacrine at 1000 mM, showing moderate, but totally selective electric eel acetylcholinesterase inhibition, whereas molecule 16 is twofold less toxic than tacrine at 1000 μM, showing moderate and almost equipotent inhibition for electric eel acetylcholinesterase and equine butyrylcholinesterase. (Benz)imidazopyridino tacrines (7-16) have been identified as a new and promising type of tacrines for the potential treatment of Alzheimer's disease.

  1. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level.

  2. Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease.

    PubMed

    Shenhar-Tsarfaty, Shani; Berliner, Shlomo; Bornstein, Natan M; Soreq, Hermona

    2014-07-01

    Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.

  3. Thioesters for the in vitro evaluation of agents to image brain cholinesterases.

    PubMed

    Macdonald, Ian R; Jollymore, Courtney T; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan

    2013-06-01

    Cholinesterases are associated with pathology characteristic of conditions such as Alzheimer's disease and are therefore, considered targets for neuroimaging. Ester derivatives of N-methylpiperidinol are promising potential imaging agents; however, methodology is lacking for evaluating these compounds in vitro. Here, we report the synthesis and evaluation of a series of N-methylpiperidinyl thioesters, possessing comparable properties to their corresponding esters, which can be directly evaluated for cholinesterase kinetics and histochemical distribution in human brain tissue. N-methylpiperidinyl esters and thioesters were synthesized and they demonstrated comparable cholinesterase kinetics. Furthermore, thioesters were capable, using histochemical method, to visualize cholinesterase activity in human brain tissue. N-methylpiperidinyl thioesters can be rapidly evaluated for cholinesterase kinetics and visualization of enzyme distribution in brain tissue which may facilitate development of cholinesterase imaging agents for application to conditions such as Alzheimer's disease.

  4. Cholinesterase Inhibitors for Lewy Body Disorders: A Meta-Analysis

    PubMed Central

    Yasue, Ichiro; Iwata, Nakao

    2016-01-01

    Background: We performed a meta-analysis of cholinesterase inhibitors for patients with Lewy body disorders, such as Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Methods: The meta-analysis included only randomized controlled trials of cholinesterase inhibitors for Lewy body disorders. Results: Seventeen studies (n = 1798) were assessed. Cholinesterase inhibitors significantly improved cognitive function (standardized mean difference [SMD] = −0.53], behavioral disturbances (SMD = −0.28), activities of daily living (SMD = −0.28), and global function (SMD = −0.52) compared with control treatments. Changes in motor function were not significantly different from control treatments. Furthermore, the cholinesterase inhibitor group had a higher all-cause discontinuation (risk ratio [RR] = 1.48, number needed to harm [NNH] = 14), discontinuation due to adverse events (RR = 1.59, NNH = 20), at least one adverse event (RR = 1.13, NNH = 11), nausea (RR = 2.50, NNH = 13), and tremor (RR = 2.30, NNH = 20). Conclusions: Cholinesterase inhibitors appear beneficial for the treatment of Lewy body disorders without detrimental effects on motor function. However, a careful monitoring of treatment compliance and side effects is required. PMID:26221005

  5. [Phosphoric acid ester preparations used in cattle, swine and sheep with special reference to cholinesterase activity. 4. Use of phosphoric acid esters and their effect on acetylcholinesterase activity in sheep].

    PubMed

    Mieth, K; Beier, D; Losch, K

    1975-01-01

    The use of organophosphorus preparations for the control of ectoparasites and endoparasites of sheep, particularly systemic application, is discussed. Experiments on 13 groups of sheep with five preparations produced in the German Democratic Republic in various formulations and concentrations showed that external application had good contact activity, but little was absorbed. Acetylcholinesterase activity was not inhibited, except by pour-on application of doses several times the normal dose. The preparations were arranged in order of cholinesterase inhibition. In contrast to cattle, diminished cholinesterase activity was unreliable as in indicator of systemic toxicity of organophosphorus preparations in sheep.

  6. Development of acetophenone ligands as potential neuroimaging agents for cholinesterases.

    PubMed

    Jollymore-Hughes, Courtney T; Pottie, Ian R; Martin, Earl; Rosenberry, Terrone L; Darvesh, Sultan

    2016-11-01

    Association of cholinesterase with β-amyloid plaques and tau neurofibrillary tangles in Alzheimer's disease offers an opportunity to detect disease pathology during life. Achieving this requires development of radiolabelled cholinesterase ligands with high enzyme affinity. Various fluorinated acetophenone derivatives bind to acetylcholinesterase with high affinity, including 2,2,2-trifluoro-1-(3-dimethylaminophenyl)ethanone (1) and 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (2). Such compounds also offer potential for incorporation of radioactive fluorine ( 18 F) for Positron Emission Tomography (PET) imaging of cholinesterases in association with Alzheimer's disease pathology in the living brain. Here we describe the synthesis of two meta-substituted chlorodifluoroacetophenones using a Weinreb amide strategy and their rapid conversion to the corresponding trifluoro derivatives through nucleophilic substitution by fluoride ion, in a reaction amenable to incorporating 18 F for PET imaging. In vitro kinetic analysis indicates tight binding of the trifluoro derivatives to cholinesterases. Compound 1 has a K i value of 7nM for acetylcholinesterase and 1300nM for butyrylcholinesterase while for compound 2 these values are 0.4nM and 26nM, respectively. Tight binding of these compounds to cholinesterase encourages their development for PET imaging detection of cholinesterase associated with Alzheimer's disease pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: a modified kinetic approach.

    PubMed

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-12-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  9. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors.

    PubMed

    Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R

    2016-10-01

    New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  10. Antioxidant activity and cholinesterase inhibition studies of four flavouring herbs from Alentejo.

    PubMed

    Arantes, Sílvia; Piçarra, Andreia; Candeias, Fátima; Caldeira, A Teresa; Martins, M Rosário; Teixeira, Dora

    2017-09-01

    Essential oils (EOs) and aqueous extracts of aerial parts of four aromatic species, Calamintha nepeta, Foeniculum vulgare, Mentha spicata and Thymus mastichina, from southwest of Portugal were characterised chemically and analysed in order to evaluate their antioxidant potential and cholinesterase inhibitory activities. The main components of EOs were oxygenated monoterpenes, and aqueous extracts were rich in phenol and flavonoid compounds. EOs and aqueous extracts presented a high antioxidant potential, with ability to protect the lipid substrate, free radical scavenging and iron reducing power. Furthermore, EOs and extracts showed AChE and BChE inhibitory activities higher than rivastigmine, the standard drug. Results suggested the potential use of EOs and aqueous extracts of these flavouring herbs as nutraceutical or pharmaceutical preparations to minimise the oxidative stress and the progression of degenerative diseases.

  11. Evolution of cholinesterases in the animal kingdom.

    PubMed

    Pezzementi, Leo; Chatonnet, Arnaud

    2010-09-06

    Cholinesterases emerged from a family of enzymes and proteins with adhesion properties. This family is absent in plants and expanded in multicellular animals. True cholinesterases appeared in triploblastic animals together with the cholinergic system. Lineage specific duplications resulted in two acetylcholinesterases in most hexapods and in up to four genes in nematodes. In vertebrates the duplication leading to acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is now considered to be an ancient event which occurred before the split of osteichthyes. The product of one or the other of the paralogues is responsible for the physiological hydrolysis of acetylcholine, depending on the species lineage and tissue considered. The BChE gene seems to have been lost in some fish lineages. The complete genome of amphioxus (Branchiostoma floridae: cephalochordate) contains a large number of duplicated genes or pseudogenes of cholinesterases. Sequence comparison and tree constructions raise the question of considering the atypical ChE studied in this organism as a representative of ancient BChE. Thus nematodes, arthropods, annelids, molluscs, and vertebrates typically possess two paralogous genes coding for cholinesterases. The origin of the duplication(s) is discussed. The mode of attachment through alternative C-terminal coding exons seems to have evolved independently from the catalytic part of the gene. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Antibacterial, antioxidant, anti-cholinesterase potential and flavonol glycosides of Biscutella raphanifolia (Brassicaceae).

    PubMed

    Boudouda, Houria Berhail; Zeghib, Assia; Karioti, Anastazia; Bilia, Anna Rita; Öztürk, Mehmet; Aouni, Mahjoub; Kabouche, Ahmed; Kabouche, Zahia

    2015-01-01

    Different extracts of the aerial parts of Biscutella raphanifolia (Brassicaceae), which has not been the subject of any study, were screened for the phytochemical content, anti-microbial, antioxidant and anti-cholinesterase activities. We used four methods to identify the antioxidant activity namely, ABTS(•+), DPPH• scavenging, CUPRAC and ferrous-ions chelating methods. Since there is a relationship between antioxidants and cholinesterase enzyme inhibitors, we used two methods to determine the in vitro anti-cholinesterase activity by the use of the basic enzymes that occur in causing Alzheimer's disease: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extracts were also tested in vitro antimicrobial activity against various bacteria. The phytochemical study of B. raphanifolia afforded four flavonol glycosides; namely, quercetin-3-O-β-D-g1ucoside, quercetin-3-O-[β-D-glucosyl(1→2)-O-β-D-glucoside], quercetin-3-O-[β-D-glucosyl(1→3)-O-β-D-glucoside] and kaempferol-3-O-[β-D-glucosyl(1→2)-[(6'''p-coumaroyl)- β-D-glucoside], being isolated here for the first time from Biscutella raphanifolia and the genus. The ethyl acetate extract showed the highest activity in ABTS(•+), DPPH• and CUPRAC assays, while the petroleum ether extract demonstrated optimum efficiency metal chelating activity. The dicloromethane and petroleum ether extracts showed a mild inhibition against AChE and BChE. However, the petroleum ether extract showed a good antibacterial activity against the pathovars Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC) and Enterococcus feacalis, whereas the Enterohemorrhagic E. coli (EHEC) strain was more sensitive to dichloromethane and n-butanol extracts.

  13. Use of procainamide gels in the purification of human and horse serum cholinesterases.

    PubMed Central

    Ralston, J S; Main, A R; Kilpatrick, B F; Chasson, A L

    1983-01-01

    Two large-scale methods based primarily on the use of procainamide-Sepharose gels were developed for the purification of horse and human serum non-specific cholinesterases. With method I, the procainamide-Sepharose 4B gel was used in the first step to handle large volumes of serum. With method II, the procainamide-Sepharose 4B gel was used in the final step to obtain pure enzyme. Although both methods gave electrophoretically pure cholinesterase preparations in good yields, they were significantly more efficient at purifying the horse enzyme than the human enzyme. To study this problem, the relative binding of human and horse cholinesterases to procainamide-, methylacridinium (MAC)-, m-trimethylammoniophenyl (m-PTA)- and p-trimethylammoniophenyl (p-PTA)-Sepharose 4B gels were measured, by using two approaches. In one, binding was measured by a procedure involving equilibration of pure cholinesterase in a small volume of diluted gel slurry (4%, v/v). A partially purified preparation of Electrophorus acetylcholinesterase was included. Pure human cholinesterase bound consistently more tightly to each of the gels than did horse cholinesterase, and the acetylcholinesterase appeared to bind the gels 10-100 times more tightly than did the non-specific cholinesterases. The order of binding for the cholinesterases, beginning with the tightest, was: procainamide-Sepharose 4B, MAC-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. For the acetylcholinesterase the order was: MAC-Sepharose 4B, procainamide-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. The second approach involved passing native sera or partially purified sera fractions through 1 ml test columns of each of the four affinity gels to determine their retention capacity for the cholinesterases. With these impure samples, the MAC-Sepharose 4B gels proved superior to the procainamide-Sepharose 4B gels at retaining human cholinesterase, but the opposite was true for the horse cholinesterase. PMID

  14. Transferable residues from dog fur and plasma cholinesterase inhibition in dogs treated with a flea control dip containing chlorpyrifos.

    PubMed Central

    Boone, J S; Tyler, J W; Chambers, J E

    2001-01-01

    We studied chlorpyrifos, an insecticide present in a commercial dip for treating ectoparasites in dogs, to estimate the amount of transferable residues that children could obtain from their treated pets. Although the chlorpyrifos dip is no longer supported by the manufacturer, the methodology described herein can help determine transferable residues from other flea control insecticide formulations. Twelve dogs of different breeds and weights were dipped using the recommended guidelines with a commercial, nonprescription chlorpyrifos flea dip for 4 consecutive treatments at 3-week intervals (nonshampoo protocol) and another 12 dogs were dipped with shampooing between dips (shampoo protocol). The samples collected at 4 hr and 7, 14, and 21 days after treatment in the nonshampoo protocol averaged 971, 157, 70, and 26 microg chlorpyrifos, respectively; in the shampoo protocol the samples averaged 459, 49, 15, and 10 microg, respectively. The highest single sample was about 7,000 microg collected at 4 hr. The pretreatment specific activities in the plasma of the dogs were about 75 nmol/min/mg protein for butyrylcholinesterase (BChE), and 9 nmol/min/mg protein for acetylcholinesterase (AChE). BChE was inhibited 50-75% throughout the study, and AChE was inhibited 11-18% in the nonshampoo protocol; inhibition was not as great in the shampoo protocol. There was no correlation (pinhibition was observed at 7 days than at 4 hr, probably reflecting the bioactivation of chlorpyrifos to chlorpyrifos-oxon. Plasma cholinesterase activity did not return to control levels during the 3-week period. The differences between the shampoo and nonshampoo protocols were explained by differences in the techniques of the dip

  15. Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients

    PubMed Central

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2014-01-01

    Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870

  16. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients.

    PubMed

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2009-02-01

    The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. AD patients aged 50-85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman's colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by 10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2% increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation.

  17. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits.

    PubMed

    Zare-Zardini, Hadi; Tolueinia, Behnaz; Hashemi, Azam; Ebrahimi, Leila; Fesahat, Farzaneh

    2013-11-01

    Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.

  18. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Zhu, Jie; Yang, Hongyu; Chen, Yao; Lin, Hongzhi; Li, Qi; Mo, Jun; Bian, Yaoyao; Pei, Yuqiong; Sun, Haopeng

    2018-12-01

    The cholinergic hypothesis has long been a "polar star" in drug discovery for Alzheimer's disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC 50 ) = 37.02 nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC 50  = 101.40 nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25 μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.

  19. Design and synthesis of novel 1,4-benzodiazepine derivatives and their biological evaluation as cholinesterase inhibitors.

    PubMed

    Mohamed, Lamia Wagdy; El-Yamany, Mohamed F

    2012-08-01

    A new series of 1,4-benzodiazepine-2,5-dione structurally related to cyclopenin has been synthesized. The new compounds were assayed in vivo and in vitro for their ability to inhibit acetylcholinesterase enzyme and were found to have potent reversible anticholinesterase activity when tested in vitro for isolated frog rectus abdominis and guinea pig ileum in addition to increasing brain cholinesterase level in rats when percentage inhibition were tested in vivo, moreover compounds 5a, 5b, 5c and 5g were the most active. LD(50) was performed for these derivatives and they displayed high safety margin.

  20. Cholinesterase Inhibitors and Hospitalization for Bradycardia: A Population-Based Study

    PubMed Central

    Park-Wyllie, Laura Y.; Mamdani, Muhammad M.; Li, Ping; Gill, Sudeep S.; Laupacis, Andreas; Juurlink, David N.

    2009-01-01

    Background Cholinesterase inhibitors are commonly used to treat dementia. These drugs enhance the effects of acetylcholine, and reports suggest they may precipitate bradycardia in some patients. We aimed to examine the association between use of cholinesterase inhibitors and hospitalization for bradycardia. Methods and Findings We examined the health care records of more than 1.4 million older adults using a case-time-control design, allowing each individual to serve as his or her own control. Case patients were residents of Ontario, Canada, aged 67 y or older hospitalized for bradycardia between January 1, 2003 and March 31, 2008. Control patients (3∶1) were not hospitalized for bradycardia, and were matched to the corresponding case on age, sex, and a disease risk index. All patients had received cholinesterase inhibitor therapy in the 9 mo preceding the index hospitalization. We identified 1,009 community-dwelling older persons hospitalized for bradycardia within 9 mo of using a cholinesterase inhibitor. Of these, 161 cases informed the matched analysis of discordant pairs. Of these, 17 (11%) required a pacemaker during hospitalization, and six (4%) died prior to discharge. After adjusting for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor (adjusted odds ratio [OR] 2.13, 95% confidence interval [CI] 1.29–3.51). The risk was similar among individuals with pre-existing cardiac disease (adjusted OR 2.25, 95% CI 1.18–4.28) and those receiving negative chronotropic drugs (adjusted OR 2.34, 95% CI 1.16–4.71). We found no such association when we replicated the analysis using proton pump inhibitors as a neutral exposure. Despite hospitalization for bradycardia, more than half of the patients (78 of 138 cases [57%]) who survived to discharge subsequently resumed cholinesterase inhibitor therapy. Conclusions Among older patients, initiation of cholinesterase inhibitor

  1. Self reported symptoms and inhibition of acetylcholinesterase activity among Kenyan agricultural workers

    PubMed Central

    Ohayo-Mitoko, G.; Kromhout, H.; Simwa, J.; Boleij, J.; Heederik, D.

    2000-01-01

    OBJECTIVES—This study was part of the East African pesticides project. The general objective was to assess health hazards posed by handling, storage, and use of pesticides, on agricultural estates and small farms with a view to developing strategies for prevention and control of pesticide poisoning. The aim of this paper is to describe the prevalence of symptoms in this population, to relate levels of inhibition to reported symptoms and evaluate at which levels of inhibition symptoms become increased.
METHODS—Complete data were available for 256 exposed subjects and 152 controls from four regions in Kenya. A structured questionnaire on symptoms experienced at the time of interview was given to all subjects and controls. Information was also obtained on sex, age, main occupation, and level of education. Symptoms reported during the high exposure period, were initially clustered in broader symptom categories from reference literature on health effects of pesticides that inhibit cholinesterase (organophosphate and carbamate). Prevalence ratios were estimated for symptoms with changes in cholinesterase activity in serum.
RESULTS—Symptom prevalence in exposed subjects was higher during the high exposure period than the low exposure period, although these differences were not significant. Interestingly, a clear and significant change in symptoms prevalence was found in the controls with a higher prevalence in the low exposure period. Analysis of the relation between cholinesterase inhibition and symptoms showed that prevalence ratios were significantly >1 for respiratory, eye, and central nervous system symptoms for workers with >30% inhibition. Similar results were found for analyses with the actual level of acetylcholinesterase activity.
CONCLUSION—The results suggest the presence of a relation between exposure and acetylcholinesterase inhibition, acetylcholinesterase activity, and respiratory, eye, and central nervous system symptoms. Increased symptom

  2. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids.

    PubMed

    Sun, Yang; Chen, Jianwen; Chen, Xuemin; Huang, Ling; Li, Xingshu

    2013-12-01

    A series of Tacrine-Homoisoflavonoid hybrids were designed, synthesised and evaluated as inhibitors of cholinesterases (ChEs) and human monoamine oxidases (MAOs). Most of the compounds were found to be potent against both ChEs and MAO-B. Among these hybrids, compound 8b, with a 6 carbon linker between tacrine and (E)-7-hydroxy-3-(4-methoxybenzylidene)chroman-4-one, proved to be the most potent against AChE and MAO-B with IC50 values of 67.9 nM and 0.401 μM, respectively. This compound was observed to cross the blood-brain barrier (BBB) in a parallel artificial membrane permeation assay for the BBB (PAMPA-BBB). The results indicated that compound 8b is an excellent multifunctional promising compound for development of novel drugs for Alzheimer's disease (AD). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Plasma cholinesterase activity of rats, western grey kangaroos, alpacas, sheep, cattle, and horses.

    PubMed

    Mayberry, Chris; Mawson, Peter; Maloney, Shane K

    2015-01-01

    Plasma cholinesterase activity levels of various species may be of interest to toxicologists or pathologists working with chemicals that interfere with the activity of plasma cholinesterase. We used a pH titration method to measure the plasma cholinesterase activity of six mammalian species. Plasma cholinesterase activity varied up to 50-fold between species: sheep (88 ± 45 nM acetylcholine degraded per ml of test plasma per minute), cattle (94 ± 35), western grey kangaroos (126 ± 92), alpaca (364 ± 70), rats (390 ± 118) and horses (4539 ± 721). We present a simple, effective technique for the assay of plasma cholinesterase activity levels from a range of species. Although labour-intensive, it requires only basic laboratory equipment. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Development of square wave voltammetry method for the assessment of organophosphorus compound impact on the cholinesterase of Pheretima with 2,6-dichloroindophenol as a redox indicator.

    PubMed

    Qiu, Jingxia; Chen, Jin; Ma, Qianqian; Miao, Yuqing

    2009-09-01

    A square wave voltammetry method was developed for the assessment of organophosphorus (OPs) compound impact on the cholinesterase of Pheretima with 2,6-dichloroindophenol (2,6-DCIP) as a redox indicator. The substrate of acetylthiocholine is hydrolysed by the cholinesterase (ChE) from soil animal pheretima, and the produced thiocholine reacts with the 2,6-DCIP to give obvious shift of electrochemical signal. The inhibition of ChE was assessed by measuring the enzyme activity before and after incubating with parathion-methyl. The reduction peak current of 2,6-DCIP decreases with the time of enzymatical reaction. The ChE loses almost 32.74% activity after 10 min incubation with 1ng mL(-1) paraoxon and 54.62% with 10 microg mL(-1) paraoxon, while the activity that corresponds to 100 microg mL(-1) paraoxon was nearly completely inhibited. This method can be employed to assess the inhibition of ChE and investigate OPs impact on environmental animals.

  5. Serum cholinesterase is an important prognostic factor in chronic heart failure.

    PubMed

    Sato, Takamasa; Yamauchi, Hiroyuki; Suzuki, Satoshi; Yoshihisa, Akiomi; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2015-03-01

    We determine the importance of indicators of nutrition including lymphocyte, total protein, albumin, cholinesterase and body mass index, and compare the prognostic significance in chronic heart failure (CHF). We examined consecutive 465 CHF patients (376 males, age 62 ± 14 years) who underwent cardiopulmonary exercise testing, echocardiography and blood examination including indicators of nutrition at the same time in our hospital. The patients were followed up [median period 766 days (interquartile range 500-1060)] to register cardiac deaths and rehospitalization due to worsening heart failure. There were 180 cardiac events during the follow-up periods. Patients with cardiac events had lower cholinesterase level than those without events (P < 0.001). On the receiver operating characteristic analysis, the best cut-off value for cholinesterase was 240 U/l (area under the curve 0.720). In the Kaplan-Meier analysis, patients with cholinesterase <240 U/l had significantly higher cardiac event rates than those with cholinesterase >240 U/l. Multivariable Cox proportional hazards model demonstrated that NYHA class III [hazard ratio (HR): 1.688, 95 % confidence interval (CI) 1.062-2.684, P = 0.027], eGFR (HR: 0.983, 95 % CI 0.971-0.995, P = 0.006), sodium concentration (HR: 0.947, 95 % CI 0.897-0.999, P < 0.046), log BNP (HR: 1.880, 95 % CI 1.509-2.341, P < 0.001), cholinesterase (HR: 0.996, 95 % CI 0.993-0.998, P = 0.002) and exertional periodic breathing (HR: 1.619, 95 % CI 1.098-2.388, P = 0.015) were independent factors to predict adverse clinical outcomes. Serum cholinesterase level was an important prognostic factor in CHF.

  6. Cholinesterase enzymes inhibitors from the leaves of Rauvolfia reflexa and their molecular docking study.

    PubMed

    Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran

    2013-03-25

    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.

  7. Cholinesterase inhibitors for rarer dementias associated with neurological conditions.

    PubMed

    Li, Ying; Hai, Shan; Zhou, Yan; Dong, Bi Rong

    2015-03-03

    Rarer dementias include Huntington's disease (HD), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), frontotemporal dementia (FTD), dementia in multiple sclerosis (MS) and progressive supranuclear palsy (PSP). Cholinesterase inhibitors, including donepezil, galantamine and rivastigmine, are considered to be the first-line medicines for Alzheimer's disease and some other dementias, such as dementia in Parkinson's disease. Cholinesterase inhibitors are hypothesised to work by inhibiting the enzyme acetylcholinesterase (AChE) which breaks down the neurotransmitter acetylcholine. Cholinesterase inhibitors may also lead to clinical improvement for rarer dementias associated with neurological conditions. To assess the efficacy and safety of cholinesterase inhibitors for cognitive impairment or dementia associated with neurological conditions. We searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register, CENTRAL, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS, several trial registries and grey literature sources in August 2013. We included randomised, double-blind, controlled trials assessing the efficacy of treatment of rarer dementias associated with neurological conditions with currently marketed cholinesterase inhibitors. Two review authors independently assessed eligibility and quality of trials, and extracted data. We used the standard methodological procedures of the Cochrane Collaboration. We included eight RCTs involving 567 participants. Six studies used a simple parallel-group design; the other two consisted of an open-label treatment period followed by a randomised phase. All trials were well concealed for allocation and double-blind, however the sample sizes of most trials were small. All trials used placebo as control. We performed meta-analyses for some outcomes in patients with MS. For all other conditions, results are presented narratively.Two trials included patients with HD; one

  8. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran

    PubMed Central

    Duysen, Ellen G.; Cashman, John R.; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Lockridge, Oksana

    2012-01-01

    Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal’s well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1−/− mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5 mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100 mg/kg and chlorpyrifos oxon at 14 mg/kg was lethal to wild-type but not to ES1−/− mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase. PMID:22209767

  9. Amino acid sequence of human cholinesterase. Annual report, 30 September 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockridge, O.

    1985-10-01

    The active-site serine residue is located 198 amino acids from the N-terminal. The active-site peptide was isolated from three different genetic types of human serum cholinesterase: from usual, atypical, and atypical-silent genotypes. It was found that the amino acid sequence of the active-site peptide was identical in all three genotypes. Comparison of the complete sequences of cholinesterase from human serum and acetylcholinesterase from the electric organ of Torpedo californica shows an identity of 53%. Cholinesterase is of interest to the Department of Defense because cholinesterase protects against organophosphate poisons of the type used in chemical warfare. The structural results presentedmore » here will serve as the basis for cloning the gene for cholinesterase. The potential uses of large amounts of cholinesterase would be for cleaning up spills of organophosphates and possibly for detoxifying exposed personnel.« less

  10. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine.

    PubMed

    Lockridge, O

    1990-01-01

    People with genetic variants of cholinesterase respond abnormally to succinylcholine, experiencing substantial prolongation of muscle paralysis with apnea rather than the usual 2-6 min. The structure of usual cholinesterase has been determined including the complete amino acid and nucleotide sequence. This has allowed identification of altered amino acids and nucleotides. The variant most frequently found in patients who respond abnormally to succinylcholine is atypical cholinesterase, which occurs in homozygous form in 1 out of 3500 Caucasians. Atypical cholinesterase has a single substitution at nucleotide 209 which changes aspartic acid 70 to glycine. This suggests that Asp 70 is part of the anionic site, and that the absence of this negatively charged amino acid explains the reduced affinity of atypical cholinesterase for positively charged substrates and inhibitors. The clinical consequence of reduced affinity for succinylcholine is that none of the succinylcholine is hydrolyzed in blood and a large overdose reaches the nerve-muscle junction where it causes prolonged muscle paralysis. Silent cholinesterase has a frame shift mutation at glycine 117 which prematurely terminates protein synthesis and yields no active enzyme. The K variant, named in honor of W. Kalow, has threonine in place of alanine 539. The K variant is associated with 33% lower activity. All variants arise from a single locus as there is only one gene for human cholinesterase (EC 3.1.1.8). Comparison of amino acid sequences of esterases and proteases shows that cholinesterase belongs to a new family of serine esterases which is different from the serine proteases.

  11. Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential.

    PubMed

    Gironés-Vilaplana, Amadeo; Valentão, Patrícia; Andrade, Paula B; Ferreres, Federico; Moreno, Diego A; García-Viguera, Cristina

    2012-10-15

    In this study, black chokeberry concentrate was added (5% w/v) to lemon juice, since previous reports suggested potential health benefits of this blend. The phytochemical composition, antioxidant capacity (scavenging of DPPH, superoxide and hydroxyl radicals, and hypochlorous acid), and inhibitory activity against cholinesterase of the new blend were determined and compared with those of lemon juice and chokeberry in citric acid (5%). The chokeberry concentrate, rich in cyanidin-glycosides, quercetin derivatives, and 3-O-caffeoylquinic acid, and lemon juice, possessing flavones, flavanones, quercetin derivates, and hydroxycinnamic acids, were characterised. The new drink showed a higher antioxidant effect than the chokeberry or lemon controls for all the tested methods, except for hypochlorous acid, in which lemon juice displayed higher activity. Both the lemon juice and chokeberry controls inhibited acetylcholinesterase and butyrylcholinesterase, and this effect was increased in the new mixtures. The results of the different radical scavenging assays indicate that the lemon-black chokeberry (5% w/v) mixture was more antioxidative than the respective controls separately. Moreover, their inhibition of cholinesterase is of interest regarding neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, or senile dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Potential association of reduced cholinesterase activity with Trypanosoma evansi pathogenesis in buffaloes.

    PubMed

    Singh, Shanker K; Singh, Vivek K; Yadav, Brajesh K; Nakade, Udayraj P; Kumari, Priyambada; Srivastava, Mukesh K; Sharma, Abhishek; Choudhary, Soumen; Swain, Dilip; Garg, Satish K

    2016-07-30

    The present study aimed to investigate the association of cholinesterase activity with trypanosomosis in buffaloes. Thirty-three clinical cases of trypanosomosis in water buffaloes, found positive for trypomastigotes of T. evansi on blood smear examination, were divided into two groups based on clinical manifestations. Twenty diseased buffaloes revealing only common clinical signs were allocated to Group I, while the remaining 13 buffaloes showing common clinical manifestations along with neurological disturbances were allocated to Group II. Twelve clinically healthy buffaloes, free from any haemoprotozoa infection, were kept as healthy control (Group III). Blood samples were collected from buffaloes of all three groups to determine serum cholinesterase activity. Compared to buffaloes of healthy control group, cholinesterase activity in T. evansi-infected buffaloes of Group I and II was significantly (P<0.001) lower. However, no significant difference was observed in cholinesterase activity between the T. evansi-infected buffaloes exhibiting neurological disorders and no neurological disorders. Summing up, reduced cholinesterase activity seems to be associated with the pathogenesis of natural T. evansi infection and its clinical manifestations in buffaloes possibly by evading immune response. Further studies are warranted on association of cholinesterase activity in T. evansi-infected buffaloes with neurological disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In vitro sensitivity of cholinesterases and [3H]oxotremorine-M binding in heart and brain of adult and aging rats to organophosphorus anticholinesterases.

    PubMed

    Mirajkar, Nikita; Pope, Carey N

    2008-10-15

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.

  14. IN VITRO SENSITIVITY OF CHOLINESTERASES AND [3H]OXOTREMORINE-M BINDING IN HEART AND BRAIN OF ADULT AND AGING RATS TO ORGANOPHOSPHORUS ANTICHOLINESTERASES

    PubMed Central

    Mirajkar, Nikita; Pope, Carey N.

    2008-01-01

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328

  15. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Syntheses and characterization of novel oxoisoaporphine derivatives as dual inhibitors for cholinesterases and amyloid beta aggregation.

    PubMed

    Li, Yan-Ping; Ning, Fang-Xian; Yang, Meng-Bi; Li, Yong-Cheng; Nie, Min-Hua; Ou, Tian-Miao; Tan, Jia-Heng; Huang, Shi-Liang; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2011-05-01

    A series of 3-substituted (5c-5f, 6c-6f) and 4-substituted (10a-10g) oxoisoaporphine derivatives were synthesized. It was found that all these synthetic compounds had IC50 values at micro or nano molar range for cholinesterase inhibition, and most of them could inhibit amyloid β (Aβ) self-induced aggregation with inhibition ratio from 31.8% to 57.6%. The structure-activity relationship studies revealed that the derivatives with higher selectivity on AChE also showed better inhibition on Aβ self-induced aggregation. The results from cell toxicity study indicated that most quaternary methiodide salts had higher IC50 values than the corresponding non-quaternary compounds. This study provided potentially important information for further development of oxoisoaporphine derivatives as lead compounds for the treatment of Alzheimer's disease. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity.

    PubMed

    Zrnzevic, Ivana; Stankovic, Miroslava; Stankov Jovanovic, Vesna; Mitic, Violeta; Dordevic, Aleksandra; Zlatanovic, Ivana; Stojanovic, Gordana

    2017-01-01

    In the present investigation, effects of Ramalina capitata acetone extract on micronucleus distribution on human lymphocytes, on cholinesterase activity and antioxidant activity (by the CUPRAC method) were examined, for the first time as well as its HPLC profile. Additionally, total phenolic compounds (TPC), antioxidant properties (estimated via DPPH, ABTS and TRP assays) and antibacterial activity were determined. The predominant phenolic compounds in this extract were evernic, everninic and obtusatic acids. Acetone extract of R. capitata at concentration of 2 μg mL -1 decreased a frequency of micronuclei (MN) for 14.8 %. The extract reduces the concentration of DPPH and ABTS radicals for 21.2 and 36.1 % (respectively). Values for total reducing power (TRP) and cupric reducing capacity (CUPRAC) were 0.4624 ± 0.1064 μg ascorbic acid equivalents (AAE) per mg of dry extract, and 6.1176 ± 0.2964 μg Trolox equivalents (TE) per mg of dry extract, respectively. The total phenol content was 670.6376 ± 66.554 μg galic acid equivalents (GAE) per mg of dry extract. Tested extract at concentration of 2 mg mL -1 exhibited inhibition effect (5.2 %) on pooled human serum cholinesterase. The antimicrobial assay showed that acetone extract had inhibition effect towards Gram-positive strains. The results of manifested antioxidant activity, reducing the number of micronuclei in human lymphocytes, and antibacterial activity recommends R. capitata extract for further in vivo studies.

  18. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacham, R.; Karanth, S.; Baireddy, P.

    2006-01-15

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequentialmore » dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats

  20. Weight Loss Associated with Cholinesterase Inhibitors In Patients With Dementia in a National Healthcare System

    PubMed Central

    Sheffrin, Meera; Miao, Yinghui; Boscardin, W. John; Steinman, Michael A.

    2016-01-01

    Background/Objectives Inconsistent data from randomized trials suggest cholinesterase inhibitors may cause weight loss. We sought to determine if the initiation of cholinesterase inhibitors is associated with significant weight loss in a real-word clinical setting. Design Retrospective cohort study from 2007-2010, comparing weight loss in patients with dementia newly prescribed cholinesterase inhibitors and patients newly prescribed other chronic medications Setting National Veterans Affairs (VA) data Participants Patients 65 years or older with a diagnosis of dementia who received a new prescription for a cholinesterase inhibitor or other new other chronic medication. Measurements The primary outcome was time to 10 pound weight loss over 12 months. We used propensity score matching patients to control for the likelihood of receiving a cholinesterase inhibitor based on baseline characteristics. Data were analyzed in a priori defined subgroups by age, comorbid burden, and initial weight. Results Of 6,504 patients that met study criteria, 1188 patients started on cholinesterase inhibitors were matched to 2189 patients started on other medications. The propensity-matched cohorts were well balanced on baseline covariates. Patients initiated on cholinesterase inhibitors had a higher risk of weight loss compared to matched controls at 12 months, HR 1.23 (95% CI 1.07 - 1.41). At twelve months, 29.3% of patients on cholinesterase inhibitors had experienced weight loss compared to 22.8% of non-users, corresponding to a number needed to harm of 21.2 (95% CI 12.5 – 71.4) over one year. There were no significant differences across subgroups. Conclusion Patients with dementia started on cholinesterase inhibitors had a higher risk of clinically significant weight loss over a 12-month period compared to matched controls. These results are consistent with the available data from randomized controlled trials. Clinicians should consider the risk of weight loss when prescribing

  1. Serum Cholinesterase Is Inversely Associated with Body Weight Change in Men Undergoing Routine Health Screening.

    PubMed

    Oda, Eiji

    2015-01-01

    The purpose of this study is to investigate the relationships between serum cholinesterase and body weight change, in addition to incident obesity defined as a body mass index (BMI) of 25 kg/m(2) or greater. A retrospective 5-year follow-up study was conducted. The crude incidence and hazard ratios (HRs) of obesity adjusted for the BMI and other confounders were calculated for cholinesterase quartiles in 1,412 men and 921 women. Partial correlation coefficients (PCCs) were calculated between cholinesterase and changes in the BMI during the 5-year follow-up period adjusted for age and other confounders and the change in the BMI were compared among cholinesterase quartiles in 1,223 men and 681 women. During the 5-year follow-up period, 149 men (10.6%) and 65 women (7.1%) developed obesity. The adjusted HRs of obesity decreased, although the crude incidence of obesity increased along the quartiles of cholinesterase in men. The adjusted HRs of obesity for the first (lowest), second and third quartiles of cholinesterase were 2.02 (p=0.006), 1.45 (p=0.122), and 1.28 (p=0.265), respectively compared with the highest quartile in men. The PCC between the baseline level of cholinesterase and change in the BMI was -0.16 (p<0.001) in men. The mean changes in BMI for 5 years were 0.31 kg/m(2), 0.17 kg/m(2), 0.01 kg/m(2) and -0.04 kg/m(2), respectively in the first, second, third and fourth quartiles of cholinesterase in men (p=0.005). Neither incident obesity nor weight gain was significantly associated with cholinesterase in women. The serum cholinesterase level was inversely associated with body weight change, as well as incident obesity, after adjusted for the BMI in men.

  2. Different sensitivities of rat skeletal muscles and brain to novel anti-cholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS)

    PubMed Central

    Petrov, Konstantin A; Yagodina, Lilia O; Valeeva, Guzel R; Lannik, Natalya I; Nikitashina, Alexandra D; Rizvanov, Albert A; Zobov, Vladimir V; Bukharaeva, Ellya A; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2011-01-01

    BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. PMID:21232040

  3. Application of brain cholinesterase reactivation to differentiate between organophosphorus and carbamate pesticide exposure in wild birds

    USGS Publications Warehouse

    Smith, M.R.; Thomas, N.J.; Hulse, C.

    1995-01-01

    Brain cholinesterase activity was measured to evaluate pesticide exposure in wild birds. Thermal reactivation of brain cholinesterase was used to differentiate between carbamate and organophosphorus pesticide exposure. Brain cholinesterase activity was compared with gas chromatography and mass spectrometry of stomach contents. Pesticides were identified and confirmed in 86 of 102 incidents of mortality from 29 states within the USA from 1986 through 1991. Thermal reactivation of cholinesterase activity was used to correctly predict carbamates in 22 incidents and organophosphates in 59 incidents. Agreement (P < 0.001) between predictions based on cholinesterase activities and GC/MS results was significant.

  4. Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus.

    PubMed

    Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí R; Cochón, Adriana C

    2012-07-01

    In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary

  5. HPTLC Fingerprinting and Cholinesterase Inhibitory and Metal-Chelating Capacity of Various Citrus Cultivars and
Olea europaea

    PubMed Central

    Senol, Fatma Sezer; Ankli, Anita; Reich, Eike

    2016-01-01

    Summary Inhibitory activity of thirty-one ethanol extracts obtained from albedo, flavedo, seed and leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea L. from two locations (Turkey and Cyprus) as well as caffeic acid and hesperidin was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), related to the pathogenesis of Alzheimer’s disease, using ELISA microtiter assays at 500 µg/mL. Metal-chelating capacity of the extracts was also determined. BChE inhibitory effect of the Citrus sp. extracts was from (7.7±0.7) to (70.3±1.1) %, whereas they did not show any inhibition against AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea was very weak ((10.2±3.1) to (15.0±2.3) %). The extracts had either no or low metal-chelating capacity at 500 µg/mL. HPTLC fingerprinting of the extracts, which indicated a similar phytochemical pattern, was also done using the standards of caffeic acid and hesperidin with weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon ‘Interdonato’, the flavedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed extract of C. maxima appear to be promising as natural BChE inhibitors. PMID:27956858

  6. Toxicity studies on agent GA (Phase 2): 90 day subchronic study of GA (Tabun) in cd rats. Appendices. Final report, July 1985-August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The purpose of the report is to provide essential toxicologic information on Tabun administration over a 90 day period. This toxicologic information may be used to adjust the maximum-tolerated dose for subsequent dominant-lethal and two-generation reproduction studies. The objectives were to determine the toxic effects of nerve agent exposure (e.g., target organs); and to determine the effects of nerve agent GA on sperm morphology and motility and vaginal cytology.

  7. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  8. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.

    PubMed

    Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut

    2016-08-01

    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The relationship between total cholinesterase activity and mortality in four butterfly species

    USGS Publications Warehouse

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  10. Mechanism of action of ionizing radiation on hexokinase and cholinesterase activity in the rat brain, in the presence of altered function of M-cholinergic structures. [X radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khripchenko, I.P.; Kukulyanskaya, M.F.; Markina, V.L.

    1977-01-01

    Data are submitted on activity of hexokinase and isozymes thereof, and cholinesterase in subcellular fractions of the brain in the case of inhibition and stimulation of M-cholinoreactive structures under the influence of a relatively small dose, 40 R, of ionizing radiation.

  11. Isoindoline-1,3-dione derivatives targeting cholinesterases: design, synthesis and biological evaluation of potential anti-Alzheimer's agents.

    PubMed

    Guzior, Natalia; Bajda, Marek; Rakoczy, Jurand; Brus, Boris; Gobec, Stanislav; Malawska, Barbara

    2015-04-01

    Alzheimer's disease is a fatal neurodegenerative disorder with a complex etiology. Because the available therapy brings limited benefits, the effective treatment for Alzheimer's disease remains the unmet challenge. Our aim was to develop a new series of donepezil-based compounds endowed with inhibitory properties against cholinesterases and β-amyloid aggregation. We designed the target compounds as dual binding site acetylcholinesterase inhibitors with N-benzylamine moiety interacting with the catalytic site of the enzyme and an isoindoline-1,3-dione fragment interacting with the peripheral anionic site of the enzyme. The results of pharmacological evaluation lead us to identify a compound 3b as the most potent and selective human acetylcholinesterase inhibitor (hAChE IC50=0.361μM). Kinetic studies revealed that 3b inhibited acetylcholinesterase in non-competitive mode. The result of the parallel artificial membrane permeability assay for the blood-brain barrier indicated that the compound 3b would be able to cross the blood-brain barrier and reach its biological targets in the central nervous system. The selected compound 3b represents a potential lead structure for further development of anti-Alzheimer's agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors.

    PubMed

    Botić, Tanja; Defant, Andrea; Zanini, Pietro; Žužek, Monika Cecilija; Frangež, Robert; Janussen, Dorte; Kersken, Daniel; Knez, Željko; Mancini, Ines; Sepčić, Kristina

    2017-08-18

    The brominated pyrroloiminoquinone alkaloids discorhabdins B, L and G and 3-dihydro-7,8- dehydrodiscorhabdin C, isolated from methanol extracts of two specimens of Latrunculia sp. sponges collected near the Antarctic Peninsula, are here demonstrated for the first time to be reversible competitive inhibitors of cholinesterases. They showed K i for electric eel acetylcholinesterase of 1.6-15.0 μM, for recombinant human acetylcholinesterase of 22.8-98.0 μM, and for horse serum butyrylcholinesterase of 5.0-76.0 μM. These values are promising when compared to the current cholinesterase inhibitors used for treatment of patients with Alzheimer's disease, to counteract the acetylcholine deficiency in the brain. Good correlation was obtained between IC 50 data and results by molecular docking calculation on the binding interactions within the acetylcholinesterase active site, which also indicated the moieties in discorhabdin structures involved. To avoid unwanted peripheral side effects that can appear in patients using some acetylcholinesterase inhibitors, electrophysiological experiments were carried out on one of the most active of these compounds, discorhabdin G, which confirmed that it had no detectable undesirable effects on neuromuscular transmission and skeletal muscle function. These findings are promising for development of cholinesterase inhibitors based on the scaffold of discorhabdins, as potential new agents for treatment of patients with Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Pesticide Exposure and Cholinesterase Levels in Migrant Farm Workers in Thailand.

    PubMed

    Thetkathuek, Anamai; Yenjai, Pornthip; Jaidee, Wanlop; Jaidee, Patchana; Sriprapat, Poonsak

    2017-01-01

    In this study, we examined the effects of pesticides in migrant farm workers from Cambodia after workplace exposure on fruit plantations in eastern Thailand. We studied 891 migrant farm workers employed on pineapple, durian, and rambutan plantations in Thailand. Data were collected via a detailed questionnaire survey and measurements of serum cholinesterase level (SChE). The majority of subjects was male (57.7%), with an average age of 30.3 years. Most subjects (76.8%) were moderately aware of good industrial hygiene practices. SChE level was divided into four groups based on the results. Only 4.4% had normal levels of cholinesterase activity, 20.5% had slightly reduced levels, 58.5% had markedly reduced levels and were "at risk," and 16.6% who had highest levels of cholinesterase inhibition were deemed to be in an "unsafe" range. SChE was classified into two groups, SChE value of 87.5 was "normal" and <87.5 units/mL "abnormal." For the multiple logistic regression analysis of the abnormal SChE levels, the variables entered in the model included gender, period of insecticide use, the total area of plantation, frequency of spraying, period of daily insecticide spraying, and insecticide spraying method. The results indicated that the aOR (adjust odds ratio) for male migrant farm workers (95% confidence interval [CI]) was 1.58 (1.14, 2.17). The OR for farm migrant workers who worked on larger plantations of more than 39.5 acres (95% CI) was 2.69 (1.51, 4.82). Finally, the OR for the migrant farm workers who used a backpack sprayer (95% CI) was 2.07 (1.28, 3.34). These results suggest that health screening should be provided to migrant farm workers, especially those who spray pesticides on plantations of >39 acres, use a backpack sprayer, or have a low level of compliance with accepted industrial hygiene practices. These three classes of workers are at increased risk of chemical exposures and developing acute or chronic illness from pesticide exposures.

  14. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors.

    PubMed

    Imramovský, Aleš; Pejchal, Vladimír; Štěpánková, Šárka; Vorčáková, Katarína; Jampílek, Josef; Vančo, Ján; Šimůnek, Petr; Královec, Karel; Brůčková, Lenka; Mandíková, Jana; Trejtnar, František

    2013-04-01

    A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure-activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels

    PubMed Central

    Jaganathan, Lakshmanan; Boopathy, Rathanam

    2000-01-01

    Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed. PMID:11231883

  16. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels.

    PubMed

    Jaganathan, L; Boopathy, R

    2000-01-01

    In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.

  17. An Evaluation of Blood Cholinesterase Testing Methods for Military Health

    DTIC Science & Technology

    2008-05-01

    activity found that only one device has been validated for ChE testing in the field: the Model 400 Test-mate™ ChE kit by EQM Research, Inc. (Cincinnati...OH). Suggested future modifications to the Model 400 Test-mate™ ChE kit include displaying/recording of acetyl-ChE activity uncorrected for...cholinesterase activity , that are routinely monitored by the Department of Defense (DoD). Within DoD, definitive cholinesterase testing is conducted by

  18. Synthesis, characterization, X-ray crystal structures of heterocyclic Schiff base compounds and in vitro cholinesterase inhibition and anticancer activity

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Al-Suede, Fouad Saleih R.; Razali, Mohd R.; Ahamed, Mohamed B. Khadeer; Abdul Majid, Amin Malik Shah; Hassan, Mohd Zaheen; Osman, Hasnah; Abubakar, Saifullah

    2017-12-01

    Four heterocyclic embedded Schiff base derivatives (1-4) were synthesized and characterized by melting point, elemental analysis, FTIR, 1H, 13C NMR, UV-Visible spectral data. The structures of compounds 1, 2 and 4 were successfully established through single crystal X-ray diffraction analysis. In vitro cholinesterase inhibition assays showed that the cyclized derivative 1 displayed higher BuChE enzyme inhibitory activity with IC50 value of 1.45 ± 0.09 μM. The anti-proliferative efficacies of the compounds were also evaluated using human colorectal HCT 116 and breast MCF-7 adenocarcinoma cell lines. In addition, a human normal endothelial cell line (Ea.hy926) was also tested to assess the safety and selectivity of the compounds towards normal and cancer cells, respectively. Among the compounds tested, compound 2 displayed potent cytotoxic effect (IC50 = 34 μM) against HCT 116 cells with highest selectivity index of 3.1 with respect to the normal endothelial cells. Whereas, compound 4 exhibited significant anti-proliferative effect (IC50 = 21.1 μM) against MCF-7 cells with highest selectivity index of 3.3 with respect to the normal endothelial cells. The docking result of these compounds against hAChE showed potent activities with different binding modes. These compounds could be a promising pharmacological agent to treat cancer and Alzheimer's disease.

  19. Piezoelectric affinity sensors for cocaine and cholinesterase inhibitors.

    PubMed

    Halámek, Jan; Makower, Alexander; Knösche, Kristina; Skládal, Petr; Scheller, Frieder W

    2005-01-30

    We report here the development of piezoelectric affinity sensors for cocaine and cholinesterase inhibitors based on the formation of affinity complexes between an immobilized cocaine derivative and an anti-cocaine antibody or cholinesterase. For both binding reactions benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) was immobilized on the surface of the sensor. For immobilization, pre-conjugated BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU) allowed the formation of a chemisorbed monolayer on the piezosensor surface. The detection of cocaine was based on a competitive assay. The change of frequency measured after 300s of the binding reaction was used as the signal. The maximum binding of the antibody resulted in a frequency decrease of 35Hz (with an imprecision 3%, n = 3) while the presence of 100pmoll(-1) cocaine decreased the binding by 11%. The limit of detection was consequently below 100pmoll(-1) for cocaine. The total time of one analysis was 15min. This BZE-DADOO-modified sensor was adapted for the detection of organophosphates. BZE-DADOO - a competitive inhibitor - served as binding element for cholinesterase in a competitive assay.

  20. Effects of carbamates on whole blood cholinesterase activity: chemical protection against soman.

    PubMed

    Heyl, W C; Harris, L W; Stitcher, D L

    1980-01-01

    The toxicity (LD50) of several carbamates, all reversible inhibitors of cholinesterase (ChE), were determined in male rabbits. These include isopropyl methylphenyl carbamate (IMPC), pyridostigmine, neostigmine, benzpyrinium and physostigmine. When 1/9 of the LD50 of the above carbamates was individually combined with atropine (A) and benactyzine (B), mecamylamine (M) or chloropromazine (CPZ) and administered to rabbits in a pretreatment regimen, most animals could be protected from a 10 LD50 challenge of Soman. If CPZ, M or B was omitted from this regimen, no rabbits survived this challenge of Soman. The protection afforded against Soman was found to be related to reversible inhibition of ChE by the carbamates; reversible ChE inhibition varied with the route of injection and with the physical properties of the carbamate. Oral administration of pyridostigmine, a quaternary carbamate, provided protection for 24 hours. When the pretreatment included four components (pyridostigmine, A, M and B), the LD50 of Soman was raised 30.8 times in rabbits.

  1. Association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed workers.

    PubMed

    Ding, Mingcui; Yang, Yongli; Duan, Xiaoran; Wang, Sihua; Feng, Xiaolei; Wang, Tuanwei; Wang, Pengpeng; Liu, Suxiang; Li, Lei; Liu, Junling; Tang, Lixia; Niu, Xinhua; Zhang, Yuhong; Li, Guoyu; Yao, Wu; Cui, Liuxin; Wang, Wei

    2018-06-18

    Omethoate, an organophosphorous pesticide, can cause a variety of health effects, especially the decrease of cholinesterase activity. The aim of this study is to explore the association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed population. Cholinesterase activities in whole blood, red blood cell and plasma were detected using acetylthiocholine and dithio-bis-(nitrobenzoic acid) method; Genetic Genotyping of POT1 rs1034794, POT1 rs10250202, TERF1 rs3863242 and TERT rs2736098 were performed with PCR-RFLP. The cholinesterase activities of whole blood, red blood cells and plasma in exposure group are significantly lower than that of the control group (P < 0.001). Multivariate analysis indicates that exposure group (b = - 1.016, P < 0.001), agender (b = 0.365, P < 0.001), drinking (b = 0.271, P = 0.004) and TERF1rs3863242 (b = - 0.368, P = 0.016) had an impact on cholinesterase activities. The results suggest that individual carrying AG+GG genotypes in TERF1 gene rs3863242 polymorphism were susceptible to damage in cholinesterase induced by omethoate. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is present at nerve endings and in erythrocytes (red blood cells) but is not present in plasma. Pseudo cholinesterase is present in plasma and liver but is not present in erythrocytes. Measurements...

  3. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is present at nerve endings and in erythrocytes (red blood cells) but is not present in plasma. Pseudo cholinesterase is present in plasma and liver but is not present in erythrocytes. Measurements...

  4. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is present at nerve endings and in erythrocytes (red blood cells) but is not present in plasma. Pseudo cholinesterase is present in plasma and liver but is not present in erythrocytes. Measurements...

  5. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is present at nerve endings and in erythrocytes (red blood cells) but is not present in plasma. Pseudo cholinesterase is present in plasma and liver but is not present in erythrocytes. Measurements...

  6. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... is present at nerve endings and in erythrocytes (red blood cells) but is not present in plasma. Pseudo cholinesterase is present in plasma and liver but is not present in erythrocytes. Measurements...

  7. Self reported symptoms and inhibition of acetylcholinesterase activity among Kenyan agricultural workers.

    PubMed

    Ohayo-Mitoko, G J; Kromhout, H; Simwa, J M; Boleij, J S; Heederik, D

    2000-03-01

    This study was part of the East African pesticides project. The general objective was to assess health hazards posed by handling, storage, and use of pesticides, on agricultural estates and small farms with a view to developing strategies for prevention and control of pesticide poisoning. The aim of this paper is to describe the prevalence of symptoms in this population, to relate levels of inhibition to reported symptoms and evaluate at which levels of inhibition symptoms become increased. Complete data were available for 256 exposed subjects and 152 controls from four regions in Kenya. A structured questionnaire on symptoms experienced at the time of interview was given to all subjects and controls. Information was also obtained on sex, age, main occupation, and level of education. Symptoms reported during the high exposure period, were initially clustered in broader symptom categories from reference literature on health effects of pesticides that inhibit cholinesterase (organophosphate and carbamate). Prevalence ratios were estimated for symptoms with changes in cholinesterase activity in serum. Symptom prevalence in exposed subjects was higher during the high exposure period than the low exposure period, although these differences were not significant. Interestingly, a clear and significant change in symptoms prevalence was found in the controls with a higher prevalence in the low exposure period. Analysis of the relation between cholinesterase inhibition and symptoms showed that prevalence ratios were significantly > 1 for respiratory, eye, and central nervous system symptoms for workers with > 30% inhibition. Similar results were found for analyses with the actual level of acetylcholinesterase activity. The results suggest the presence of a relation between exposure and acetylcholinesterase inhibition, acetylcholinesterase activity, and respiratory, eye, and central nervous system symptoms. Increased symptom prevalence was found at acetylcholinesterase

  8. Pharmacokinetics of bambuterol in subjects homozygous for the atypical gene for plasma cholinesterase

    PubMed Central

    Bang, Ulla; Nyberg, Lars; Rosenborg, Johan; Viby-Mogensen, Jørgen

    1998-01-01

    Aims It has been assumed that both plasma cholinesterase (EC 3.1.1.8) and oxidative enzymes are needed for optimum formation of the bronchodilator terbutaline from its biscarbamate prodrug bambuterol. The present study aimed at investigating the fate of bambuterol in subjects with deficient plasma cholinesterase but with normal oxidative (CYP2D6) capability. Methods The pharmacokinetics of bambuterol and terbutaline were studied in four healthy subjects (two men and two women) being homozygous for the atypical gene for plasma cholinesterase. Their oxidative metabolism was apparently good as they were all rapid metabolizers of debrisoquine. Bambuterol hydrochloride 20 mg was given orally once daily for 10 days, and plasma and urine samples were taken for 1.5 days (plasma) and 4.5 days (urine) after administration of the last dose. Results The pharmacokinetic parameters in the present study were grossly similar to those found in a study of bambuterol in subjects with normal plasma cholinesterase activity (N). However, subjects with atypical cholinesterase had a shorter terminal half-life of bambuterol (a measure of uptake rate), 4.8–12.6 h vs 8.3–22.3 h in N, and slightly higher plasma concentrations of bambuterol (average concentrations 1.9–3.7 nmol l−1vs 1.5–3.1 nmol l−1 in N). Peak/trough terbutaline plasma concentrations ratios (2.1–3.2) were somewhat increased, but average plasma concentrations (8.3–14.5 nmol l−1) and terminal half-life (16.5–21.8 h) of terbutaline did not differ. Conclusions In Caucasian populations, one subject out of 2500 is homozygous for the atypical gene for plasma cholinesterase. The atypical enzyme has a much lower affinity for bambuterol than the normal enzyme. Nevertheless, the subjects with atypical cholinesterase were able to produce terbutaline as efficiently as normal subjects. This might be explained by an altered uptake and metabolism in the absence of plasma cholinesterase, or the importance of this enzyme

  9. Does diazinon-sprayed market melon alter cholinesterase activity in healthy consumers? A randomized control trial.

    PubMed

    Nematy, M; Tashakori-Behesti, A; Megarbane, B; Bakaiyan, M; Habibi, M; Afashari, R

    2016-06-01

    Food contributes in measurable body burden of the widely used organophosphate pesticides. We designed a randomized controlled open label trial in Mashhad University Hospital in Iran, to study the possible alterations in cholinesterase activity resulting from consuming market melon known to be exposed to diazinon. Fifty-three young healthy volunteers were recruited. Participants were randomized to consume 250 g per day of organic (N = 22) vs. market melon (N = 31) during fifteen days. The primary outcome was the variation of red blood-cell (RBC) cholinesterase activity between day 15 (after) and day 0 (prior the intervention). The secondary outcome was a variation of the plasma cholinesterase activity between both dates. Baseline RBC [5.21 ± 0.93 vs. 5.53 ± 0.99 IU/mL, mean ± SD] and plasma cholinesterase activities [54.0 ± 8.1 vs. 57.4 ± 8.6%] did not significantly differ between organic and market melon-exposed participants, respectively. RBC [5.86 ± 1.27 vs. 5.11 ± 1.2 IU/mL] and plasma cholinesterase activities [58.7 ± 10.0 vs. 50.5 ± 13.0%] significantly increased in organic melon-exposed vs. market melon-exposed participants (p = 0.002 and p = 0.001, respectively). RBC and plasma cholinesterase activities significantly improved after eating organic instead of market melon during fifteen days. However, the consequences on the health of the observed cholinesterase alterations attributed to diazinon dietary intake remain to be determined.

  10. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    PubMed

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  11. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  12. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  13. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA.

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  14. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study.

    PubMed

    Sheeja Malar, Dicson; Beema Shafreen, Rajamohamed; Karutha Pandian, Shunmugiah; Pandima Devi, Kasi

    2017-12-01

    Grewia tiliaefolia Vahl. (Tiliaceae) is a sub-tropical plant used as an indigenous medicine in India. However, its efficacy has not been evaluated against Alzheimer's disease. The objective of this study is to evaluate cholinesterase inhibitory, anti-aggregation and neuroprotective activity of G. tiliaefolia. Grewia tiliaefolia leaves were collected from Eastern Ghats region, India, and subjected to successive extraction (petroleum ether, chloroform, ethyl acetate, methanol and water). The extracts were subjected to in vitro antioxidant, anticholinesterase and anti-aggregation assays. The active methanol extract (MEGT) was separated using column chromatography. LC-MS analysis was done and the obtained compounds were docked against acetylcholinesterase (AChE) enzyme to identify the active component. Antioxidant assays demonstrated that the MEGT showed significant free radical scavenging activity at the IC 50 value of 71.5 ± 1.12 μg/mL. MEGT also exhibited significant dual cholinesterase inhibition with IC 50 value of 64.26 ± 2.56 and 54 ± 0.7 μg/mL for acetyl and butyrylcholinesterase (BChE), respectively. Also, MEGT showed significant anti-aggregation activity by preventing the oligomerization of Aβ 25-35 . Further, MEGT increased the viability of Neuro2a cells up to 95% against Aβ 25-35 neurotoxicity. LC-MS analysis revealed the presence of 16 compounds including vitexin, ellagic acid, isovitexin, etc. In silico analysis revealed that vitexin binds effectively with AChE through strong hydrogen bonding. These results were further confirmed by evaluating the activity of vitexin in vitro, which showed dual cholinesterase inhibition with IC 50 value of 15.21 ± 0.41 and 19.75 ± 0.16 μM for acetyl and butyrlcholinesterase, respectively. Grewia tiliaefolia can be considered as a promising therapeutic agent for the treatment of AD.

  15. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.

    PubMed

    Schwarz, S; Csuk, R; Rauter, A P

    2014-04-21

    Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.

  16. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Uttamkumar; Kirby, Stephen D.; Srinivasan, Prabhavathi

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P{submore » R} and P{sub S} stereoisomers at the P-chiral center. The tabun complex displayed only the P{sub R} stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.« less

  17. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes.

    PubMed

    Samanta, Uttamkumar; Kirby, Stephen D; Srinivasan, Prabhavathi; Cerasoli, Douglas M; Bahnson, Brian J

    2009-08-15

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P(R) and P(S) stereoisomers at the P-chiral center. The tabun complex displayed only the P(R) stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.

  18. Cholinesterase activity of muscle tissue from freshwater fishes: characterization and sensitivity analysis to the organophosphate methyl-paraoxon.

    PubMed

    Lopes, Renato Matos; Filho, Moacelio Veranio Silva; de Salles, João Bosco; Bastos, Vera Lúcia Freire Cunha; Bastos, Jayme Cunha

    2014-06-01

    The biochemical characterization of cholinesterases (ChE) from different teleost species has been a critical step in ensuring the proper use of ChE activity levels as biomarkers in environmental monitoring programs. In the present study, ChE from Oreochromis niloticus, Piaractus mesopotamicus, Leporinus macrocephalus, and Prochilodus lineatus was biochemically characterized by specific substrates and inhibitors. Moreover, muscle tissue ChE sensitivity to the organophosphate pesticide methyl-paraoxon was evaluated by determining the inhibition kinetic constants for its progressive irreversible inhibition by methyl-paraoxon as well as the 50% inhibitory concentration (IC50) for 30 min for each species. The present results indicate that acetylcholinesterase (AChE) must be present in the muscle from P. mesopotamicus, L. macrocephalus, and P. lineatus and that O. niloticus possesses an atypical cholinesterase or AChE and butyrylcholinesterase (BChE). Furthermore, there is a large difference regarding the sensitivity of these enzymes to methyl-paraoxon. The determined IC50 values for 30 min were 70 nM (O. niloticus), 258 nM (P. lineatus), 319 nM (L. macrocephalus), and 1578 nM (P. mesopotamicus). The results of the present study also indicate that the use of efficient methods for extracting these enzymes, their kinetic characterization, and determination of sensitivity differences between AChE and BChE to organophosphate compounds are essential for the determination of accurate ChE activity levels for environmental monitoring programs. © 2014 SETAC.

  19. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  20. Cholinesterase depression and its association with pesticide exposure across the agricultural season among Latino farmworkers in North Carolina.

    PubMed

    Quandt, Sara A; Chen, Haiying; Grzywacz, Joseph G; Vallejos, Quirina M; Galvan, Leonardo; Arcury, Thomas A

    2010-05-01

    Farmworkers can be exposed to a wide variety of pesticides. Assessing cholinesterase activity over time can be used to monitor exposure to organophosphorus and carbamate pesticides. The goal of this study was to document patterns and variation in cholinesterase levels across the agricultural season (May-August) among field-workers, and to explore the association of cholinesterase depression with pesticide exposure across the agricultural season. Dried blood samples collected from 231 migrant farmworkers sampled from camps in eastern North Carolina up to four times across a summer agricultural season were analyzed for cholinesterase activity, and urine samples were analyzed for metabolites of organophosphorus and carbamate pesticides. Reductions of >or= 15% from an individual's highest value were identified and considered evidence of meaningful cholinesterase activity depression. The average cholinesterase activity levels were lowest in June, with significantly higher mean values in July and August. When adjusted for age, sex, minutes waited to shower, and days worked in the fields, the number of organophosphorus and carbamate pesticides detected in urine predicted reductions in cholinesterase activity. These data demonstrate that workers are experiencing pesticide exposure. Greater enforcement of existing safety regulations or strengthening of these regulations may be warranted. This study demonstrates that serial measurements of cholinesterase activity across an agricultural season can detect exposure to pesticides among field-workers.

  1. Cholinesterase Depression and Its Association with Pesticide Exposure across the Agricultural Season among Latino Farmworkers in North Carolina

    PubMed Central

    Quandt, Sara A.; Chen, Haiying; Grzywacz, Joseph G.; Vallejos, Quirina M.; Galvan, Leonardo; Arcury, Thomas A.

    2010-01-01

    Background Farmworkers can be exposed to a wide variety of pesticides. Assessing cholinesterase activity over time can be used to monitor exposure to organophosphorus and carbamate pesticides. Objectives The goal of this study was to document patterns and variation in cholinesterase levels across the agricultural season (May–August) among field-workers, and to explore the association of cholinesterase depression with pesticide exposure across the agricultural season. Methods Dried blood samples collected from 231 migrant farmworkers sampled from camps in eastern North Carolina up to four times across a summer agricultural season were analyzed for cholinesterase activity, and urine samples were analyzed for metabolites of organophosphorus and carbamate pesticides. Reductions of ≥ 15% from an individual’s highest value were identified and considered evidence of meaningful cholinesterase activity depression. Results The average cholinesterase activity levels were lowest in June, with significantly higher mean values in July and August. When adjusted for age, sex, minutes waited to shower, and days worked in the fields, the number of organophosphorus and carbamate pesticides detected in urine predicted reductions in cholinesterase activity. Conclusions These data demonstrate that workers are experiencing pesticide exposure. Greater enforcement of existing safety regulations or strengthening of these regulations may be warranted. This study demonstrates that serial measurements of cholinesterase activity across an agricultural season can detect exposure to pesticides among field-workers. PMID:20085857

  2. Cholinesterases as markers of the inflammatory process associated oxidative stress in cattle infected by Babesia bigemina.

    PubMed

    Doyle, Rovaina L; Da Silva, Aleksandro S; Oliveira, Camila B; França, Raqueli T; Carvalho, Fabiano B; Abdalla, Fátima H; Costa, Pauline; Klafke, Guilherme M; Martins, João R; Tonin, Alexandre A; Castro, Verônica S P; Santos, Franklin G B; Lopes, Sonia T A; Andrade, Cinthia M

    2016-06-01

    The objective of this study was to assess the influence of an asymptomatic experimental infection by Babesia bigemina on cholinesterase's as markers of the inflammatory process and biomarkers of oxidative imbalance. For this purpose, eight naive animals were used, as follows: four as controls or uninfected; and four infected with an attenuated strain of B. bigemina. Blood samples were collected on days 0, 7 and 11 post-inoculation (PI). Parasitemia was determined by blood smear evaluation, showing that the infection by B. bigemina resulted in mean 0.725 and 0.025% on day 7 and 11 PI, respectively, as well as mild anemia. The activities of acetylcholinesterase, butyrylcholinesterase and catalase were lower, while levels of thiobarbituric acid reactive substances and superoxide dismutase activity were higher in infected animals, when compared with the control group. This attenuated strain of B. bigemina induced an oxidative stress condition, as well as it reduces the cholinesterasés activity in infected and asymptomatic cattle. Therefore, this decrease of cholinesterase in infection by B. bigemina purpose is to inhibit inflammation, for thereby increasing acetylcholine levels, potent anti-inflammatory molecules. Copyright © 2016. Published by Elsevier Ltd.

  3. A comparison of serum cholinesterase methods : II.

    DOT National Transportation Integrated Search

    1972-03-01

    Among aerial applicator personnek, the primary value of the periodic blood cholinesterase (ChE) assays is the detection of pesticide poisoning indicated by a decrease in the enzyme activity since the previous (or pre-season) assay. Comparison of thes...

  4. [The activity of blood cholinesterase in rats exposed to dimehypo].

    PubMed

    Wan, Weiguo; Xu, Mailing; Zou, Hejian; Lu, Ailing; Shen, Xinyu; Chen, Yuming

    2002-12-01

    To determine whether and to what degree the activity of cholinesterase(ChE) is inhibited by dimehypo at different doses of dimehypo [scientific name: 2-dimethylamine-1,3-bi(sodium hyposulfit)]. Rats were dosed with dimehypo or methamidophos orally, and were randomly divided into four subgroups according to the pesticide doses, which were 1/16, 1/8, 1/4 and 1/2 of LD50 respectively(the LD50 of dimethypo and methamidophos is 342 mg/kg and 20 mg/kg respectively). The activity of ChE in blood was determined before and 30 min, 1, 2, 4 and 24 h after exposure. The modified Ellman Method was employed to measure the activity of ChE. 1/16 LD50 dose of dimehypo did not affect the activity of ChE. When the dose increased, the activity of ChE decreased accordingly. 1/2 LD50 dose of dimehypo inhibited the activity of ChE by 35.9% compared with that of control group(P < 0.01). In rats dosed with methamidophos, even 1/16 LD50 dose inhibited the activity of ChE by 42.4% compared with that of control group. When the dose of methamidophos increased, the activity of ChE decreased accordingly. 1/2 LD50 dose of methamidophos inhibited the activity of ChE by 52.9%. The activity of ChE in the rats dosed with dimehypo at various doses was significantly lower than that in the rats dosed with corresponding doses of methamidophos(P < 0.01). Higher doses of dimehypo may inhibit the activity of ChE. However, as compared with methamidophos, dimehypo is a weaker inhibitor of ChE.

  5. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.

    PubMed

    Hagstrom, Danielle; Hirokawa, Hideto; Zhang, Limin; Radic, Zoran; Taylor, Palmer; Collins, Eva-Maria S

    2017-08-01

    The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.

  6. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    PubMed

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantification of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids, and luteolin and pinocembrin. Water/ethanol extract from in vitro cultures contained the highest amount of the identified phenolic compounds (51652.92 mg/kg). To investigate the antioxidant activity we used Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, Fe(2+) chelation activity and the inhibition of Fe(2+)-induced lipid peroxidation in mouse brain homogenates (in vitro). Overall, all the extracts from both wild plants and in vitro cultures exhibited ability to scavenge free radicals, to chelate Fe(2+) and to protect against lipid peroxidation. In addition, the extracts from L. viridis were active in inhibiting both acetylcholinesterase and butyrylcholinesterase (Ellman's method). Our findings suggest that L. viridis in vitro cultures represent a promising alternative for the production of active metabolites with antioxidant and anti-cholinesterase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Interactions between scopolamine and muscarinic cholinergic agonists or cholinesterase inhibitors on spatial alternation performance in rats.

    PubMed

    Shannon, H E; Bemis, K G; Hendrix, J C; Ward, J S

    1990-12-01

    The effects on working memory of the muscarinic cholinergic agonists oxotremorine, arecoline, RS86 and pilocarpine, and the cholinesterase inhibitors physostigmine and tetrahydroaminoacadine were investigated in male F344 rats. Working memory was assessed by behavior maintained under a spatial alternation schedule of food presentation in which the interval between trials was varied from 2 to 32 sec. Under control conditions the percentage of correct responses decreased as the retention interval was varied from 2 to 32 sec. Administered alone the cholinergic agonists oxotremorine (0.01-0.1 mg/kg), arecoline (3-30 mg/kg), RS86 (0.3-3 mg/kg) and pilocarpine (0.3-3.0 mg/kg), and the cholinesterase inhibitors physostigmine (0.01-0.1 mg/kg) and tetrahydroaminoacridine (0.3-3.0 mg/kg) either had no effect on or produced dose-related deficits in working memory and decreases in response rates. The muscarinic antagonist scopolamine (0.1 mg/kg) produced retention interval-dependent decreases in the percentage of correct responding and rates of responding. The cholinergic agonists and tetrahydroaminoacridine failed to reverse the effects of scopolamine. However, physostigmine produced a dose-dependent reversal of the working-memory deficits and response-rate decreasing effects of scopolamine. The present results are consistent with the interpretation that drugs which primarily enhance M2 muscarinic cholinergic transmission are ineffective in enhancing working memory or in reversing scopolamine-induced deficits in working memory.

  8. Longitudinal Assessment of Blood Cholinesterase Activities Over 2 Consecutive Years Among Latino Nonfarmworkers and Pesticide-Exposed Farmworkers in North Carolina.

    PubMed

    Quandt, Sara A; Pope, Carey N; Chen, Haiying; Summers, Phillip; Arcury, Thomas A

    2015-08-01

    This study (1) describes patterns of whole blood total cholinesterase, acetylcholinesterase, and butyrylcholinesterase activities across the agricultural season, comparing farmworkers and nonfarmworkers; and (2) explores differences between farmworkers' and non-farmworkers' likelihood of cholinesterase depression. Blood samples from 210 Latino male farmworkers and 163 Latino workers with no occupational pesticide exposure collected 8 times across 2 agricultural seasons were analyzed. Mean cholinesterase activity levels and depressions 15% or more were compared by month. Farmworkers had significantly lower total cholinesterase and butyrylcholinesterase activities in July and August and lower acetylcholinesterase activity in August. Farmworkers had significantly greater likelihood of cholinesterase depression for each cholinesterase measure across the agricultural season. A repeated-measures design across 2 years with a nonexposed control group demonstrated anticholinesterase effects in farmworkers. Current regulations designed to prevent pesticide exposure are not effective.

  9. [Interest of the cholinesterase assay during organophosphate poisonings].

    PubMed

    Jalady, A-M; Dorandeu, F

    2013-12-01

    Cholinesterases are the main targets of organophosphorus compounds. The two enzymes present in the blood (butyrylcholinesterase, BChE; acetylcholinesterase, AChE) are biomarkers of their systemic toxicity. Activity of the plasma BChE is very often determined as it allows a rapid diagnostic of poisoning and is a marker of the persistence of the toxicant in the blood. The activity of the red blood cell AChE gives a better picture of the synaptic inhibition in the nervous system but the assay is less commonly available in routine laboratories. Better biomarker of the exposure, it allows a diagnosis of the severity of the poisoning and helps to assess the efficacy of oxime therapy. Besides the practical aspects of blood collection and sample processing, and the interpretation of the assays, this review stresses the complementarity of both enzyme assays and recalls their crucial interest for the confirmation of poisoning with an organophosphorus in a situation of war or terrorist attack and for the monitoring of occupational exposures. Copyright © 2013. Published by Elsevier SAS.

  10. Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi

    PubMed Central

    DA SILVA, A S; PIMENTEL, V C; FIORENZA, A M; FRANÇA, R T; TONIN, A A; JAQUES, J A; LEAL, C A M; DA SILVA, C B; MORSCH, V; SCHETINGER, M R C; LOPES, S T A; MONTEIRO, S G

    2011-01-01

    This study aimed to evaluate the activity of cholinesterases and adenosine deaminase (ADA) in blood and serum of rats infected with Trypanosoma cruzi. Twelve adult rats were used in the experiment divided into two uniform groups. Rodents from group A (control group) were non-infected and animals from group B served as infected, receiving intraperitoneally 3.3×107 trypomastigotes/each. Blood collection was performed at days 60 and 120 post-infection (PI) in order to evaluate the hemogram, blood activity of acetylcholinesterase, and serum butyrylcholinesterase and ADA activities. Hematological parameters did not differ between groups. A significant increase (P<0.05) of acetylcholinesterase activity was observed in blood while butyrylcholinesterase had a significant reduction (P<0.01) in serum of infected rats at days 60 and 120 PI. ADA activity in serum showed an inhibition in infected animals when compared to non-infected at day 120 PI. Based on these results, it is possible to conclude that the activity of cholinesterases and ADA were changed in animals infected with T. cruzi. The possible causes of these alterations will be discussed in this paper. PMID:21929880

  11. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  12. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. AN ENZYME-IMMOBILIZATION PROCEDURE FOR THE ANALYSIS OF ENZYME-INHIBITING CHEMICALS IN WATER

    EPA Science Inventory

    The enzymes cholinesterase and urease were mixed individually with gelatin and immobilized onto the inside surface of glass capillary tubes. After the gelatin-enzyme mixture had dried, water samples containing various enzyme inhibiting test chemicals were pumped through the tubes...

  14. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: a preliminary anti- Alzheimer's study.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Khan, Mir Azam; Ahmad, Waqar; Shah, Muhammad Raza; Imran, Muhammad; Ahmad, Sajjad

    2015-11-04

    Cholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer's disease (AD). Similarly, free radicals are implicated in the progression of various diseases like neurodegenerative disorders. Due to lipid solubility and potential to easily cross blood brain barrier, this study was designed to investigate the anticholinesterase and antioxidant potentials of the standardized essential oils from the leaves and flowers of Polygonum hydropiper. Essential oils from the leaves (Ph.LO) and flowers (Ph.FO) of P. hdropiper were isolated using Clevenger apparatus. Oil samples were analyzed by GC-MS to identify major components and to attribute the antioxidant and anticholinesterase activity to specific components. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potentials of the samples were determined following Ellman's assay. Antioxidant assays were performed using 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) and hydrogen peroxide (H2O2) free radical scavenging assays. In the GC-MS analysis 141 and 122 compounds were indentified in Ph.LO and Ph.FO respectively. Caryophylene oxide (41.42 %) was the major component in Ph.FO while decahydronaphthalene (38.29 %) was prominent in Ph.LO. In AChE inhibition, Ph.LO and Ph.FO exhibited 87.00** and 79.66***% inhibitions at 1000 μg/ml with IC50 of 120 and 220 μg/ml respectively. The IC50 value for galanthamine was 15 μg/ml. In BChE inhibitory assay, Ph.LO and Ph.FO caused 82.66*** (IC50 130 μg/ml) and 77.50***% (IC50 225 μg/ml) inhibitions respectively at 1000 μg/ml concentration. In DPPH free radical scavenging assay, Ph.LO and Ph.FO exhibited IC50 of 20 and 200 μg/ml respectively. The calculated IC50s were 180 & 60 μg/ml for Ph.LO, and 45 & 50 μg/ml for Ph.FO in scavenging

  15. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. From Split to Sibenik: The Tortuous Pathway in the Cholinesterase Field

    PubMed Central

    Taylor, Palmer

    2010-01-01

    The interim between the first and tenth International Cholinesterase meetings has seen remarkable advances associated with the applications of structural biology and recombinant DNA methodology to our field. The cloning of the cholinesterase genes led to the identification of a new super family of proteins, termed the α,β–hydrolase fold; members of this family possess a four helix bundle capable of linking structural subunits to the functioning globular protein. Sequence comparisons and three dimensional structural studies revealed unexpected cousins possessing this fold that, in turn, revealed three distinct functions for the α,β-hydrolase proteins. These encompass: (1) a capacity for hydrolytic cleavage of a great variety of substrates, (2) a heterophilic adhesion function that results in trans-synaptic associations in linked neurons, (3) a chaperone function leading to stabilization of nascent protein and its trafficking to an extracellular or secretory storage location. The analysis and modification of structure may go beyond understanding mechanism, since it may be possible to convert the cholinesterases to efficient detoxifying agents of organophosphatases assisted by added oximes. Also, the study of the relationship between the α,β–hydrolase fold proteins and their biosynthesis may yield means by which aberrant trafficking may be corrected, enhancing expression of mutant proteins. Those engaged in cholinesterase research should take great pride in our accomplishments punctuated by the series of ten meetings. The momentum established and initial studies with related proteins all hold great promise for the future. PMID:20493179

  17. OHOLO Conference (36th): Multidisciplinary Approaches to Cholinesterase Functions Held in Eilat, Israel on April 6 - 10, 1992.

    DTIC Science & Technology

    1992-04-10

    Acetylcholinesterase in Mosquitoes. Short oral presentation A23.- Roshchina, V.V. - Plant Cholinesterases. A24.- Seidman Shlomo, Revital Ben-Aziz Aloya, Yael ...Hermona Soreq - Differential Transcriptional Control of Cholinesterase Genes in Developing Megakaryocytes. Short oral presentation B13.- Loewenstein Yael ...Against Organophos- phate Poisoning. B20.- Richter ED., I. Orun, J. Ronen , WQ Lu, Y. Yodfat, F. Grauer, J. Marzouk, M. Gordon - Cholinesterase Revisited

  18. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene®)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  19. Black-bellied whistling duck (Dendrocygna autumnalis) brain cholinesterase characterization and diagnosis of anticholinesterase pesticide exposure in wild populations from Mexico.

    PubMed

    Osten, Jaime Rendón-von; Soares, Amadeu M V M; Guilhermino, Lucia

    2005-02-01

    Rice is the main crop in the subbasin of the fluvial lagoon system of Palizada River (FLSPR) in the state of Campeche, Mexico. The pesticides used to control pests of this crop mainly are carbofuran, chlorpyrifos, and glyphosate. Black-bellied whistling duck (Dendrocygna autumnalis) is an ecologically and economically important species in the area. This duck is consumed by local inhabitants throughout the year, despite its potential exposure to pesticides. Due to its feeding habits, abundance, and nutritional value, D. autumnalis is a good indicator of environmental contamination and a potential route of human exposure to organophosphate and carbamate pesticides. In this study, the brain cholinesterase (ChE) in the frontal cerebral cortex of autochthonous ducks was characterized. In addition, the potential of the three locally used pesticides and mixtures to inhibit ChE activity was investigated and the exposure of the wild duck population during intensive pesticide applications in rice fields was evaluated. We found that acetylcholinesterase (AChE) seems to be the predominant ChE form in the biological fraction analyzed. Carbofuran was the most potent ChE inhibitor of D. autumnalis brain ChE activity from the three pesticides analyzed. Cholinesterase inhibition after exposure to pesticide mixtures predominantly was due to carbofuran. A decrease (p < 0.05) in AChE activity (>30%) was apparent in wild ducks compared to reference ducks, with recovery of ChE inhibition in wild ducks occurring months later when no pesticides were applied in the field. Dendrocygna autumnalis brain ChE is a suitable parameter for inclusion in biomonitoring programs for both environmental protection and human safety.

  20. Experience with a cholinesterase histochemical technique for rectal suction biopsies in the diagnosis of Hirschsprung's disease

    PubMed Central

    Trigg, P. H.; Belin, R.; Haberkorn, S.; Long, W. J.; Nixon, H. H.; Plaschkes, J.; Spitz, L.; Willital, G. H.

    1974-01-01

    Cryostat sections from 160 rectal suction biopsies were stained for cholinesterases by the method of Karnovsky and Roots (1964) in an attempt to facilitate the diagnosis of Hirschsprung's disease. The method proved at least as reliable as experienced assessment of paraffin haematoxylin-eosin sections, and appeared to offer the advantages of reduced scanning fatigue and superior demonstration of the increased cholinesterase-positive nerves in Hirschprung's disease. Contrary to the findings of Meier-Ruge (1971) it was not possible to base a diagnosis on mucosal cholinesterase activity. Images PMID:4832300

  1. Longitudinal Assessment of Blood Cholinesterase Activities over Two Consecutive Years among Latino Non-farmworkers and Pesticide-Exposed Farmworkers in North Carolina

    PubMed Central

    Quandt, Sara A; Pope, Carey N.; Chen, Haiying; Summers, Phillip; Arcury, Thomas A.

    2015-01-01

    Objective This study (1) describes patterns of whole blood total cholinesterase, acetylcholinesterase, and butyrylcholinesterase activities across the agricultural season, comparing farmworkers and non-farmworkers; and (2) explores differences between farmworkers' and non-farmworkers' likelihood of cholinesterase depression. Methods Blood samples from 210 Latino male farmworkers and 163 Latino workers with no occupational pesticide exposure collected eight times across two agricultural seasons were analyzed. Mean cholinesterase activity levels and depressions ≥15% were compared by month. Results Farmworkers had significantly lower total cholinesterase and butyrylcholinesterase activities in July and August and lower acetylcholinesterase activity in August. Farmworkers had significantly greater likelihood of cholinesterase depression for each cholinesterase measure across the agricultural season. Significance A repeated-measures design across two years with a non-exposed control group demonstrated anticholinesterase effects in farmworkers. Current regulations designed to prevent pesticide exposure are not effective. PMID:26247638

  2. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inhibition of acetylcholinesterase in guppies (Poecilia reticulata) by chlorpyrifos at sublethal concentrations: Methodological aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Wel, H.; Welling, W.

    1989-04-01

    Acetylcholinesterase activity is a potential biochemical indicator of toxic stress in fish and a sensitive parameter for testing water for the presence of organophosphates. A number of methodological aspects regarding the determination of the in vivo effect of chlorpyrifos on acetylcholinesterase in guppies have been investigated. It was found that with acetylthiocholine as a substrate, the contribution of pseudocholinesterase to the total cholinesterase activity can be neglected. Protection of acetylcholinesterase of guppies exposed to chlorpyrifos from additional, artifactual in vitro enzyme inhibition during homogenization is necessary. Very low concentrations of acetone in the exposure medium, resulting from dilution of themore » stock solution of chlorpyrifos in acetone, can result in large decreases in the oxygen content of this medium. This may affect the uptake rate of the toxic compound and, thereby, cholinesterase inhibition. Very low, sublethal concentrations of chlorpyrifos result in high inhibition levels of acetylcholinesterase (80-90%) in guppies within 2 weeks of continuous exposure. Recovery of the enzyme activity occurs after the exposed animals are kept in clean medium for 4 days, but the rate of recovery is considerably lower than the rate of inhibition.« less

  4. Changes in cerebro-cerebellar interaction during response inhibition after performance improvement.

    PubMed

    Hirose, Satoshi; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki

    2014-10-01

    It has been demonstrated that motor learning is supported by the cerebellum and the cerebro-cerebellar interaction. Response inhibition involves motor responses and the higher-order inhibition that controls the motor responses. In this functional MRI study, we measured the cerebro-cerebellar interaction during response inhibition in two separate days of task performance, and detected the changes in the interaction following performance improvement. Behaviorally, performance improved in the second day, compared to the first day. The psycho-physiological interaction (PPI) analysis revealed the interaction decrease from the right inferior frontal cortex (rIFC) to the cerebellum (lobule VII or VI). It was also revealed that the interaction increased from the same cerebellar region to the primary motor area. These results suggest the involvement of the cerebellum in response inhibition, and raise the possibility that the performance improvement was supported by the changes in the cerebro-cerebellar interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies.

    PubMed

    Korabecny, Jan; Dolezal, Rafael; Cabelova, Pavla; Horova, Anna; Hruba, Eva; Ricny, Jan; Sedlacek, Lukas; Nepovimova, Eugenie; Spilovska, Katarina; Andrs, Martin; Musilek, Kamil; Opletalova, Veronika; Sepsova, Vendula; Ripova, Daniela; Kuca, Kamil

    2014-07-23

    A novel series of 7-methoxytacrine (7-MEOTA)-donepezil like compounds was synthesized and tested for their ability to inhibit electric eel acetylcholinesterase (EeAChE), human recombinant AChE (hAChE), equine serum butyrylcholinesterase (eqBChE) and human plasmatic BChE (hBChE). New hybrids consist of a 7-MEOTA unit, representing less toxic tacrine (THA) derivative, connected with analogues of N-benzylpiperazine moieties mimicking N-benzylpiperidine fragment from donepezil. 7-MEOTA-donepezil like compounds exerted mostly non-selective profile in inhibiting cholinesterases of different origin with IC50 ranging from micromolar to sub-micromolar concentration scale. Kinetic analysis confirmed mixed-type inhibition presuming that these inhibitors are capable to simultaneously bind peripheral anionic site (PAS) as well as catalytic anionic site (CAS) of AChE. Molecular modeling studies and QSAR studies were performed to rationalize studies from in vitro. Overall, 7-MEOTA-donepezil like derivatives can be considered as interesting candidates for Alzheimer's disease treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Evaluation of Candidate Genes for Cholinesterase Activity in Farmworkers Exposed to Organophosphorus Pesticides: Association of Single Nucleotide Polymorphisms in BCHE

    PubMed Central

    Howard, Timothy D.; Hsu, Fang-Chi; Grzywacz, Joseph G.; Chen, Haiying; Quandt, Sara A.; Vallejos, Quirina M.; Whalley, Lara E.; Cui, Wei; Padilla, Stephanie; Arcury, Thomas A.

    2010-01-01

    Background Organophosphate pesticides act as cholinesterase inhibitors. For those with agricultural exposure to these chemicals, risk of potential exposure-related health effects may be modified by genetic variability in cholinesterase metabolism. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To understand fully the links between pesticide exposure and potential human disease, analyses must be able to consider genetic variability in pesticide metabolism. Objectives We studied participants in the Community Participatory Approach to Measuring Farmworker Pesticide Exposure (PACE3) study to determine whether cholinesterase levels are associated with single-nucleotide polymorphisms (SNPs) involved in pesticide metabolism. Methods Cholinesterase levels were measured from blood samples taken from 287 PACE3 participants at up to four time points during the 2007 growing season. We performed association tests of cholinesterase levels and 256 SNPs in 30 candidate genes potentially involved in pesticide metabolism. A false discovery rate (FDR) p-value was used to account for multiple testing. Results Thirty-five SNPs were associated (unadjusted p < 0.05) based on at least one of the genetic models tested (general, additive, dominant, and recessive). The strongest evidence of association with cholinesterase levels was observed with two SNPs, rs2668207 and rs2048493, in the butyrylcholinesterase (BCHE) gene (FDR adjusted p = 0.15 for both; unadjusted p = 0.00098 and 0.00068, respectively). In participants with at least one minor allele, cholinesterase levels were lower by 4.3–9.5% at all time points, consistent with an effect that is independent of pesticide exposure. Conclusions Common genetic variation in the BCHE gene may contribute to subtle changes in cholinesterase levels. PMID:20529763

  7. Proline-Based Carbamates as Cholinesterase Inhibitors.

    PubMed

    Pizova, Hana; Havelkova, Marketa; Stepankova, Sarka; Bak, Andrzej; Kauerova, Tereza; Kozik, Violetta; Oravec, Michal; Imramovsky, Ales; Kollar, Peter; Bobal, Pavel; Jampilek, Josef

    2017-11-14

    Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2 S )-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC 50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2 S )-2-[(4-bromophenyl)-] and benzyl (2 S )-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC 50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho -brominated compound as well as benzyl (2 S )-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure-inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3'-/4'-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.

  8. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiao-Bing; Li, Jiang-Yan; Yang, Lei; Kong, Ling-Yi

    2013-06-01

    A series of tacrine-coumarin hybrids (8a-t) were designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against Alzheimer's disease (AD). The screening results showed that most of them exhibited a significant ability to inhibit ChE and self-induced β-amyloid (Aβ) aggregation, and to act as metal chelators. Especially, 8f displayed the greatest ability to inhibit acetylcholinesterase (AChE, IC50 = 0.092 μM) and Aβ aggregation (67.8%, 20 μM). It was also a good butyrylcholinesterase inhibitor (BuChE, IC50 = 0.234 μM) and metal chelator. Besides, kinetic and molecular modeling studies indicated that 8f was a mixed-type inhibitor, binding simultaneously to active, peripheral and mid-gorge sites of AChE. These results suggested that 8f might be an excellent multifunctional agent for AD treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  10. Tritium labeling of a powerful methylphosphonate inhibitor of cholinesterase: synthesis and biological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balan, A.; Barness, I.; Simon, G.

    1988-02-15

    7-(Methylethoxy phosphinyloxy)-1-methyl-quinolinium iodide (MEPQ), a powerful anti-cholinesterase methylphosphonate ester, was labeled with tritium (9 Ci/mmol) at the methylphosphonyl moiety (TCH2P(O)(OR)X) by an iodine-tritium replacement reaction. Kinetic measurements of the rate of inhibition of acetylcholinesterase (AChE) by (/sup 3/H)MEPQ and its rate of hydrolysis in alkaline solution confirmed the identity of (/sup 3/H)MEPQ with authentic MEPQ, which was prepared by the same reaction sequences. Gel-filtration experiments verified the radiospecificity of (/sup 3/H)MEPQ. In vitro radiolabeling of both AChE and butyrylcholinesterase along with the whole-body autoradiography of (/sup 3/H)MEPQ-treated mice suggests that (/sup 3/H)MEPQ is a convenient marker for studying biological systemsmore » containing these esterases.« less

  11. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease.

    PubMed

    Knez, Damijan; Sova, Matej; Košak, Urban; Gobec, Stanislav

    2017-05-01

    Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer's disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer's disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.

  12. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, M.C.; Nogueira, C.P.; Bartels, C.F.

    1989-02-01

    A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for allmore » 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of {sup 32}P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. The authors conclude that the Asp-70 {yields} Gly mutation accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool.« less

  13. Reactions of Methamidophos with Mammalian Cholinesterase,

    DTIC Science & Technology

    1978-07-01

    dynamics of its reactions with insmvnstlian cholinesterase (CbE), Methamidophos is highly toxic to the cosmon housefly , Muaca domestics L., exhibiting a...between two properties which tend to oppose each other. It does not react rapidly with housefly —head ChE. However , the enzyme—inhibitor complex...toxicity of methamidophos to female houseflies was reported (Quistad et al., 1970) to be approximately the same as that of other potent

  14. Plasma Cholinesterase Activity in Female Green Turtles Chelonia mydas Nesting in Laguna de Terminos, Mexico Related to Organochlorine Pesticides in Their Eggs.

    PubMed

    Rivas-Hernández, Gerardo; May-Uc, Yaneli; Noreña-Barroso, Elsa; Cobos-Gasca, Víctor; Rodríguez-Fuentes, Gabriela

    2018-01-01

    The inhibition of cholinesterase (ChE) activity has been used as a biomarker of exposure to organophosphate and carbamate insecticides. ChE of nesting female green turtles (Chelonia mydas) were biochemically characterized using two substrates, acetylthiocholine iodide and butyrylthiocholine iodide, and three ChE inhibitors (eserine sulfate, BW284C51 and iso-OMPA). The results indicated that BChE is the predominant plasma ChE in female C. mydas, but with atypical properties that differ from those found in human BChE. Eggs from green turtles nesting at two sites in Laguna de Terminos contained µg g -1 (wet weight) quantities of organochlorine (OC) pesticides. Drins (aldrin, dieldrin, endrin, endrin ketone, endrin aldehyde) were found at the highest concentrations with no significant differences in the concentrations in eggs collected at the two sampling sites. A negative relationship was found between levels of OC pesticides in eggs and BChE activity in the plasma of female turtles laying the eggs. Since OC pesticides are not cholinesterase inhibitors, we hypothesized that this inverse relationship may be related to an antagonistic effect between OCs and organophosphate pesticides and mobilization of OCs from the fatty tissues of the female turtles into their eggs. However, further study is required to verify the hypothesis. It is also possible that other contaminants, such as petroleum hydrocarbons are responsible for the modulation of cholinesterase activity in female turtles.

  15. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    PubMed

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.

  16. [Reference values for erythrocyte cholinesterase activity in the working population of Antioquia, Colombia, according to the Michel and EQM techniques].

    PubMed

    Carmona-Fonseca, Jaime

    2003-11-01

    To establish reference values for erythrocyte cholinesterase (EC 3.1.1.7) activity for the active working population of two regions of the department of Antioquia, Colombia, that are located at different altitudes above sea level. We took representative samples from populations of active working persons 18 to 59 years old from two regions in the department of Antioquia: (1) the Aburrá Valley (1 540 m above sea level) and (2) the near east of the department (2 150 m above sea level). We excluded workers who were using cholinesterase-inhibiting substances in their work or at home, those who had a disease that altered their cholinesterase levels, and those who said they were not in good health. We measured the erythrocyte cholinesterase activity using two methods: (1) the Michel method and (2) the EQM method (EQM Research, Cincinnati, Ohio, United States of America). We carried out the measurements with 827 people, 415 from the Aburrá Valley and 412 from the near east region. We compared proportions using the chi-square test and Fisher's exact test. We utilized the Student's t test for independent samples to compare two averages. To simultaneously compare three or more averages, analysis of variance was used, followed by the Newman-Keuls multiple-range test. When the variables were not normally distributed or when the variances were not homogeneous, Kruskal-Wallis nonparametric analysis of variance was used to compare the medians. Three computer software programs were used in the statistical analysis: SPSS 9.0, SGPlus 7.1, and Epi Info 6.04. In all the statistical tests the level of significance was set at P < 0.05. The average erythrocyte cholinesterase activity value that we found for the studied population by using the Michel method was 0.857 delta pH/hour (95% confidence interval (CI): 0.849 to 0.866), and the average value found through the EQM method was 35.21 U/g hemoglobin (95% CI: 34.82 to 35.60). With the Michel method: (1) the enzymatic activity differed

  17. Assessment of exposure to organophosphate insecticides during spraying in Haiti: monitoring of urinary metabolites and blood cholinesterase levels*

    PubMed Central

    Warren, McWilson; Spencer, Harrison C.; Churchill, Frederick C.; Francois, Velly Jean; Hippolyte, Robert; Staiger, Michael A.

    1985-01-01

    Measurement of blood cholinesterase activity and of the urinary metabolites of fenitrothion (p-nitrocresol) and malathion (monocarboxylic acid) was used to assess the exposure to these insecticides of workers in the Haitian malaria control programme and of residents in the sprayed houses. Cholinesterase activity was significantly reduced at the end of the working week in 3 out of 28 fenitrothion workers. Urinary levels of p-nitrocresol (PNC) in the spraymen ranged from 2.2 to 25.2 mg/l. In fenitrothion workers who had no direct contact with spraying (weighers and supervisors), the cholinesterase activity remained ≥ 75% of the normal control value, and the urinary PNC levels were relatively low. Urinary malathion monocarboxylic acid (MCA) levels at the end of the working week ranged between 1.1 and 5.3 mg/l in workers using malathion and their blood cholinesterase activity remained essentially normal. In both groups of workers the cholinesterase levels improved and the urinary excretion of metabolites decreased after 2 days of rest from the spraying operations. In the residents of the sprayed houses, low concentrations of PNC and MCA were detected in the urine 1 day after spraying and measurable but reduced levels were still present after 7 days. In all these cases the cholinesterase activity remained ≥ 75% of the normal control value. PMID:3874716

  18. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper.

    PubMed

    Moncaleano-Niño, Angela M; Luna-Acosta, Andrea; Gómez-Cubillos, Maria Camila; Villamil, Luisa; Ahrens, Michael J

    2018-04-30

    In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp

  19. NEURO-GUMORALE SUBSTANCES OF DOG BLOOD DURING ACUTE RADIATION SICKNESS. I. CHANGES IN BLOOD ACETYLCHOLINE AND CHOLINESTERASE SYSTEM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetzova, N.E.

    1963-01-01

    Experiments carried out on 13 male dogs, 2 to 5 years old and weighing 10 to 20 kg, showed that in the initial stages of chroric radiation sickness the blood content of acetylcholine increased and the cholinesterase decreased. Moreove r, the increase in the acetylcholine level during the first 3 to 4 hrs proceeded at a greater rate than the cholinesterase decrease. Shifts in the enzyme system were more pronounced in dogs with greater resistance. However, during the recovery period acetylcholine and cholinesterase restoration took place at earlier periods in dogs with higher resistance. Not only was the cholinesterase activitymore » restored, but it increased to 1.5 to 2 times the initial level. The level of acetylcholine and cholinesterase was not restored in the blood of dogs during terminal periods. In dogs exposed to subacute doses, 300 r, enzyme normalization took place 29 to 41 days following exposure. Correlation of data on enzyme changes in single and chronic exposures indicated identical trends It was postulated that acetylcholine -cholinesterase participate in compensating reactions of organisms during radiation sickness. (R.V.J.)« less

  20. Serum and Plasma Cholinesterase Activity in the Cape Griffon Vulture (Gyps coprotheres).

    PubMed

    Naidoo, Vinny; Wolter, Kerri

    2016-04-28

    Vulture (Accipitridae) poisonings are a concern in South Africa, with hundreds of birds dying annually. Although some of these poisonings are accidental, there has been an increase in the number of intentional baiting of poached rhinoceros (Rhinocerotidae) and elephant (Elephantidae) carcasses to kill vultures that alert officials to poaching sites by circling overhead. The primary chemicals implicated are the organophosphorous and carbamate compounds. Although most poisoning events can be identified by dead vultures surrounding the scavenged carcass, weak birds are occasionally found and brought to rehabilitation centers for treatment. The treating veterinarian needs to make an informed decision on the cause of illness or poisoning prior to treatment. We established the reference interval for serum and plasma cholinesterase activity in the Cape Griffon Vulture ( Gyps coprotheres ) as 591.58-1,528.26 U/L, providing a clinical assay for determining potential exposure to cholinesterase-depressing pesticides. Both manual and automated samplers were used with the butyrylthiocholine method. Species reference intervals for both serum and plasma cholinesterase showed good correlation and manual and automated measurements yielded similar results.

  1. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study.

    PubMed

    Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos

    2017-10-27

    The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.

  2. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase.

    PubMed Central

    McGuire, M C; Nogueira, C P; Bartels, C F; Lightstone, H; Hajra, A; Van der Spek, A F; Lockridge, O; La Du, B N

    1989-01-01

    A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool. Images PMID:2915989

  3. Evaluation of Candidate Genes for cholinesterase Activity in Farmworkers Exposed to organophosphorous Pesticides-Association of SNPs in BCHE

    EPA Science Inventory

    Background: Organophosphate pesticides act as cholinesterase inhibitors, and as such may give rise to potential neurological effects. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To und...

  4. Synthesis and Preliminary Evaluation of Phenyl 4-123I-Iodophenylcarbamate for Visualization of Cholinesterases Associated with Alzheimer Disease Pathology.

    PubMed

    Macdonald, Ian R; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan

    2016-02-01

    Acetylcholinesterase and butyrylcholinesterase accumulate with brain β-amyloid (Aβ) plaques in Alzheimer disease (AD). The overall activity of acetylcholinesterase is found to decline in AD, whereas butyrylcholinesterase has been found to either increase or remain the same. Although some cognitively normal older adults also have Aβ plaques within the brain, cholinesterase-associated plaques are generally less abundant in such individuals. Thus, brain imaging of cholinesterase activity associated with Aβ plaques has the potential to distinguish AD from cognitively normal older adults, with or without Aβ accumulation, during life. Current Aβ imaging agents are not able to provide this distinction. To address this unmet need, synthesis and evaluation of a cholinesterase-binding ligand, phenyl 4-(123)I-iodophenylcarbamate ((123)I-PIP), is described. Phenyl 4-iodophenylcarbamate was synthesized and evaluated for binding potency toward acetylcholinesterase and butyrylcholinesterase using enzyme kinetic analysis. This compound was subsequently rapidly radiolabeled with (123)I and purified by high-performance liquid chromatography. Autoradiographic analyses were performed with (123)I-PIP using postmortem orbitofrontal cortex from cognitively normal and AD human brains. Comparisons were made with an Aβ imaging agent, 2-(4'-dimethylaminophenyl)-6-(123)I-iodo-imidazo[1,2-a]pyridine ((123)I-IMPY), in adjacent brain sections. Tissues were also stained for Aβ and cholinesterase activity to visualize Aβ plaque load for comparison with radioligand uptake. Synthesized and purified PIP exhibited binding to cholinesterases. (123)I was successfully incorporated into this ligand. (123)I-PIP autoradiography with human tissue revealed accumulation of radioactivity only in AD brain tissues in which Aβ plaques had cholinesterase activity. (123)I-IMPY accumulated in brain tissues with Aβ plaques from both AD and cognitively normal individuals. Radiolabeled ligands specific for

  5. Novel cucurbitane triterpenoids and anti-cholinesterase activities of constituents from Momordica charantia L.

    PubMed

    Kuanhuta, Wichut; Aree, Thammarat; Pornpakakul, Surachai; Sawasdee, Pattara

    2014-06-01

    The C-19 epimers of 5beta,19-epoxycucurbita-6,23(E),25(26)-triene-3f,19-diol (1) and 5/,19-epoxy-25-methoxycucurbita-6,23-diene-3beta,19-diol (2) along with (19R,23E)-5beta,19-epoxy-19-methoxycucurbita-6,23,25-trien-3beta-ol (3), (23E)-5beta,19-epoxycucurbita-6,23-diene-3beta,25-diol (4), ligballinol (5), charantin (6) and momordicoside K(7) were isolated from the green fruits of Momordica charantia. The (S)-epimers of 1 and 2 are the first reports in nature. The acetyl- and butyryl-cholinesterase inhibitory activities of the isolated compounds were evaluated, and 5 showed the highest activity of these compounds against butyrylcholinesterase (IC50 = 32.20 microM) with a reversible and non-competitive inhibition mode.

  6. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    NASA Astrophysics Data System (ADS)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  7. In Silico Pharmacophore Model for Tabun-Inhibites Acetylcholinesterase Reactivators: A study of Their Stereoelectronic Properties

    DTIC Science & Technology

    2009-01-01

    Army Institute of Research, 503 Robert Grant AVenue, SilVer Spring, Maryland 20910, and Center for AdVanced Studies and Department of Toxicology ...Department of Toxicology , Faculty of Military Health Sciences. Chem. Res. Toxicol. XXXX, , 000 A 10.1021/tx900192u  XXXX American Chemical Society...GA-inhibited AChE derived from theoretical stereoelectronic and three-dimensional (3D) quantitative struc- ture-activity relationship ( QSAR

  8. Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkage--implications for early Myasthenia gravis treatment.

    PubMed

    Musilek, Kamil; Komloova, Marketa; Holas, Ondrej; Hrabinova, Martina; Pohanka, Miroslav; Dohnal, Vlastimil; Nachon, Florian; Dolezal, Martin; Kuca, Kamil

    2011-02-01

    Inhibitors of acetylcholinesterase are compounds widely used in the treatment of various diseases, such as Alzheimer's disease, glaucoma and Myasthenia gravis (MG). Compounds used in the therapy of MG posses a positive charge in the molecule to ensure peripheral effect of action and minimal blood-brain barrier penetration. The most prescribed carbamate inhibitors are however known for many severe side effects related to the carbamylation of AChE. This paper describes preparation and in vitro evaluation of 20 newly prepared bis-isoquinolinium inhibitors of potential concern for MG. The newly prepared compounds were evaluated in vitro on human recombinant AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to chosen standards ambenonium dichloride, edrophonium chloride, BW284c51 and ethopropazine hydrochloride. Three novel compounds presented promising inhibition (in nM range) of both enzymes in vitro better or similar to edrophonium and BW284c51, but worse to ambenonium. The novel inhibitors did not present higher selectivity toward AChE or BChE. The kinetic assay confirmed non-competitive inhibition of hAChE by two selected promising novel compounds. Two newly prepared compounds were also chosen for docking studies that confirmed apparent π-π or π-cationic interactions aside the cholinesterases catalytic sites. The SAR findings were discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye.

    PubMed

    Barba-Bon, Andrea; Costero, Ana M; Gil, Salvador; Martínez-Máñez, Ramón; Sancenón, Félix

    2014-11-21

    A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol group able to undergo phosphorylation with nerve gases, (ii) a carbonyl group as a reactive site for cyanide; and (iii) a triisopropylsilyl (TIPS) protecting group that is known to react with fluoride. The reaction of P4 with DCNP in acetonitrile resulted in both the phosphorylation of the phenoxy group and the release of cyanide, which was able to react with the carbonyl group of P4 to produce a colour modulation from pink to orange. In contrast, phosphorylation of P4 with DFP in acetonitrile released fluoride that hydrolysed the TIPS group in P4 to yield a colour change from pink to blue. Probe P4 was able to discriminate between DFP and DCNP with remarkable sensitivity; limits of detection of 0.36 and 0.40 ppm for DCNP and DFP, respectively, were calculated. Besides, no interference from other organophosphorous derivatives or with presence of acid was observed. The sensing behaviour of P4 was also retained when incorporated into silica gel plates or onto polyethylene oxide membranes, which allowed the development of simple test strips for the colorimetric detection of DCNP and DFP in the vapour phase. P4 is the first probe capable of colorimetrically differentiating between a Tabun mimic (DCNP) and a Sarin and Soman mimic (DFP).

  10. Kinetic parameters of cholinesterase interactions with organophosphates: retrieval and comparison tools available through ESTHER database: ESTerases, alpha/beta Hydrolase Enzymes and Relatives.

    PubMed

    Chatonnet, A; Hotelier, T; Cousin, X

    1999-05-14

    Cholinesterases are targets for organophosphorus compounds which are used as insecticides, chemical warfare agents and drugs for the treatment of disease such as glaucoma, or parasitic infections. The widespread use of these chemicals explains the growing of this area of research and the ever increasing number of sequences, structures, or biochemical data available. Future advances will depend upon effective management of existing information as well as upon creation of new knowledge. The ESTHER database goal is to facilitate retrieval and comparison of data about structure and function of proteins presenting the alpha/beta hydrolase fold. Protein engineering and in vitro production of enzymes allow direct comparison of biochemical parameters. Kinetic parameters of enzymatic reactions are now included in the database. These parameters can be searched and compared with a table construction tool. ESTHER can be reached through internet (http://www.ensam.inra.fr/cholinesterase). The full database or the specialised X-window Client-server system can be downloaded from our ftp server (ftp://ftp.toulouse.inra.fr./pub/esther). Forms can be used to send updates or corrections directly from the web.

  11. Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and prey-capture ability in the Australian central bearded dragon (Pogona vitticeps, Agamidae).

    PubMed

    Bain, David; Buttemer, William A; Astheimer, Lee; Fildes, Karen; Hooper, Michael J

    2004-01-01

    The central bearded dragon (Pogona vitticeps) is a medium-sized lizard that is common in semiarid habitats in Australia and that potentially is at risk of fenitrothion exposure from use of the chemical in plague locust control. We examined the effects of single sublethal doses of this organophosphate (OP; low dose = 2.0 mg/kg; high dose = 20 mg/kg; control = vehicle alone) on lizard thermal preference, standard metabolic rate, and prey-capture ability. We also measured activities of plasma total cholinesterase (ChE) and acetylcholinesterase before and at 0, 2, 8, 24, 120, and 504 h after OP dosing. Predose plasma total ChE activity differed significantly between sexes and averaged 0.66 +/- 0.06 and 0.45 +/- 0.06 micromol/min/ml for males and females, respectively. Approximately 75% of total ChE activity was attributable to butyrylcholinesterase. Peak ChE inhibition reached 19% 2 h after OP ingestion in the low-dose group, and 68% 8 h after ingestion in high-dose animals. Neither OP doses significantly affected diurnal body temperature, standard metabolic rate, or feeding rate. Plasma total ChE levels remained substantially depressed up to 21 d after dosing in the high-dose group, making this species a useful long-term biomonitor of OP exposure in its habitat.

  12. Localization of cholinesterases in the chicken nervous system and the problem of the selective neurotoxicity of organophosphorus compounds

    PubMed Central

    Cavanagh, J. B.; Holland, P.

    1961-01-01

    Using the thiocholine method, a restricted survey has been made of cholinesterases in the spinal cord and brain stem of the chicken. No simple relation between sites of selective damage in organophosphorus neurotoxicity and centres of cholinesterase activity could be adduced. Moreover, no significant differences between species susceptible and insusceptible to poisoning by these compounds were found by this method. It is concluded that, while cholinesterase may well play an intermediary role in the intoxication, other factors determine the selective damage to certain neurones and their processes. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:13691740

  13. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, Corie A., E-mail: cellison@buffalo.edu; Crane, Alice L., E-mail: alcrane@buffalo.edu; Bonner, Matthew R., E-mail: mrbonner@buffalo.edu

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase)more » and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.« less

  14. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Smith, Jordan N.

    2009-11-15

    A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylatedmore » enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.« less

  15. Absence of neurovisual effects due to tissue and blood cholinesterase depression in a chronic disulfoton feeding study in dogs.

    PubMed

    Jones, R D; Hastings, T F; Landes, A M

    1999-06-01

    Technical grade disulfoton (DiSyston) was fed to Beagle dogs (four animals per sex and treatment level) at nominal concentrations of 0, 0.5, 4 and 12 ppm for 1 year. The purpose of this study was to characterize the potential general and neurovisual toxicity according to routine Environmental Protection Agency (EPA) guideline requirements, and by use of ancillary ocular and neurologic tests established in this Laboratory. Ophthalmological tests included: ocular tissue cholinesterase and histopathology, electroretinography (ERG), tracking, refractivity, intraocular pressure and pachymetry (corneal thickness) measurements. Neurological examinations included; peripheral and cranial reflex tests, task performance tests, gait and behavioral observations, and rectal temperature measurements. Plasma, erythrocyte and corneal cholinesterase were significantly depressed at 4 and 12 ppm in both sexes. Brain cholinesterase was depressed at 4 and 12 ppm in females. Retinal cholinesterase was depressed at 4 ppm in females and at 12 ppm in males. Ciliary body cholinesterase was depressed at 12 ppm in both sexes. Despite these cholinergic effects, there were no ophthalmologic findings in measurements of ERG, tracking, refractivity, intraocular pressure or pachymetry. There were no clinical neurology findings related to compound administration. We conclude that 0.5 ppm was a no-observable effect level (NOEL), and effects were limited to cholinesterase changes that had no detectable physiologic impact. This study demonstrates that special mechanistic investigations incorporated within guideline studies, enhances scientific integrity and can minimize the need for dedicated organ system studies.

  16. Synthesis, biological activity and molecular modeling of 4-fluoro-N-[ω-(1,2,3,4-tetrahydroacridin-9-ylamino)-alkyl]-benzamide derivatives as cholinesterase inhibitors.

    PubMed

    Szymański, P; Markowicz, M; Bajda, M; Malawska, B; Mikiciuk-Olasik, E

    2012-12-01

    The aim of this study was to synthesize and determine the biological activity of new derivatives of 4-fluorobenzoic acid and tetrahydroacridine towards inhibition of cholinesterases. Compounds were synthesized in condensation reaction between 9-aminoalkyl-tetrahydroacridines and the activated 4-fluorobenzoic acid. Properties towards inhibition of acetyl- and butyrylcholinesterase were estimated according to Ellman's spectrophotometric method. Among synthesized compounds the most active were compounds 4a and 4d. These compounds, in comparison with tacrine, were characterized by the similar values of IC50. Among all obtained compounds, 4d presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling studies revealed that all derivatives presented similar extended conformation in the gorge of acetylcholinesterase, however, there were 2 main conformations in the active center of butyrylcholinesterase: bent and extended conformation. © Georg Thieme Verlag KG Stuttgart · New York.

  17. New advances in pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors

    PubMed Central

    Greig, Nigel H.; Reale, Marcella; Tata, Ada Maria

    2016-01-01

    receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer’s disease drugs. PMID:23597304

  18. Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  19. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  20. Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials

    PubMed Central

    Kaduszkiewicz, Hanna; Zimmermann, Thomas; Beck-Bornholdt, Hans-Peter; van den Bussche, Hendrik

    2005-01-01

    Objectives Pharmacological treatment of Alzheimer's disease focuses on correcting the cholinergic deficiency in the central nervous system with cholinesterase inhibitors. Three cholinesterase inhibitors are currently recommended: donepezil, rivastigmine, and galantamine. This review assessed the scientific evidence for the recommendation of these agents. Data sources The terms “donepezil”, “rivastigmine”, and “galantamine”, limited by “randomized-controlled-trials” were searched in Medline (1989-November 2004), Embase (1989-November 2004), and the Cochrane Database of Systematic Reviews without restriction for language. Study selection All published, double blind, randomised controlled trials examining efficacy on the basis of clinical outcomes, in which treatment with donepezil, rivastigmine, or galantamine was compared with placebo in patients with Alzheimer's disease, were included. Each study was assessed independently, following a predefined checklist of criteria of methodological quality. Results 22 trials met the inclusion criteria. Follow-up ranged from six weeks to three years. 12 of 14 studies measuring the cognitive outcome by means of the 70 point Alzheimer's disease assessment scale—cognitive subscale showed differences ranging from 1.5 points to 3.9 points in favour of the respective cholinesterase inhibitors. Benefits were also reported from all 12 trials that used the clinician's interview based impression of change scale with input from caregivers. Methodological assessment of all studies found considerable flaws—for example, multiple testing without correction for multiplicity or exclusion of patients after randomisation. Conclusion Because of flawed methods and small clinical benefits, the scientific basis for recommendations of cholinesterase inhibitors for the treatment of Alzheimer's disease is questionable. PMID:16081444

  1. Surface-Electrochemical Sensor for the Measurement of Anti-Cholinesterase Activity

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroaki; Sato, Yukari; Yabuki, Soichi; Sawaguchi, Takahiro; Mizutani, Fumio

    An organophosphorus pesticide, ethylthiometon (0.01-0.2 ppm) was determined by using a surface-electrochemical sensor system: the monolayer formation (chemisorption)-reductive desorption of thiocholine was applied to monitor the activity change of cholinesterase caused by the pesticide.

  2. Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1H)-one derivatives as inhibitors of cholinesterases.

    PubMed

    Sarfraz, Muhammad; Sultana, Nargis; Rashid, Umer; Akram, Muhammad Safwan; Sadiq, Abdul; Tariq, Muhammad Ilyas

    2017-02-01

    In search of potent inhibitors of cholinesterases, we have synthesized and evaluate a number of 2,3-dihydroquinazolin-4(1H)-one derivatives. The synthetic approach provided an efficient synthesis of the target molecules with excellent yield. All the tested compounds showed activity against both the enzymes in micromolar range. In many case, the inhibition of both enzymes are higher than or comparable to the standard drug galatamine. With the selectivity index of 2.3 for AChE, compound 5f can be considered as a potential lead compound with a feature of dual AChE/BChE inhibition with IC 50 =1.6±0.10μM (AChE) and 3.7±0.18μM (BChE). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. The computed binding modes of these compounds in the active site of AChE and BChE provide an insight into the mechanism of inhibition of these two enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. "Nonspecific" cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties, and significance of the two enzyme systems.

    PubMed Central

    Vigny, M; Gisiger, V; Massoulié, J

    1978-01-01

    "Nonspecific" cholinesterase (acylcholine acylhydrolase; EC 3.1.1.8) from various rat tissues has been found to exist in several stable molecular forms that appear as exact counterparts of molecular forms of acetylcholinesterase (acetylcholine hydrolase; EC 3.1.1.7). The sedimentation pattern of cholinesterase was similar to that of acetylcholinesterase with a small but significant shift between the sedimentation coefficients of the corresponding forms. Extraction yields in different media also demonstrated a close parallelism between the two enzyme systems. Other properties, such as thermal stability and catalytic characteristics, indicated both differences and similarities. In spite of the structural resemblance implied by their physicochemical properties, cholinesterase did not crossreact with antibodies against acetylcholinesterase. The nature of the relationships revealed by these studies and their bearing on the physiological significance of cholinesterases are discussed. PMID:78492

  4. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    Azinphos-methyl belongs to the class of organophosphate insecticides which are recognized for their anticholinesterase action. It is one of the most frequently used insecticides in the Upper Valley of Río Negro and Río Neuquén in Argentina, where agriculture represents the second most important economic activity. It has been detected in water from this North Patagonian region throughout the year and the maximum concentration found was 22.48 μg L(-1) during the application period. Chilina gibbosa is a freshwater gastropod widely distributed in South America, particularly in Patagonia, Argentina and in Southern Chile. Toxicological studies performed with C. gibbosa in our laboratory have reported neurotoxicity signs and cholinesterase inhibition after exposure to azinphos-methyl for 48 h. Recovery studies together with characterization of the enzyme and sensitivity of the enzyme to pesticides can improve the toxicological evaluation. However, little is known about recovery patterns in organisms exposed to organophosphates. The aim of the present work was to evaluate the recovery capacity (during 21 days in pesticide-free water) of cholinesterase activity and neurotoxicity in C. gibbosa after 48 h of exposure to azinphos-methyl. Also, lethality and carboxylesterase activity were registered during the recovery period. Regarding enzyme activities, after a 48-h exposure to 20 μg L(-1) of azinphos-methyl, cholinesterases showed an inhibition of 85% with respect to control, while carboxylesterases were not affected. After 21 days in pesticide-free water, cholinesterases continued to be inhibited (70%). Severe neurotoxicity signs were observed after exposure: 82% of the snails presented lack of adherence to vessels, 11% showed weak adherence, and 96% exhibited an abnormal protrusion of the head-foot region from shell. After 21 days in pesticide-free water, only 15% of the snails presented severe signs of neurotoxicity. However, during the recovery period significant

  5. An approach to the ionic cholinergic interaction. Theoretical treatment of the interaction between tetramethylammonium and acetate ions

    NASA Astrophysics Data System (ADS)

    Zuccarello, Felice; Raudino, Antonio; Buemi, Giuseppe

    1980-03-01

    The interaction between the anionic site of cholinesterase and the cationic end of acetylcholine is estimated by considering a simplified model. The effect of the aqueous environment on the stability of the aggregate is considered.

  6. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2,3-dihydroquinazolin-4(1H)-one as inhibitors of cholinesterases.

    PubMed

    Sultana, Nargis; Sarfraz, Muhammad; Tanoli, Saba Tahir; Akram, Muhammad Safwan; Sadiq, Abdul; Rashid, Umer; Tariq, Muhammad Ilyas

    2017-06-01

    Pursuing the strategy of developing potent AChE inhibitors, we attempted to carry out the N 1 -substitution of 2,3-dihydroquinazolin-4(1H)-one core. A set of 32 N-alkylated/benzylated quinazoline derivatives were synthesized, characterized and evaluated for their inhibition against cholinesterases. N-alkylation of the series of the compounds reported previously (N-unsubstituted) resulted in improved activity. All the compounds showed inhibition of both enzymes in the micromolar to submicromolar range. Structure activity relationship (SAR) of the 32 derivatives showed that N-benzylated compounds possess good activity than N-alkylated compounds. N-benzylated compounds 2ad and 2af were found very active with their IC 50 values toward AChE in submicromolar range (0.8µM and 0.6µM respectively). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. Computational predictions of ADMET studies reveal that all the compounds have good pharmacokinetic properties with no AMES toxicity and carcinogenicity. Moreover, all the compounds are predicted to be absorbed in human intestine and also have the ability to cross blood brain barrier. Overall, the synthesized compounds have established a structural foundation for the design of new inhibitors of cholinesterase. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase.

    PubMed

    Nachon, Florian; Carletti, Eugénie; Ronco, Cyril; Trovaslet, Marie; Nicolet, Yvain; Jean, Ludovic; Renard, Pierre-Yves

    2013-08-01

    The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.

  8. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    PubMed

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Studies on the storage stability of human blood cholinesterases : I.

    DOT National Transportation Integrated Search

    1970-01-01

    Whole blood, red cell, and plasma preparations were stored at room temperature, refrigerated, and frozen. Samples were assayed over a 50-day period using the technique of constant-pH titration (pH-Stat). At least 90% of the cholinesterase activity in...

  10. A microfluorometric assay for cholinesterases, suitable for multiple kinetic determinations of picomoles of released thiocholine.

    PubMed

    Parvari, R; Pecht, I; Soreq, H

    1983-09-01

    A highly sensitive microfluorometric assay for cholinesterases has been developed. Enzymatic activity is measured by monitoring the thiocholine produced by specific hydrolysis of acetylthiocholine. This is carried out by reacting the thiocholine formed with the fluorogenic compound N-(4(7 diethylamino-4-methylcoumarin-3-yl)phenyl)maleimide to yield an intensely fluorescent product. The assay is linear over a range extending from a few picomoles to nanomoles of thiocholine. The specificity and accuracy of this microfluorometric assay were examined using microgram quantities of rat brain tissue as a source for cholinesterases. The specific activities and the Km values determined by this new method for both cholinesterase activities present in the brain (acetylcholine hydrolase, EC 3.1.1.7, and "nonspecific" cholinesterase-acylcholine acylhydrolase, EC 3.1.1.8) were identical to those reported earlier using the less sensitive spectrophotometric and radiometric methods. The background emission caused by nonenzymatic hydrolysis of the substrate is relatively low, and does not exceed background values encountered in other methods. The assay may be used for monitoring the kinetics of enzymatic activities in microscale reaction mixtures, providing a linear determination of the thiocholine produced over a period of at least 30 h at room temperature. The method can also be adapted for use in other enzymatic assays where reagents containing thiol groups can be produced or consumed.

  11. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization.

    PubMed

    Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S

    2016-10-01

    The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.

  12. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil.

    PubMed

    Misra, Biswapriya B; Dey, Satyahari

    2013-02-01

    Sandalwood oil, rich in sesquiterpenoid alcohols, has been used in traditional medicinal systems as a relaxant and coolant. Besides, sandalwood oil is used as an ingredient in numerous skin fairness enhancing cosmetics. However, there is no available information on biological activities that relate to the above applications. Hence, the anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil were probed by both TLC-bioautographic and colorimetric methods. Results obtained from colorimetric assays indicated that sandalwood oil is a potent inhibitor of tyrosinase (IC50 = 171 microg mL(-1)) and cholinesterases (IC50 = 4.8-58 microg mL(-1)), in comparison with the positive controls used in the assays, kojic acid and physostigmine, respectively. The TLC-bioautographic assays indicated that alpha-santalol, the major constituent of the oil, is a strong inhibitor of both tyrosinase and cholinesterase. These in vitro results indicate that there is a great potential of this essential oil for use in the treatment of Alzheimer's disease, as well as in skin-care.

  13. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.; Bradbury, S.P.

    1981-01-01

    Oral doses of the organophosphorus pesticides acephate, dicrotophos, fensulfothion, fonofos, malathion, and parathion were administered to mallard ducklings (Anas platyrhynchos), and brain and plasma cholinesterase (ChE) activities were determined for up to 77 d after dosing. In vivo recovery of brain ChE activity to within 2 standard deviations of the mean activity of undosed birds occurred within 8 d, after being depressed an average of 25-58% at 24 h after dosing. In vivo recovery of plasma ChE appeared as fast as or faster than that of brain, but the pattern of recovery was more erratic and therefore statistical comparison with brain ChE recovery was not attempted. In vitro tests indicated that the potential for dephosphorylation to contribute to in vivo recovery of inhibited brain ChE differed among chemical treatments. Some ducklings died as a result of organophosphate dosing. In an experiment in which ducklings within each treatment group received the same dose (mg/kg), the brain ChE activity in birds that died was less than that in birds that survived. Brain ChE activities in ducklings that died were significantly different among pesticide treatments: fensulfothion > parathion> acephate > malathion (p < 0.05).

  14. Antimalarials inhibit hematin crystallization by unique drug–surface site interactions

    PubMed Central

    Olafson, Katy N.; Nguyen, Tam Q.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2017-01-01

    In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit β-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug–crystal interactions and open avenues for rationally designing antimalarial compounds. PMID:28559329

  15. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  16. Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: Mangroves inhabiting an Indian coastal area (Vellar Estuary).

    PubMed

    Suganthy, Natarajan; Pandian, Shanmugiahthevar Karutha; Devi, Kasi Pandima

    2009-06-01

    Alzheimer's disease is a progressive neurodegenerative illness accounting for approximately 50% of all types of dementia in elderly people. The only symptomatic treatment proven effective to date is the use of cholinesterase inhibitors to augment surviving cholinergic activity. The purpose of this study is to investigate cholinesterase inhibitory activity of mangroves as an alternative medicine for the treatment of Alzheimer's disease. About nine mangrove plants, which were used as folk medicine in tropical countries, were collected from Parangipettai, Vellar estuary, Tamilnadu, India. Nile Tilapia muscle homogenate was used as source of enzyme. Inhibitory effect of methanolic leaf extract was assessed under in vitro condition by incubating various concentration of the extract with total cholinesterase and butyryl cholinesterase and assessing their residual activities by Ellman's colorimetric method. The results showed that of the nine plants screened Rhizophora lamarckii, Suaeda monica, Avicennia officinalis and Sesuvium portulacastrum showed 50% inhibitory activity to both TChE and BChE at concentrations less than 2 mg/mL when compared to other plant extracts, which was comparable to the standard drug Donepezil. Phytochemical analysis showed the presence of alkaloids in high concentration which might be correlated to its cholinesterase inhibitory activity.

  17. Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer's disease.

    PubMed

    Zhang, Xiao Dan; Liu, Xiang Qian; Kim, Yang Hee; Whang, Wan Kyunn

    2014-05-01

    The aim of this study was to investigate chemical constituents of the leaves of Acanthopanax henryi, and their antioxidant, acetyl cholinesterase inhibitory activities. Caffeoyl quinic acid derivates and flavonoids were obtained from A. henry, through column chromatography technologies, and the content of major constituents was determined by the HPLC-UV method. Anti-oxidant activity of the isolated metabolites was evaluated by free radical scavenging (DPPH, ABTS radicals) and superoxide anion scavenging. The results showed that di-caffeoyl quinic acid derivates had stronger antioxidant activity than positive controls (ascorbic acid, trolox and allopurinol). Acetyl cholinesterase inhibitory activity was estimated on the constituents, among which, quercetin, 4-caffeoyl-quinic acid and 4,5-caffeoyl quinic acid were found to have strong acetyl cholinesterase inhibitory activity with IC50 values ranging from 62.6 to 121.9 μM. The present study showed that some of the tested constituents from the leaves of A. henryi exhibit strong antioxidant and acetyl cholinesterase inhibitory effects. This suggest that the leaves of A. henryi can be used as a new natural complementary source of acetyl cholinesterase inhibitors and anti-oxidant agents, thus being a promising potential complementary source against Alzheimer's disease.

  18. Cognitive and Affective Changes in Mild to Moderate Alzheimer’s Disease Patients Undergoing Switch of Cholinesterase Inhibitors: A 6-Month Observational Study

    PubMed Central

    Spalletta, Gianfranco; Caltagirone, Carlo; Padovani, Alessandro; Sorbi, Sandro; Attar, Mahmood; Colombo, Delia; Cravello, Luca

    2014-01-01

    Patients with Alzheimer’s disease after an initial response to cholinesterase inhibitors may complain a later lack of efficacy. This, in association with incident neuropsychiatric symptoms, may worsen patient quality of life. Thus, the switch to another cholinesterase inhibitor could represent a valid therapeutic strategy. The aim of this study was to investigate the effectiveness of the switch from one to another cholinesterase inhibitor on cognitive and affective symptoms in mild to moderate Alzheimer disease patients. Four hundred twenty-three subjects were included from the EVOLUTION study, an observational, longitudinal, multicentre study conducted on Alzheimer disease patients who switched to different cholinesterase inhibitor due either to lack/loss of efficacy or response, reduced tolerability or poor compliance. All patients underwent cognitive and neuropsychiatric assessments, carried out before the switch (baseline), and at 3 and 6-month follow-up. A significant effect of the different switch types was found on Mini-Mental State Examination score during time, with best effectiveness on mild Alzheimer’s disease patients switching from oral cholinesterase inhibitors to rivastigmine patch. Depressive symptoms, when measured using continuous Neuropsychiatric Inventory values, decreased significantly, while apathy symptoms remained stable over the 6 months after the switch. However, frequency of both depression and apathy, when measured categorically using Neuropsychiatric Inventory cut-off scores, did not change significantly during time. In mild to moderate Alzheimer disease patients with loss of efficacy and tolerability during cholinesterase inhibitor treatment, the switch to another cholinesterase inhibitor may represent an important option for slowing cognitive deterioration. The evidence of apathy stabilization and the positive tendency of depressive symptom improvement should definitively be confirmed in double-blind controlled studies. PMID

  19. Discontinuation, Efficacy, and Safety of Cholinesterase Inhibitors for Alzheimer's Disease: a Meta-Analysis and Meta-Regression of 43 Randomized Clinical Trials Enrolling 16 106 Patients.

    PubMed

    Blanco-Silvente, Lídia; Castells, Xavier; Saez, Marc; Barceló, Maria Antònia; Garre-Olmo, Josep; Vilalta-Franch, Joan; Capellà, Dolors

    2017-07-01

    We investigated the effect of cholinesterase inhibitors on all-cause discontinuation, efficacy and safety, and the effects of study design-, intervention-, and patient-related covariates on the risk-benefit of cholinesterase inhibitors for Alzheimer's disease. A systematic review and meta-analysis of randomized placebo-controlled clinical trials comparing cholinesterase inhibitors and placebo was performed. The effect of covariates on study outcomes was analysed by means of meta-regression using a Bayesian framework. Forty-three randomized placebo-controlled clinical trials involving 16106 patients were included. All-cause discontinuation was higher with cholinesterase inhibitors (OR = 1.66), as was discontinuation due to adverse events (OR=1.75). Cholinesterase inhibitors improved cognitive function (standardized mean difference = 0.38), global symptomatology (standardized mean difference=0.28) and functional capacity (standardized mean difference=0.16) but not neuropsychiatric symptoms. Rivastigmine was associated with a poorer outcome on all-cause discontinuation (Diff OR = 1.66) and donepezil with a higher efficacy on global change (Diff standardized mean difference = 0.41). The proportion of patients with serious adverse events decreased with age (Diff OR = -0.09). Mortality was lower with cholinesterase inhibitors than with placebo (OR = 0.65). While cholinesterase inhibitors show a poor risk-benefit relationship as indicated by mild symptom improvement and a higher than placebo all-cause discontinuation, a reduction of mortality was suggested. Intervention- and patient-related factors modify the effect of cholinesterase inhibitors in patients with Alzheimer's disease. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. VARIATION IN CHOLINESTERASE ACTIVITY IN TISSUES OF RATS AT DIFFERENT TIMES AFTER IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkova, S.R.; Chernavskaya, N.M.

    1959-06-11

    It was found that a single lethal dose (1000 r) changes the cholinesterase activity in the brain, liver, and blood serum. After 5 hr and 45 min the cholinesterase activity in tissues drops from the normal level (15.9% in blood serum, 20.6% in the brain, and 18.4% in the liver). After three days the activity changes in various tissues: in the liver it continues to drop, in the brain it rises but does not reach the standard level, and it increases sharply in the blood serum. (R.V.J.)

  1. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less

  2. Discontinuation, Efficacy, and Safety of Cholinesterase Inhibitors for Alzheimer’s Disease: a Meta-Analysis and Meta-Regression of 43 Randomized Clinical Trials Enrolling 16 106 Patients

    PubMed Central

    Blanco-Silvente, Lídia; Saez, Marc; Barceló, Maria Antònia; Garre-Olmo, Josep; Vilalta-Franch, Joan; Capellà, Dolors

    2017-01-01

    Abstract Background: We investigated the effect of cholinesterase inhibitors on all-cause discontinuation, efficacy and safety, and the effects of study design-, intervention-, and patient-related covariates on the risk-benefit of cholinesterase inhibitors for Alzheimer’s disease. Methods: A systematic review and meta-analysis of randomized placebo-controlled clinical trials comparing cholinesterase inhibitors and placebo was performed. The effect of covariates on study outcomes was analysed by means of meta-regression using a Bayesian framework. Results: Forty-three randomized placebo-controlled clinical trials involving 16106 patients were included. All-cause discontinuation was higher with cholinesterase inhibitors (OR = 1.66), as was discontinuation due to adverse events (OR=1.75). Cholinesterase inhibitors improved cognitive function (standardized mean difference = 0.38), global symptomatology (standardized mean difference=0.28) and functional capacity (standardized mean difference=0.16) but not neuropsychiatric symptoms. Rivastigmine was associated with a poorer outcome on all-cause discontinuation (Diff OR = 1.66) and donepezil with a higher efficacy on global change (Diff standardized mean difference = 0.41). The proportion of patients with serious adverse events decreased with age (Diff OR = -0.09). Mortality was lower with cholinesterase inhibitors than with placebo (OR = 0.65). Conclusion: While cholinesterase inhibitors show a poor risk-benefit relationship as indicated by mild symptom improvement and a higher than placebo all-cause discontinuation, a reduction of mortality was suggested. Intervention- and patient-related factors modify the effect of cholinesterase inhibitors in patients with Alzheimer’s disease. PMID:28201726

  3. WRAIR Protocols for Soldier Status and Readiness to Organophosphate Exposure: Unprocessed Whole Blood Cholinesterase and Pyridostigmine Bromide Quantification

    DTIC Science & Technology

    2003-07-01

    blood in the presence and absence of selective ( huperzine - a and Iso-OMPA), and non-selective (pyridostigmine bromide) cholinesterase inhibitors...cholinesterases after exposure to CWAs such as GD and pharmaceuticals such as huperzine - a and pyridostigmine have been determined in animals and man...activity. Since urban terrorism is on the rise, Federal,State, and local authorities need a reliable, fast, inexpensive method for confirming such an

  4. Alkaloids from psychotria target sirtuins: in silico and in vitro interaction studies.

    PubMed

    Sacconnay, Lionel; Ryckewaert, Lucie; Dos Santos Passos, Carolina; Guerra, Maria Cristina; Kato, Lucilia; Alves de Oliveira, Cecilia Maria; Henriques, Amélia; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2015-04-01

    Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins. Given the multifunctional profile of these alkaloids in the central nervous system, and the fact that the indole scaffold has been previously associated with sirtuin inhibition, we hypothesized that these indole derivatives could also interact with sirtuins. In the present study, alkaloids previously isolated from Psychotria spp. were evaluated for their potential interaction with human sirtuin 1 and sirtuin 2 by molecular docking and molecular dynamics simulation approaches. The in silico results allowed for the selection of five potentially active compounds, namely, prunifoleine, 14-oxoprunifoleine, E-vallesiachotamine, Z-vallesiachotamine, and vallesiachotamine lactone. The sirtuin inhibition of these compounds was confirmed in vitro in a dose-response manner, with preliminary information on their pharmacokinetics properties. Georg Thieme Verlag KG Stuttgart · New York.

  5. Role of glutamate-199 in the aging of cholinesterase. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, A.; Doctor, B.P.; Maxwell, D.M.

    1993-11-30

    Aging of organophosphate-conjugated acetylcholinesterase results from the loss of an alkoxy group with concomitant stabilization of the conjugate to spontaneous or nucleophile-induced deacylation. We have examined the kinetics of aging in a pinacolylmethylphosphonofluoridate (soman)-inhibited mutant enzyme in which the glutamate (E199) located at the amino-terminal to the active-site sense (S200) was converted to glutamine (Q). For wild type enzyme, the soman-acetylcholinesterase conjugate aged immediately, giving rise to a form of enzyme resistant to reactivation by oximes. In contrast, the E199Q mutant enzyme was largely resistant to aging and could be reactivated by oximes. Since the pH dependence for aging wasmore » not altered appreciably, the primary influence of the loss of charge appears to be on the intrinsic rate of aging. The negative charge on E199 likely imparts an inductive effect on the conjugated organophosphate to facilitate removal of the alkoxy group. Cholinesterases, Aging, Organophosphate.« less

  6. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA

    USGS Publications Warehouse

    Iko, W.M.; Archuleta, A.S.; Knopf, F.L.

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.

  7. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues.

    PubMed Central

    Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536

  8. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata.

    PubMed

    Suganthy, N; Devi, K Pandima

    2016-01-01

    Rhizophora mucronata Lam. (Rhizophoraceae), commonly known as Asiatic mangrove, has been used traditionally among Asian countries as folk medicine. This study investigates the cholinesterase inhibitory potential and antioxidant activities of R. mucronata. Rhizophora mucronata leaves were successively extracted using solvents of varying polarity and a dosage of 100-500 µg/ml were used for each assay. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were assessed according to the method of Ellman. In vitro antioxidant activity was assessed using free radical scavenging, reducing power, and metal-chelating activity (duration - 3 months). Total phenolic and flavonoid content were quantified spectrophotometrically. Compound characterization was done using column chromatography, NMR, FTIR, and LC-MS analysis. Methanolic leaf extract (500 µg/ml) exhibited the highest inhibitory activity against AChE (92.73 ± 0.54%) and BuChE (98.98 ± 0.17%), with an IC50 value of 59.31 ± 0.35 and 51.72 ± 0.33 µg/ml, respectively. Among the different solvent extracts, methanolic extract exhibited the highest antioxidant activity with an IC50 value of 47.39 ± 0.43, 401.45 ± 18.52, 80.23 ± 0.70, and 316.47 ± 3.56 µg/ml for DPPH, hydroxyl, nitric oxide radical, and hydrogen peroxide, respectively. Total polyphenolic and flavonoid contents in methanolic extract were observed to be 598.13 ± 1.85 µg of gallic acid equivalent and 48.85 ± 0.70 μg of rutin equivalent/mg of extract. Compound characterization illustrated (+)-catechin as the bioactive compound responsible for cholinesterase inhibitory and antioxidant activities. The presence of rich source of flavonoids, in particular catechin, might be responsible for its cholinesterase inhibitory and antioxidant activities.

  9. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Characterizations of cholinesterases in golden apple snail (Pomacea canaliculata).

    PubMed

    Zou, Xiang-Hui; Xie, Heidi Qun-Hui; Zha, Guang-Cai; Chen, Vicky Ping; Sun, Yan-Jie; Zheng, Yu-Zhong; Tsim, Karl Wah-Keung; Dong, Tina Ting-Xia; Choi, Roy Chi-Yan; Luk, Wilson Kin-Wai

    2014-07-01

    Cholinesterases (ChEs) have been identified in vertebrates and invertebrates. Inhibition of ChE activity in invertebrates, such as bivalve molluscs, has been used to evaluate the exposure of organophosphates, carbamate pesticides, and heavy metals in the marine system. The golden apple snail (Pomacea canaliculata) is considered as one of the worst invasive alien species harmful to rice and other crops. The ChE(s) in this animal, which has been found recently, but poorly characterized thus far, could serve as biomarker(s) for environmental surveillance as well as a potential target for the pest control. In this study, the tissue distribution, substrate preference, sensitivity to ChE inhibitors, and molecular species of ChEs in P. canaliculata were investigated. It was found that the activities of both AChE and BChE were present in all test tissues. The intestine had the most abundant ChE activities. Both enzymes had fair activities in the head, kidney, and gills. The BChE activity was more sensitive to tetra-isopropylpyrophosphoramide (iso-OMPA) than the AChE. Only one BChE molecular species, 5.8S, was found in the intestine and head, whereas two AChE species, 5.8S and 11.6S, were found there. We propose that intestine ChEs of this snail may be potential biomarkers for manipulating pollutions.

  11. Behavioral changes in young and adult rats: Indications of cholinesterase inhibition

    EPA Science Inventory

    Inhibition of acetylcholinesterase (AChE) has long been accepted as the basis for neurotoxicity produced by organophosphorus (OP) and N-methyl carbamate chemicals. Functional or behavioral alterations result from acute exposure to these chemicals. We have conducted behavioral eva...

  12. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine.

    PubMed

    Samadi, Abdelouahid; de los Ríos, Cristóbal; Bolea, Irene; Chioua, Mourad; Iriepa, Isabel; Moraleda, Ignacio; Bartolini, Manuela; Andrisano, Vincenza; Gálvez, Enrique; Valderas, Carolina; Unzeta, Mercedes; Marco-Contelles, José

    2012-06-01

    The synthesis, pharmacological evaluation and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amines 1-7 of type I, and 9-12 of type II, designed as multipotent inhibitors able to simultaneously inhibit monoamine oxidases (MAO-A/B) as well as cholinesterase (AChE/BuChE) enzymes, as potential drugs for the treatment of Alzheimer's disease, are described. Indole derivatives 1-7 of type I are well known MAO inhibitors whose capacity to inhibit AChE and BuChE was here investigated for the first time. As a result, compound 7 was identified as a MAO-B inhibitor (IC(50) = 31 ± 2 nM) and a moderately selective eqBuChE inhibitor (IC(50) = 4.7 ± 0.2 μM). Conversely, the new and readily available 5-amino-7-(prop-2-yn-1-yl)-6,7,8,9-tetrahydropyrido[2,3-b][1,6]naphthyridine derivatives 9-13 of type II are poor MAO inhibitors, but showed AChE selective inhibition, compound 12 being the most attractive as it acts as a non-competitive inhibitor on EeAChE (IC(50) = 25 ± 3 nM, K(i) = 65 nM). The ability of this compound to interact with the AChE peripheral binding site was confirmed by kinetic studies and by molecular modeling investigation. Studies on human ChEs confirmed that 12 is a selective AChE inhibitor with inhibitory potency in the submicromolar range. Moreover, in agreement with its mode of action, 12 was shown to be able to inhibit Aβ aggregation induced by hAChE by 30.6%. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. The Leu-Arg-Glu (LRE) adhesion motif in proteins of the neuromuscular junction with special reference to proteins of the carboxylesterase/cholinesterase family.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2013-09-01

    Short linear motifs confer evolutionary flexibility on proteins as they can be added with relative ease allowing the acquisition of new functions. Such motifs may mediate a variety of signalling functions. The adhesion-mediating Leu-Arg-Glu (LRE) motif is enriched in laminin beta 2, and has been observed in other proteins, including members of the carboxylesterase/cholinesterase family. It acts as a stop signal for growing axons in the developing neuromuscular junction, binding to the voltage-gated calcium channel. In this bioinformatic analysis, we have investigated the presence of the motif in proteins of the neuromuscular junction, and have also examined its structural position and potential for ligand interaction, as well as phylogenetic conservation, in the carboxylesterase/cholinesterase family. The motif was observed to occur with a significantly higher frequency than expected in the UniProt/Swiss-Prot database, as well as in four individual species (human, mouse, Caenorhabditis elegans and Drosophila melanogaster). Examination of its presence in neuromuscular junction proteins showed it to be enriched in certain proteins of the synaptic basement membrane, including laminin, agrin, acetylcholinesterase and tenascin. A highly significant enrichment was observed in cytoskeletal proteins, particularly intermediate filament proteins and members of the spectrin family. In the carboxylesterase/cholinesterase family, the motif was observed in four conserved positions in the protein structure. It is present in the majority of mammalian acetylcholinesterases, as well as acetylcholinesterases from electric fish and a number of invertebrates. In insects, it is present in the ace-2, rather than in the synaptic ace-1, enzyme. It is also observed in the cholinesterase-like adhesion molecules (neuroligins, neurotactin and glutactin). It is never seen in butyrylcholinesterases, which do not mediate cell adhesion. In conclusion, the significant enrichment of the motif in

  14. Prognostic Factors in Cholinesterase Inhibitor Poisoning.

    PubMed

    Sun, In O; Yoon, Hyun Ju; Lee, Kwang Young

    2015-09-28

    Organophosphates and carbamates are insecticides that are associated with high human mortality. The purpose of this study is to investigate the prognostic factors affecting survival in patients with cholinesterase inhibitor (CI) poisoning. This study included 92 patients with CI poisoning in the period from January 2005 to August 2013. We divided these patients into 2 groups (survivors vs. non-survivors), compared their clinical characteristics, and analyzed the predictors of survival. The mean age of the included patients was 56 years (range, 16-88). The patients included 57 (62%) men and 35 (38%) women. When we compared clinical characteristics between the survivor group (n=81, 88%) and non-survivor group (n=11, 12%), there were no differences in renal function, pancreatic enzymes, or serum cholinesterase level, except for serum bicarbonate level and APACHE II score. The serum bicarbonate level was lower in non-survivors than in survivors (12.45±2.84 vs. 18.36±4.73, P<0.01). The serum APACHE II score was higher in non-survivors than in survivors (24.36±5.22 vs. 12.07±6.67, P<0.01). The development of pneumonia during hospitalization was higher in non-survivors than in survivors (n=9, 82% vs. n=31, 38%, P<0.01). In multiple logistic regression analysis, serum bicarbonate concentration, APACHE II score, and pneumonia during hospitalization were the important prognostic factors in patients with CI poisoning. Serum bicarbonate and APACHE II score are useful prognostic factors in patients with CI poisoning. Furthermore, pneumonia during hospitalization was also important in predicting prognosis in patients with CI poisoning. Therefore, prevention and active treatment of pneumonia is important in the management of patients with CI poisoning.

  15. A Comprehensive Evaluation of the Efficacy of Leading Oxime Therapies in Guinea Pigs Exposed to Organophosphorus Chemical Warfare Agents or Pesticides

    PubMed Central

    Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 hours post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman’s method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. PMID:25448441

  16. The distribution of cholinesterases in the cat carotid body

    PubMed Central

    Biscoe, T. J.; Silver, Ann

    1966-01-01

    1. The distribution of acetyl- and butyrylcholinesterase in the carotid body of the cat has been examined histochemically. Studies were made on normal carotid bodies and on carotid bodies from cats in which certain nerves had been cut some time previously. The nerves sectioned were the sinus nerve, the post-ganglionic sympathetic branch of the superior cervical ganglion or the preganglionic cervical sympathetic trunk. 2. It was confirmed that more butyrylcholinesterase than acetylcholinesterase is present. Both enzymes are found in three sites: (i) as strands, (ii) as plexuses, (iii) inside a few cells. 3. The distribution is unaffected by cutting the sinus nerve or preganglionic cervical sympathetic nerves. Disorganization and depletion of the cholinesterases in the strands and plexuses occurs when the post-ganglionic branch of the superior cervical ganglion is cut. The cholinesterase in cells is unaffected. 4. In carotid bodies in which vessels were filled with red blood cells or in which the vascular bed was injected with carmine-gelatine, it was seen that strands and plexuses are associated with blood vessels, and with blood vessels and cells respectively. 5. It is suggested that a cholinergic pathway controlling carotid body blood vessels runs in the post-ganglionic cervical sympathetic. ImagesabcdefPlate 2abcdef PMID:5942823

  17. The distribution of cholinesterases in the cat carotid body.

    PubMed

    Biscoe, T J; Silver, A

    1966-03-01

    1. The distribution of acetyl- and butyrylcholinesterase in the carotid body of the cat has been examined histochemically. Studies were made on normal carotid bodies and on carotid bodies from cats in which certain nerves had been cut some time previously. The nerves sectioned were the sinus nerve, the post-ganglionic sympathetic branch of the superior cervical ganglion or the preganglionic cervical sympathetic trunk.2. It was confirmed that more butyrylcholinesterase than acetylcholinesterase is present. Both enzymes are found in three sites: (i) as strands, (ii) as plexuses, (iii) inside a few cells.3. The distribution is unaffected by cutting the sinus nerve or preganglionic cervical sympathetic nerves. Disorganization and depletion of the cholinesterases in the strands and plexuses occurs when the post-ganglionic branch of the superior cervical ganglion is cut. The cholinesterase in cells is unaffected.4. In carotid bodies in which vessels were filled with red blood cells or in which the vascular bed was injected with carmine-gelatine, it was seen that strands and plexuses are associated with blood vessels, and with blood vessels and cells respectively.5. It is suggested that a cholinergic pathway controlling carotid body blood vessels runs in the post-ganglionic cervical sympathetic.

  18. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.

    PubMed

    Jung, Hyun Ah; Ali, Md Yousof; Jung, Hee Jin; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-09-15

    Semen Cassiae has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Alzheimer's disease (AD) models. The basic goal of this study was to evaluate the anti-AD activities of C. obtusifolia and its major constituents. Previously, the extract of C. obtusifolia seeds, was reported to have memory enhancing properties and anti-AD activity to ameliorate amyloid β-induced synaptic dysfunction. However, the responsible components of C. obtusifolia seeds in an AD are currently still unknown. In this study, we investigated the inhibitory effects of C. obtusifolia and its constituents against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) enzyme activity. In vitro cholinesterase enzyme assays by using AChE, BChE, and BACE1 were performed. We also scrutinized the potentials of Cassiae semen active component as BACE1 inhibitors via enzyme kinetics and molecular docking simulation. In vitro enzyme assays demonstrated that C. obtusifolia and its major constituents have promising inhibitory potential against AChE, BChE, and BACE1. All Cassiae semen constituents exhibited potent inhibitory activities against AChE and BACE1 with IC50 values of 6.29-109µg/mL and 0.94-190µg/mL, whereas alaternin, questin, and toralactone gentiobioside exhibited significant inhibitory activities against BChE with IC50 values of 113.10-137.74µg/mL. Kinetic study revealed that alaternin noncompetitively inhibited, whereas cassiaside and emodin showed mixed-type inhibition against BACE1. Furthermore, molecular docking simulation results demonstrated that hydroxyl group of alaternin and emodin tightly interacted with the active site residues of BACE1 and their relevant binding energies (-6.62 and -6.89kcal

  19. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions.

    PubMed

    Palù, Giorgio; Loregian, Arianna

    2013-09-01

    Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  1. Malathion-induced inhibition of human plasma cholinesterase studied by the fluorescence spectroscopy method

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Krinulović, K. S.; Savić, J. Z.; Ilić, M. A.

    2008-05-01

    The in vitro effect of technical grade malathion was assessed via the kinetic parameters of human plasma butyrylcholinesterase (BChE) using N-methylindoxyl acetate as a substrate for BChE. An inhibitor kinetics study demonstrated the existence of a biphasic inhibition curve, indicating high-and low-affinity binding sites of malathion. The IC 50 values as calculated from the experimental inhibition curves were 1.33 × 10-9 and 1.48 × 10-5 M for the high-and low-affinity binding sites, respectively; Hill’s analysis gave 1.29 × 10-9 and 1.38 × 10-6 M. The Cornish-Bowden plots and their secondary plots indicated that the nature of inhibition was of mixed type with the predominant competitive character of both affinity binding sites.

  2. Effect of methylmercury on acetylcholinestrase and serum cholinesterase activity in monkeys, Macaca fascicularis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petruccioli, L.; Turillazzi, P.G.

    1991-05-01

    The consumption of fish and fish-derived products is the main pathway of human exposure to methylmercury (MeHg). Methylmercury levels vary widely in fish, depending on age, size, the position of the species in the food chain, and most of all, on pollution levels. MeHg affects the Acetylcholinesterase activity (AChE) and the serum Cholinesterase activity (BChE). Histoenzymatic studies showed that 100mg Methyoxyethylmercury chloride administered for 6 days to rats caused a reduction of AChE activity in the thalamus and an increase in different parts of the nervous central system. The present study aims at verifying whether the dose permitted by F.A.O.more » and doses 10 and 100 fold higher affect the Cholinesterase activity in primates, and whether there is a correlation between AChE and BChE.« less

  3. Chemical interaction: enhancement and inhibition of clastogenicity.

    PubMed Central

    Anwar, W A

    1993-01-01

    Most environmental exposures involve concurrent or sequential exposure to multiple chemicals in air, water, and food. Interactive effects in carcinogenesis have been described for certain combinations of agents. They are described in terms of enhancement or inhibition of carcinogenesis. Enhancement effects have been documented for cigarette smoking in combination with exposure to asbestos, radon, alcohol, or other exposures. A variety of inhibitors of carcinogenesis have also been described. They are classified into agents preventing formation of carcinogens; blocking agents; and suppressing agents. Assessment of risk from exposure to multiple agents can be derived either from epidemiological studies in relation to actual exposure or from laboratory studies after controlled exposure to different agents. Prediction of how toxic components of mixtures will interact should be based on an understanding of the mechanisms of such interactions. Compounds may interact chemically, yielding new toxic components or causing a change in the biological availability of the existing components or metabolites. In humans, great individual variability in response is to be expected because of genetic heterogeneity or acquired host susceptibility factors. Interaction is thus a key component in the risk assessment process. In this paper, the definition of interaction and the theoretical basis for different types of interaction in cancer causation are reviewed. Epidemiological and experimental studies showing interactive effects of two chemical carcinogens are also presented. PMID:8143617

  4. An in vitro approach to potential methadone metabolic-inhibition interactions.

    PubMed

    Bomsien, Stephanie; Skopp, Gisela

    2007-09-01

    The aim of this study was to assess the drug interaction potential of psychotropic medication on methadone N-demethylation using cDNA-expressed cytochrome P450 CYP enzymes. Methadone was incubated with various drugs (n = 10) and cDNA-expressed CYP3A4, CYP2D6, CYP2B6, CYP2C19 and CYP1A2 enzymes to screen for their inhibition potency. The nature of enzyme selective activity for inhibition was further investigated for potent inhibitors. To test for a mechanism-based component in inhibition, all substances were tested with preincubation and without. 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) concentration was determined by liquid chromatography/tandem mass spectrometry following liquid/liquid extraction. Formation of EDDP was catalysed by CYP3A4, CYP2D6 and CYP2C19. The N-demethylation of methadone was preferentially inhibited by amitriptyline, buprenorphine, methylenedioxymethamphetamine (MDMA) and zolpidem. Both amitriptyline and buprenorphine were strong, reversible inhibitors of CYP3A4. Similarly, amitriptyline and MDMA were identified as inhibitors of CYP2D6. Zolpidem revealed a mechanism-based inhibition of CYP3A4. Amitriptyline, MDMA and zolpidem are likely to slow down conversion of methadone and to increase its area under the curve (AUC). A consideration of the in vitro evidence of drug-methadone interactions should help to improve patient care during methadone maintenance treatment.

  5. The Activity of Cholinesterases in Diapausing and Flying Red Mason Bees Osmia bicornis (Megachilidae).

    PubMed

    Dmochowska-Slezak, Kamila; Zaobidna, Ewa; Domeracka, Joanna; Swiatkowska, Marta; Rusznica, Małgorzata; Zółtowska, Krystyna

    2015-01-01

    The red mason bee (Osmia bicornis) is a highly effective pollinator that is exposed to various xenobiotics. The organism's potential resistance to the toxic effects of xenobiotics can be determined based on cholinesterase activity. The activity of cholinesterases (ChEs) towards acetylcholine (ACh) and butyrylcholine (BCh) was determined in extracts of diapausing (between October and late March) and flying bees (May). In both males and females, enzyme activity was higher towards ACh than towards BCh. The ratio of ACh/BCh activity was determined in the range of 1.43 to 4.15 in diapausing females and 3.00 to 7.18 in diapausing males. No significant changes in ChE activity towards ACh were observed in females before December and in males before February. Enzyme activity towards ACh increased dynamically in the second half of March. Enzyme activity towards BCh remained stable in both sexes until mid-March, after which it increased significantly. Excluding mid-March, enzyme BCh activity was significantly higher in females than in males. The activity of carboxylesterase towards 4-p-nitrophenyl butyrate was determined in females to assess the involvement of non-specific esterases in the hydrolysis of choline esters. Carboxylesterase activity was low in comparison with cholinesterase activity, and it remained practically unchanged throughout diapause, suggesting that choline esters in female O. bicornis extracts were hydrolyzed mainly by acetylcholinesterases.

  6. Preparation, in vitro screening and molecular modelling of symmetrical 4-tert-butylpyridinium cholinesterase inhibitors--analogues of SAD-128.

    PubMed

    Musilek, Kamil; Roder, Jan; Komloova, Marketa; Holas, Ondrej; Hrabinova, Martina; Pohanka, Miroslav; Dohnal, Vlastimil; Opletalova, Veronika; Kuca, Kamil; Jung, Young-Sik

    2011-01-01

    Carbamate inhibitors (e.g., pyridostimine bromide) are used as a pre-exposure treatment for the prevention of organophosphorus poisoning. They work by blocking acetylcholinesterase's (AChE) native function and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for many undesirable side-effects related to the carbamylation of AChE. In this Letter, 19 analogues of SAD-128 were prepared and evaluated as cholinesterase inhibitors. The screening results showed promising inhibitory ability of four compounds better to used standards (pralidoxime, obidoxime, BW284c51, ethopropazine, SAD-128). Four most promising compounds were selected for further molecular docking studies. The SAR was stated from obtained data. The former receptor studies were reported and discussed. The further in vivo studies were recommended in the view of OP pre-exposure treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. 40 CFR 161.34 - Flagging of studies for potential adverse effects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... feeding study or combined chronic feeding/oncogenicity study 83-1 Cholinesterase inhibition NOEL less than... ADI 9 Subchronic feeding study 82-1 Cholinesterase inhibition NOEL less than 100 times the current...

  8. 40 CFR 161.34 - Flagging of studies for potential adverse effects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... feeding study or combined chronic feeding/oncogenicity study 83-1 Cholinesterase inhibition NOEL less than... ADI 9 Subchronic feeding study 82-1 Cholinesterase inhibition NOEL less than 100 times the current...

  9. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health.

    PubMed

    Bentley, Paul; Driver, Jon; Dolan, Ray J

    2008-02-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate

  10. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity.

    PubMed

    Chear, Nelson Jeng-Yeou; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Lai, Choon-Sheen

    2016-04-01

    Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences. Copyright © 2016. Published by Elsevier B.V.

  11. 40 CFR 156.206 - General statements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...

  12. 40 CFR 156.206 - General statements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...

  13. 40 CFR 156.206 - General statements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...

  14. 40 CFR 156.206 - General statements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (i.e., an organophosphorus ester that inhibits cholinesterase) or an N-methyl carbamate (i.e., an N-methyl carbamic acid ester that inhibits cholinesterase), the label shall so state. The statement shall...

  15. Characterization of acetylcholinesterase-inhibition by itopride.

    PubMed

    Iwanaga, Y; Kimura, T; Miyashita, N; Morikawa, K; Nagata, O; Itoh, Z; Kondo, Y

    1994-11-01

    Itopride is a gastroprokinetic benzamide derivative. This agent inhibited both electric eel acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BuChE). The IC50 of itopride with AChE (2.04 +/- 0.27 microM) was, however, 100-fold less than that with BuChE, whereas in the case of neostigmine with AChE (11.3 +/- 3.4 nM), it was 10-fold less. The recovery of AChE activity inhibited by 10(-7) M neostigmine was partial, but that inhibited by up to 3 x 10(-5) M itopride was complete when the reaction mixture was subjected to ultrafiltration. Double reciprocal plots of the experimental data showed that both Km and Vmax were affected by itopride, suggesting that the inhibition is a "mixed" type, although primarily being an uncompetitive one. The inhibitory effect of itopride on cholinesterase (ChE) activity in guinea pig gastrointestine was much weaker than that on pure AChE. However, in the presence of a low dose of diisopropyl fluorophosphate, just enough to inhibit BuChE but not AChE, the IC50s of itopride against ChE activities were found to be about 0.5 microM. In conclusion, itopride exerts reversible and a "mixed" type of inhibition preferably against AChE. The IC50 of itopride for electric eel and guinea pig gastrointestinal AChE inhibition was 200 times and 50 times as large as that of neostigmine, respectively.

  16. Purification and studies on characteristics of cholinesterases from Daphnia magna *

    PubMed Central

    Yang, Yan-xia; Niu, Li-zhi; Li, Shao-nan

    2013-01-01

    Due to their significant value in both economy and ecology, Daphnia had long been employed to investigate in vivo response of cholinesterase (ChE) in anticholinesterase exposures, whereas the type constitution and property of the enzyme remained unclear. A type of ChE was purified from Daphnia magna using a three-step procedure, i.e., Triton X-100 extraction, ammonium sulfate precipitation, and diethylaminoethyl (DEAE)-Sepharose™-Fast-Flow chromatography. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), molecular mass of the purified ChE was estimated to be 84 kDa. Based on substrate studies, the purified enzyme preferred butyrylthiocholine iodide (BTCh) [with maximum velocity (V max)/Michaelis constant (K m)=8.428 L/(min·mg protein)] to acetylthiocholine iodide (ATCh) [with V max/K m=5.346 L/(min·mg protein)] as its substrate. Activity of the purified enzyme was suppressed by high concentrations of either ATCh or BTCh. Inhibitor studies showed that the purified enzyme was more sensitive towards inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) than by 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). Result of the study suggested that the purified ChE was more like a type of pseudocholinesterase, and it also suggested that Daphnia magna contained multiple types of ChE in their bodies. PMID:23549850

  17. Early effects of whole body irradiation on cholinesterase activity in guinea-pigs' blood, with special regard to radiation sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundin, J; Clemedson, C -J; Nelson, A

    1957-07-01

    Male guinea-pigs suffered a loss of cholinesterase activity in plasma amounting to about 30% during the first two days after whole-body roentgen irradiation with 400 r. No changes in the activity of acetylcholinesterase in erythrocytes to be ascribed to the irradiation could be demonstrated during the first two days. A routine method for determination of the cholinesterase activities has been tested but is found less suitable as a diagnostic tool for the early recognition of the effects of irradiation.

  18. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of themore » two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.« less

  19. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication.

    PubMed

    Pilger, Beatrice D; Cui, Can; Coen, Donald M

    2004-05-01

    The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.

  20. Novel multipotent phenylthiazole-tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca²⁺ overload.

    PubMed

    Wang, Yue; Wang, Fang; Yu, Jun-Ping; Jiang, Feng-Chao; Guan, Xin-Lei; Wang, Can-Ming; Li, Lei; Cao, Hui; Li, Ming-Xing; Chen, Jian-Guo

    2012-11-01

    In this study, a series of multipotent phenylthiazole-tacrine hybrids (7a-7e, 8, and 9a-9m) were synthesized and biologically evaluated. Screening results showed that phenylthiazole-tacrine hybrids were potent cholinesterase inhibitors with pIC(50) (-logIC(50)) value ranging from 5.78 ± 0.05 to 7.14 ± 0.01 for acetylcholinesterase (AChE), and from 5.75 ± 0.03 to 10.35 ± 0.15 for butyrylcholinesterase (BuChE). The second series of phenylthiazole-tacrine hybrids (9a-9m) could efficiently prevent Aβ(1-42) self-aggregation. The structure-activity relationship revealed that their inhibitory potency relied on the type of middle linker and substitutions at 4'-position of 4-phenyl-2-aminothiazole. In addition, 7a and 7c also displayed the Ca(2+) overload blockade effect in the primary cultured cortical neurons. Consequently, these compounds emerged as promising molecules for the therapy of Alzheimer's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Behavioral changes in adult and young rats as indications of cholinesterase inhibition

    EPA Science Inventory

    Inhibition of acetylcholinesterase has long been accepted as the basis for neurotoxicity produced by organophosphorus (OP) and N-methyl carbamate chemicals. Functional or behavioral alterations result from acute exposure to these chemicals. We have evaluated behavioral changes an...

  2. [Insect cholinesterases and irreversible inhibitors. Statistical treatment of the data].

    PubMed

    Moralev, S N

    2010-01-01

    The data on sensitivity of cholinesterases (ChE) of different insects to reversible inhibitors, as well as the data on physico-chemical parameters of amino acids constituting their active centers, were treated by factor analysis and juxtaposed. It is shown that both these characteristics are related to taxonomical belonging of insects. It is revealed the "material substrate" of the factors determining inhibitor action specificity, which are specific sites in ChE active center.

  3. Association between blood cholinesterase activity, organophosphate pesticide residues on hands, and health effects among chili farmers in Ubon Ratchathani Province, northeastern Thailand

    PubMed

    Nganchamung, Thitirat; Robson, Mark G; Siriwong, Wattasit

    Use of pesticides has been documented to lead to several adverse health effects. Farmers are likely to be exposed to pesticides through dermal exposure as a result of mixing, loading, and spraying. Organophosphate pesticides (OPs) are widely used in most of the agricultural areas throughout Thailand. OPs are cholinesterase inhibitors and blood cholinesterase activity is used as a biomarker of OP effects. This study aims to determine the association between blood cholinesterase activity and organophosphate pesticide residues on chili farmer’s hands and their adverse health effects. Ninety chili farmers directly involved with pesticide applications (e.g. mixing, loading, spraying) were recruited and were interviewed face to face. Both enzymes, erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (PChE), were tested with the EQM Test-mate Cholinesterase Test System (Model 400). Hand wipe samples were used for collecting residues on both hands and OP residues for chlorpyrifos and profenofos were quantified using gas chromatography equipped with a flame photometric detector (GC-FPD). The average activity (±SD) of AChE and PChE was 2.73 (±0.88) and 1.58 (±0.56) U/mL, respectively. About 80.0% of the participants had detectable OP residues on hands. The median residues of chlorpyrifos and profenofos were found to be 0.02 and 0.03 mg/kg/two hands, respectively. Half of participants reported having some acute health symptoms within 48 hours after applying pesticides. When adjusted for gender, number of years working in chili farming, and frequency of pesticide use, AChE activity (Adjusted OR = 0.03, 95%CI: 0.01-0.13) and detected OP residues on hands (Adjusted OR = 0.15, 95%CI: 0.02-0.95) were significantly associated with having health effects, but no significant association was found in PChE activity (Adjusted OR = 2.09, 95%CI: 0.63-6.99). This study suggests that regular monitoring for blood cholinesterase and effective interventions to reduce pesticide

  4. Pharmacophore-based design and discovery of (-)-meptazinol carbamates as dual modulators of cholinesterase and amyloidogenesis.

    PubMed

    Xie, Qiong; Zheng, Zhaoxi; Shao, Biyun; Fu, Wei; Xia, Zheng; Li, Wei; Sun, Jian; Zheng, Wei; Zhang, Weiwei; Sheng, Wei; Zhang, Qihong; Chen, Hongzhuan; Wang, Hao; Qiu, Zhuibai

    2017-12-01

    Multifunctional carbamate-type acetylcholinesterase (AChE) inhibitors with anti-amyloidogenic properties like phenserine are potential therapeutic agents for Alzheimer's disease (AD). We reported here the design of new carbamates using pharmacophore model strategy to modulate both cholinesterase and amyloidogenesis. A five-feature pharmacophore model was generated based on 25 carbamate-type training set compounds. (-)-Meptazinol carbamates that superimposed well upon the model were designed and synthesized, which exhibited nanomolar AChE inhibitory potency and good anti-amyloidogenic properties in in vitro test. The phenylcarbamate 43 was highly potent (IC 50 31.6 nM) and slightly selective for AChE, and showed low acute toxicity. In enzyme kinetics assay, 43 exhibited uncompetitive inhibition and reacted by pseudo-irreversible mechanism. 43 also showed amyloid-β (Aβ) lowering effects (51.9% decrease of Aβ 42 ) superior to phenserine (31% decrease of total Aβ) in SH-SY5Y-APP 695 cells at 50 µM. The dual actions of 43 on cholinergic and amyloidogenic pathways indicated potential uses as symptomatic and disease-modifying agents.

  5. Cholinesterase inhibitory activities of Apai-sa-le recipe and its ingredients.

    PubMed

    Senavong, Pimolvan; Sattaponpan, Chitsanucha; Silavat Suk-um; Itharat, Arunporn

    2014-08-01

    Acetylcholinesterase and butyrylcholoinesterase inhibitors are well-known drugs commonly used in the treatment ofAlzheimer's disease (AD) to improve cognitive function. These enzyme inhibitors were reported to be found in manyplants. Apai-sa-le recipe was a Thai tradition used as nootropic recipe and formerly claimed to improve memory. Therefore, it is interesting to investigate cholinesterase inhibitory activity ofthe recipe and its ingredients. To determine the whole recipe ofApai-sa-le and its ingredients for inhibitory effect on acetylcholinesterase (AChE) and human butyrylcholinesterase (BuChE) activities. Thirty grams of each plant and 181 grams of the whole recipe were separately extracted by 95% ethanol, after filtered the filtrate were evaporated and vacuum-dried at 45°C. By Elman method, the inhibitory activities of both enzymes were assessed. The volatile constituents ofeach extract were determined by GCMS. The constituents in the non- volatile extract were examined by TLC and the antioxidant activity was determined. Four plants exhibited specific BuChE inhibitor were Lepidium sativum Linn. (Ls), Piper nigrum L. (Pn), Angelica dahurica Benth (Ad) andAtractylodes lancea DC. (Al), which shown the lC50 of 5.59, 24.52, 73.23, 96.25 μg/ml, respectively whereas galantamine and the whole recipe showed IC50 of 0.59 and 236 μg/ml. Only Pn extract inhibited AChE at lCso of 25.46 μg/ml. By GCMS and TLC fingerprints revealed the main constituents in LS, Ad, Al andPn as apiol, cumialdehyde, furanodiene and piperine. Moreover nine plant extracts and the whole recipe showed antioxidant activity. Lepidium sativum Linn. (Ls) extract showed the most potency on BuChE inhibitory effect. Three ingredients and the whole recipe exhibited mild activity. Only Piper nigrum L demonstrated inhibition effect on both AChE and BuChE.

  6. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease

    PubMed Central

    Lopez, O L; Becker, J T; Wahed, A S; Saxton, J; Sweet, R A; Wolk, D A; Klunk, W; DeKosky, S T

    2010-01-01

    Background Patients using cholinesterase inhibitors (ChEIs) have a delay in nursing home (NH) admission compared with those who were not using the medication. There are no long-term studies of the effects of memantine in combination with ChEIs use in Alzheimer disease (AD). This study was conducted to examine the effects of ChEIs and memantine on time to death and time to NH admission. Methods Time to NH admission and death was examined in 943 probable AD patients who had at least a 1-year follow-up evaluation. Of these patients, 140 (14.9%) used both ChEIs and memantine, 387 (45.0%) used only ChEIs, and 416 (40.1%) used neither. The mean (SD) follow-up time was 62.3 (35.8) months. The analysis was conducted with multivariable Cox proportional hazard models controlling for critical covariates (ie, age, education level, gender, severity of the dementia, hypertension, diabetes mellitus, heart disease, psychiatric symptoms and use of psychotropic medications). Results Compared with those who never used cognitive enhancers, patients who used ChEIs had a significant delay in NH admission (HR: 0.37, 95% CI 0.27 to 0.49); this effect was significantly augmented with the addition of memantine (HR: 0.29, 95% CI 0.11 to 0.72) (memantine+ChEI vs ChEI alone). ChEIs alone, or in combination with memantine had no significant association on time to death. Conclusions This observational study revealed that the addition of the NMDA receptor antagonist memantine to the treatment of AD with ChEI significantly altered the treated history of AD by extending time to nursing home admission. PMID:19204022

  7. Acute Toxicity Estimation and Operational Risk Management of Chemical Warfare Agent Exposures

    DTIC Science & Technology

    2004-05-01

    Following absorption into the body, nerve agents bind with and inhibit the activity of cholinesterases (ChE) that are present in the blood and...other tissues. Blood ChE activity depression by itself is not considered an adverse effect but (particularly red blood cell cholinesterase (RBC-ChE...chemical, such as an organophosphate , that blocks nerve impulses by inhibiting the activity of the enzyme cholinesterase (adapted from University of

  8. Chemical inhibition of prometastatic lysyl-tRNA synthetase–laminin receptor interaction

    PubMed Central

    Kim, Dae Gyu; Lee, Jin Young; Kwon, Nam Hoon; Fang, Pengfei; Zhang, Qian; Wang, Jing; Young, Nicolas L.; Guo, Min; Cho, Hye Young; Mushtaq, AmeeqUl; Jeon, Young Ho; Choi, Jin Woo; Han, Jung Min; Kang, Ho Woong; Joo, Jae Eun; Hur, Youn; Kang, Wonyoung; Yang, Heekyoung; Nam, Do-Hyun; Lee, Mi-Sook; Lee, Jung Weon; Kim, Eun-Sook; Moon, Aree; Kim, Kibom; Kim, Doyeun; Kang, Eun Joo; Moon, Youngji; Rhee, Kyung Hee; Han, Byung Woo; Yang, Jee Sun; Han, Gyoonhee; Yang, Won Suk; Lee, Cheolju; Wang, Ming-Wei; Kim, Sunghoon

    2014-01-01

    Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds to KRS, impinged on interaction of KRS with 67LR and suppressed metastasis in 3 different mouse models. The compound inhibited KRS–67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS–67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS. PMID:24212136

  9. The influence of cholinesterase inhibitor therapy for dementia on risk of cardiac pacemaker insertion: a retrospective, population-based, health administrative databases study in Ontario, Canada.

    PubMed

    Huang, Allen R; Redpath, Calum J; van Walraven, Carl

    2015-04-28

    Cholinesterase inhibitors are used to treat the symptoms of dementia and can theoretically cause bradycardia. Previous studies suggest that patients taking these medications have an increased risk of undergoing pacemaker insertion. Since these drugs have a marginal impact on patient outcomes, it might be preferable to change drug treatment rather than implant a pacemaker. This population-based study determined the association of people with dementia exposed to cholinesterase inhibitor medication and pacemaker insertion. We used data from the Ontario health administrative databases from January 1, 1993 to June 30, 2012. We included all community-dwelling seniors who had a code for dementia and were exposed to cholinesterase inhibitors (donezepil, galantamine, and rivastigmine) and/or drugs used to treat co-morbidities of hypertension, diabetes, depression and hypothyroidism. We controlled for exposure to anti-arrhythmic drugs. Observation started at first exposure to any medication and continued until the earliest of pacemaker insertion, death, or end of study. 2,353,909 people were included with 96,000 (4.1%) undergoing pacemaker insertion during the observation period. Case-control analysis showed that pacemaker patients were less likely to be coded with dementia (unadjusted OR 0.42 [95%CI 0.41-0.42]) or exposed to cholinesterase inhibitors (unadjusted OR 0.39 [95%CI 0.37-0.41]). That Cohort analysis showed patients with dementia taking cholinesterase inhibitors had a decreased risk of pacemaker insertion (unadj-HR 0.58 [0.55-0.61]). Adjustment for patient age, sex, and other medications did not notably change results, as did restricting the analysis to incident users. Patients taking cholinesterase inhibitors rarely undergo, and have a significantly reduced risk of, cardiac pacemaker insertion.

  10. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia.

    PubMed

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.

  11. Blood cholinesterase levels in a group of Malaysian blood donors.

    PubMed

    Chan, L; Balabaskaran, S; Delilkan, A E; Ong, L H

    1994-12-01

    Data on blood cholinesterase levels in the Malaysian population is lacking. The spectrophotometric method of Ellman was used to determine the red cell, plasma and whole blood cholinesterase (ChE) levels in 407 Malaysian blood donors. The mean+1SD for plasma ChE in females (n = 48) was 2.37 + 0.70 umol/min/ml and 2.76 + 0.75 umol/min/ml in males (n = 359). The mean plasma ChE in males was higher than in females (p < 0.001). The mean+1SD for red cell ChE in females was 9.01 + 1.20 umol/min/ml whereas in males it was 7.69 +1.30 umol/min/ml (the mean red cell ChE in females was higher than in males, p < 0.0001). The mean+1SD for whole blood ChE for females was 4.31+ 0.58 umol/min/ml and for males it was 4.95 + 0.71 umol/min/ml. The mean whole blood ChE in males was higher than in females (p < 0.0001). Sex influenced the plasma, red cell and whole blood ChE. In males the plasma ChE was affected by the race factor. The mean+1SD plasma ChE for the Malay, Chinese and Indian were 2.92 + 0.80, 2.73 + 0.71 and 2.61+ 0.73 respectively (p < 0.002). The age factor in males affected the red cell ChE with 7.88 + 1.32 in the (30-69) age group and 7.47 + 1.23 in the (15-29) age group (p < 0.005). The whole blood ChE in females was affected by blood groups. The mean+1SD whole blood ChE for blood groups A,B and O were 4.19 + 0.42, 3.93 + 0.46 and 4.49 + 0.62 respectively (p < 0.03). The significant difference is between the ChE of group B and O, but the ChE of group A could not be determined to be different from group B or O. These results serve as guidelines for our local population in the evaluation of cholinesterase levels with regard to pesticide poisoning, liver biosynthetic capacity and unusual sensitivity to succinylcholine.

  12. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans.

    PubMed

    Marney, Annis; Kunchakarra, Siri; Byrne, Loretta; Brown, Nancy J

    2010-10-01

    Dipeptidyl peptidase-IV inhibitors improve glucose homeostasis in type 2 diabetics by inhibiting degradation of the incretin hormones. Dipeptidyl peptidase-IV inhibition also prevents the breakdown of the vasoconstrictor neuropeptide Y and, when angiotensin-converting enzyme (ACE) is inhibited, substance P. This study tested the hypothesis that dipeptidyl peptidase-IV inhibition would enhance the blood pressure response to acute ACE inhibition. Subjects with the metabolic syndrome were treated with 0 mg of enalapril (n=9), 5 mg of enalapril (n=8), or 10 mg enalapril (n=7) after treatment with sitagliptin (100 mg/day for 5 days and matching placebo for 5 days) in a randomized, cross-over fashion. Sitagliptin decreased serum dipeptidyl peptidase-IV activity (13.08±1.45 versus 30.28±1.76 nmol/mL/min during placebo; P≤0.001) and fasting blood glucose. Enalapril decreased ACE activity in a dose-dependent manner (P<0.001). Sitagliptin lowered blood pressure during enalapril (0 mg; P=0.02) and augmented the hypotensive response to 5 mg of enalapril (P=0.05). In contrast, sitagliptin attenuated the hypotensive response to 10 mg of enalapril (P=0.02). During sitagliptin, but not during placebo, 10 mg of enalapril significantly increased heart rate and plasma norepinephrine concentrations. There was no effect of 0 or 5 mg of enalapril on heart rate or norepinephrine after treatment with either sitagliptin or placebo. Sitagliptin enhanced the dose-dependent effect of enalapril on renal blood flow. In summary, sitagliptin lowers blood pressure during placebo or submaximal ACE inhibition; sitagliptin activates the sympathetic nervous system to diminish hypotension when ACE is maximally inhibited. This study provides the first evidence for an interactive hemodynamic effect of dipeptidyl peptidase-IV and ACE inhibition in humans.

  13. (-)-Meptazinol-melatonin hybrids as novel dual inhibitors of cholinesterases and amyloid-β aggregation with high antioxidant potency for Alzheimer's therapy.

    PubMed

    Cheng, Shaobing; Zheng, Wei; Gong, Ping; Zhou, Qiang; Xie, Qiong; Yu, Lining; Zhang, Peiyi; Chen, Liangkang; Li, Juan; Chen, Jianxing; Chen, Hailin; Chen, Hongzhuan

    2015-07-01

    The multifactorial pathogenesis of Alzheimer's disease (AD) implicates that multi-target-directed ligands (MTDLs) intervention may represent a promising therapy for AD. Amyloid-β (Aβ) aggregation and oxidative stress, two prominent neuropathological hallmarks in patients, play crucial roles in the neurotoxic cascade of this disease. In the present study, a series of novel (-)-meptazinol-melatonin hybrids were designed, synthesized and biologically characterized as potential MTDLs against AD. Among them, hybrids 7-7c displayed higher dual inhibitory potency toward cholinesterases (ChEs) and better oxygen radical absorbance capacity (ORAC) than the parental drugs. Furthermore, compound 7c could effectively inhibit Aβ self-aggregation, showed favorable safety and the blood-brain barrier (BBB) permeability. Therefore, 7c may serve as a valuable candidate that is worthy of further investigations in the treatment of AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Age-related behavioral effects of methomyI in Brown Norway rats.

    EPA Science Inventory

    Methomyl is a cholinesterase-inhibiting carbamate pesticide that is used in the field on cotton and a variety of fruits and vegetables. Concerns have been raised generally about age-related differences in susceptibility to cholinesterase-inhibiting pesticides, especially for chil...

  15. Prolonged apnoea after suxamethonium: an analysis of the first 225 cases reported to the Danish Cholinesterase Research Unit.

    PubMed

    Viby-Mogensen, J; Hanel, H K

    1978-01-01

    During the last 4 years, 225 patients have been referred to the Danish Cholinesterase Research Unit following an episode of prolonged apnoea after suxamethonium. Fourteen patients (6.2%) were found to have a low serum cholinesterase activity due to an acquired deficiency (for instance, liver disease, chronic debilitating disease or carcinoma). One hundred and forty-eight patients (65.8%) had an inherited abnormal serum cholinesterase, and 105 of these patients (46.7%) were homozygous for the atypical enzyme (E1 Ea1). The mean period of apnoea in this latter group was 92 min (range: 25--240). Seventeen patients (7.6%) were heterozygous for the normal and the atypical enzyme (Eu1 Ea1), with a mean apnoea period of 25 min (range: 7--60 min). Twelve patients were found to be heterozygous for the atypical and the silent gene (E(a)1 E(s)1). The mean period of apnoea was 126 min (range: 45--210 min). Fourteen patients had other rare genotypes. The longest mean period of apnoea (170 min, range: 70--330) was found in patients homozygous for the silent gene (Es1 Es1). The silent gene and the fluoride-resistant gene were found in 8.9% and 2.7% of the patients, respectively. In 63 patients (28.1%) both the type and quantity of serum cholinesterase were normal. In 34 of these patients (15.2%), the prolonged apnoea was due to other causes; for example, suxamethonium overdose, hyperventilation and central as well as peripheral respiratory depression. However, in the other 29 patients (12.9%), the reason for the prolonged apnoea could not be established. The possibility therefore exists that these cases represent unknown genotypes.

  16. Comparison of cholin- and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl exposure.

    PubMed

    Küster, E; Altenburger, R

    2006-01-01

    The acute zebra fish embryo test (Danio rerio Hamilton-Buchanan, 1822) is an accepted bioassay to assess the toxicity of waste water that may be used for the replacement of testing with adult fish. It is also suggested for chemical hazard characterization and assessment, although only a few groups of substances have yet been studied. Specifically acting substances such as neurotoxic insecticides pose a potentially hazard for non-target fish. To establish whether the proposed zebra fish embryo test protocol and the inhibition of cholinesterases (acetylcholinesterase EC 3.1.1.7, propionylcholinesterase EC 3.1.1.8) and carboxylesterase (EC 3.1.1.1) enzymes can be used in a similar fashion for hazard characterization and risk assessment of chemicals and environmental samples, two types of experiments were conducted. Visual effects of exposure to the organophosphate metabolite paraoxon-methyl after 24 and 48 h in the zebra fish embryo test system were analysed with the use of an inverse microscope (rate of mortality, developmental disturbances, heart rate and others). The inhibition to cholinesterases and carboxylesterase was also measured. Enzyme inhibition as a biomarker of exposure was about 70 times more sensitive than the effects in the zebra fish embryo test with an IC50 below 1.2 micromol compared with an EC50 of 91 micromol. The dose-response relationships showed different curve characteristics with a linear increase of enzyme inhibition compared with a sigmoidal curve for the overt effects. Significant overt effects could only be seen at concentrations at which already 80% of the activities of the different esterases were inhibited.

  17. A Statewide Evaluation of the California Medical Supervision Program Using Cholinesterase Electronic Laboratory Reporting Data

    PubMed Central

    Laribi, Ouahiba; Malig, Brian; Sutherland-Ashley, Katherine; Broadwin, Rachel; Wieland, Walker; Salocks, Charles

    2017-01-01

    The California Medical Supervision program is designed to protect workers who regularly mix, load, or apply the highly toxic Category I and II organophosphates and carbamates from overexposure by monitoring cholinesterase (ChE) inhibition in plasma and red blood cells. Since January 2011, testing laboratories are required to report test results electronically to the California Department of Pesticide Regulation who shares it with the Office of Environmental Health Hazard Assessment for evaluation. The purpose of this study is to assess the utility of this reporting in evaluating the effectiveness of the Program for illness surveillance and prevention. From 2011 to 2013, we received more than 90 000 test results. Despite data gaps and data quality issues, we were able to perform spatial and temporal analyses and developed a screening tool to identify individuals potentially at risk of overexposure. The data analysis provided some evidence that the Program is effective in protecting agricultural workers handling the most toxic ChE-inhibiting pesticides even though it also identified some areas of potential concerns with individuals that appeared lacking corrective actions in the workplace in response to excessive ChE depressions and parts of the state with disproportionately at-risk individuals. However, changes to the electronic reporting are needed to more accurately identify tests related to the Program and therefore improve the utility of the data received. Moreover, data analysis also revealed that electronic reporting has its limitation in evaluating the Program.

  18. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    PubMed

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. An improved radiosynthesis of O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer.

    PubMed

    Neumann, Kiel D; Thompson, Charles M; Blecha, Joseph E; Gerdes, John M; VanBrocklin, Henry F

    2017-06-15

    O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [ 18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [ 18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [ 18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [ 18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Multitarget Therapeutic Leads for Alzheimer's Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation.

    PubMed

    Tonelli, Michele; Catto, Marco; Tasso, Bruno; Novelli, Federica; Canu, Caterina; Iusco, Giovanna; Pisani, Leonardo; Stradis, Angelo De; Denora, Nunzio; Sparatore, Anna; Boido, Vito; Carotti, Angelo; Sparatore, Fabio

    2015-06-01

    Multitarget therapeutic leads for Alzheimer's disease were designed on the models of compounds capable of maintaining or restoring cell protein homeostasis and of inhibiting β-amyloid (Aβ) oligomerization. Thirty-seven thioxanthen-9-one, xanthen-9-one, naphto- and anthraquinone derivatives were tested for the direct inhibition of Aβ(1-40) aggregation and for the inhibition of electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBChE). These compounds are characterized by basic side chains, mainly quinolizidinylalkyl moieties, linked to various bi- and tri-cyclic (hetero)aromatic systems. With very few exceptions, these compounds displayed inhibitory activity on both AChE and BChE and on the spontaneous aggregation of β-amyloid. In most cases, IC50 values were in the low micromolar and sub-micromolar range, but some compounds even reached nanomolar potency. The time course of amyloid aggregation in the presence of the most active derivative (IC50 =0.84 μM) revealed that these compounds might act as destabilizers of mature fibrils rather than mere inhibitors of fibrillization. Many compounds inhibited one or both cholinesterases and Aβ aggregation with similar potency, a fundamental requisite for the possible development of therapeutics exhibiting a multitarget mechanism of action. The described compounds thus represent interesting leads for the development of multitarget AD therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Caregiver Acceptance of Adverse Effects and Use of Cholinesterase Inhibitors in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Oremus, Mark; Wolfson, Christina; Vandal, Alain C.; Bergman, Howard; Xie, Qihao

    2007-01-01

    Caregivers play a determining role in choosing treatments for persons with Alzheimer's disease. The objective of this study was to examine caregivers' willingness to have persons with Alzheimer's disease continue taking cholinesterase inhibitors in the event that any 1 of 11 adverse effects was to occur. Data were gathered via postal questionnaire…

  2. Natural Detoxification Capacity to Inactivate Nerve Agents Sarin and VX in the Rat Blood.

    PubMed

    Bajgar, Jiří; Cabal, Jiří; Kassa, Jiří; Pavlík, Michal

    2015-01-01

    The method of continual determination of the rat blood cholinesterase activity was developed to study the changes of the blood cholinesterases following different intervetions. The aim of this study is registration of cholinesterase activity in the rat blood and its changes to demonstrate detoxification capacity of rats to inactivate sarin or VX in vivo. The groups of female rats were premedicated (ketamine and xylazine) and cannulated to a. femoralis. Continual blood sampling (0.02 ml/min) and monitoring of the circulating blood cholinesterase activity were performed. Normal activity was monitored 1-2 min and then the nerve agent was administered i.m. (2×LD50). Using different time intervals of the leg compression and relaxation following the agent injection, cholinesterase activity was monitored and according to the inhibition obtained, detoxification capacity was assessed. Administration of sarin to the leg, then 1 and 5 min compression and 20 min later relaxation showed that further inhibition in the blood was not observed. On the other hand, VX was able to inhibit blood cholinesterases after this intervention. The results demonstrated that sarin can be naturally detoxified on the contrary to VX. Described method can be used as model for other studies dealing with changes of cholinesterases in the blood following different factors.

  3. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning

    PubMed Central

    Antonijevic, Biljana; Stojiljkovic, Milos P.

    2007-01-01

    The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LüH-6), HI-6 and HLö-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LüH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLö-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LüH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of

  4. Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina.

    PubMed

    Brodeur, Julie Céline; Sanchez, Marisol; Castro, Luciana; Rojas, Dante Emanuel; Cristos, Diego; Damonte, María Jimena; Poliserpi, María Belén; D'Andrea, María Florencia; Andriulo, Adrián Enrique

    2017-10-01

    The aim of this study was to characterize the level and nature of the pesticide contamination received by one-sided livebearer fish (Jenynsia multidentata) from a watercourse situated within the main agricultural region of Argentina, and to assess the effects of this contamination on fish health. Juvenile one-sided livebearer fish (Jenynsia multidentata) were collected in December 2011 and March 2012 from three sites along the Pergamino River. Pesticide contamination was characterized by extracting whole fish and analytically determining thirty different pesticide molecules. The biomarkers catalase, glutathione-S-transferase, and cholinesterases were assessed. Body condition was calculated as an estimate of the amount of energy reserves possessed by the fish. Seventeen different pesticides were detected in fish tissues with 81% of captured animals containing at least one pesticide molecule. The pyrethroid insecticides fenvalerate and bifenthrin were most frequently detected, being respectively found in 41.8 and 36.4% of samples tested. Highly toxic dichlorvos and pirimiphos-methyl were detected. Differential levels of contamination could not be established amongst sites but were observed within sites amongst the two sampling dates. The months when pesticide residues were most abundant from in Site A and B corresponded to the months when body condition was at its lowest in the two sites. The inhibition of Che activity in March when body condition was reduced also points to a role of insecticide contamination in the reduction of body condition. These findings provide strong new evidence that current-used agricultural pesticides can accumulate in wild fish and impact their health and energetics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    PubMed Central

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  6. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    PubMed

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  7. Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye.

    PubMed Central

    Layer, P G; Sporns, O

    1987-01-01

    Close relationships between acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, true cholinesterase, EC, 3.1.1.7) and butyrylcholinesterase (BtChoEase, acylcholine acylhydrolase, pseudocholinesterase, EC, 3.1.1.8) with cell proliferation were observed in the early chicken brain. These include the following: BtChoEase is transiently accumulating in patchy fashion on the ventricular side of the neuroepithelium shortly before AcChoEase appears in cell bodies along the opposing mantle layer. The amount of BtChoEase in retina and brain is greatest in the early phase (E3-E5, or incubation periods of 3-5 days); in retina it decreases about 2 days later than in brain. However, AcChoEase expression increases with time, in inverse order to that of BtChoEase. In both tissues decrease of cell proliferation is closely followed by decrease in BtChoEase. A double-labeling technique of cholinesterase staining together with [3H]thymidine autoradiography reveals proliferation zones that are diffusely stained by BtChoEase but not by AcChoEase. Patches intensely stained for BtChoEase accompany clusters of cells in final stages of mitosis on their way to the differentiation zone, where they begin expressing AcChoEase. By applying different thymidine pulses, we identify an 11-hr lag from the last thymidine-uptake to full AcChoEase expression. (iv) These findings are confirmed by studying lens development, where areas of proliferation and differentiation are well separated. The spatiotemporal pattern of the transition of neuroblasts from a proliferating into a differentiating state correlates with the expression of BtChoEase just before and during mitosis and that of AcChoEase about 11 hr after mitosis. Thus cholinesterases could be involved in the regulation of this transition. Images PMID:3467355

  8. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors.

    PubMed

    Matějovský, Lukáš; Pitschmann, Vladimír

    2018-05-30

    Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech Republic is the Detehit, which is based on a cholinesterase reaction that is assessed using a colour indicator-the Ellman's reagent-which is anchored on cellulose filter paper together with the substrate. With the use of this biosensor, detection is simple, quick, and sensitive. However, its disadvantage is that a less pronounced yellow discoloration occurs, especially under difficult light conditions. As a possible solution, a new indicator/substrate carrier has been designed. It is made of glass nanofibres, so the physical characteristics of the carrier positively influence reaction conditions, and as a result improve the colour response of the biosensor. The authors present and discuss some of the results of the study of this carrier under various experimental conditions. These findings have been used for the development of a modified Detehit biosensor.

  9. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation.

    PubMed

    Mao, Fei; Huang, Ling; Luo, Zonghua; Liu, Anqiu; Lu, Chuanjun; Xie, Zhiyong; Li, Xingshu

    2012-10-01

    In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer's disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer's disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC(50): 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives.

    PubMed

    Wang, Yali; Sun, Yang; Guo, Yueyan; Wang, Zechen; Huang, Ling; Li, Xingshu

    2016-01-01

    Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD.

  11. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-04-01

    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pterostilbene-O-acetamidoalkylbenzylamines derivatives as novel dual inhibitors of cholinesterase with anti-β-amyloid aggregation and antioxidant properties for the treatment of Alzheimer's disease.

    PubMed

    Li, Yuxing; Qiang, Xiaoming; Li, Yan; Yang, Xia; Luo, Li; Xiao, Ganyuan; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong

    2016-04-15

    A series of pterostilbene-O-acetamidoalkylbenzylamines were designed, synthesized and evaluated as dual inhibitors of AChE and BuChE. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and inhibitory effects on self-induced Aβ1-42 aggregation and HuAChE-induced Aβ1-40 aggregation were also tested. The results showed that most of these compounds could effectively inhibit AChE and BuChE. Particularly, compound 21d exhibited the best AChE inhibitory activity (IC50=0.06 μM) and good inhibition of BuChE (IC50=28.04 μM). Both the inhibition kinetic analysis and molecular modeling study revealed that these compounds showed mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activity. However, the inhibitory activities against self-induced and HuAChE-induced Aβ aggregation of these new derivatives were unsatisfied. Taking into account the results of the biological evaluation, further modifications will be designed in order to increase the potency on the different targets. The results displayed in this Letter can be a new starting point for further development of multifunctional agents for Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  14. Inhibition of CDC25B Phosphatase Through Disruption of Protein–Protein Interaction

    DOE PAGES

    Lund, George; Dudkin, Sergii; Borkin, Dmitry; ...

    2014-11-25

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here in this paper, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation ofmore » CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.« less

  15. Preparation and evaluation of carriers for detection of cholinesterase inhibitors.

    PubMed

    Vetchý, David; Pitschmann, Vladimír; Vetchá, Martina; Kašparovský, Tomáš; Matějovský, Lukáš

    2015-01-01

    The aim of the study was to use methods of pharmaceutical technology, and prepare carriers in the form of pellets suitable as a filling of detection tubes for enzymatic detection of cholinesterase inhibitors. The enzymatic detection was based on enzymatic hydrolysis of acetylthiocholine iodide and the subsequent colour reaction of its hydrolysis product with Ellman's reagent. The suitable carriers should be in the form of white, regular and sufficiently mechanically resistant particles of about 1 mm allowing it to capture the enzyme during the impregnation process and ensuring its high activity for enzymatic detection. Carriers consisting of microcrystalline cellulose, lactose, povidone, and sodium carboxymethyl cellulose were prepared using extrusion-spheronization method under three different drying conditions in either a hot air oven or a microwave oven. Subsequently, the carriers were impregnated with acetylcholinesterase and their size, shape, mechanical resistance, bulk, tapped and pycnometric density, Hausner ratio, intraparticular and total tapped porosity, and activity were measured and recorded. In this procedure, carriers with different physical parameters and different acetylcholinesterase activity were evaluated. It was found that higher acetylcholinesterase activity was associated not only with a higher intraparticular porosity but also with more regular particles characterized by high sphericity and low total tapped porosity. This unique finding is important for the preparation of detection tubes based on enzymatic detection which is still irreplaceable especially in the field of detection and analysis of super-toxic cholinesterase inhibitors.

  16. Chemical Composition of Volatiles; Antimicrobial, Antioxidant and Cholinesterase Inhibitory Activity of Chaerophyllum aromaticum L. (Apiaceae) Essential Oils and Extracts.

    PubMed

    Petrović, Goran M; Stamenković, Jelena G; Kostevski, Ivana R; Stojanović, Gordana S; Mitić, Violeta D; Zlatković, Bojan K

    2017-05-01

    The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. New antimuscarinic agents for improved treatment of poisoning by cholinesterase inhibitors. Annual report, 1 November 1983-1 August 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, J.F.

    The object of this project is to find a more effective antimuscarinic agent than atropine for use as an antidote for poisoning by organophosphate cholinesterase inhibitors. To start this search, 30 structurally diverse antimuscarinic agents have been selected for initial testing. These compounds are to be evaluated for peripheral and central antimuscarinic activity in a variety of in vitro and in vivo tests in addition to determining their effectiveness as antidotes (in combination with an oxime reactivator) for poisoning by soman. Twenty-two of the compounds have now been evaluated for their ability to block acetylcholine-induced contractions in guinea pig intestinalmore » smooth muscle when compared to atropine. Ability to displace radiolabeled quinuclidinyl benzilate from muscarinic receptors of mouse brain homogenate has been determined for atropine, hyoscine and 26 of the compounds. Only triflupromazine appeared to have a distinctly greater affinity for brain receptors than muscle receptors to atropine. Intestinal smooth muscle blockade; oxotremorine tremor inhibition; muscarinic receptor subtypes.« less

  18. The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition

    PubMed Central

    Bourdois, P.S.; Mitchell, J.F.; Somogyi, G.T.; Szerb, J.C.

    1974-01-01

    1 The release of endogenous acetylcholine (ACh) from cerebral cortical slices stimulated at 0.25, 1, 4, 16 and 64 Hz was measured in the presence either of physostigmine or of physostigmine and atropine. 2 Atropine potentiated the evoked release of endogenous ACh especially at low frequencies resulting in an output per stimulus which sharply declined with increasing frequency of stimulation, while in the absence of atropine the output of ACh per stimulus was low and fairly constant. 3 The evoked release of [3H]-ACh per stimulus following the incubation of the slices with [3H]-choline, as estimated by means of rate constants of the evoked release of total radioactivity, showed a frequency dependence similar to endogenous ACh when the two were tested under identical conditions. 4 In the absence of an anticholinesterase the evoked release of [3H]-ACh per stimulus was dependent on frequency of stimulation in a similar way to that in the presence of physostigmine and atropine. 5 Results suggest that under physiological conditions, i.e. in the absence of an anti-cholinesterase, the release of ACh per stimulus decreases with increasing frequency of stimulation and that this decrease is due to a lag in the mobilization of stored ACh rather than in the synthesis of new ACh. PMID:4455327

  19. 40 CFR 161.34 - Flagging of studies for potential adverse effects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a type listed in paragraph (b) of this section to support an application for new or amended... feeding study or combined chronic feeding/oncogenicity study 83-1 Cholinesterase inhibition NOEL less than... ADI 9 Subchronic feeding study 82-1 Cholinesterase inhibition NOEL less than 100 times the current...

  20. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia

    PubMed Central

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer’s disease (AD) and Parkinson’s disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE−BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations. PMID:28458525

  1. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosinmore » heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.« less

  2. The Relations among Theory of Mind, Behavioral Inhibition, and Peer Interactions in Early Childhood

    ERIC Educational Resources Information Center

    Suway, Jenna G.; Degnan, Kathryn A.; Sussman, Amy L.; Fox, Nathan A.

    2012-01-01

    The current study examined relations among child temperament, peer interaction, and theory of mind (ToM) development. We hypothesized that: (1) children classified as behaviorally inhibited at 24 months would show less ToM understanding at 36 months in comparison to nonbehaviorally inhibited children; (2) children who displayed negative peer…

  3. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    PubMed Central

    Aoki, Yutaka; Helzlsouer, Kathy J.; Strickland, Paul T.

    2014-01-01

    Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose. PMID:24473115

  4. Coenzyme Q10 as a potent compound that inhibits Cdt1-geminin interaction.

    PubMed

    Mizushina, Yoshiyuki; Takeuchi, Toshifumi; Takakusagi, Yoichi; Yonezawa, Yuko; Mizuno, Takeshi; Yanagi, Ken-Ichiro; Imamoto, Naoko; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Fujita, Masatoshi

    2008-02-01

    A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we found that coenzyme Q(10) (CoQ(10)) can inhibit Cdt1-geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ(10), having a longer isoprenoid chain, was the strongest inhibitor of Cdt1-geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 muM. Surface plasmon resonance analysis demonstrated that CoQ(10) bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ(10) had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ(10) inhibits Cdt1-geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ(10) was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ(10) could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1-geminin binding. The application of inhibitors for the formation of Cdt1-geminin complex is discussed.

  5. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors.

    PubMed

    Mikhailova, A G; Khairullin, R F; Kolomijtseva, G Ya; Rumsh, L D

    2012-03-01

    Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.

  6. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  7. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  8. Interactions between glutamate, dopamine, and the neuronal signature of response inhibition in the human striatum.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Buchert, Ralph; Schlagenhauf, Florian; Kühn, Simone; Gallinat, Jürgen

    2015-10-01

    Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition. © 2015 Wiley Periodicals, Inc.

  9. Variation in plasma cholinesterase activity among greenhouse workers, fruitgrowers, and slaughtermen.

    PubMed Central

    Lander, F; Lings, S

    1991-01-01

    The purpose of the study was to compare the plasma cholinesterase (ChE) activities of 100 greenhouse workers and 43 fruitgrowers engaged in spraying insecticides with those of 113 slaughtermen who served as controls. The ChE activity in the greenhouse workers and fruitgrowers was not significantly lower than in the controls. Nevertheless the ChE activity of greenhouse workers declined with increasing exposure. The wearing of protective gloves appears to be of particular value for the safety of workers. PMID:2015206

  10. Ground-based inhibition: Suppressive perceptual mechanisms interact with top-down attention to reduce distractor interference.

    PubMed

    Wager, Erica; Peterson, Mary A; Folstein, Jonathan R; Scalf, Paige E

    2015-01-01

    Successful attentional function requires inhibition of distracting information (e.g., Deutsch & Deutsch, 1963). Similarly, perceptual segregation of the visual world into figure and ground entails ground suppression (e.g., Likova & Tyler, 2008; Peterson & Skow, 2008). Here, we ask whether the suppressive processes of attention and perception-distractor inhibition and ground suppression-interact to more effectively insulate task performance from interfering information. We used a variant of the Eriksen flanker paradigm to assess the efficacy of distractor inhibition. Participants indicated the right/left orientation of a central arrow, which could be flanked by congruent, neutral, or incongruent stimuli. We manipulated the degree to which the ground region of a display was suppressed and measured the influence of this manipulation on the efficacy with which participants could inhibit responses from incongruent flankers. Greater ground suppression reduced the influence on target identification of interfering, incongruent information, but not that of facilitative, congruent information. These data are the first to show that distractor inhibition interacts with ground suppression to improve attentional function.

  11. Cholinesterase Confabs and Cousins: Approaching Forty Years

    PubMed Central

    Taylor, Palmer; De Jaco, Antonella; Comoletti, Davide; Miller, Meghan; Camp, Shelley

    2013-01-01

    In the past four decades of cholinesterase (ChE) research, we have seen substantive evolution of the field from one centered around substrate and inhibitor kinetic profiles and compound characterizations to the analysis of ChE structure, first through the gene families and then by x-ray crystallographic determinations of the free enzymes and their complexes and conjugates. Indeed, these endeavors have been facilitated by recombinant DNA technologies, structure determinations and parallel studies in related proteins in the α/β-hydrolase fold family. This approach has not only contributed to a fundamental understanding of structure and function of a large family of hydrolase-like proteins possessing functions other than catalysis, but also has been used to develop new practical strategies for scavenging and antidotal activity in cases of organophosphate insecticide or nerve agent exposure. PMID:23085121

  12. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelm, Christina M., E-mail: wilhelmc@battelle.org; Snider, Thomas H., E-mail: snidert@battelle.org; Babin, Michael C., E-mail: babinm@battelle.org

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection atmore » the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective

  13. CHANGES OF CHOLINESTERASE IN THE BLOOD AND TISSUES OF RATS SUBJECTED TO IONIZING RADIATION (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominz, L.; Andri, L.; Caprotti, M.

    1963-03-01

    Cholinesterase activity in blood and in liver, kidney, and brain homogenates of rats subjected to sublethal doses of ionizing radiation was studied. Male rats ( approximates 250 g) were divided into groups, of which the control group numbered 12. Another group (13 animals) was sacrificed 3 hr after total irradiation (230 kv; 12 ma; filter 1 mm Cu, 1 mm Al; total dose 600 r); a third group was sacrificed 24 hr after total irradiation. Cholinesterase activity was measured by the method of Salvini and Tominz and of Tominz and Cazzaniga; results, expressed in mu moles NaOH consumed in 1more » min by 1 ml blood or 1 g tissue, were as follows for controls, 3-hr animals, and 24-hr animals: liver, 3.84 plus or minus 0.33, 4.11 plus or minus 0.19,4.13 plus or minus 0.16; kidneys, 2.06 plus or minus 0.27, 1.9 plus or minus 0.20, 1.8 plus or minus 0.09; brain, 8.7 plus or minus 1.5, 9.8 plus or minus 0.56, 9.19 plus or minus 1.2; total blood, 0.882 plus or minus 0.164, 0.884 plus or minus 0.031, 0.715 plus or minus 0.024. Thus, significant variations in tissue cholinesterase do not appear on total irradiation; on the other hand total blood activity drops by 23% at the third hr and 20% at the 24th. (BBB)« less

  14. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three malaysian macaranga species.

    PubMed

    Mazlan, Nor Aishah; Mediani, Ahmed; Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N H

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  15. Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists.

    PubMed

    Tomassoli, Isabelle; Ismaili, Lhassane; Pudlo, Marc; de Los Ríos, Cristóbal; Soriano, Elena; Colmena, Inés; Gandía, Luis; Rivas, Luis; Samadi, Abdelouahid; Marco-Contelles, José; Refouvelet, Bernard

    2011-01-01

    The synthesis, biological evaluation, and molecular modeling of new 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides(4), 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (6), and some hexahydropyrimido[5,4-c]quinoline-2,5-diones (9) produced earlier by our laboratory, as AChE/BuChE inhibitors, is described. From these analyses compound 4c resulted equipotent regarding the inhibition of cholinesterases'; inhibitors 6k, 9a, 9b were selective for AChE, whereas product 4d proved selective for BuChE. Docking analysis has been carry out in order to identify the binding mode in the active site, and to explain the observed selectivities. Only compound 9a has been shown to decrease K(+)-induced calcium signals in bovine chromaffin cells. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. Reaction of cresyl saligenin phosphate, the organophosphorus agent implicated in aerotoxic syndrome, with human cholinesterases: mechanistic studies employing kinetics, mass spectrometry, and X-ray structure analysis.

    PubMed

    Carletti, Eugénie; Schopfer, Lawrence M; Colletier, Jacques-Philippe; Froment, Marie-Thérèse; Nachon, Florian; Weik, Martin; Lockridge, Oksana; Masson, Patrick

    2011-06-20

    Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate (TCP), an antiwear additive in jet engine lubricants and hydraulic fluid. CBDP (2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one) is the toxic metabolite of triortho-cresylphosphate, a component of TCP. Human butyrylcholinesterase (BChE; EC 3.1.1.8) and human acetylcholinesterase (AChE; EC 3.1.1.7) are irreversibly inhibited by CBDP. The bimolecular rate constants of inhibition (k(i)), determined under pseudo-first-order conditions, displayed a biphasic time course of inhibition with k(i) of 1.6 × 10(8) M(-1) min(-1) and 2.7 × 10(7) M(-1) min(-1) for E and E' forms of BChE. The inhibition constants for AChE were 1 to 2 orders of magnitude slower than those for BChE. CBDP-phosphorylated cholinesterases are nonreactivatable due to ultra fast aging. Mass spectrometry analysis showed an initial BChE adduct with an added mass of 170 Da from cresylphosphate, followed by dealkylation to a structure with an added mass of 80 Da. Mass spectrometry in (18)O-water showed that (18)O was incorporated only during the final aging step to form phospho-serine as the final aged BChE adduct. The crystal structure of CBDP-inhibited BChE confirmed that the phosphate adduct is the ultimate aging product. CBDP is the first organophosphorus agent that leads to a fully dealkylated phospho-serine BChE adduct.

  17. 21 CFR 520.2520g - Trichlorfon, phenothiazine, and piperazine dihydrochloride powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Labeling shall bear the following statements: The drug is a cholinesterase inhibitor. Do not use this..., neuromuscular depolarizing agents (e.g., succinylcholine) or to cholinesterase-inhibiting drugs, pesticides, or...

  18. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities.

    PubMed

    Luo, Wen; Chen, Ying; Wang, Ting; Hong, Chen; Chang, Li-Ping; Chang, Cong-Cong; Yang, Ya-Cheng; Xie, Song-Qiang; Wang, Chao-Jie

    2016-02-15

    A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a-5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64μM for AChE and 0.42μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a-5r) did not affect PC12 and HepG2 cell viability at the concentration of 10μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids.

    PubMed

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer's disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13-15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective h

  20. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism

    PubMed Central

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-01-01

    AIM To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. METHODS Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. RESULTS The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [3H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. CONCLUSIONS Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. PMID:21175442

  1. Potentiation of a functional autoantibody in narcolepsy by a cholinesterase inhibitor.

    PubMed

    Jackson, Michael W; Spencer, Nicolas J; Reed, Joanne H; Smith, Anthony J F; Gordon, Tom P

    2009-12-01

    We have recently reported the presence of an immunoglobulin G (IgG) autoantibody (Ab) in patients with narcolepsy with cataplexy that abolishes spontaneous colonic migrating motor complexes (CMMCs) and increases smooth muscle tension and atropine-sensitive phasic contractions in a physiological assay of an isolated colon. In this study, we used the cholinesterase inhibitor, neostigmine, to explore the mechanism of the narcoleptic IgG-mediated disruption of enteric motor function in four patients with narcolepsy with cataplexy and to identify a pharmacological mimic of the Ab. Neostigmine potentiated the narcoleptic IgG-mediated increase in smooth muscle resting tension and phasic smooth muscle contractions by an atropine-sensitive mechanism but exerted no effect on resting tension in the presence of control IgG. Decreased frequency of CMMCs mediated by IgG with anti-M3R activity was reversed by neostigmine. Therefore, a challenge with a cholinesterase inhibitor improves the specificity of the CMMC assay for narcoleptic IgG. Tetrodotoxin (TTX), a neuronal sodium channel blocker, also abolished CMMCs and increased resting tone, and a similar potentiation was observed with neostigmine; thus, TTX is a mimic of the functional effects of the narcoleptic IgG in this bioassay. These findings provide a link to pharmacological studies of canine narcolepsy and are consistent with a functional blockade of both excitatory and inhibitory motor neurons by the narcoleptic Ab, similar to the TTX mimic, presumably by binding to an autoantigenic target expressed in both populations of neurons.

  2. TTLL12 Inhibits the Activation of Cellular Antiviral Signaling through Interaction with VISA/MAVS.

    PubMed

    Ju, Lin-Gao; Zhu, Yuan; Lei, Pin-Ji; Yan, Dong; Zhu, Kun; Wang, Xiang; Li, Qing-Lan; Li, Xue-Jing; Chen, Jian-Wen; Li, Lian-Yun; Wu, Min

    2017-02-01

    Upon virus infection, host cells use retinoic-acid-inducible geneI I (RIG-I)-like receptors to recognize viral RNA and activate type I IFN expression. To investigate the role of protein methylation in the antiviral signaling pathway, we screened all the SET domain-containing proteins and identified TTLL12 as a negative regulator of RIG-I signaling. TTLL12 contains SET and TTL domains, which are predicted to have lysine methyltransferase and tubulin tyrosine ligase activities, respectively. Exogenous expression of TTLL12 represses IFN-β expression induced by Sendai virus. TTLL12 deficiency by RNA interference and CRISPR-gRNA techniques increases the induced IFN-β expression and inhibits virus replication in the cell. The global gene expression profiling indicated that TTLL12 specifically inhibits the expression of the downstream genes of innate immunity pathways. Cell fractionation and fluorescent staining indicated that TTLL12 is localized in the cytosol. The mutagenesis study suggested that TTLL12's ability to repress the RIG-I pathway is probably not dependent on protein modifications. Instead, TTLL12 directly interacts with virus-induced signaling adaptor (VISA), TBK1, and IKKε, and inhibits the interactions of VISA with other signaling molecules. Taken together, our findings demonstrate TTLL12 as a negative regulator of RNA-virus-induced type I IFN expression by inhibiting the interaction of VISA with other proteins. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. 21 CFR 520.1326a - Mebendazole and trichlorfon powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mares in the last month of pregnancy. Trichlorofon is a cholinesterase inhibitor. Do not administer simultaneously or within a few days before or after treatment with, or exposure to, cholinesterase-inhibiting...

  4. 21 CFR 520.1631 - Oxfendazole and trichlorfon paste.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Trichlorfon is a cholinesterase inhibitor. Do not use this product in animals simultaneously with, or within a few days before or after treatment with or exposure to, cholinesterase-inhibiting drugs, pesticides...

  5. 21 CFR 520.1326a - Mebendazole and trichlorfon powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mares in the last month of pregnancy. Trichlorofon is a cholinesterase inhibitor. Do not administer simultaneously or within a few days before or after treatment with, or exposure to, cholinesterase-inhibiting...

  6. 21 CFR 520.1631 - Oxfendazole and trichlorfon paste.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Trichlorfon is a cholinesterase inhibitor. Do not use this product in animals simultaneously with, or within a few days before or after treatment with or exposure to, cholinesterase-inhibiting drugs, pesticides...

  7. 21 CFR 520.1631 - Oxfendazole and trichlorfon paste.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Trichlorfon is a cholinesterase inhibitor. Do not use this product in animals simultaneously with, or within a few days before or after treatment with or exposure to, cholinesterase-inhibiting drugs, pesticides...

  8. 21 CFR 520.1326a - Mebendazole and trichlorfon powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mares in the last month of pregnancy. Trichlorofon is a cholinesterase inhibitor. Do not administer simultaneously or within a few days before or after treatment with, or exposure to, cholinesterase-inhibiting...

  9. Long term exposure to low dose neurotoxic pesticides affects hatching, viability and cholinesterase activity of Artemia sp.

    PubMed

    Gambardella, Chiara; Nichino, Daniela; Iacometti, Camillo; Ferrando, Sara; Falugi, Carla; Faimali, Marco

    2018-03-01

    The brine shrimp Artemia was used as a model organism to test toxicity of several neuroactive pesticides (chlorpyrifos (CLP), chlorpyrifos oxon (CLP ox), diazinon (DZN), carbaryl (CBR)) following exposure to far below than lethal doses. Cysts were exposed to the pesticides in order to test a scenario similar to actual coastal environment contamination, by analyzing different responses. Cysts were rehydrated in water containing the pesticides at concentrations ranging from 10 -11 to 10 -5  M, for 72, 96 and 192 h, respectively. For these exposure times, morpho-functional and biochemical parameters, such as hatching speed and viability were investigated in the larvae together with cholinesterase (ChE) activity quantification and histochemical localization. Finally, ChE inhibition was also compared with conventional selective ChE inhibitors. Results showed that CLP ox and CBR caused a significant dose-dependent decrease in hatching speed, followed by high percentages of larval death, while CLP and DZN were responsible for irregular hatching patterns. In addition, the pesticides mostly caused larval death some days post-hatching, whereas this effect was negligible for the specific ChE inhibitors, suggesting that part of pesticide toxicity may be due to molecules other than the primary target. ChE activity was observed in the protocerebrum lobes, linked to the development of pair eyes. Such activity was inhibited in larvae exposed to all pesticides. When compared to conventional selective inhibitors of ChE activities, this inhibition demonstrated that the selected pesticides mainly affect acetylcholinesterase and, to a lesser extent, pseudocholinesterases. In conclusion, the brine shrimp is a good model to test the environmental toxicity of long term exposure to cholinergic pesticides, since changes in hatching speed, viability and ChE activity were observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A Pharmacokinetic Study of the Effects of Stress and Exercise on Chemical Exposure

    DTIC Science & Technology

    2001-03-20

    Organophosphates such as diazinon and malathion are considered cholinesterase inhibitors, while carbamates such as physostigmine and pyridostigmine...bromide (PB) are considered reversible cholinesterase inhibitors. The possible Gulf War exposures to organophosphates such as diazinon and malathion...indicate that the physiological and protective effects of carbamates such as PB may depend on a narrow range of cholinesterase inhibition. Blood

  11. 21 CFR 522.1155 - Imidocarb dipropionate sterile powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cholinesterase inhibitor. Do not use this product simultaneously with or a few days before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals. Do not use in horses...

  12. 21 CFR 522.1155 - Imidocarb dipropionate sterile powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cholinesterase inhibitor. Do not use this product simultaneously with or a few days before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals. Do not use in horses...

  13. 21 CFR 522.1155 - Imidocarb dipropionate sterile powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cholinesterase inhibitor. Do not use this product simultaneously with or a few days before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals. Do not use in horses...

  14. Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius.

    PubMed

    Nguyen, Trung Kien; Im, Kyung Hoan; Choi, Jaehyuk; Shin, Pyung Gyun; Lee, Tae Soo

    2016-12-01

    Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate (10~100 µg/mL), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities.

  15. Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius

    PubMed Central

    Nguyen, Trung Kien; Im, Kyung Hoan; Choi, Jaehyuk; Shin, Pyung Gyun

    2016-01-01

    Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate (10~100 µg/mL), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities. PMID:28154487

  16. Cytochrome P450 2C9-natural antiarthritic interactions: Evaluation of inhibition magnitude and prediction from in vitro data.

    PubMed

    Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng

    2018-04-01

    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Potential benefits of phytochemicals against Alzheimer's disease.

    PubMed

    Wightman, Emma L

    2017-05-01

    Our current therapeutic drugs for Alzheimer's disease are predominantly derived from the alkaloid class of plant phytochemicals. These drugs, such as galantamine and rivastigmine, attenuate the decline in the cholinergic system but, as the alkaloids occupy the most dangerous end of the phytochemical spectrum (indeed they function as feeding deterrents and poisons to other organisms within the plant itself), they are often associated with unpleasant side effects. In addition, these cholinesterase inhibiting alkaloids target only one system in a disorder, which is typified by multifactorial deficits. The present paper will look at the more benign terpene (such as Ginkgo biloba, Ginseng, Melissa officinalis (lemon balm) and Salvia lavandulaefolia (sage)) and phenolic (such as resveratrol) phytochemicals; arguing that they offer a safer alternative and that, as well as demonstrating efficacy in cholinesterase inhibition, these phytochemicals are able to target other salient systems such as cerebral blood flow, free radical scavenging, anti-inflammation, inhibition of amyloid-β neurotoxicity, glucoregulation and interaction with other neurotransmitters (such as γ-aminobutyric acid) and signalling pathways (e.g. via kinase enzymes).

  18. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism.

    PubMed

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-12-01

    To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worek, Franz, E-mail: franzworek@bundeswehr.org; Wille, Timo; Aurbek, Nadine

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary highmore » MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.« less

  20. The first evidence of cholinesterases in skin mucus of carps and its applicability as biomarker of organophosphate exposure.

    PubMed

    Nigam, Ashwini Kumar; Srivastava, Nidhi; Rai, Amita Kumari; Kumari, Usha; Mittal, Ajay Kumar; Mittal, Swati

    2014-05-01

    The presence of cholinesterase (ChE) activity in skin mucus of three carps, Cirrhinus mrigala, Labeo rohita, and Catla catla and its applicability as biomarker of the organophosphorus insecticide exposure were investigated. Biochemical characterization, using specific substrates and inhibitors, indicated that measured esterase activity in skin mucus was mainly owing to ChEs. Significant difference in the proportion of acetylcholinesterase and butyrylcholinesterase activities was observed in skin mucus of three carps. Enzyme kinetic analysis, using the substrate acetylthiocholine iodide revealed significantly high Vmax value in C. catla compared to that in L. rohita and C. mrigala. In contrast, Vmax value using the substrate butyrylthiocholine iodide was significantly high in C. mrigala than in L. rohita and C. catla. In vitro treatment of skin mucus of three carps, with the organophosphorus insecticide Nuvan®, showed strong inhibition of ChE activities. In vivo experiments conducted using C. mrigala and exposing the fish to the sublethal test concentrations (5 and 15 mg/L) of the insecticide also revealed significant inhibition of ChE activity in mucus. In C. mrigala, exposed to the sublethal test concentrations of the insecticide for 4 days and then kept for recovery for 16 days, mucus ChE activity recovered to the control level. Thus, ChE activity in skin mucus could be considered a good biomarker of the organophosphorus insecticide exposure to fish and a useful tool in monitoring environmental toxicity. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  1. Characterizing biological variability in livestock blood cholinesterase activity for biomonitoring organophosphate nerve agent exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbrook, R.S.; Shugart, L.R.; Watson, A.P.

    1992-09-01

    A biomonitoring protocol, using blood cholinesterase (ChE) activity in livestock as a monitor of potential organophosphate nerve agent exposure during the planned destruction of US unitary chemical warfare agent stockpiles, is described. The experimental design included analysis of blood ChE activity in individual healthy sheep, horses, and dairy and beef cattle during a 10- to 12-month period. Castrated and sexually intact males, pregnant and lactating females, and adult and immature animals were examined through at least one reproductive cycle. The same animals were used throughout the period of observation and were not exposed to ChE-inhibiting organophosphate or carbamate compounds. Amore » framework for an effective biomonitoring protocol within a monitoring area includes establishing individual baseline blood ChE activity for a sentinel group of 6 animals on the bases of blood samples collected over a 6-month period, monthly collection of blood samples for ChE-activity determination during monitoring, and selection of adult animals as sentinels. Exposure to ChE-inhibiting compounds would be suspected when all blood ChE activity of all animals within the sentinel group are decreased greater than 20% from their own baseline value. Sentinel species selection is primarily a logistical and operational concern; however, sheep appear to be the species of choice because within-individual baseline ChE activity and among age and gender group ChE activity in sheep had the least variability, compared with data from other species. This protocol provides an effective and efficient means for detecting abnormal depressions in blood ChE activity in livestock and can serve as a valuable indicator of the extent of actual plume movement and/or deposition in the event of organophosphate nerve agent release.« less

  2. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  3. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above–belowground herbivore interactions

    PubMed Central

    Huang, Wei; Siemann, Evan; Xiao, Li; Yang, Xuefang; Ding, Jianqing

    2014-01-01

    Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase conspecific adult feeding, but decrease heterospecific aboveground insect feeding and abundance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow herbivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and belowground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. PMID:25241651

  4. Reversal of Acetylcholinesterase Inhibitor Toxicity In Vivo by Inhibitors of Choline Transport.

    DTIC Science & Technology

    1983-10-31

    the increased interaction of acetylcholine with the receptor resulting from the inhibition of the enzyme acetylcholinesterase. . Acetylcholinesterase...competitive inhibitors of acetylcholine at the enzyme receptor. The second category, "reversible" cholinesterase inhibitors, form covalent bonds with the...method of Ellman et al. (46) was used to determine the acetyicholinesterase activity in mouse brain homogenates. Briefly, the enzyme activity was

  5. Assay techniques for detection of exposure to sulfur mustard, cholinesterase inhibitors, sarin, soman, GF, and cyanide. Technical bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    This technical bulletin provides analytical techniques to identify toxic chemical agents in urine or blood samples. It is intended to provide the clinician with laboratory tests to detect exposure to sulfur mustard, cholinesterase inhibitors, sarin, soman, GF, and cyanide.

  6. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. Themore » proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.« less

  7. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate

  8. UHPLC-ESI-ORBITRAP-MS analysis of the native Mapuche medicinal plant palo negro (Leptocarpha rivularis DC. - Asteraceae) and evaluation of its antioxidant and cholinesterase inhibitory properties.

    PubMed

    Jiménez-González, Andrea; Quispe, Cristina; Bórquez, Jorge; Sepúlveda, Beatriz; Riveros, Felipe; Areche, Carlos; Nagles, Edgar; García-Beltrán, Olimpo; Simirgiotis, Mario J

    2018-12-01

    UHPLC/ESI/MS identification of organic compounds is the first step in the majority of screening techniques for the characterization of biologically active metabolites in natural sources. This paper describes a method for the fast identification and characterisation of secondary metabolites in Leptocarpha rivularis DC. (Palo negro) extracts by HPLC/UV (DAD)-Mass Spectrometry (HPLC/MS). The plant is used for the treatment of several diseases since pre-hispanic Mapuche times. Thirty-seven compounds were detected in the aqueous edible extract for the first time including 4 sesquiterpenes, 10 flavonoids, 9 oxylipins, 2 organic acids, and 11 phenolic acids. In addition, phenolic content antioxidant and cholinesterase inhibitory activities were measured for the first time using the edible infusion. The total polyphenol content of the infusion was 230.76 ± 2.5 mmol GAE/kg dry weight, while the antioxidant activity was 176.51 ± 28.84; 195.28 ± 4.83; and 223.92 ± 2.95 mmol TE/kg dry weight, for the DPPH, ABTS, and FRAP assays, respectively. The cholinesterase inhibitory activity was 7.38 ± 0.03 and 5.74 ± 0.06 mmol GALAE/kg, for the inhibition of acetylcholinesterase AChE and BChE, respectively, showing that this plant is a candidate for the isolation of compounds that can be useful for the treatment of neurodegenerative diseases. Furthermore, this plant could serve also as a raw material for the production of dietary supplements, due to its content of polyphenolic compounds.

  9. Antioxidant, Antityrosinase, Anticholinesterase, and Nitric Oxide Inhibition Activities of Three Malaysian Macaranga Species

    PubMed Central

    Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N. H.

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research. PMID:24319356

  10. Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons.

    PubMed

    Rodríguez-Fuentes, G; Gold-Bouchot, G

    2000-01-01

    Cholinesterase inhibition is considered a specific biomarker of exposure and effect for organophosphorous pesticides. Its use for monitoring has been hindered, particularly in tropical countries where organophosphates are widely used for malaria and dengue control, because of the frequent lack of suitable controls. An in vitro technique is proposed as a biochemical method for monitoring pollutant mixtures in sediment toxicity tests. Brain homogenate from the fish Oreochromis niloticus is used as the enzyme source. Optimum incubation time, extraction solvent and effect of crude oil on acetylcholinesterase (AChE) are reported. The method described was used in sediments from two Mexican lagoons, located in an oil extraction area where pesticides are used in agriculture and vector control campaigns. AChE inhibitions from 3 to 21% were found in these lagoons, even in the presence of high concentrations of petroleum.

  11. One Hundred Eighty Day Subchronic Oral Toxicity Study of Pyridostigmine Bromide in Rats. Volume 1

    DTIC Science & Technology

    1990-06-01

    has proposed a treatment regimen incorporating prophylaxis with a reversible cholinesterase inhibitor and, following nerve agent exposure, antidotal...would accomplish two goals: the oxime would abate the inhibition induced by the reversible cholinesterase inhibitor prophylaxis, and the atropine will...cholinesterase inhibitor as the pretreatment component of a therapeutic regimen that would include antidotal therapy with 2-PAM chloride and atropine. A

  12. GZ-793A, a lobelane analog, interacts with the vesicular monoamine transporter-2 to inhibit the effect of methamphetamine

    PubMed Central

    Horton, David B.; Nickell, Justin R.; Zheng, Guangrong; Crooks, Peter A.; Dwoskin, Linda P.

    2013-01-01

    GZ-793A inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). The present study determined GZ-793A’s ability to evoke [3H]dopamine release and inhibit methamphetamine-evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [3H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC50 = 15.5 nM and 29.3 µM, respectively). Tetrabenazine and reserpine completely inhibited the GZ-793A-evoked [3H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49±0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A-inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse. PMID:23875622

  13. The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction

    PubMed Central

    Sot, Begoña; Rubio-Muñoz, Alejandra; Leal-Quintero, Ahudrey; Martínez-Sabando, Javier; Marcilla, Miguel; Roodveldt, Cintia; Valpuesta, José M.

    2017-01-01

    The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism. PMID:28102321

  14. 21 CFR 522.1156 - Imidocarb dipropionate solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... intravenous use. Repeat the dose after 2 weeks for a total of two treatments. Imidocarb is a cholinesterase... cholinesterase-inhibiting drugs, pesticides, or chemicals. Federal law restricts this drug to use by or on the...

  15. 21 CFR 522.1156 - Imidocarb dipropionate solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... intravenous use. Repeat the dose after 2 weeks for a total of two treatments. Imidocarb is a cholinesterase... cholinesterase-inhibiting drugs, pesticides, or chemicals. Federal law restricts this drug to use by or on the...

  16. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B.

    PubMed

    Koch, Alexander W; Mathivet, Thomas; Larrivée, Bruno; Tong, Raymond K; Kowalski, Joe; Pibouin-Fragner, Laurence; Bouvrée, Karine; Stawicki, Scott; Nicholes, Katrina; Rathore, Nisha; Scales, Suzie J; Luis, Elizabeth; del Toro, Raquel; Freitas, Catarina; Bréant, Christiane; Michaud, Annie; Corvol, Pierre; Thomas, Jean-Léon; Wu, Yan; Peale, Franklin; Watts, Ryan J; Tessier-Lavigne, Marc; Bagri, Anil; Eichmann, Anne

    2011-01-18

    Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Blood cholinesterase activity levels of farmers in winter and hot season of Mae Taeng District, Chiang Mai Province, Thailand.

    PubMed

    Hongsibsong, Surat; Kerdnoi, Tanyaporn; Polyiem, Watcharapon; Srinual, Niphan; Patarasiriwong, Vanvimol; Prapamontol, Tippawan

    2018-03-01

    Organophosphate and carbamate pesticides have been widely used by farmers for crop protection and pest control. Inhibition of acetylcholinesterase (AChE) in erythrocyte and butyrylcholinesterase (BChE) in plasma is the predominant toxic effect of organophosphate and carbamate pesticides. Mae Taeng District, Chiang Mai Province, is one of the large areas of growing vegetables and fruits. Due to their regular exposure to these pesticides, the farmers are affected by this toxicity. The objective of the study was to examine the AChE and the BChE activity levels in the blood of 102 farmers for comparison of exposure in two cropping seasons, winter and hot. Blood samples were collected in December 2013 (winter) and April-June 2014 (hot). A total of 102 farmers joined the study, represented by 76 males (74.5 %) and 26 females (25.5 %). The age of most of the farmers was 53.4 ± 8.7 years. Out of 102, 21 farmers used carbamate pesticides. The results showed that the AChE and the BChE activity levels of all the farmers were 3.27 ± 0.84 Unit/mL and 2.15 ± 0.58 Unit/mL, respectively. The AChE and the BChE activity levels in males were 3.31 ± 0.88 Unit/mL and 1.97 ± 0.60 U/mL, respectively, during winter and 3.27 ± 0.82 Unit/mL and 2.15 ± 0.58 U/mL, respectively, during the hot season, and AChE and the BChE activity levels in females were 3.27 ± 0.82 U/mL and 2.44 ± 0.56 U/mL, respectively, during the hot season. The cholinesterase activity levels, both AChE and BChE, in the male farmers' blood had significant difference between the two seasons, while in the case of the female farmers, there was significant difference in the BChE activity levels, at p < 0.05. The BChE activity level was found to significantly correlate with self-spray (p < 0.05), which implies that the BChE activity decreased when they sprayed by themselves. The cholinesterase activity levels of the present study were lower than those of the other

  18. Synthesis, biological evaluation, QSAR study and molecular docking of novel N-(4-amino carbonylpiperazinyl) (thio)phosphoramide derivatives as cholinesterase inhibitors.

    PubMed

    Gholivand, Khodayar; Ebrahimi Valmoozi, Ali Asghar; Bonsaii, Mahyar

    2014-06-01

    Novel (thio)phosphoramidate derivatives based on piperidincarboxamide with the general formula of (NH2-C(O)-C5H9N)-P(X=O,S)R1R2 (1-5) and (NH2-C(O)-C5H9N)2-P(O)R (6-9) were synthesized and characterized by (31)P, (13)C, (1)H NMR, IR spectroscopy. Furthermore, the crystal structure of compound (NH2-C(O)-C5H9N)2-P(O)(OC6H5) (6) was investigated. The activities of derivatives on cholinesterases (ChE) were determined using a modified Ellman's method. Also the mixed-type mechanisms of these compounds were evaluated by Lineweaver-Burk plots. Molecular docking and quantitative structure-activity relationship (QSAR) were used to understand the relationship between molecular structural features and anti-ChE activity, and to predict the binding affinity of phosphoramido-piperidinecarboxamides (PAPCAs) to ChE receptors. From molecular docking analysis, noncovalent interactions especially hydrogen bonding as well as hydrophobic was found between PAPCAs and ChE. Based on the docking results, appropriate molecular structural parameters were adopted to develop a QSAR model. DFT-QSAR models for ChE enzymes demonstrated the importance of electrophilicity parameter in describing the anti-AChE and anti-BChE activities of the synthesized compounds. The correlation matrix of QSAR models and docking analysis confirmed that electrophilicity descriptor can control the influence of the hydrophobic properties of P=(O, S) and CO functional groups of PAPCA derivatives in the inhibition of human ChE enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  20. Acquisition and reinstatement of ethanol-induced conditioned place preference in rats: Effects of the cholinesterase inhibitors donepezil and rivastigmine.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-07-01

    The present study examined the influence of the cholinesterase inhibitors donepezil (a selective inhibitor of acetylcholinesterase) and rivastigmine (also an inhibitor of butyrylcholinesterase) on the acquisition and reinstatement of ethanol-induced conditioned place preference (CPP) in rats. Before the CPP procedure, animals received a single injection of ethanol (0.5 g/kg, 10% w/v, intraperitoneally [i.p.]) for 15 days. The ethanol-induced CPP (biased method) was developed by four injections of ethanol (0.5 g/kg, 10% w/v, i.p.) every second day. Control rats received saline instead of ethanol. Donepezil (0.5, 1 or 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5 or 1 mg/kg, i.p.) were administered before ethanol during conditioning or before the reinstatement of ethanol-induced CPP. The cholinesterase inhibitors were equally effective in increasing (dose dependently) the acquisition of ethanol-induced CPP. Furthermore, priming injections of both inhibitors reinstated (cross-reinstatement) the ethanol-induced CPP with similar efficacy. These effects of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist, but not by scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. Thus, our results show that the cholinergic system is involved in the reinforcing properties of ethanol, and nicotinic acetylcholine receptors play an important role in the relapse to ethanol-seeking behaviour. © The Author(s) 2016.