Sample records for tachykinin nk1 receptors

  1. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier

  2. Functional characterization of tachykinin NK1 receptors in the mouse uterus.

    PubMed

    Patak, Eva; Pennefather, Jocelyn N; Fleming, Anna; Story, Margot E

    2002-12-01

    1. Contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of oestrogen-treated mice. 2. In the presence of thiorphan (3 microM), captopril (10 microM), and bestatin (10 microM), substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) produced concentration-related contractions of uterine preparations. The order of potency was SP > or =NKA>NKB. 3. Neither atropine (0.1 microM) nor l-NOLA (100 microM), nor indomethacin (10 microM) alone or in combination with either ranitidine (10 microM) or mepyramine (10 microM), affected responses to SP. These findings indicate that SP actions are not mediated or modulated through the release of acetylcholine, nitric oxide, prostanoids or histamine. 4. In the presence of peptidase inhibitors, the tachykinin NK(1) receptor-selective agonist [Sar(9)Met(O(2))(11)]SP, produced a concentration-dependent contractile effect. The tachykinin NK(2) and NK(3) receptor-selective agonists [Lys(5)MeLeu(9)Nle(10)]NKA(4-10) and [MePhe(7)]NKB were relatively inactive. The potencies of SP analogues in which Glu replaced Gln(5) and/or Gln(6) were similar to that of SP. 5. The tachykinin NK(1) receptor-selective antagonist, SR140333 (10 nM), alone or combined with the tachykinin NK(2) receptor-selective antagonist, SR48968 (10 nM), shifted log concentration curves to SP, NKA and NKB to the right. SR140333 (10 nM) reduced the effect of [Sar(9)Met(O(2))(11)]SP. SR48968 did not affect responses to SP or [Sar(9)Met(O(2))(11)]SP, but reduced the effect of higher concentrations of NKA and shifted the log concentration-response curve to NKB to the right. The tachykinin NK(3) receptor-selective antagonist, SR 142801 (0.3 microM), had little effect on responses to SP and NKB. 6. We conclude that the tachykinin NK(1) receptor mediates contractile effects of SP, NKA and NKB and [Sar(9)Met(O(2))(11)]SP in myometrium from the oestrogen-primed mouse. The tachykinin NK(2) receptor may also

  3. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2tachykinin NK2 receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective

  4. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  5. NK2 tachykinin receptors and contraction of circular muscle of the human colon: characterization of the NK2 receptor subtype.

    PubMed

    Giuliani, S; Barbanti, G; Turini, D; Quartara, L; Rovero, P; Giachetti, A; Maggi, C A

    1991-10-22

    The contractile effect of substance P, neurokinin A, receptor selective agonists for tachykinin receptors and NK2 tachykinin receptor antagonists was investigated in mucosa-free circular strips of the human isolated colon. Neurokinin A and substance P produced concentration-dependent contractions which approached 80-90% of the maximal response to carbachol. Neurokinin A was about 370 times more potent than substance P. The action of neurokinin A and substance P was not modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The NK2 receptor selective agonist, [beta-Ala8]neurokinin A-(4-10) closely mimicked the response to neurokinin A while NK1 and NK3 receptor selective agonists were active only at microM concentrations. The pseudopeptide, MDL 28,564, which is one of the most selective NK2 ligands available, behaved as a full agonist. Responses to [beta-Ala8]neurokinin A were antagonized by NK2 receptor selective antagonists, with the rank order of potency MEN 10,376 greater than L 659,877 much greater than R 396. These data indicate that NK2 tachykinin receptors play a dominant role in determining the contraction of the circular muscle of the human colon to peptides of this family. The NK2 receptor subtype responsible for this effect belongs to the same subtype (NK2A) previously identified in the rabbit pulmonary artery and guinea-pig bronchi.

  6. Tachykinins and tachykinin receptors in human uterus.

    PubMed

    Patak, Eva; Candenas, M Luz; Pennefather, Jocelyn N; Ziccone, Sebastian; Lilley, Alison; Martín, Julio D; Flores, Carlos; Mantecón, Antonio G; Story, Margot E; Pinto, Francisco M

    2003-06-01

    (1) Studies were undertaken to determine the nature of the receptors mediating contractile effects of tachykinins in the uteri of nonpregnant women, and to analyse the expression of preprotachykinins (PPT), tachykinin receptors and the cell-surface peptidase, neprilysin (NEP), in the myometrium from pregnant and nonpregnant women. (2) The neurokinin B (NKB) precursor PPT-B was expressed in higher levels in the myometrium from nonpregnant than from pregnant women. Faint expression of PPT-A mRNA was detectable in the myometrium from nonpregnant but not pregnant women. PPT-C, the gene encoding the novel tachykinin peptide hemokinin-1 (HK-1), was present in trace amounts in the uteri from both pregnant and nonpregnant women. (3) Tachykinin NK(2) receptors were more strongly expressed in tissues from nonpregnant than from pregnant women. NK(1) receptor mRNA was present in low levels in tissues from both pregnant and nonpregnant women. A low abundance transcript corresponding to the NK(3) receptor was present only in tissues from nonpregnant women. (4) The mRNA expression of the tachykinin-degrading enzyme NEP was lower in tissues from nonpregnant than from pregnant women. (5) Substance P (SP), neurokinin A (NKA) and NKB, in the presence of the peptidase inhibitors thiorphan, captopril and bestatin, produced contractions of myometrium from nonpregnant women. The order of potency was NKA>SP>/=NKB. The potency of NKA was unchanged in the absence of peptidase inhibitors. (6) The tachykinin NK(2) receptor-selective agonist [Lys(5)MeLeu(9)Nle(10)]NKA(4-l0) was approximately equipotent with NKA, but the tachykinin NK(1) and NK(3) receptor-selective agonists [Sar(9)Met(O(2))(11)]SP and [MePhe(7)]NKB were ineffective in the myometrium from nonpregnant women. (7) The uterotonic effects of [Lys(5)MeLeu(9)Nle(10)]NKA(4-10) were antagonized by the tachykinin NK(2) receptor-selective antagonist SR48968. Neither atropine, nor phentolamine nor tetrodotoxin affected responses to [Lys(5

  7. Antibronchospastic activity of MEN10,627, a novel tachykinin NK2 receptor antagonist, in guinea-pig airways.

    PubMed

    Perretti, F; Ballati, L; Manzini, S; Maggi, C A; Evangelista, S

    1995-01-24

    The antibronchospastic activity against acetylcholine, antigen, histamine plus platelet-activating factor (PAF) or the selective tachykinin neurokinin (NK)1 and NK2 receptor agonists of the novel tachykinin NK2 receptor antagonist, MEN10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2 beta-5 beta)), was studied in anesthetized guinea-pigs. MEN10,627 (30-100 nmol/kg i.v.) reduced in a dose-dependent manner the bronchospasm induced by the tachykinin NK2 receptor agonist [beta Ala8]neurokinin A-(4-10) and the effect of the highest dose lasted up to 5 h from its administration. Conversely, airway constriction induced by the NK1 receptor agonist [Sar9]substance P sulfone or acetylcholine was unaffected by MEN10,627 up to a dose of 3 mumol/kg i.v. In animals sensitized with ovalbumin and pretreated with the endopeptidase inhibitor phosphoramidon, the aerosolized antigen produced a bronchospasm which was inhibited by MEN10,627 (30-100 nmol/kg i.v.) but not by the tachykinin NK1 receptor antagonist, (+/-)-CP96,345 ([2R,3R-cis- and [2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)-methyl]-1- azabicyclo[2.2.2]octan-3-amine]) (3 mumol/kg i.v.). Both MEN10,627 (30-100 nmol/kg i.v.) and (+/-)-CP96,345 (30-300 nmol/kg i.v.) reduced the PAF-induced hyperresponsiveness to histamine, without affecting the hypotension induced by PAF or the bronchospasm induced by histamine in guinea-pigs not exposed to PAF, showing the involvement of both tachykinin NK1 and NK2 receptors in this model. In summary, MEN10,627 behaves as a potent, selective and long-lasting tachykinin NK2 receptor antagonist in vivo. Further, tachykinin NK2 receptors could be activated during allergic responses and in the development of airway hyperresponsiveness.

  8. Tachykinins and tachykinin receptors in human uterus

    PubMed Central

    Patak, Eva; Luz Candenas, M; Pennefather, Jocelyn N; Ziccone, Sebastian; Lilley, Alison; Martín, Julio D; Flores, Carlos; Mantecón, Antonio G; Story, Margot E; Pinto, Francisco M

    2003-01-01

    Studies were undertaken to determine the nature of the receptors mediating contractile effects of tachykinins in the uteri of nonpregnant women, and to analyse the expression of preprotachykinins (PPT), tachykinin receptors and the cell-surface peptidase, neprilysin (NEP), in the myometrium from pregnant and nonpregnant women. The neurokinin B (NKB) precursor PPT-B was expressed in higher levels in the myometrium from nonpregnant than from pregnant women. Faint expression of PPT-A mRNA was detectable in the myometrium from nonpregnant but not pregnant women. PPT-C, the gene encoding the novel tachykinin peptide hemokinin-1 (HK-1), was present in trace amounts in the uteri from both pregnant and nonpregnant women. Tachykinin NK2 receptors were more strongly expressed in tissues from nonpregnant than from pregnant women. NK1 receptor mRNA was present in low levels in tissues from both pregnant and nonpregnant women. A low abundance transcript corresponding to the NK3 receptor was present only in tissues from nonpregnant women. The mRNA expression of the tachykinin-degrading enzyme NEP was lower in tissues from nonpregnant than from pregnant women. Substance P (SP), neurokinin A (NKA) and NKB, in the presence of the peptidase inhibitors thiorphan, captopril and bestatin, produced contractions of myometrium from nonpregnant women. The order of potency was NKA≫SP≥NKB. The potency of NKA was unchanged in the absence of peptidase inhibitors. The tachykinin NK2 receptor-selective agonist [Lys5MeLeu9Nle10]NKA(4–l0) was approximately equipotent with NKA, but the tachykinin NK1 and NK3 receptor-selective agonists [Sar9Met(O2)11]SP and [MePhe7]NKB were ineffective in the myometrium from nonpregnant women. The uterotonic effects of [Lys5MeLeu9Nle10]NKA(4–10) were antagonized by the tachykinin NK2 receptor-selective antagonist SR48968. Neither atropine, nor phentolamine nor tetrodotoxin affected responses to [Lys5MeLeu9Nle10]NKA(4–10). These data are consistent with a

  9. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor

  10. NK-2 is the predominant tachykinin receptor subtype in the swine ureter.

    PubMed

    Jerde, T J; Saban, R; Bjorling, D E; Nakada, S Y

    1999-02-01

    To determine which of the known tachykinin receptor subtypes is predominant in the swine ureter. Ureters from adult pigs were harvested, cut into longitudinal strips and placed in 10 mL tissue baths containing Krebs buffer, under 4 g of initial tension. The magnitude and frequency of contractions were recorded. Tissues were incubated with 1 micromol/L solutions of peptidase inhibitors (phosphoramidon and captopril) for 1 h to inhibit degradation of peptides and treated with either CP 96,345 (NK-1 receptor antagonist), SR 48,968 (NK-2 receptor antagonist) or saline (control). Concentration-response curves to the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were determined. Ureteric segments showed a concentration-dependent response to all tachykinins; NKA stimulated increased contractions at a lower concentration than either SP or NKB (P<0.05). This was reflected by the difference in the effective concentration required to obtain half the maximal response (EC50 ) for each of the peptides. The mean (sd) EC50 values were (micromol/L): NKA, 0.2 (0.02); SP, 3.5 (0.7); and NKB, 4.5 (1.7). In addition, the selective NK-2 antagonist (SR 48,968) significantly reduced contractile responses to all peptides, as indicated by a 10-fold rightward shift of the concentration-response curves (P<0. 05), whereas the NK-1 antagonist (CP 96,345) had no significant effect. These results indicate that NK-2 is the predominant tachykinin receptor subtype responsible for contraction of ureteric smooth muscle. The use of mediators which act on NK-2 receptors may have clinical applications for the treatment of ureteric disease.

  11. A pharmacological study of NK1 and NK2 tachykinin receptor characteristics in the rat isolated urinary bladder.

    PubMed Central

    Hall, J. M.; Flowers, J. M.; Morton, I. K.

    1992-01-01

    1. We have estimated potencies of tachykinin receptor agonist and antagonist analogues in order to determine the recognition characteristics of tachykinin receptors mediating phasic contractile responses of the rat isolated urinary bladder in vitro. 2. The NK1-selective synthetic agonists, substance P methyl ester and GR73632, the synthetic NK2-selective agonists [beta-Ala8]-NKA(4-10) and GR64349, and the mammalian tachykinins, neurokinin A and neurokinin B, were assayed relative to substance P and were found to be approximately equipotent. The NK3-selective agonist, senktide, was inactive (10 microM). 3. Potencies of all these agonists were not significantly different (P > 0.05) when experiments were carried out in the presence of the neutral endopeptidase inhibitor, phosphoramidon, and the kininase II inhibitor, enalaprilat (both 1 microM). 4. The NK1-selective antagonist, GR82334, inhibited responses to substance P methyl ester in a competitive manner in the rat urinary bladder and the rat ileum, and also in the guinea-pig ileum. Markedly different pKB estimates were obtained in the rat bladder (6.38) and rat ileum (6.56) compared to the guinea-pig ileum (7.42). GR82334 (3 microM) was inactive against responses of the rat bladder to [beta-Ala8]-NKA(4-10). 5. The NK1-selective antagonist (+/-)-CP-96,345 also inhibited responses of the rat bladder and guinea-pig ileum to substance P methyl ester; however, in the rat bladder at 1 microM, this antagonist reversibly inhibited responses both to the NK2-selective agonist [beta-Ala8]-NKA(4-10) and to the muscarinic agonist carbachol (P < or = 0.01), thus showing evidence of some non-selective depressant actions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1282072

  12. Tachykinin NK2 receptors predominantly mediate tachykinin-induced contractions in ovine trachea.

    PubMed

    Reynolds, A M; Reynolds, P; Holmes, M; Scicchitano, R

    1998-01-12

    In vitro studies were conducted to characterize the contractile effects of tachykinins in normal ovine trachea with a view in the future to compare tachykinin contractile responses in allergic tissue. Tracheal smooth muscle strips were prepared for in vitro studies of isometric contraction in response to cumulative addition of carbachol, acetylcholine, histamine, neuropeptide gamma, substance P, neurokinin A, neurokinin B, [Sar9, Met(O2)11]substance P, [Nle10]neurokinin A-(4-10), and [Succinyl-Asp6, Me-Phe8]substance P-(6-11) (senktide). The rank order of potency was neuropeptide gamma > carbachol > neurokinin A > or = [Nle10]neurokinin A-(4-10) > acetylcholine > or = histamine. Phosphoramidon enhanced the contractile response to neurokinin A and substance P, but not to neuropeptide gamma, [Sar9, Met(O2)11]substance P or senktide. Repeated cumulative concentration responses for acetylcholine, substance P, neurokinin A, [Sar9, Met(O2)11]substance P and histamine were also conducted to test for tachyphylaxis. No tachyphylaxis to acetylcholine, substance P, or neurokinin A was observed, however, [Sar9, Met(O2)11]substance P and histamine did exhibit tachyphylaxis. Atropine had no effect on tracheal contractions to neurokinin A and substance P, while [Sar9, Met(O2)11]substance P contractions were atropine sensitive. Pyrilamine did not affect substance P-induced tracheal smooth muscle contractions, indicating that the response to substance P was not mediated by histamine release. These results show that, in vitro, natural tachykinins induce tracheal smooth muscle contraction predominantly by a direct effect mediated by tachykinin NK2 receptors, and a small tachykinin NK1 receptor mediated cholinergic mechanism.

  13. NK2 tachykinin receptors mediate contraction of the pig intravesical ureter: tachykinin-induced enhancement of non-adrenergic non-cholinergic excitatory neurotransmission.

    PubMed

    Bustamante, S; Orensanz, L M; Barahona, M V; García-Sacristán, A; Hernández, M

    2001-01-01

    The current study was designed to characterize the functionally active tachykinin receptors involved in tachykinin-elicited contractions in the pig intravesical ureter, and to investigate the possible modulation exerted by the natural tachykinins substance P (SP) and neurokinin A (NKA) on the non-adrenergic non-cholinergic (NANC) excitatory ureteral neurotransmission. In pig intravesical ureteral strips pretreated with phosphoramidon (10(-5) mol/L) to block the endopeptidase activities, isometric force recordings showed that SP, NKA, and the NK2 receptor selective agonist [beta-Ala(8)]-NKA (4-10), all three induced contractions, with the following potency order: NKA > [beta-Ala(8) ]-NKA (4-10) > SP. [Sar(9), Met(O(2))(11)]-SP and senktide, selective agonists of the NK1 and NK3 receptors, respectively, failed to modify the ureteral tone. Urothelium removal and incubation with tetrodotoxin (10(-6) mol/L), phentolamine (10(-7) mol/L), propranolol (3 x 10(-6) mol/L), atropine (10(-7) mol/L) and indomethacin (3 x 10(-6) mol/L), did not alter the contraction induced by a submaximal (10(-7) mol/L) dose of [beta-Ala(8)]-NKA (4-10). MEN 10,376 (10(-8)-10(-7) mol/L), a NK2 receptor antagonist, reduced the contraction to 3 x 10(-8) mol/L NKA. GR 82334 (10(-6) -10(-5) mol/L) and SR 142801 (10(-8)-10(-7) mol/L), selective antagonists of the NK1 and NK3 receptors, respectively, did not modify that contraction. In pig intravesical ureteral strips in NANC conditions, SP and NKA induced a potentiation of the contractions to electrical field stimulation (EFS) and to exogenous ATP. The results suggest that the tachykinins evoke a direct contraction of pig intravesical ureteral strips through NK2 receptors located in the smooth muscle. SP and NKA exert an enhancement of the NANC excitatory neurotransmission of the pig intravesical ureter.

  14. Further evidence that tachykinin-induced contraction of human isolated bronchus is mediated only by NK2-receptors.

    PubMed

    Sheldrick, R L; Rabe, K F; Fischer, A; Magnussen, H; Coleman, R A

    1995-11-01

    The tachykinin-receptors mediating contraction of human bronchus have been characterized using both tachykinin-receptor selective agonists and blocking drugs under conditions where tachykinin metabolism by endogenous peptidases has been controlled, and true equilibrium conditions have been established. The findings that neurokinin A (EC50 = 2 nM) is the most potent agonist, and the NK2-receptor selective agonist, GR64349, is only 3-fold weaker, whereas agonists selective for NK1-receptors, substance P methyl ester, or NK3-receptors, senktide, are inactive, suggest that this effect is mediated exclusively by NK2-receptors. This is supported by observations that GR64349 is antagonised by the selective NK2-receptor blocking drugs, MEN10207 (pA2 = 6.7), R396 (pA2 = 6.1), (+/-)SR48968 (pA2 = 8.4) and GR159897 (pA2 = 8.6), but not by the NK1-receptor blocking drug, GR82334 (pA2 < 5). In approximately half of the preparations, the peptidase inhibitors, phosphoramidon (1 microM) and bestatin (100 microM), caused a marked and well-maintained contraction (approximately 20% of neurokinin A maximum), which may indicate a role for endogenous tachykinins in the regulation of tone in this preparation. This is supported by the finding that neurokinin A-immunoreactive nerve fibres are located around intrinsic neurones of local ganglia and within the smooth muscle layer of this preparation.

  15. Tachykinin receptors and the airways.

    PubMed

    Frossard, N; Advenier, C

    1991-01-01

    The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.

  16. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  17. Characterization of NK1 and NK2 tachykinin receptors in guinea-pig and rat bronchopulmonary and vascular systems.

    PubMed Central

    Floch, A.; Fardin, V.; Cavero, I.

    1994-01-01

    1. NK1 and NK2 tachykinin receptors were characterized in guinea-pig and rat bronchopulmonary systems and in the vasculature of the rat by use of radioligand binding and/or functional studies. 2. The radioligands for NK1 and NK2 receptors ([3H]-SP and [3H]-pNKA, respectively) did not label tachykinin receptors in homogenates of rat lungs or bronchi. In contrast, in the guinea-pig, [3H]-SP bound with high affinity to these tissues (KD = 0.23 +/- 0.08 nM and 0.34 +/- 0.05 nM, for lungs and bronchi, respectively). The total number of binding sites was 4.6 fold greater in bronchus (Bmax = 135 +/- 27 fmol mg-1 protein) than in lung homogenates (Bmax = 29.3 +/- 0.1 fmol mg-1 protein). Furthermore, this binding was markedly displaced by CP-96,345 (pKi = 9.5 +/- 0.1) and RP 67580 (pKi = 7.6 +/- 0.1), antagonists of NK1 receptors, slightly displaced by SR 48968 (pKi = 6.6 +/- 0.1), but not affected by actinomycin D or L-659,877, antagonists of NK2 receptors. Specific binding of [3H]-pNKA, detected in guinea-pig bronchi (KD = 5.2 +/- 0.1 nM, and Bmax = 203 +/- 19 fmol mg-1 protein) but not in lungs, was similarly (40 to 53%) displaced by RP 67580 (1 microM), CP-96,345 (10 and 100 nM) or SR 48968 (10 and 100 nM). The displacement approximately doubled (87 to 91%) when SR 48968 (10 nM) was combined with either RP 67580 (1 microM) or CP-96,345 (10 nM), but not when RP 67580 was combined with CP-96,345. 3. In urethane-anaesthetized guinea-pigs, i.v. injections of the NK1 receptor agonists SP, [Pro9]-SP, [Sar9,Met(O2)11]-SP and septide, as well as the NK2 receptor agonists NKA and [Lys5,MeLeu9,NLeu10]-NKA(4-10) (0.1-10 micrograms kg-1, i.v.), dose-dependently increased lung inflation pressure. The most potent of these peptides were septide and [Lys5, MeLeu9,NLeu10]-NKA(4-10) (EC50 = 0.38 +/- 0.07 and 0.07 +/- 0.02 microgram kg-1, respectively). Interestingly, septide was 130 fold less potent than SP in displacing [3H]-SP from its binding sites in the guinea-pig lung, whereas it

  18. Tachykinins mediate contraction of the human lower esophageal sphincter in vitro via activation of NK2 receptors.

    PubMed

    Huber, O; Bertrand, C; Bunnett, N W; Pellegrini, C A; Nadel, J A; Nakazato, P; Debas, H T; Geppetti, P

    1993-08-03

    The contractile response to natural tachykinins and selective peptide agonists for tachykinin receptors was studied in strips of circular smooth muscle of human lower esophageal sphincter in vitro. The effects of phosphoramidon, which inhibits neutral endopeptidase (EC.3.4.24.11) and of the non-peptide compounds, SR 48968 and CP-96,345, which selectively block NK1 and NK2 receptors, respectively, were also investigated. Substance P, neurokinin A and neurokinin B produced a concentration-dependent contractile response. The rank order of potency was neurokinin A > neurokinin B > substance P. Phosphoramidon (1 microM) potentiated the response to substance P without changing the order of potency of natural tachykinins. The NK2-selective agonist, ([ beta Ala8]neurokinin A-(4-10)), produced a concentration-dependent contraction. The NK1 ([Sar9,Met(O2)11]substance P, 1 microM) and NK3 ([MePhe7]neurokinin B, 1 microM) selective agonists, however, did not exert any contractile effect. The selective NK2 antagonist, SR 48968, potently inhibited in a concentration-dependent (10 nM-1 microM) manner the response to neurokinin A, without affecting the response to carbachol. The selective NK1 antagonist, CP-96,345 (1 microM), did not affect the response to neurokinin A. These results indicate that tachykinins contract the circular muscle of human lower esophageal sphincter, and that this effect is mediated by NK2 receptor stimulation. Moreover, a phosphoramidon-sensitive mechanism plays a role in the regulation of the response to substance P.

  19. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  20. The role of tachykinin NK1 and NK2 receptors in atropine-resistant colonic propulsion in anaesthetized guinea-pigs.

    PubMed

    Lecci, A; Giuliani, S; Tramontana, M; Giorgio, R D; Maggi, C A

    1998-05-01

    1. The role of endogenous tachykinins on guinea-pig colonic propulsion was investigated by using potent and selective tachykinin NK1 and NK2 receptor antagonists. Colonic propulsion and contractions were determined by means of a balloon-catheter device, inserted into the rectum of guanethidine (68 micromol kg(-1), s.c., 18 and 2 h before)-pretreated, urethane-anaesthetized guinea-pigs. Propulsion of the device (dynamic model) was determined by measuring the length of the catheter expelled during 60 min filling of the balloon (flow rate 5 microl min(-1)). 2. In control conditions the tachykinin NK1 receptor antagonist SR 140333 (1 micromol kg(-1), i.v.) did not affect either colonic propulsion or the amplitude of contractions. The tachykinin NK2 receptor antagonists MEN 10627 and MEN 11420 (1 micromol kg(-1), i.v.) increased colonic propulsion at 10 min (+120% and 150%, respectively) but at 60 min the effect was significant only for MEN 10627 (+84%). SR 48968 (1 micromol kg(-1), i.v.) did not significantly enhance the colonic propulsion. None of these tachykinin NK2 receptor antagonists modified the amplitude of colonic contractions. In contrast, both atropine (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)) and hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished propulsion (81% and 87% inhibition, respectively) and decreased the amplitude of contractions (68% inhibition for either treatment). 3. In atropine-treated animals (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)), apamin (30 nmol kg(-1), i.v.) restored colonic propulsion (+416%) and increased the amplitude of contractions (+367% as compared to atropine alone). Hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished the apamin-induced, atropine-resistant colonic propulsion (97% inhibition) and reduced the amplitude of the atropine-resistant contractions (52% inhibition). 4. The apamin-induced, atropine

  1. Parainfluenza virus type 3 induced alterations in tachykinin NK1 receptors, substance P levels and respiratory functions in guinea pig airways.

    PubMed

    Kudlacz, E M; Shatzer, S A; Farrell, A M; Baugh, L E

    1994-08-03

    We have investigated the effects of parainfluenza virus type 3 (PI-3) on sensory neuropeptide levels, tachykinin receptors and their functions in guinea pig airways during the course of respiratory viral infection. PI-3 infected guinea pigs were hyperresponsive to methacholine and substance P aerosols as determined by earlier onset of dyspnea in these animals as compared with control on post-inoculation day (PID) 7 but not 19. In addition, plasma protein extravasation produced in response to the tachykinin was increased in infected airways during the first week post inoculation. Infected guinea pig trachea did not respond any differently to methacholine when smooth muscle contraction and [3H]inositol phosphate accumulation were measured although the magnitude of substance P effects using in vitro tests was significantly greater than control on post-inoculation day 7 but not 19. Trachea from PI-3 infected animals were characterized by reductions in substance P-like immunoreactivity, tachykinin NK1 receptor number and agonist affinity during the first post-inoculation week. Substance P levels or tachykinin NK1 receptor numbers or affinity were not altered in trachea of guinea pigs 4 days after treatment with lipopolysaccharide. These data suggest substance P release occurs during critical periods of respiratory viral infection which are temporally correlated with airway hyperresponsiveness. Despite apparent down-regulation of tachykinin NK1 receptors, substance P-mediated functions remained enhanced suggesting some alterations in post-receptor mechanisms.

  2. Activation of neurokinin NK(2) receptors by tachykinin peptides causes contraction of uterus in pregnant women near term.

    PubMed

    Patak, E N; Ziccone, S; Story, M E; Fleming, A J; Lilley, A; Pennefather, J N

    2000-06-01

    The aim of this study was firstly to elucidate whether the mammalian tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB)-regulated contractility of myometrium obtained from near-term pregnant women, and secondly to investigate the receptor subtype(s) responsible. In the presence of peptidase inhibitors, i.e. thiorphan (3 micromol/l; endopeptidase 24.11 inhibitor), captopril (10 micromol/l; angiotensin converting enzyme inhibitor) and bestatin (10 micromol/l; aminopeptidase inhibitor); all three mammalian tachykinins elicited concentration-related contractions of isolated myometrial preparations. The rank order of agonist potency of the mammalian tachykinins in the presence of the peptidase inhibitors was NKA > SP = NKB, indicating that the contractile effects were mediated by activation of an NK(2) receptor. The NK(2) receptor-selective agonist, [Lys(5), MeLeu(9), Nle(10)]NKA(4-10), produced concentration-related contractile responses, while the respective NK(1) and NK(3) receptor-selective agonists, [Sar(9), Met(O(2))(11)]SP and [N-MePhe(7)]NKB, had no effect either in the absence or presence of the peptidase inhibitors. The NK(2) receptor-selective antagonist, SR48968, produced concentration-related rightward shift in the log concentration curve to [Lys(5), MeLeu(9), Nle(10)]NKA(4-10). This study shows that tachykinins elicit contractile effects on human myometrium obtained from pregnant women near term, and that these effects are mediated by an NK(2) receptor. An excitatory effect of the tachykinins on these preparations could indicate a physiological role for these peptides in enhancing contractility of the uterus in women at term.

  3. Expression of the tachykinin receptor mRNAs in healthy human colon.

    PubMed

    Jaafari, Nadia; Hua, Guoqiang; Adélaïde, José; Julé, Yvon; Imbert, Jean

    2008-12-03

    Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.

  4. Tachykinin receptors mediating airway marcomolecular secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, S.E.

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absencemore » and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.« less

  5. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  6. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  7. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  8. Tachykinin receptors in the guinea-pig isolated bronchi.

    PubMed

    Maggi, C A; Patacchini, R; Quartara, L; Rovero, P; Santicioli, P

    1991-05-17

    The aim of the study was to assess which tachykinin receptors mediate the contractile response in the guinea-pig isolated bronchi. Experiments with natural tachykinins and receptor-selective tachykinin agonists were performed in the absence or presence of peptidase inhibitors and in bronchi pretreated with phenoxybenzamine. Both NK-1 (substance P, substance P methylester and septide) and NK-2 (neurokinin A, [beta-Ala8]neurokinin A-(4-10) and MDL 28,564) receptor agonists produced concentration-dependent contraction. NK-3 agonists (senktide and [MePhe7]neurokinin B) were active only at high concentrations. Phenoxybenzamine pretreatment reduced the maximal response to NK-1 agonists and produced a rightward shift of the curve to NK-2 agonists, without depression of the maximum. Five tachykinin antagonists selective for the NK-1 (L 668,169) or the NK-2 (MEN 10,207, MEN 10,376, L 659,877 and R 396) receptor were tested against substance P methylester and [beta-Ala8]neurokinin A-(4-10). The results indicated that these receptor-selective antagonists maintain their characteristic even when tested in a multireceptor assay such as the guinea-pig bronchus. The rank order of potency of NK-2 antagonists against [beta-Ala8]neurokinin A-(4-10) was MEN 10,207 = MEN 10,376 greater than L 659,877 much greater than R 396. This pattern, with the observation of the full agonist activity of MDL 28,564, indicates that in addition to NK-1 receptors, NK-2 receptors also are present in the guinea-pig bronchi and belong to the same subtype (NK-2A) as present in the rabbit pulmonary artery.

  9. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed

    Maggi, C A; Patacchini, R; Meini, S; Quartara, L; Sisto, A; Potier, E; Giuliani, S; Giachetti, A

    1994-05-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  10. Tachykinin receptor expression and function in human esophageal smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M

    2006-08-01

    Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.

  11. Tachykinin receptors and noncholinergic bronchoconstriction in the guinea-pig isolated bronchi.

    PubMed

    Maggi, C A; Patacchini, R; Rovero, P; Santicioli, P

    1991-08-01

    The aim of the study was to assess which type(s) of tachykinin receptor mediate the noncholinergic bronchoconstriction produced by activation (electrical field stimulation) of capsaicin-sensitive primary afferents in epithellum-denuded guinea-pig isolated bronchi. Experiments with natural and synthetic tachykinin agonists indicated the presence of both NK-1 and NK-2 receptors at this level. Experiments with the putative NK-1 (L668, 169) or NK-2 (MEN 10,207, MEN 10,376, L659,877, and R396) selective antagonists against NK-1 and NK-2 selective agonists further supported this conclusion. All the tachykinin antagonists tested reduced the noncholinergic bronchoconstriction to field stimulation with the order of potency MEN 10,207 = MEN 10,376 greater than L659,877 greater than L668,169 congruent to R396. In the presence of peptidase inhibitors, the activity of MEN 10,376 toward the noncholinergic bronchoconstriction was slightly reduced, whereas that of L668,169 was increased. These findings demonstrate that both NK-1 and NK-2 receptors mediate the noncholinergic constriction produced by endogenous tachykinins in guinea-pig bronchi and that the relative contribution of NK-2 receptors is greater than that of NK-1. These findings implicate a major role for neurokinin A rather than for substance P as an endogenous bronchoconstrictor in the guinea-pig isolated bronchi. In the presence of peptidase inhibitors, the relative contribution of NK-1 receptors is increased.

  12. Identification of both NK1 and NK2 receptors in guinea-pig airways.

    PubMed Central

    McKee, K. T.; Millar, L.; Rodger, I. W.; Metters, K. M.

    1993-01-01

    1. NK1 and NK2 receptors have been characterized in guinea-pig lung membrane preparations by use of [125I-Tyr8]-substance P and [125I]-neurokinin A binding assays in conjunction with tachykinin-receptor selective agonists ([Sar9Met(O2)11]substance P for NK1 and [beta Ala8]neurokinin A (4-10) for NK2) and antagonists (CP-99,994 for NK1 and SR48968 for NK2). 2. The presence of high affinity, G-protein-coupled NK1 receptors in guinea-pig lung parenchymal membranes has been confirmed. The rank order of affinity for competing tachykinins was as predicted for an NK1 receptor: substance P = [Sar9Met(O2)11]substance P > substance P-methyl ester = physalaemin > neurokinin A = neurokinin B >> [beta Ala8]neurokinin A (4-10). The novel NK1 antagonist CP-99,994 has a Ki of 0.4 nM at this NK1 site. 3. In order to characterize [125I]-neurokinin A binding to guinea-pig lung, the number of [125I]-neurokinin A specific binding sites was increased 3-4 fold by purification of the parenchymal membranes over discontinuous sucrose gradients. The rank order of affinity determined for NK1- and NK2-receptor agonists and antagonists in competition for these sites showed that the majority (80%) of [125I]-neurokinin A specific binding was also to the NK1 receptor. 4. Under conditions where the guinea-pig lung parenchymal NK1 receptor was fully occupied by a saturating concentration of either [Sar9Met(O2)11]substance P (1 microM) or CP-99,994 (2.7 microM), residual [125I]-neurokinin A specific binding was inhibited in a concentration-dependent manner by both [beta Ala8]neurokinin A and SR48968. This result shows that the NK2 receptor is also present in these preparations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7694756

  13. Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3.

    PubMed

    Leffler, Agnes; Ahlstedt, Ingela; Engberg, Susanna; Svensson, Arne; Billger, Martin; Oberg, Lisa; Bjursell, Magnus K; Lindström, Erik; von Mentzer, Bengt

    2009-05-01

    Tachykinin NK receptors (NKRs) differ to a large degree among species with respect to their affinities for small molecule antagonists. The aims of the present study were to clone NKRs from gerbil (NK2R and NK3R) and dog (NK1R, NK2R and NK3R) in which the sequence was previously unknown and to investigate the potency of several NKR antagonists at all known human, dog, gerbil and rat NKRs. The NKR protein coding sequences were cloned and expressed in CHO cells. The inhibitory concentrations of selective and non-selective NKR antagonists were determined by inhibition of agonist-induced mobilization of intracellular Ca2+. Receptor homology models were constructed based on the rhodopsin crystal structure to investigate and identify the antagonist binding sites and interaction points in the transmembrane (TM) regions of the NKRs. Data collected using the cloned dog NK1R confirmed that the dog NK1R displays similar pharmacology as the human and the gerbil NK1R, but differs greatly from the mouse and the rat NK1R. Despite species-related amino acid (AA) differences located close to the antagonist binding pocket of the NK2R, they did not affect the potency of the antagonists ZD6021 and saredutant. Two AA differences located close to the antagonist binding site of NK3R likely influence the NK3R antagonist potency, explaining the 3-10-fold decrease in potency observed for the rat NK3R. For the first time, detailed pharmacological experiments in vitro with cloned NKRs demonstrate that not only human, but also dog and gerbil NKR displays similar antagonist pharmacology while rat diverges significantly with respect to NK1R and NK3R.

  14. Evidence that tachykinin NK2 receptors modulate resting tone in the rat isolated small intestine.

    PubMed Central

    Maggi, C. A.; Giuliani, S.

    1996-01-01

    1. In the progress of experiments aimed at evaluating the role of tachykinins as enteric nonadrenergic noncholinergic (NANC) transmitters, we noted that certain tachykinin receptor antagonists produce a relaxation of circular muscle strips in the rat small intestine. This study aimed to assess the nature of this response and to determine the receptor type involved. The majority of the experiments were performed in capsaicin- (10 microM for 15 min) pretreated mucosa-free circular muscle strips from the rat small intestine, in the presence of atropine (1 microM), guanethidine (3 microM) and indomethacin (10 microM). 2. Under isometric recording of mechanical activity, the tachykinin NK1 receptor antagonist SR 140,333 (0.1 microM) had no effect on resting tone or spontaneous activity in duodenal or ileal circular muscle strips. The NK2 receptor antagonists, MEN 10,627 (0.1 microM) and GR 94,800 (0.1 microM) produced, after a delay of 10-15 min, a relaxation which averaged 61 +/- 3 and 57 +/- 6% (n = 6 and 4, respectively) of the maximal response (Emax) to isoprenaline (1 microM). The effect of maximal concentrations of MEN 10,627 and GR 94,800 when applied together was non-additive. The relaxant effect of MEN 10,627 (0.1 microM) was similar in the absence and presence of apamin (0.3 microM) and L-nitroarginine (100 microM). 3. Under isotonic recording of mechanical activity, MEN 10,627 (10 nM-1 microM) produced a concentration- and time-related relaxation of duodenal strips. The maximal relaxation averaged 72 +/- 4 and 69 +/- 4% (n = 5 each) of Emax to isoprenaline (1 microM) and was achieved 15-20 or 20-30 min after application of 1.0 or 0.1 microM MEN 10,627, respectively. 4. Duodenal strips were relaxed by other NK2 receptor selective antagonists (values in parentheses are % of Emax to isoprenaline at the given concentration of antagonist) GR 94,800 (69 +/- 3% at 1 microM, n = 4), SR 48,968 (60 +/- 3% at 1 microM, n = 4) and MDL 29,913 (66 +/- 4% at 1 microM, n = 4

  15. Evidence that tachykinin NK2 receptors modulate resting tone in the rat isolated small intestine.

    PubMed

    Maggi, C A; Giuliani, S

    1996-07-01

    1. In the progress of experiments aimed at evaluating the role of tachykinins as enteric nonadrenergic noncholinergic (NANC) transmitters, we noted that certain tachykinin receptor antagonists produce a relaxation of circular muscle strips in the rat small intestine. This study aimed to assess the nature of this response and to determine the receptor type involved. The majority of the experiments were performed in capsaicin- (10 microM for 15 min) pretreated mucosa-free circular muscle strips from the rat small intestine, in the presence of atropine (1 microM), guanethidine (3 microM) and indomethacin (10 microM). 2. Under isometric recording of mechanical activity, the tachykinin NK1 receptor antagonist SR 140,333 (0.1 microM) had no effect on resting tone or spontaneous activity in duodenal or ileal circular muscle strips. The NK2 receptor antagonists, MEN 10,627 (0.1 microM) and GR 94,800 (0.1 microM) produced, after a delay of 10-15 min, a relaxation which averaged 61 +/- 3 and 57 +/- 6% (n = 6 and 4, respectively) of the maximal response (Emax) to isoprenaline (1 microM). The effect of maximal concentrations of MEN 10,627 and GR 94,800 when applied together was non-additive. The relaxant effect of MEN 10,627 (0.1 microM) was similar in the absence and presence of apamin (0.3 microM) and L-nitroarginine (100 microM). 3. Under isotonic recording of mechanical activity, MEN 10,627 (10 nM-1 microM) produced a concentration- and time-related relaxation of duodenal strips. The maximal relaxation averaged 72 +/- 4 and 69 +/- 4% (n = 5 each) of Emax to isoprenaline (1 microM) and was achieved 15-20 or 20-30 min after application of 1.0 or 0.1 microM MEN 10,627, respectively. 4. Duodenal strips were relaxed by other NK2 receptor selective antagonists (values in parentheses are % of Emax to isoprenaline at the given concentration of antagonist) GR 94,800 (69 +/- 3% at 1 microM, n = 4), SR 48,968 (60 +/- 3% at 1 microM, n = 4) and MDL 29,913 (66 +/- 4% at 1 microM, n = 4

  16. Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor.

    PubMed Central

    Figini, M.; Emanueli, C.; Bertrand, C.; Javdan, P.; Geppetti, P.

    1996-01-01

    1. This study investigated the possibility that tachykinins relax the guinea-pig isolated trachea by releasing nitric oxide (NO) from the epithelium. The types of tachykinin receptor mediating both relaxation and contraction of the trachea were also studied. Isometric tension was recorded in isolated tracheal tube preparations precontracted with acetylcholine (10 microM) in which compounds were administered intraluminally in the presence of phosphoramidon and indomethacin (both 1 microM) and the tachykinin NK2 receptor antagonist, SR 48,968 ((S)-N-methyl-N[4-(4-acetyl amino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide), 0.1 microM). 2. In the presence of the inactive enantiomer of an NO-synthase inhibitor, NG-monomethyl-D-arginine (D-NMMA, 100 microM), substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the selective NK1 receptor agonist, [Sar9, Met(O2)11]-SP, (0.1-10 nM) relaxed tracheal tube preparations. This relaxation was changed into a contraction by pretreatment with the NO-synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 100 microM). The effect of L-NMMA on SP- and [Sar9, Met(O2)11]-SP-induced responses was reversed by L-arginine (L-Arg, 1 mM), but not by D-Arg (1 mM). After removal of the epithelium SP, NKA and NKB and [Sar9, Met(O2)11]-SP (0.1-10 nM) evoked contractile responses in the presence of either L-NMMA (100 microM) or D-NMMA (100 microM). The effects of SP and [Sar9, Met(O2)11]-SP obtained in the presence of another NO-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) or its inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME, 100 microM) were similar to those observed with L-NMMA or D-NMMA, respectively. 3. The selective NK1 receptor agonist, [pGlu6, Pro9]-SP(6-11) (septide, 0.1-10 nM) evoked contractile responses of tracheal tube preparations in the presence of either D-NMMA (100 microM) or L-NMMA (100 microM). The log concentration-response curve to septide obtained in the presence

  17. Further investigation into the mechanism of tachykinin NK(2) receptor-triggered serotonin release from guinea-pig proximal colon.

    PubMed

    Kojima, Shu-Ichi; Ikeda, Masashi; Kamikawa, Yuichiro

    2009-05-01

    The effects of the monoamine oxidase A (MAO-A) inhibitor clorgyline, the L-type calcium-channel blocker nicardipine, the syntaxin inhibitor botulinum toxin type C, and the potent thiol-oxidant phenylarsine oxide (PAO) on the selective tachykinin NK(2)-receptor agonist [beta-Ala(8)]-neurokinin A(4-10) [betaAla-NKA-(4-10)]-evoked 5-hydroxytryptamine (5-HT) outflow from colonic enterochromaffin (EC) cells was investigated in vitro using isolated guinea-pig proximal colon. The betaAla-NKA-(4-10)-evoked outflow of 5-HT from clorgyline-treated colonic strips was markedly higher than that from clorgyline-untreated colonic strips. The betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips was sensitive to nicardipine or botulinum toxin type C. Moreover, PAO concentration-dependently suppressed the betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips. The suppressant action of PAO was reversed by the reducing agent dithiothrietol, but was not blocked by the protein tyrosine kinase inhibitor genistein. These results suggest that the tachykinin NK(2) receptor-triggered 5-HT release from guinea-pig colonic EC cells is mediated by syntaxin-related exocytosis mechanisms and that colonic mucosa MAO-A activity has the important function of modulating the tachykinin NK(2) receptor-triggered 5-HT release. It also appears that PAO-mediated sulfhydryl oxidation plays a role in modulating the tachykinin NK(2) receptor-triggered 5-HT release through a mechanism independent of inhibition of protein tyrosine phosphatase activity.

  18. Differences in the distribution and characteristics of tachykinin NK1 binding sites between human and guinea pig lung.

    PubMed Central

    Walsh, D A; Salmon, M; Featherstone, R; Wharton, J; Church, M K; Polak, J M

    1994-01-01

    1. The distribution and characteristics of tachykinin NK1 binding sites have been compared in human and guinea pig lung using quantitative in vitro receptor autoradiography with [125I]-Bolton Hunter-labelled substance P ([125I]-BH-SP). In addition, the effects on these sites of ovalbumin sensitization and challenge have been determined in guinea pig lung. 2. [125I]-BH-SP bound specifically and with high affinity to microvascular endothelium in both human and guinea pig lung, but to bronchial smooth muscle and pulmonary artery media in only guinea pig lung. 3. Specific binding of [125I]-BH-SP to guinea pig bronchial smooth muscle was positively correlated with airway diameter in the range 150-800 microns and was less dense in trachea than in main bronchi. 4. [125I]-BH-SP binding was inhibited by tachykinins with rank orders of affinity of SP > NKA > NKB (human microvessels) and SP > NKA = NKB (guinea pig bronchi and pulmonary arteries). NKA displayed a higher affinity for [125I]-BH-SP binding sites in human microvessels than in guinea pig tissues (P < 0.0001), indicating differences in selectivity for tachykinins between human and guinea pig NK1 receptors. 5. In both human and guinea pig lung, [125I]-BH-SP binding was inhibited by the specific tachykinin receptor antagonists FK888 (NK1 selective antagonist) and FK224 (mixed NK1/NK2 antagonist), with FK888 displaying equal affinity to SP and > 500 times higher affinity than FK224. SP, NKA, NKB and FK888 exhibited similar affinities for [125I]-BH-SP binding sites in both guinea pig arteries and bronchi.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 PMID:7534186

  19. Heterogeneity of NK-2 tachykinin receptors in hamster and rabbit smooth muscles.

    PubMed

    Maggi, C A; Eglezos, A; Quartara, L; Patacchini, R; Giachetti, A

    1992-01-23

    The possible existence of NK-2 receptor subtypes in peripheral smooth muscle preparations from rabbit and hamster was investigated by studying the effect of neurokinin A, the selective NK-2 receptor agonist [beta Ala8] neurokinin A (4-10), the selective NK-2 tachykinin receptor antagonists, MEN 10,376, L 659,877 and R 396, and the pseudopeptide derivative of neurokinin A (4-10), MDL 28,564. All experiments were performed in the presence of peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each). Both neurokinin A and [beta Ala8] neurokinin A (4-10) produced concentration-dependent contractions of the rabbit isolated bronchus and hamster isolated stomach and colon, as well as enhancement of the nerve-mediated twitches of rabbit isolated vas deferens (pars prostatica). MEN 10,376, L 659,877 and R 396 antagonized the effect of the NK-2 receptor selective agonist in all four tissues under study, although marked differences in antagonist potency were evident for the three antagonists. Thus MEN 10,376 was distinctly more potent (about 100 times) in rabbit than in hamster preparations while L 659,877 and R 396 were more potent in hamster than rabbit preparations. MDL 28,564 showed a distinct agonist character in rabbit preparations while it was virtually inactive in hamster preparations, where it antagonized the effect of the NK-2 receptor selective agonist.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Tachykinin receptors in the guinea-pig renal pelvis: activation by exogenous and endogenous tachykinins.

    PubMed

    Maggi, C A; Patacchini, R; Eglezos, A; Quartara, L; Giuliani, S; Giachetti, A

    1992-09-01

    1. The contractile response to substance P, neurokinin A, selective agonists for the NK1, NK2 and NK3 tachykinin receptors and the activity of receptor-selective antagonists has been investigated in circular muscle strips of the guinea-pig isolated renal pelvis in the presence of indomethacin (3 microM). 2. Neurokinin A was the most potent agonist tested, being about 32 times more potent than substance P. The action of both substance P and neurokinin A was enhanced by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The selective NK2 receptor agonist [beta Ala8] neurokinin A (4-10), was slightly less potent and effective than neurokinin A itself. The selective NK1 receptor agonist [Sar9] substance P sulphone was effective at low (nM) concentrations but its maximal effect did not exceed 30% of maximal response to substance P or neurokinin A. The NK3-selective agonist [MePhe7] neurokinin B was effective only at high (microM) concentrations. 3. The pseudopeptide derivative of neurokinin A(4-10), MDL 28,564, displayed a clear-cut agonist character, although it was less potent than neurokinin A. 4. The responses to roughly equieffective (25-35% of maximal response) concentrations of [beta Ala8] neurokinin A (4-10), MDL 28,564 and [MePhe7] neurokinin B were antagonized to a similar extent by MEN 10,376 (3 microM), a selective NK2 tachykinin receptor antagonist, while the response to [Sar9] substance P sulphone was unchanged. 5. The response to [Sar9] substance P sulphone was inhibited by the NK1 receptor-selective antagonist, GR 82,334 (3 microM) while the response to [beta Ala8] neurokinin A (4-10) was unchanged. 6. The selective NK2 receptor antagonists MEN 10,376, L 659,877 and R 396 antagonized competitively the response to [PAla8] neurokinin A (4-10) with the following rank order of potency (pA2 values in parentheses): MEN 10,376 (7.41)>L 659,877 (7.15)>R 396 (6.43). MEN 10,376 and L 659,877 also competitively antagonized the response to

  1. Distribution pattern of tachykinin NK2 receptors in human colon: involvement in the regulation of intestinal motility.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Christen, Marie-Odile; Julé, Yvon

    2007-07-20

    Although a number of pharmacological studies have shown the involvement of tachykinin type 2 receptors (NK2r) in the regulation of human colonic motility, few data are available so far on their pattern of expression. In this study this pattern was investigated in the myenteric plexuses, the longitudinal and circular muscle layers (external muscular layers), and the interstitial cells of Cajal (ICCs) using confocal microscopy immunofluorescence methods. NK2r immunoreactivity (NK2r-IR) was detected in the soma of myenteric neurons and in nerve varicosities located in myenteric plexuses as well as in external muscular layers. Colocalization analysis of NK2r-IR and synaptophysin-IR, showed significant regional differences in the distribution of NK2r-expressing nerve varicosities, the rate of occurrence was found to be 56.08% +/- 3% (mean +/- SE) in the external muscular layers and 30.22% +/- 1% (mean +/- SE) in the myenteric plexuses. NK2r-IR was found in membranes of most muscle cells previously incubated with a selective NK2r agonist, [beta-Ala(8)] neurokinin A fragment 4-10, at 4 degrees C, and then mainly relocated in the cytoplasm when heated to 37 degrees C. A number of NK2r-IR nerve varicosities were close to NK2r-expressing neurons and muscle cells. Some of NK2r-expressing neurons and nerves were tachykinin-IR. No NK2r-IR was detected in ICCs. The present data indicate that presynaptic and postsynaptic neuroneuronal and neuromuscular regulatory processes mediated by tachykinins via NK2r may occur for modulating human colonic motility.

  2. Potencies of agonists acting at tachykinin receptors in the oestrogen-primed rat uterus: effects of peptidase inhibitors.

    PubMed

    Fisher, L; Pennefather, J N

    1997-09-24

    The uterotonic potencies of the naturally occurring mammalian tachykinins and the synthetic subtype-selective agonist analogues of these agents [Lys5,MeLeu9,Nlel0]neurokinin A-(4-10) and [Nle10]neurokinin A-(4-10) (tachykinin NK2 receptor-selective), [Sar9,Met(O2)11]substance P (tachykinin NK1 receptor-selective) and senktide (tachykinin NK3 receptor-selective) were determined using preparations from oestradiol-treated rats. The endopeptidase 24.11 inhibitor, N-[N-[1-(S)-carboxyl-3-phenylpropyl]-(S)-phenyl-alanyl-(S)-isoserine+ ++ (SCH 39370), potentiated responses to neurokinin A, neurokinin B and substance P, but not to [Lys5,MeLeu9,Nle10)]neurokinin A-(4-10) or senktide. [Nle10]neurokinin A-(4-10) effects were potentiated by SCH 39370 with amastatin and those to [Sar9,Met(O2)11]substance P were potentiated by SCH 39370 and captopril in combination. In the presence of optimal concentrations of peptidase inhibitors the relative order of agonist potency was: neurokinin A > substance P > neurokinin B for the naturally occurring mammalian tachykinins and [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) > [Nle10]neurokinin A-(4-10) > [Sar9,Met(O2)11]substance P > senktide for the synthetic tachykinin analogues. Thus, while a tachykinin NK2 receptor predominates in the oestrogen-primed uterus, a tachykinin NK1 receptor may also be present. The non-peptide tachykinin NK3 receptor antagonist, SR 142801, did not antagonise the effects of senktide suggesting that tachykinin NK3 receptors do not mediate its relatively minor effect on the uterus of the oestrogen-primed rat.

  3. Cyclooxygenase-dependent alterations in substance P-mediated contractility and tachykinin NK1 receptor expression in the colonic circular muscle of patients with slow transit constipation.

    PubMed

    Liu, Lu; Shang, Fei; Morgan, Matthew J; King, Denis W; Lubowski, David Z; Burcher, Elizabeth

    2009-04-01

    Tachykinins are important neurotransmitters regulating intestinal motility. Slow transit constipation (STC) represents an extreme colonic dysmotility with unknown etiology that predominantly affects women. We examined whether the tachykinin system is involved in the pathogenesis of STC. Isolated sigmoid colon circular muscle from female STC and control patients was studied using functional and quantitative reverse transcriptase-polymerase chain reaction methods. A possible alteration of neurotransmission was investigated by electrical field stimulation (EFS) and ganglionic stimulation by dimethylphenylpiperazinium (DMPP). Substance P (SP)-mediated contractions in circular muscle strips were significantly diminished in STC compared with age-matched control (P < 0.001). In contrast, contractile responses to neurokinin A, the selective tachykinin NK(2) receptor agonist, [Lys(5),MeLeu(9),Nle(10)]NKA(4-10), and acetylcholine were unaltered in STC. The reduced responses to SP in STC were fully restored by indomethacin, partially reversed by tetrodotoxin (TTX), but unaffected by atropine or hexamethonium. The restoration by indomethacin was blocked by the NK(1) receptor antagonist CP99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine] and TTX. In STC colonic muscle, there was a significant increase of NK(1) receptor mRNA expression, but no difference in NK(2) mRNA level. DMPP generated biphasic responses, relaxation at lower and contraction at higher concentrations. Although the responses to DMPP were similar in STC and control, an altered contractile pattern in response to EFS was observed in STC circular muscle. In conclusion, we postulate that the diminished contractile response to SP in STC is due to an increased release of inhibitory prostaglandins through activation of up-regulated NK(1) receptors. Our results also indicate some malfunction of the enteric nervous system in STC.

  4. Contribution of NK(2) tachykinin receptors to propulsion in the rabbit distal colon.

    PubMed

    Onori, L; Aggio, A; Taddei, G; Tonini, M

    2000-01-01

    The role of the tachykinin neurokinin (NK)(2) receptors on rabbit distal colon propulsion was investigated by using two selective NK(2)-receptor antagonists, MEN-10627 and SR-48968. Experiments on colonic circular muscle strips showed that contractile responses to [beta-Ala(8)]NKA-(4-10) (1 nM-1 microM), a selective NK(2)-receptor agonist, were competitively antagonized by MEN-10627 (1-100 nM), whereas SR-48968 (0.1-10 nM) caused an insurmountable antagonism, thus confirming the difference in the mode of action of the two compounds. Colonic propulsion was elicited by distending a mobile rubber balloon with 0.3 ml (submaximal stimulus) or 1.0 ml (maximal stimulus) of water. The velocity of anal displacement of the balloon (mm/s) was considered the main propulsion parameter. At low concentrations (1.0-100 nM and 0.1-10 nM, respectively), MEN-10627 and SR-48968 facilitated the velocity of propulsion, whereas at high concentrations (100 nM and 1 microM, respectively) they decelerated propulsion. The excitatory and inhibitory effects of both antagonists were observed only with submaximal stimulus. We focused on the hypothesis that the facilitatory effect on propulsion may result from blockade of neuronal NK(2) receptors and the inhibitory effect from suppression of the excitatory transmission mediated by NK(2) receptors on smooth muscle cells. In the presence of N(G)-nitro-L-arginine (300 microM), a nitric oxide synthase inhibitor, MEN-10627, at a concentration (10 nM) that was found to accelerate propulsion in control experiments inhibited the velocity of propulsion. In the presence of threshold (1-10 nM) or full (1 microM) concentration of atropine, which inhibited to a great extent the velocity of propulsion, the inhibitory effect of MEN-10627 (1 microM) was markedly increased. In conclusion, in the rabbit distal colon NK(2) receptors may decelerate propulsion by activating a nitric oxide-dependent neuronal mechanism and may accelerate it by a postjunctional

  5. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus.

    PubMed

    Kerr, K P

    2000-11-01

    1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.

  6. Tachykinin NK2 receptor and functional mechanisms in human colon: changes with indomethacin and in diverticular disease and ulcerative colitis.

    PubMed

    Burcher, Elizabeth; Shang, Fei; Warner, Fiona J; Du, Qin; Lubowski, David Z; King, Denis W; Liu, Lu

    2008-01-01

    Neurokinin A (NKA) is an important spasmogen in human colon. We examined inflammatory disease-related changes in the tachykinin NK(2) receptor system in human sigmoid colon circular muscle, using functional, radioligand binding, and quantitative reverse transcription-polymerase chain reaction methods. In circular muscle strips, indomethacin enhanced contractile responses to NKA (p < 0.01) and to the NK(2) receptor-selective agonist [Lys(5),MeLeu(9),Nle(10)]-NKA(4-10) (p < 0.05) in both normal and acute diverticular disease (DD) specimens, indicating NK(2) receptor-mediated release of relaxant prostanoids. Contractile responses to both tachykinins were reduced in strips from DD (p < 0.001) and ulcerative colitis (UC) (p < 0.05) specimens. Responses to acetylcholine were no different in other strips from the same disease patients, demonstrating that the change in responsiveness to tachykinins in disease is specifically mediated by the NK(2) receptor. In membranes from UC specimens, receptor affinity for (125)I-NKA (median K(D) 0.91 nM, n = 16) was lower (p < 0.01) than that in age-matched control specimens (K(D) 0.55 nM, n = 40), whereas K(D) (0.65 nM, n = 28) in DD was no different from control. No disease-related changes in receptor number (B(max)) were found (mean, 2.0-2.5 fmol/mg of wet weight tissue), suggesting that the reduced contractile responses in disease are not due to a loss of receptor number. Different mechanisms may account for the reduced contractility in DD compared with UC. A gender-related difference in receptor density was seen in controls, with B(max) lower in females (1.77 fmol/mg, n = 15) than in males (2.60 fmol/mg, n = 25, p = 0.01). In contrast, no gender-related differences were seen in NK(2) receptor mRNA in control colonic muscle, indicating that the gender difference is a post-translational event.

  7. Tachykinin NK2 receptors and enhancement of cholinergic transmission in the inflamed rat colon: an in vivo motility study

    PubMed Central

    Carini, F; Lecci, A; Tramontana, M; Giuliani, S; Maggi, C A

    2001-01-01

    In the gastrointestinal tract, tachykinin NK2 receptors are localized both on smooth muscle and nerve fibres. NK2 receptor antagonists reduce exaggerated intestinal motility in various diarrhoea models but the site of action contributing to this effect is unknown. In this study we investigated the effects of atropine (1.4 μmol kg−1, i.v.), hexamethonium (13.5 μmol kg−1, i.v.), and nepadutant (0.1 μmol kg−1, i.v.), a selective tachykinin NK2 receptor antagonist, on distension (0.5 and 1 ml)-, or irritation (acetic acid, 0.5 ml of 7.5% v v−1)-induced motility in the rat distal colon in vivo. The effects of atropine, hexamethonium or Nω-nitro-L-argininemethylester (L-NAME, 1.85 μmol kg−1, i.v.) on [βAla8]NKA(4-10) (10 nmol kg−1, i.v.)-induced colonic contractions were also investigated.When the colonic balloon was filled with a subthreshold volume (0.5 ml), the intraluminal instillation of acetic acid triggered a high-amplitude phasic colonic motility which was partially reduced by nepadutant and suppressed by either hexamethonium or atropine. Filling of the balloon with 1 ml evoked reflex (hexamethonium-sensitive), atropine-sensitive phasic colonic motility: nepadutant had no significant effect on the distension-evoked motility.Neither hexamethonium nor atropine significantly reduced [βAla8]NKA(4-10)-induced colonic contractions, whereas nepadutant suppressed them. Following L-NAME pretreatment, [βAla8]NKA(4-10)-induced colonic contractions were inhibited by both atropine and hexamethonium. In hexamethonium-pretreated animals, an atropine-sensitive component of [βAla8]NKA(4-10)-induced colonic contractions was also evident.These results indicate that the application of irritants onto the colonic mucosa induces the release of endogenous tachykinins which enhance excitatory cholinergic mechanisms through the stimulation of NK2 receptors. PMID:11487522

  8. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Meini, S.; Quartara, L.; Sisto, A.; Potier, E.; Giuliani, S.; Giachetti, A.

    1994-01-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  9. Tachykinin receptors in the rat isolated uterus.

    PubMed

    Fisher, L; Pennefather, J N; Hall, S

    1993-07-02

    Tachykinin receptors mediating uterotonic effects were examined in preparations from oestrogen-primed rats. In the absence of peptidase inhibitors [Lys5-MeLeu9-Nle10] NKA (4-10) was 14-fold more potent than neurokinin A (NKA), but the two peptides were equipotent in the presence of phosphoramidon alone and in combination with amastatin. The NK-2 receptor antagonist SR 48968 antagonised responses to the tachykinins. These findings indicate that an NK-2 receptor is present in the oestrogen-primed rat uterus and that endopeptidase 24.11 plays a major role to inactivate NKA in this tissue.

  10. Tachykinin receptors in the guinea-pig renal pelvis: activation by exogenous and endogenous tachykinins.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Eglezos, A.; Quartara, L.; Giuliani, S.; Giachetti, A.

    1992-01-01

    1. The contractile response to substance P, neurokinin A, selective agonists for the NK1, NK2 and NK3 tachykinin receptors and the activity of receptor-selective antagonists has been investigated in circular muscle strips of the guinea-pig isolated renal pelvis in the presence of indomethacin (3 microM). 2. Neurokinin A was the most potent agonist tested, being about 32 times more potent than substance P. The action of both substance P and neurokinin A was enhanced by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The selective NK2 receptor agonist [beta Ala8] neurokinin A (4-10), was slightly less potent and effective than neurokinin A itself. The selective NK1 receptor agonist [Sar9] substance P sulphone was effective at low (nM) concentrations but its maximal effect did not exceed 30% of maximal response to substance P or neurokinin A. The NK3-selective agonist [MePhe7] neurokinin B was effective only at high (microM) concentrations. 3. The pseudopeptide derivative of neurokinin A(4-10), MDL 28,564, displayed a clear-cut agonist character, although it was less potent than neurokinin A. 4. The responses to roughly equieffective (25-35% of maximal response) concentrations of [beta Ala8] neurokinin A (4-10), MDL 28,564 and [MePhe7] neurokinin B were antagonized to a similar extent by MEN 10,376 (3 microM), a selective NK2 tachykinin receptor antagonist, while the response to [Sar9] substance P sulphone was unchanged. 5. The response to [Sar9] substance P sulphone was inhibited by the NK1 receptor-selective antagonist, GR 82,334 (3 microM) while the response to [beta Ala8] neurokinin A (4-10) was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384907

  11. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the

  12. In vivo evidence for the involvement of tachykinin NK3 receptors in the hexamethonium-resistant inhibitory transmission in the rat colon.

    PubMed

    Lecci, A; Giuliani, S; Tramontana, M; Meini, S; De Giorgio, R; Maggi, C A

    1996-05-01

    In urethane-anaesthetized rats, moderate colonic distention (0.5 ml) induced reflex rhythmic contractions (5 mm Hg amplitude and 1.1 cycles/min frequency). Senktide (1-10 nmol/kg, i.v.), a tachykinin NK3 receptor selective agonist, transiently suppressed distension-induced contractions. SR 142,801 (1-10 mumol/kg i.v.), a non-peptide tachykinin NK3 receptor antagonist, had no effect on distension-induced contractions but prevented the inhibitory effect of senktide. Infusion of N-omega-nitro-1-arginine methyl esther hydrochloride (L-NAME, 20 mumol/ml/h, i.v) increased the amplitude of colonic contractions and decreased the inhibitory effect of senktide. Hexamethonium (15 mumol/ml/h, i.v.) or atropine (1 mumol/ml/h, i.v.) inhibited the distension-induced contractions. In hexamethonium- or atropine-treated rats, senktide (10 nmol/kg) transiently and selectively enhanced the amplitude of contractions. Also SR 142,801 (10 mumol/kg), but not its inactive enantiomer SR 142,806, increased both amplitude and frequency of contractions. During continuous infusion of L-NAME and hexamethonium or atropine both frequency and amplitude of distension-induced colonic contractions were higher than when in hexamethonium or atropine only. Senktide (10 nmol/kg) had no effect and SR 142,801 (10 mumol/kg) produced a slight enhancement of colonic contractions. Infusion of sodium nitroprusside (3 mumol/ml/h, i.v.) decreased amplitude and frequency of distension-induced contractions. SR 142,801 had no effect in the presence of the nitric oxide (NO) donor. We conclude that tachykinins acting through NK3 receptors exert at least four different actions on colonic motility activated by distension: 1) a hexamethonium-resistant, NO-dependent, suppressant effect on contractions; 2) a hexamethonium-sensitive, NO-independent inhibitory effect on the amplitude of contractions; 3) a hexamethonium-resistant, NO-independent inhibitory effect on the amplitude of contractions and 4) a hexamethonium

  13. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist.

    PubMed

    Emonds-Alt, X; Doutremepuich, J D; Heaulme, M; Neliat, G; Santucci, V; Steinberg, R; Vilain, P; Bichon, D; Ducoux, J P; Proietto, V

    1993-12-21

    (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3- yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR140333) is a new non-peptide antagonist of tachykinin NK1 receptors. SR140333 potently, selectively and competitively inhibited substance P binding to NK1 receptors from various animal species, including humans. In vitro, it was a potent antagonist in functional assays for NK1 receptors such as [Sar9,Met(O2)11]substance P-induced endothelium-dependent relaxation of rabbit pulmonary artery and contraction of guinea-pig ileum. Up to 1 microM, it had no effect in bioassays for NK2 ([beta Ala8]neurokinin A-induced contraction of endothelium-deprived rabbit pulmonary artery) and NK3 ([MePhe7]neurokinin B-induced contraction of rat portal vein) receptors. The antagonism exerted by SR140333 toward NK1 receptors was apparently non-competitive, with pD2' values (antagonism potency evaluated by the negative logarithm of the molar concentration of antagonist that produces a 50% reduction of the maximal response to the agonist) between 9.65 and 10.16 in the different assays. SR140333 also blocked in vitro [Sar9,Met(O2)11]substance P-induced release of acetylcholine from rat striatum. In vivo, SR140333 exerted highly potent antagonism toward [Sar9,Met(O2)11]substance P-induced hypotension in dogs (ED50 = 3 micrograms/kg i.v.), bronchoconstriction in guinea-pig (ED50 = 42 micrograms/kg i.v.) and plasma extravasation in rats (ED50 = 7 micrograms/kg i.v.). Finally, it also blocked the activation of rat thalamic neurons after nociceptive stimulation (ED50 = 0.2 micrograms/kg i.v.).

  14. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    PubMed

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  15. Radioligand binding, autoradiographic and functional studies demonstrate tachykinin NK-2 receptors in dog urinary bladder.

    PubMed

    Mussap, C J; Stamatakos, C; Burcher, E

    1996-10-01

    Tachykinin receptors in the dog bladder were characterized using radioligand binding, functional and autoradiographic techniques. In detrusor muscle homogenates, specific binding of [125l]iodohistidyl neurokinin A (INKA) and [125l]Bolton Hunter eledoisin was reversible, saturable and, to a single class of sites of Kd, 3,6 and 27 nM, respectively. No specific binding of [125l]Bolton Hunter[Sar9, Met (O2)11] substance P occurred. INKA binding was reduced by the peptidase inhibitor bacitracin. The rank potency order of agonists competing for binding of both radioligands indicated interaction at NK-2 sites. NK-2-selective antagonists also competed for INKA binding, with SR 48968, GR 94800, MDL 29913 and the selective agonist [Lys5, MeLeu9, Nle10]-NKA(4-10) showing biphasic binding profiles. Autoradiographic studies revealed specific binding of INKA and [125l]Bolton Hunter eledoisin over detrusor muscle and small arteries. [125l]Bolton Hunter [Sar9, Met (O2)11] SP labeled the intima of arteries and arterioles, but not the detrusor muscle. Tachykinins contracted detrusor muscle strips, with potency order at the carbachol EC15 NKA = kassinin > [Lys5, MeLeu9, Nle10]-NKA(4-10) = neuropeptide gamma = neuropeptide K = NKB > > MDL 28564, with [Sar9, Met(O2)11]-SP ineffective. Shallow concentration-response curves, variable efficacies and inhibition by atropine and mepyramine suggest that other mechanisms may influence contractile responses. Responses to [Lys5, MeLeu9, Nle10]-NKA(4-10) were inhibited competitively by MDL 29913 and MEN 10207 (pA2 values: 6.4 and 5.3, respectively). Antagonism by SR 48968 and GR 94800 was noncompetitive (both pK8 values 8.9). In summary, NK-2-preferring ligands showed superior potency as both binding competitors and contractile agonists, demonstrating that NK-2 receptors mediate detrusor muscle contraction, similar to the human detrusor. Tachykinins may play important roles in the micturition reflex and in regulating detrusor muscle blood flow in

  16. Tachykinin receptors in the circular muscle of the guinea-pig ileum.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707710

  17. Tachykinin receptors in the circular muscle of the guinea-pig ileum.

    PubMed

    Maggi, C A; Patacchini, R; Giachetti, A; Meli, A

    1990-12-01

    1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family. The response to activation of NK3-receptors is totally neurogenic and partially mediated by endogenous acetylcholine, the response to activation of NK1-receptors is partly neurogenic and largely myogenic and the response to activation of NK2-receptors is totally myogenic.

  18. Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes.

    PubMed Central

    Guard, S.; Watson, S. P.; Maggio, J. E.; Too, H. P.; Watling, K. J.

    1990-01-01

    1. The binding properties and pharmacological specificity of the selective NK3 tachykinin receptor agonist [3H))-senktide [( 3H]-succinyl[Asp6,MePhe8] substance P (6-11] have been examined in homogenates of guinea-pig ileum longitudinal muscle-myenteric plexus (LM/MP) and cerebral cortex. 2. Scatchard analysis of saturation binding studies in guinea-pig ileum LM/MP and cerebral cortex membranes indicated that [3H]-senktide bound to a single site with apparent high affinity, KD = 2.21 +/- 0.65 nM; Bmax = 13.49 +/- 0.04 fmol mg-1 protein in ileum and KD = 8.52 +/- 0.45 nM; Bmax = 76.3 +/- 1.6 fmol mg-1 protein in cortex (values are means +/- ranges; n = 2). 3. The pharmacological profile for tachykinins and analogues in displacing [3H]-senktide from ileum membranes was: [MePhe7] neurokinin B greater than neurokinin B (NKB) congruent to senktide greater than eledoisin greater than substance P (SP) greater than neurokinin A(NKA) greater than physalaemin greater than [Sar9,Met(O2)11]SP greater than [Nle10]NKA(4-10) = [Glp6,L-Pro9]-SP(6-11) greater than substance P methyl ester, consistent with [3H]-senktide binding to an NK3 subtype of tachykinin receptor. A similar rank order of affinity was obtained for these peptides in displacing [3H]-senktide from cortex membranes. 4. Several tachykinin receptor agonists were tested for their ability to displace [3H]-senktide from ileal and cortical NK3 binding sites and were found to be either weak displacers (pIC50 less than 5.00) or inactive.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1694464

  19. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences.

    PubMed Central

    Belvisi, M. G.; Patacchini, R.; Barnes, P. J.; Maggi, C. A.

    1994-01-01

    1. Exogenous tachykinins modulate cholinergic neurotransmission in rabbit and guinea-pig airways. We have investigated the effect of selective tachykinin receptor agonists and antagonists on cholinergic neurotransmission evoked by electrical field stimulation (EFS) of bronchial rings in rabbit, guinea-pig and human airways in vitro to assess which type of tachykinin receptor is mediating this facilitatory effect. 2. Bronchial rings were set up for isometric tension recording. Contractile responses to EFS (60 V, 0.4 ms, 2 Hz for 10 s every min) and exogenous acetylcholine (ACh) were obtained and the effects of selective tachykinin agonists and antagonists were investigated. 3. In rabbit bronchi the endogenous tachykinins, substance P (SP) and neurokinin A (NKA) (10 nM) potentiated cholinergic responses to EFS (by 287.6 +/- 121%, P < 0.01 and 181.4 +/- 56.5%, P < 0.001 respectively). 4. The NK1 receptor selective agonist, [Sar9]SP sulphone (10 nM) evoked a maximal facilitatory action on cholinergic responses of 334.9 +/- 63% (P < 0.01) (pD2 = 8.5 +/- 0.06) an effect which was blocked by the selective NK1-receptor antagonist, CP 96,345 (100 nM) (P < 0.05) but not by the NK2 receptor antagonist, MEN 10,376 (100 nM). The NK2 receptor selective agonist, [beta Ala8]NKA(4-10) (10 nM), produced a maximum enhancement of 278 +/- 83.5% (P < 0.01) (pD2 = 8.7 +/- 0.1) an effect which was blocked by MEN 10,376 (100 nM) (P < 0.05) and not by CP 96,345. [MePhe7]NKB, an NK3 receptor selective agonist was without effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7516799

  20. Tachykinin receptors in rabbit airways--characterization by functional, autoradiographic and binding studies.

    PubMed Central

    Black, J. L.; Diment, L. M.; Alouan, L. A.; Johnson, P. R.; Armour, C. L.; Badgery-Parker, T.; Burcher, E.

    1992-01-01

    1. In many species, both NK1 and NK2 tachykinin receptors appear to be important in mediating the contraction of airway smooth muscle. We have examined the distribution and characterization of receptors for tachykinins in rabbit airways using functional length tension studies, autoradiography and radioligand binding studies. 2. Contractile responses to tachykinins were elicited in four different areas of the respiratory tree--trachea, and three progressively more distal areas of the right bronchus. The NK2 receptor-preferring agonists, neurokinin A (NKA), neuropeptide gamma (NP gamma) and the NK2-selective [Lys5 MeLeu9, Nle10]-NKA(4-10) [NKA (4-10) analogue] produced similar contraction in all four areas. Substance P (SP) and the NK1-selective [Sar9,Met(O2)11]-SP (Sar-SP) exhibited a marked location-dependence in the magnitude of contraction, producing minimal contraction in the trachea and more proximal bronchi with contractions becoming progressively larger in the more distal airways. Senktide (which is selective for the NK3 receptor) produced negligible contraction in all areas. 3. The NK2-selective antagonist, MDL29,913, was a weak antagonist of NKA and NKA(4-10) analogue. At a concentration of 2 microM, it produced a small but significant shift in the response curve to NKA and a greater shift (8 fold) in the curve to NKA(4-10) analogue, but it had no effect on responses to Sar-SP. The non peptide NK1 receptor antagonist, CP-96,345, was also unexpectedly weak in this preparation. The pD2 value for Sar-SP was decreased 27 fold by CP-96,345 at a concentration of 1 microM, without alteration in the maximum response.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:1384914

  1. A role for tachykinins in female mouse and rat reproductive function.

    PubMed

    Pintado, C Oscar; Pinto, Francisco M; Pennefather, Jocelyn N; Hidalgo, Agustin; Baamonde, Ana; Sanchez, Teresa; Candenas, M Luz

    2003-09-01

    Tachykinins may be involved in reproduction. A reverse transcription-polymerase chain reaction assay was used to analyze the expression of tachykinins and tachykinin receptors in different types of reproductive cells from mice. The preprotachykinin (PPT) genes, PPT-A, PPT-B and PPT-C, that encode substance P/neurokinin A, neurokinin B, and hemokinin-1, respectively, and the genes that encode the tachykinin NK1, NK2, and NK3 receptors were all expressed, at different levels, in the uterus of superovulated, unfertilized mice. The mRNA of neprilysin (NEP), the main enzyme involved in tachykinin metabolism, was also expressed in the uterus. Isolated cumulus granulosa cells expressed PPT-A, PPT-B, PPT-C, and NEP and low levels of the tachykinin NK1 and NK2 receptors. Mouse oocytes expressed PPT-A and -B mRNA transcripts. A low expression of the three tachykinin receptors was observed but PPT-C and NEP were undetectable. Two- and 8- to 16-cell mouse embryos expressed only a low-abundance transcript corresponding to the NK1 receptor. However, the mRNAs of PPT-B, PPT-C and NEP appeared in blastocyst-stage embryos. A low-abundance transcript corresponding to the NK2 receptor was the only target gene detected in mice sperm. Female mice or rats treated neonatally with capsaicin showed a reduced fertility. A reduction in litter size was observed in female rats treated in vivo with the tachykinin NK3 receptor antagonist SR 142801. These data show that tachykinins of both neuronal and nonneuronal origin are differentially expressed in various types of reproductive cells and may play a role in female reproductive function.

  2. The rabbit iris sphincter contains NK1 and NK3 but not NK2 receptors: a study with selective agonists and antagonists.

    PubMed

    Wang, Z Y; Håkanson, R

    1993-04-08

    Tachykinin analogues, claimed to be selective NK1, NK2 and NK3 receptor agonists, contracted the isolated rabbit iris sphincter muscle in a concentration-dependent manner. The contractions were not modified by the enkephalinase inhibitor thiorphan and the angiotensin-converting enzyme inhibitor captopril (10(-5) M of each). The pD2 values for (Sar9,Met(O2)11)SP (NK1 receptor agonist), (Nle10)NKA(4-10) (NK2 receptor agonist) and (MePhe7)NKB (NK3 receptor agonist) were 8.3, 6.1 and 8.2, respectively. (Sar9,Met(O2)11)SP was the most efficacious of the three agonists. The results are compatible with the presence of NK1 and NK3 receptors. The low pD2 value for the NK2 agonist may reflect a lack of NK2 receptors and interaction of the NK2 agonist with NK1 receptors. The contraction caused by the NK1 receptor agonist was inhibited competitively by the highly selective NK1 receptor antagonist (+/-) CP-96,345; the pA2 value was 5.5. Also the contraction caused by the NK2 receptor agonist was inhibited competitively by (+/-) CP-96,345 with a pA2 value of 5.7, supporting the view that the two agonists (Sar9,Met(O2)11)SP and (Nle10)NKA(4-10) interact with the same receptor. The selective NK2 receptor antagonist actinomycin D did not affect the contraction caused by the NK2 receptor agonist. We conclude that the rabbit iris sphincter muscle contains NK1 and probably NK3 receptors. We obtained no evidence for the presence of NK2 receptors.

  3. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity.

    PubMed

    Zachrisson, O; Lindefors, N; Brené, S

    1998-10-01

    Substance P (SP) can play an important role in neuronal survival. To analyze the role of SP in excitotoxicity, kainic acid (KA) was administered to rats and in situ hybridization was used to analyze the levels of the SP encoding preprotachykinin-A (PPT-A) mRNA in striatal and hippocampal subregions 1, 4, and 24 h and 7 days after KA. In striatum and piriform cortex, PPT-A mRNA peaked 4 h after KA while in hippocampus, levels peaked after 24 h. KA caused seizures and neuronal toxicity as indicated by a reduction of the number of neurons in the hippocampal CA1 subregion after 7 days. KA was later administered alone or following pretreatment with the tachykinin NK1 receptor antagonist CP-122,721-1 (0.3 mg/kg). The pretreatment decreased seizure activity and a negative correlation was found between seizure activity and survival of CA1 neurons. Conclusively, treatment with CP-122,721-1 has a seizure inhibiting property and may possibly counteract KA-induced nerve cell death in CA1. Copyright 1998 Elsevier Science B.V.

  4. Inhibition of emesis by tachykinin NK1 receptor antagonists in Suncus murinus (house musk shrew).

    PubMed

    Rudd, J A; Ngan, M P; Wai, M K

    1999-02-05

    The anti-emetic potential of CP-122,721 ((+)-2S,3S)-3-(2-methoxy-5-trifluoromethoxybenzyl)amino-2-phenylpi peridine), CP-99,994 ((+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine), CP-100,263 ((-)-(2R,3R)-3-(2-methoxybenzylamino)-2-phenylpiperidine), RP 67580 ((3R, 7aR)-7,7-diphenyl-2-[1-imino-2-(2-methoxyphenyl)ethyl] po-hydroisoindol-4-one), FK 888 (N2-[(4R)-4-hydroxy-1-(1-methyl-1H-in-dole-3-yl)carbonyl-L-propyl] -N-methyl-N-phenylmethyl-1-3-(2-naphthyl)-alaninamide) and GR 82334 ([D-Pro9[spiro-g-lactam]Leu10]-physalaemin-(1-11)) was investigated to inhibit nicotine (5 mg/kg, s.c.)-, copper sulphate pentahydrate (120 mg/kg, intragastric)- and motion (4 cm horizontal displacement at 1 Hz for 5 min)-induced emesis in Suncus murinus. A 30 min intraperitoneal pre-treatment with CP-122,721, CP-99,994, RP 67580 and FK 888 significantly (P < 0.05) antagonized nicotine-induced emesis with ID50 values of 2.1, 2.3, 13.5 and 19.2 mg/kg, respectively CP-100,263, the less active enantiomer of CP-99,994, was inactive at doses up to 10 mg/kg. Infusion of GR 82334, CP-122,721, CP-99,994 and FK 888 into the dorsal vagal complex of the hindbrain also antagonized nicotine-induced emesis yielding ID50 values of 1.1, 3.0, 3.3 and 58.0 microg/dorsal vagal complex, respectively RP 67580 and CP-100,263 were inactive. RP 67580 and FK 888 failed to antagonize copper sulphate-induced emesis but CP-122,721 and CP-99,994 were active yielding ID50 values of 2.2 and 3.0 mg/kg, i.p., respectively. CP-99,994 also completely prevented motion-induced emesis at 10 mg/kg, i.p. (P < 0.05) and RP 67580 produced a significant reduction of motion-induced emesis at 10 mg/kg, i.p. (P < 0.05). These studies provide evidence of a central site of action of tachykinin NK1 receptor antagonists to inhibit nicotine-induced emesis in S. murinus and confirm the broad profile of inhibitory action. The rank order of potency of the antagonists following the intra-dorsal vagal complex administration suggests

  5. Contractile effect of tachykinins on Suncus murinus (house musk shrew) isolated ileum.

    PubMed

    Cheng, Frankie H M; Chan, Sze Wa; Rudd, John A

    2008-01-01

    Recent studies used Suncus murinus to investigate the anti-emetic potential of NK(1) tachykinin receptor antagonists. However, the pharmacology of tachykinin receptors in this species has not been fully characterized. In the present studies, therefore, we examined a range of tachykinin receptor agonists for a capacity to induce contractions of the isolated ileum. The tachykinin NK1 receptor preferring agonists substance P, septide and [Sar9Met(O2)11] substance P, and the tachykinin NK2 preferring agonists neurokinin A and GR 64349 (Lys-Asp-Ser-Phe-Val-Gly-R-gamma-lactam-Leu-Met-NH2) caused concentration dependent contractions with EC50 values in the nanomolar range. However, the tachykinin NK3 preferring agonists neurokinin B and senktide (1nM-1microM) induced only weak contractions. The action of senktide, but not [Sar9Met(O2)11] substance P, septide, or GR 64349, was antagonized significantly by atropine (P<0.05); tetrodotoxin and hexamethonium were inactive. The tachykinin NK1 receptor antagonist CP-99,994 ((+)-[(2S,3S)-3-(2-methoxy-benzyl-amino)-2-phenylpiperidine]) (10-100nM) inhibited substance P- and septide-induced contractions non-competitively. The pA2 value estimated for CP-99,994 against septide was 7.3+/-0.1. It also non-competitively antagonized the contractile responses induced by [Sar9Met(O2)11] substance P with a pA2 of 7.4+/-0.1. CP-99,994 also had a slight inhibitory action on neurokinin A-induced contractions, but did not modify the action of GR 64349. Conversely, the tachykinin NK2 receptor antagonist, saredutant, competitively antagonized GR 64349-induced contractions with a pA2 of 7.34+/-0.02. On the other hand, the presence of both CP-99,994 and saredutant competitively antagonized substance P-induced contraction. The present studies indicate that tachykininNK1 and NK2 receptors exist in the ileum of S. murinus and are involved in mediating contractions directly on smooth muscle, whereas tachykinin NK3 receptors may play a minor role

  6. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    PubMed

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  7. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors.

    PubMed

    Nakamura, Akihiro; Tanaka, Takahiro; Imanishi, Akio; Kawamoto, Makiko; Toyoda, Masao; Mizojiri, Gaku; Tsukimi, Yasuhiro

    2011-01-01

    In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.

  8. Tachykinin receptor and neutral endopeptidase gene expression in the rat uterus: characterization and regulation in response to ovarian steroid treatment.

    PubMed

    Pinto, F M; Armesto, C P; Magraner, J; Trujillo, M; Martín, J D; Candenas, M L

    1999-06-01

    Tachykinin neuropeptides, such as substance P, are localized to a population of sensory fibers that innervate the mammalian female reproductive tract. In the present study, we have characterized tachykinin NK1 receptor (NK1R), NK2 receptor (NK2R), and NK3 receptor (NK3R) gene expression by semiquantitative RT-PCR in uteri from ovariectomized rats and studied their regulation in response to 17beta-estradiol (E2), progesterone (P4), or a combination of both. In addition, we analyzed the expression and regulation of the neutral endopeptidase 24.11 (NEP), the most important enzyme involved in tachykinin degradation in the rat uterus. In uteri from control (olive oil-treated) rats, RT-PCR assays revealed single bands corresponding to the expected product sizes encoding complementary DNA for NK1R (232 bp), NK2R (491 bp), NK3R (325 bp), and NEP (221 bp). The identity of the amplified fragments was confirmed by DNA sequence analysis. Compared with control rats, NK1R messenger RNA (mRNA) was increased by 2-fold in uteri from rats treated with E2, was decreased by 3.3-fold in rats treated with P4, and was decreased by 1.8-fold in rats treated with both E2 and P4. Uterine NK2R mRNA levels were not altered by any steroid treatment. E2 treatment decreased by 15-fold NK3R mRNA. P4 was without effect if administered alone and did not influence the E2-induced decrease in NK3R mRNA. NEP mRNA levels were about 4-fold lower in E2-treated than in P4-treated rats. Functional studies were carried out in uteri from E2- or P4-treated ovariectomized rats to characterize the contractile response evoked by the selective tachykinin receptor agonists [Sar9Met(O2)11]substance P (NK1R selective), [Nle10]NKA-(4-10) (NK2R selective), and [MePhe7]NKB (NK3R selective) in the presence of the NEP inhibitor phosphoramidon (1 microM). A marked correlation was observed between the magnitude of the contractile response to each agonist and the level of expression determined by RT-PCR for each tachykinin

  9. Role for NK(1) and NK(2) receptors in the motor activity in mouse colon.

    PubMed

    Mulè, Flavia; Amato, Antonella; Serio, Rosa

    2007-09-10

    The present study examined the effects induced by endogenous and exogenous activation of NK(1) and NK(2) receptors on the mechanical activity of mouse proximal colon. Experiments were performed in vitro recording the changes in intraluminal pressure from isolated colonic segments. Electrical field stimulation in the presence of atropine and guanethidine produced a small relaxation, followed by nonadrenergic noncholinergic (NANC) contraction. SR140333, NK(1) receptor antagonist, or SR48968, NK(2) receptor antagonist, significantly reduced the contraction, although SR48968 appeared more efficacious. The co-administration of SR140333 and SR48968 virtually abolished the NANC contraction. [Sar(9), Met(O(2))(11)]-substance P, selective NK(1) receptor agonist, induced a concentration-dependent biphasic effect, contraction followed by reduction of the mechanical spontaneous activity. Both effects were antagonized by SR140333, but not by SR48968. [beta-Ala(8)]-neurokinin A (4-10), selective NK(2) receptor agonist, evoked concentration-dependent contraction, which was antagonized by SR48968, but not by SR140333. The contraction induced by [Sar(9), Met(O(2))(11)]-substance P, but not by [beta-Ala(8)]-neurokinin A (4-10), was reduced by tetrodotoxin or atropine, and increased by N(omega)-nitro-L-arginine methyl ester (L-NAME), inhibitor of nitric oxide synthase. The inhibitory effects induced by [Sar(9), Met(O(2))(11)]-substance P were abolished by tetrodotoxin or L-NAME. The results of the present study suggest that in mouse colon both NK(1) and NK(2) receptors are junctionally activated by endogenous tachykinins to cause an additive response. NK(1) receptors appear to be located on cholinergic and on nitrergic neurons as well as on smooth muscle cells, whereas NK(2) receptors seem to be present exclusively on smooth muscle cells.

  10. Autocrine regulation of human sperm motility by tachykinins.

    PubMed

    Pinto, Francisco M; Ravina, Cristina G; Subiran, Nerea; Cejudo-Román, Antonio; Fernández-Sánchez, Manuel; Irazusta, Jon; Garrido, Nicolas; Candenas, Luz

    2010-08-26

    We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins.

  11. Effects of tachykinins on uterine smooth muscle.

    PubMed

    Patak, E N; Pennefather, J N; Story, M E

    2000-11-01

    1. Sensory nerves supplying the mammalian uterus have been shown to contain substance P (SP) and neurokinin (NK)A. This review presents some of the advances that have led to a greater understanding of the effects of tachykinins on uterine smooth muscle. 2. The cell-surface peptidase neprilysin (EC.3 24.11, endopeptidase 24.11, enkephalinase, CALLA, CD10) has been shown to play a major role in regulating the actions of tachykinins on both rat and human myometrium. Because this peptidase is known to be regulated by steroids and pregnancy, its effects may be of physiological relevance. 3. Tachykinins produce contractions of isolated myometrial preparations from non-pregnant rats and mice. The NK2 receptor mediates these effects in rat uterus, while the NK1 receptor may mediate these effects in the mouse uterus. 4. The effects of tachykinins have been examined on myometrial preparations obtained at Caesarean section from near-term pregnant women. In the presence of the peptidase inhibitors (thiorphan, captopril and bestatin), the mammalian tachykinins SP, NKA and NKB produced concentration-dependent uterine contractions. 5. The order of agonist potency NKA > SP = NKB suggested that NK2 receptors mediate uterine contractions in the human. This was confirmed using the stable analogues [Sar9,Met(O2)11]SP, [Lys5MeLeu9Nle10]NKA(4-10) and [N-MePhe7]NKB, which are NK1, NK2 and NK3 receptor selective, respectively. Only [Lys5MeLeu9Nle10]NKA(4-10) produced concentration-related contractions of human uterine smooth muscle. 6. The experimental findings described in the present review, taken together with results published previously in the literature, indicate that tachykinin peptides may play a physiological or pathophysiological role in regulating uterine smooth muscle activity. However, more extensive research will be required to confirm such a role for these peptides.

  12. Tachykinin receptors in the small intestine of the cane toad (Bufo marinus): a radioligand binding and functional study.

    PubMed

    Burcher, E; Warner, F J

    1998-06-01

    In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin approximately neurokinin A (NKA) > or = SP(5-11) > or = neuropeptide gamma > or = scyliorhinin II > scyliorhinin I > or = [Sar9]-SP > or = neurokinin B approximately physalaemin approximately carassin > SP(7-11) approximately eledoisin > or = SP(4-11) approximately SP(6-11). Binding was also inhibited by Gpp[NH]p > or = GTPgammaS > App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin approximately SP > or = physalaemin > or = ranakinin > SP(6-11) > scyliorhinin II > or = neuropeptide gamma > neurokinin B approximately NKA approximately scyliorhinin I > or = SP(4-11) > or = SP(5-11) > [Sar9]SP > SP(7-11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,Me-Leu9,Nle10]NKA(4-10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r = 0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 microM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 microM) were ineffective in both functional and

  13. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  14. Autocrine regulation of human sperm motility by tachykinins

    PubMed Central

    2010-01-01

    Background We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Methods Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). Results The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). Conclusion These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins. PMID:20796280

  15. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  16. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  17. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    PubMed

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  18. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon

    2008-04-01

    The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.

  19. Characterization of the tachykinin NK2 receptor in the human bronchus: influence of amastatin-sensitive metabolic pathways.

    PubMed Central

    Astolfi, M.; Treggiari, S.; Giachetti, A.; Meini, S.; Maggi, C. A.; Manzini, S.

    1994-01-01

    1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A. PMID:8004400

  20. Characterization of the tachykinin NK2 receptor in the human bronchus: influence of amastatin-sensitive metabolic pathways.

    PubMed

    Astolfi, M; Treggiari, S; Giachetti, A; Meini, S; Maggi, C A; Manzini, S

    1994-02-01

    1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A.

  1. The ventral tegmental area as a putative target for tachykinins in cardiovascular regulation

    PubMed Central

    Deschamps, Kathleen; Couture, Réjean

    2005-01-01

    Tachykinin receptor agonists and antagonists were microinjected into the ventral tegmental area (VTA) to study the relative participation of the three tachykinin receptors in cardiovascular regulation in freely behaving rat. Selective agonists (1–100 pmol) for NK1 ([Sar9, Met (O2)11]SP), NK2 ([β-Ala8]NKA (4–10)) and NK3 (senktide) receptors evoked increases in blood pressure, heart rate (HR) along with behavioural manifestations (face washing, sniffing, head scratching, rearing, wet dog shake). At 1 pmol, NK1 and NK3 agonists did not affect behaviour and blood pressure but only HR. Tachykinin agonists-induced cardiovascular responses were selectively and reversibly blocked by the prior injection of antagonists for NK1 receptors (LY 303870 ((R)-1-[N-(2-methoxybenzyl)acetylamino]-3-(1H-indol-3-yl)-2-[N-(2-(4-(piperidin-1-yl)piperidin-1-yl)acetyl)amino]propane), 5 nmol), NK2 receptors (SR 48968 ([(S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3,4-dichlorophenyl)butyl]benzamide]), 250 pmol) and NK3 receptors (SB 235375 ((−)-(S)-N-(α-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide), 25 nmol). With the exception of the NK2 agonist, most behavioural effects were also blocked by antagonists. Tachykinin agonists-induced cardiovascular responses were inhibited by intravenous (i.v.) treatments with antagonists for D1 dopamine receptor (SCH23390, 0.2 mg kg−1) and β1-adrenoceptor (atenolol, 5 mg kg−1) but not for D2 dopamine receptor (raclopride, 0.16 mg kg−1). Behavioural responses were blocked by SCH23390 only. The present study provides the first pharmacological evidence that the three tachykinin receptors in the rat VTA can affect the autonomic control of blood pressure and HR by increasing midbrain dopaminergic transmission. This mechanism may be involved in the coordination of behavioural and cardiovascular responses to stress and noxious stimulation. PMID:15895109

  2. Tachykinin control of ferret airways: mucus secretion, bronchoconstriction and receptor mapping.

    PubMed

    Meini, S; Mak, J C; Rohde, J A; Rogers, D F

    1993-02-01

    The effects of synthetic tachykinin receptor agonists on mucus secretion by ferret trachea was determined in vitro in Ussing chambers using 35SO4 as a mucus marker and the synthetic peptides [Sar9,Met(O2)11]substance P (SarSP), [beta Ala8]neurokinin A-(4-10) and [MePhe7] neurokinin B which are selective for NK1, NK2 and NK3 tachykinin-receptors respectively. The bronchomotor effects of the same agonists were also studied in vitro and tachykinin receptors were localized by autoradiographic mapping. SarSP was the only synthetic agonist able to elicit a concentration-dependent increase in mucus secretion and was much more potent than SP. The EC50 for SarSP was 1.7 x 10(-6) M. Moreover, the maximal increase in release of 35SO4 produced by SarSP 10(-5) M was 95% of the increase produced by methacholine 10(-4) M indicating that this concentration of SarSP induced a near maximal secretory response. There was no significant difference in the secretory action of SP administered from the luminal or the submucosal side of the tissue. Only the NK2 agonist was able to produce a concentration-dependent contractility of bronchial ring preparations and its effect was relatively weak (EC50 6.4 x 10(-6) M). Capsaicin (10(-5) M) produced only a slight increase in tracheal mucus secretion (28 +/- 5%; n = 6) and was completely ineffective in inducing bronchoconstriction. Binding sites for [125I]-Bolton Hunter SP were more evident than sites for [125I]-NKA on submucosal glands and epithelium. In contrast, only binding sites to NKA could be observed over the smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Role of nitric oxide and septide-insensitive NK1 receptors in bronchoconstriction induced by aerosolised neurokinin A in guinea-pigs

    PubMed Central

    Ricciardolo, Fabio L M; Trevisani, Marcello; Geppetti, Pierangelo; Nadel, Jay A; Amadesi, Silvia; Bertrand, Claude

    2000-01-01

    The tachykinin, neurokinin A (NKA), contracts guinea-pig airways both in vitro and in vivo, preferentially activating smooth muscle NK2 receptors, although smooth muscle NK1 receptors may also contribute. In vitro evidence suggests that NKA activates epithelial NK1 receptors, inducing the release of nitric oxide (NO) and subsequent smooth muscle relaxation. A number of selective NK1 receptor agonists have been reported to activate both smooth muscle and epithelial NK1 receptors, however septide appears only to activate smooth muscle NK1 receptors. The aim of the present study was to investigate whether NKA-induced bronchoconstriction in guinea-pigs in vivo may be limited by NO release via NK1 receptor activation, and whether selective NK1 receptor agonists may activate this mechanism differently. Aerosolized NKA caused an increase in total pulmonary resistance (RL) that was markedly reduced by the NK2 receptor antagonist, SR 48968, and abolished by the combination of SR 48968 and the NK1 receptor antagonist, CP-99,994. The increase in RL evoked by NKA was potentiated by pretreatment with the NO synthase (NOs) inhibitor, L-NAME, but not by the inactive enantiomer D-NAME. Potentiation by L-NAME of NKA-induced increase in RL was reversed by L-Arginine, but not by D-Arginine. Pretreatment with L-NAME did not affect the increase in RL induced by the selective NK2 receptor agonist, [β-Ala8]NKA(4-10), and by the selective NK1 receptor agonist, septide, whereas it markedly potentiated the increase in RL caused by a different NK1 selective agonist, [Sar9,Met(O2)11]SP. Dose-response curves showed that septide was a more potent bronchoconstrictor than [Sar9,Met(O2)11]SP to cause bronchoconstriction. Pretreatment with the NK1 receptor antagonist, CP-96,994, abolished the ability of L-NAME to increase bronchoconstriction to aerosolized NKA. Bronchoconstriction to aerosolized NKA was increased by L-NAME, after pretreatment with the NK3 receptor antagonist, SR 142801. The

  4. Role of nitric oxide and septide-insensitive NK(1) receptors in bronchoconstriction induced by aerosolised neurokinin A in guinea-pigs.

    PubMed

    Ricciardolo, F L; Trevisani, M; Geppetti, P; Nadel, J A; Amadesi, S; Bertrand, C

    2000-03-01

    The tachykinin, neurokinin A (NKA), contracts guinea-pig airways both in vitro and in vivo, preferentially activating smooth muscle NK(2) receptors, although smooth muscle NK(1) receptors may also contribute. In vitro evidence suggests that NKA activates epithelial NK(1) receptors, inducing the release of nitric oxide (NO) and subsequent smooth muscle relaxation. A number of selective NK(1) receptor agonists have been reported to activate both smooth muscle and epithelial NK(1) receptors, however septide appears only to activate smooth muscle NK(1) receptors. The aim of the present study was to investigate whether NKA-induced bronchoconstriction in guinea-pigs in vivo may be limited by NO release via NK(1) receptor activation, and whether selective NK(1) receptor agonists may activate this mechanism differently. Aerosolized NKA caused an increase in total pulmonary resistance (RL) that was markedly reduced by the NK(2) receptor antagonist, SR 48968, and abolished by the combination of SR 48968 and the NK(1) receptor antagonist, CP-99, 994. The increase in RL evoked by NKA was potentiated by pretreatment with the NO synthase (NOs) inhibitor, L-NAME, but not by the inactive enantiomer D-NAME. Potentiation by L-NAME of NKA-induced increase in RL was reversed by L-Arginine, but not by D-Arginine. Pretreatment with L-NAME did not affect the increase in RL induced by the selective NK(2) receptor agonist, [beta-Ala(8)]NKA(4-10), and by the selective NK(1) receptor agonist, septide, whereas it markedly potentiated the increase in RL caused by a different NK(1) selective agonist, [Sar(9),Met(O(2))(11)]SP. Dose-response curves showed that septide was a more potent bronchoconstrictor than [Sar(9),Met(O(2))(11)]SP to cause bronchoconstriction. Pretreatment with the NK(1) receptor antagonist, CP-96,994, abolished the ability of L-NAME to increase bronchoconstriction to aerosolized NKA. Bronchoconstriction to aerosolized NKA was increased by L-NAME, after pretreatment with the

  5. Tachykinin NK-1 and NK-3 selective agonists induce analgesia in the formalin test for tonic pain following intra-VTA or intra-accumbens microinfusions.

    PubMed

    Altier, N; Stewart, J

    1997-12-01

    Experiments were designed to examine the analgesic effects induced by selective tachykinin receptor agonists microinfused into either the ventral tegmental area (VTA) or nucleus accumbens septi (NAS). Rats were tested in the formalin test for tonic pain following an injection of 0.05 ml of 2.5% formalin into one hind paw immediately after bilateral intra-VTA infusions of either the NK-1 agonist, GR-73632 (0.005, 0.05 or 0.5 nmol/side), the NK-3 agonist, senktide (0.005, 0.5 or 1.5 nmol/side), or saline. Two weeks later, the saline-treated rats were assessed in the tail-flick test for phasic pain after infusions of the tachykinin agonists. Tail-flick latencies were recorded following immersion of the tail in 55 degrees C hot water at 10 min intervals for 1 h immediately after intra-VTA infusions of either GR-73632 (0.5 nmol/side), senktide (1.5 nmol/side) or saline. In a second group of rats, the same effects were studied after infusions into the nucleus accumbens (NAS) of GR-73632 (0.005, 0.5 or 1.5 nmol/side), senktide (0.005, 0.5 or 1.5 nmol/side), or saline. In both the VTA and NAS, the NK-1 and the NK-3 agonists caused significant analgesia in the formalin test, although the NK-1 agonist appeared to be more effective. Naltrexone (2.0 mg/kg) pretreatment failed to reverse the analgesic effects in the formalin test induced by intra-VTA infusions of the substance P (SP) analog, DiMe-C7 (3.0 microg/side), GR-73632 (0.5 nmol/side), or senktide (1.5 nmol/side). Neither compound given at either site was effective in the tail-flick test. These findings suggest that SP-dopamine (DA) interactions within the mesolimbic DA system play an important role in the inhibition of tonic pain. Furthermore, they support our earlier ideas that activation of midbrain DA systems by SP might play a role in stress- and/or pain-induced analgesia.

  6. The common C-terminal sequences of substance P and neurokinin A contact the same region of the NK-1 receptor.

    PubMed

    Bremer, A A; Leeman, S E; Boyd, N D

    2000-12-01

    Although neurokinin A (NKA), a tachykinin peptide with sequence homology to substance P (SP), is a weak competitor of radiolabeled SP binding to the NK-1 receptor (NK-1R), more recent direct binding studies using radiolabeled NKA have demonstrated an unexpected high-affinity interaction with this receptor. To document the site of interaction between NKA and the NK-1R, we have used a photoreactive analogue of NKA containing p-benzoyl-L-phenylalanine (Bpa) substituted in position 7 of the peptide. Peptide mapping studies of the receptor photolabeled by (125)I-iodohistidyl(1)-Bpa(7)NKA have established that the site of photoinsertion is located within a segment of the receptor extending from residues 178 to 190 (VVCMIEWPEHPNR). We have previously shown that (125)I-BH-Bpa(8)SP, a photoreactive analogue of SP, covalently attaches to M(181) within this same receptor sequence. Importantly, both of these peptides ((125)I-iodohistidyl(1)-Bpa(7)NKA and (125)I-BH-Bpa(8)SP) have the photoreactive amino acid in an equivalent position within the conserved tachykinin carboxyl-terminal tail. In this report, we also show that site-directed mutagenesis of M(181) to A(181) in the NK-1R results in a complete loss of photolabeling of both peptides to this receptor site, indicating that the equivalent position of SP and NKA, when bound to the NK-1R, contact the same residue.

  7. Defensive and pathological functions of the gastrointestinal NK3 receptor.

    PubMed

    Sanger, Gareth J; Tuladhar, Bishwa R; Bueno, Lionel; Furness, John B

    2006-10-01

    In general, normal gut functions are unaffected by selective NK(3) receptor antagonists such as talnetant (SB-223412), osanetant (SR 142901) or SB-235375. However, NK(3) receptors may mediate certain defensive or pathological intestinal processes. The precise mechanisms, by which this role is achieved, are not fully understood. In summary, intense stimulation of the intrinsic primary afferent neurones (IPANs) of the enteric nervous system is thought to release tachykinins from these neurones, to induce slow excitation (slow EPSPs) of connecting IPANs. This is hypothesised to cause hypersensitivity and disrupt intestinal motility, at least partly explaining why NK(3) receptor antagonism can reduce the level of disruption caused by supramaximal distension pressures in vitro. Tachykinin release from IPANs may also increase C-fibre sensitivity, directly or indirectly. Thus, NK(3) receptor antagonists can inhibit nociception associated with intestinal distension, in normal animals or after pre-sensitisation by restraint stress. Importantly, such inhibition has been found with SB-235375, a peripherally restricted antagonist. SB-235375 can also reduce a visceromotor response to brief colorectal distension without affecting similar responses to skin pinch, providing additional evidence for intestinal-specific activity. NK(3) receptor biology is, therefore, revealing a novel pathway by which disruptions in intestinal motility and nociception can be induced.

  8. [Increased expressions of substance P and neurokinin/tachykinin receptor 1 in eosinophils of patients with psoriasis].

    PubMed

    Zuo, Zhe; Wang, Junling; Zhang, Huiyun; Zheng, Wenjiao; Zhang, Zenan; He, Shaoheng

    2017-07-01

    Objective To investigate the expressions of substance P (SP) and its receptor neurokinin/tachykinin receptor 1 (NK1R) in peripheral blood eosinophils of patients with psoriasis. Methods The levels of SP and NK1R in the peripheral blood of both patients with psoriasis and healthy people were detected by flow cytometry. This method was again used to detect the levels of SP and NK1R in the peripheral blood eosinophils of patients with psoriasis after stimulated with the crude extracts of Artemisia pollen, dust mite and Platanus pollen (all at concentrations of 0.1 and 1.0 μg/mL). Results Compared with the healthy controls, the percentages of SP + and NK1R + eosinophils in psoriasis patients increased up to 2.7 and 0.5 folds, respectively. Moreover, the mean fluorescence intensity (MFI) of SP + and NK1R + eosinophils of psoriasis patients were elevated by 1.5 and 0.2 folds, respectively. The percentage of SP + eosinophils in psoriasis were down-regulated by 60% after the stimulation with Platanus pollen extract (1 μg/mL), while 0.1 μg/mL Platanus pollen extract induced a 0.6-fold increase in the percentage of NK1R + eosinophis. Conclusion The expressions of SP and NK1R are up-regulated in peripheral blood eosinophils of patients with psoriasis.

  9. Bladder inflammatory transcriptome in response to tachykinins: Neurokinin 1 receptor-dependent genes and transcription regulatory elements

    PubMed Central

    Saban, Ricardo; Simpson, Cindy; Vadigepalli, Rajanikanth; Memet, Sylvie; Dozmorov, Igor; Saban, Marcia R

    2007-01-01

    Background Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin system, we set forth to determine the regulatory network downstream of NK1 receptor activation. First, NK1R-dependent transcripts were determined and used to query known databases for their respective transcription regulatory elements (TREs). Methods An expression analysis was performed using urinary bladders isolated from sensitized wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT software was used to query TRANSFAC database and to retrieve upstream TREs that were confirmed by electrophoretic mobility shift assays. Results The regulatory network of TREs driving NK1R-dependent genes presented cRel in a central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF, Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was significantly correlated with 36 transcripts which included several candidates for mediating bladder development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R, the matrix Nkx2

  10. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1 ) receptor in assays for antidepressant and anxiolytic drugs.

    PubMed

    Rupniak, N M; Carlson, E J; Webb, J K; Harrison, T; Porsolt, R D; Roux, S; de Felipe, C; Hunt, S P; Oates, B; Wheeldon, A

    2001-11-01

    The phenotype of NK1R-/- mice was compared with that of acute pharmacological blockade of the tachykinin NK1 receptor on sensorimotor function and in assays relevant to depressive illness and anxiety. The dose range for L-760735 and GR205171 that was associated with functional blockade of central NK1 receptors in the target species was established by antagonism of the behavioural effects of intracerebroventricular NK1 agonist challenge in gerbils, mice and rats. The caudal grooming and scratching response to GR73632 was absent in NK1R-/- mice, confirming that the receptor had been genetically ablated. There was no evidence of sedation or motor impairment in NK1R-/- mice or following administration of L-760735 to gerbils, even at doses in excess of those required for central NK1 receptor occupancy. In the resident-intruder and forced swim test, the behaviour of NK1R-/- mice, or animals treated acutely with L-760735 or GR205171, resembled that seen with the clinically used antidepressant drug fluoxetine. However, the effects of GR205171 were not clearly enantioselective in mice. In contrast, although NK1R-/- mice also exhibited an increase in the duration of struggle behaviour in the tail suspension test, this was not observed following pharmacological blockade with L-760735 in gerbils or GR205171 in mice, suggesting that this may reflect a developmental alteration in the knockout mouse. There was no effect of NK1 receptor blockade with L-760735 in guinea-pigs or GR205171 in rats, or deletion of the NK1 receptor in mice, on behaviour in the elevated plus-maze test for anxiolytic activity. These findings extend previous observations on the phenotype of the NK1R-/- mouse and establish a broadly similar profile following acute pharmacological blockade of the receptor. These studies also serve to underscore the limitations of currently available antagonists that are suitable for use in rat and mouse behavioural assays.

  11. Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity.

    PubMed

    Janelsins, Brian M; Mathers, Alicia R; Tkacheva, Olga A; Erdos, Geza; Shufesky, William J; Morelli, Adrian E; Larregina, Adriana T

    2009-03-26

    Dendritic cells (DCs) are the preferred targets for immunotherapy protocols focused on stimulation of cellular immune responses. However, regardless of initial promising results, ex vivo generated DCs do not always promote immune-stimulatory responses. The outcome of DC-dependent immunity is regulated by proinflammatory cytokines and neuropeptides. Proinflammatory neuropeptides of the tachykinin family, including substance P (SP) and hemokinin-1 (HK-1), bind the neurokinin 1 receptor (NK1R) and promote stimulatory immune responses. Nevertheless, the ability of pro-inflammatory tachykinins to affect the immune functions of DCs remains elusive. In the present work, we demonstrate that mouse bone marrow-derived DCs (BMDCs) generated in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), express functional NK1R. Signaling via NK1R with SP, HK-1, or the synthetic agonist [Sar(9)Met(O(2))(11)]-SP rescues DCs from apoptosis induced by deprivation of GM-CSF and IL-4. Mechanistic analysis demonstrates that NK1R agonistic binding promotes DC survival via PI3K-Akt signaling cascade. In adoptive transfer experiments, NK1R-signaled BMDCs loaded with Ag exhibit increased longevity in draining lymph nodes, resulting in enhanced and prolonged effector cellular immunity. Our results contribute to the understanding of the interactions between the immune and nervous systems that control DC function and present a novel approach for ex vivo-generation of potent immune-stimulatory DCs.

  12. Evidence that tachykinin NK1 and NK2 receptors mediate non-adrenergic non-cholinergic excitation and contraction in the circular muscle of guinea-pig duodenum.

    PubMed Central

    Zagorodnyuk, V.; Santicioli, P.; Maggi, C. A.; Giachetti, A.

    1995-01-01

    1. In the presence of atropine (1 microM), guanethidine (3 microM), indomethacin (3 microM), apamin (0.1 microM) and L-nitroarginine (L-NOARG, 30 microM), electrical field simulation (EFS) produced a nonadrenergic, noncholinergic (NANC) excitatory junctional potential (e.j.p.), action potentials and contraction of the circular muscle of the guinea-pig proximal duodenum, recorded by the single sucrose gap technique. 2. The selective tachykinin (TK) NK1 receptor antagonist, GR 82,334 (30 nM-3 microM) produced a concentration-dependent inhibition of the EFS-evoked NANC e.j.p. and contraction. Similarly, the selective NK2 receptor antagonists, MEN 10,627 (30 nM-3 microM) and GR 94,800 (100 nM-10 microM), both produced a concentration-dependent inhibition of the EFS-evoked NANC e.j.p. and contraction. GR 82,334 inhibited the electrical and mechanical NANC responses to EFS in an almost parallel manner, while MEN 10,627 and GR 94,800 were more effective in inhibiting the mechanical than the electrical response to EFS. 3. Activation of the NK1 or NK2 receptor by the selective agonists, [Sar9]substance P (SP) sulphone and [beta Ala8]neurokinin A (NKA) (4-10), respectively (0.3 microM each), produced depolarization, action potentials and contractions. GR 82,334 selectively inhibited the responses to [Sar9]SP sulphone, without affecting the responses to [beta Ala8]NKA (4-10). MEN 10,627 and GR 94,800 inhibited or abolished the responses to [beta Ala8]NKA (4-10), without affecting the responses to [Sar9]SP sulphone. 4. Nifedipine (1 microM) abolished the action potentials and contraction produced either by EFS or by the TK receptor agonists [Sar9]SP sulphone or [beta Ala8]NKA (4-10). 5. In the presence of nifedipine, the NANC e.j.p. produced by EFS was biphasic: in the majority of strips tested (21 out of 29) an early fast phase of depolarization was followed by a second slow component. The combined administration of GR 82,334 and GR 94,800 (3 microM each) reduced both

  13. Use of NK1 receptor antagonists in the exploration of physiological functions of substance P and neurokinin A.

    PubMed

    Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T

    1995-07-01

    Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.

  14. Characterization of tachykinin receptors mediating bronchomotor and vasodepressor responses to neuropeptide gamma and substance P in the anaesthetized rabbit.

    PubMed

    Yuan, L; Burcher, E; Nail, B S

    1998-02-01

    The effects of i.v. injections of two endogenous tachykinins, substance P (SP) and neuropeptide gamma and the highly selective tachykinin agonists [Sar9,Met(O2)11]-SP, [Lys5,MeLeu9, Nle10]-NKA(4-10) and senktide, on total lung resistance (RL), dynamic lung compliance (Cdyn) and systemic blood pressure, were compared in the anaesthetized rabbit. Senktide, the NK-3 receptor selective agonist, had no effect on RL, Cdyn or blood pressure. The other four agonists caused dose-dependent increases in RL and Cdyn, with [Sar9,Met(O2)11]-SP being the most potent agonist in producing changes in the absence of phosphoramidon. This suggested that NK-1 receptors play an important role in these responses. [Sar9, Met(O2)11]-SP, SP and neuropeptide gamma also decreased blood pressure. Phosphoramidon (1 mg/kg) potentiated the changes in RL and Cdyn evoked by [Sar9,Met(O2)11]-SP and SP, with very marked enhancement of responses to neuropeptide gamma. Responses to [Lys5, MeLeu9,Nle10]-NKA(4-10) were unaffected, suggesting that this NK-2 selective agonist may not be catabolized by neutral endopeptidase (NEP). In the presence of phosphoramidon, the non-peptide tachykinin NK-1 receptor selective antagonist CP 96345 (80 nmol/kg) reduced all responses to [Sar9,Met(O2)11]-SP and SP, whereas the NK-2 selective antagonist SR 48968 (40 nmol/kg) inhibited the bronchomotor but not the vasodepressor responses to neuropeptide gamma and [Lys5,MeLeu9, Nle10]-NKA(4-10). The fall in blood pressure induced by neuropeptide gamma was diminished by CP 96345, whereas bronchoconstriction was unaffected, indicating possible differences in NK-1 receptors in the vasculature and airways. Electrical stimulation of the distal ends of vagus nerves caused increases in RL which were abolished by atropine (1 mg/kg). Copyright 1998 Academic Press Limited

  15. Augmentation of neurally evoked cholinergic bronchoconstrictor responses by prejunctional NK2 receptors in the guinea-pig.

    PubMed

    Hey, J A; Danko, G; del Prado, M; Chapman, R W

    1996-02-01

    1. We examined the effect of exogenously administered tachykinins, neurokinin A (NKA), substance P (SP) and neurokinin B (NKB) on neurally mediated cholinergic bronchoconstrictor responses in guinea-pigs. 2. Electrical stimulation of regions in the dorsal medulla oblongata produced a cholinergic bronchospasm that was not affected by depletion of endogenous tachykinins with capsaicin pretreatment (50 mg kg-1, s.c., 1 week earlier) or by pretreatment with the neutral endopeptidase inhibitor, phosphoramidon (3 mg kg-1, i.v.). 3. Infusion of NKA (0.03-0.1 microgram kg-1 min-1), SP (1 microgram kg-1 min-1) or NKB (1 microgram kg-1 min-1) potentiated the bronchoconstrictor response to electrical stimulation of the dorsal medulla. The doses of tachykinins tested were subthreshold for direct activation of airway smooth muscle, because they were devoid of direct bronchoconstrictor effects. The relative rank order potency for augmentation of centrally induced bronchospasm was NKA > NKB approximately SP, suggesting activation of the NK2 receptor subtype. 4. Infusion of NKA, SP and NKB had no effect on bronchoconstrictor responses to i.v. methacholine (1 microgram kg-1) indicating that a prejunctional neural mechanism of action was responsible for the effects on CNS stimulation-induced bronchospasm. 5. Potentiation of the bronchoconstrictor response to dorsal medullary stimulation produced by infusion of NKA was blocked by pretreatment with the NK2 antagonist SR 48968 (1 mg kg-1, i.v.) but not by the NK1 antagoinst CP 96,345 (1 mg kg-1, i.v.). 6. The potentiation of CNS-induced bronchospasm produced by infusion of SP was partially inhibited by CP 96,345 (1 mg kg-1, i.v.) but not by SR 48968 (1 mg kg-1, i.v.). Treatment with combined SR 48968 (1 mg kg-1, i.v.) and CP 96,345 (1 mg kg-1, i.v.) completely blocked the SP-induced potentiation of CNS-stimulated bronchospasm. 7. These results identify an important modulatory role for NK2 receptors, located at prejunctional sites on

  16. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    PubMed

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  17. UTILIZATION OF THE LEAST SHREW AS A RAPID AND SELECTIVE SCREENING MODEL FOR THE ANTIEMETIC POTENTIAL AND BRAIN PENETRATION OF SUBSTANCE P AND NK1 RECEPTOR ANTAGONISTS

    PubMed Central

    Darmani, Nissar A.; Wang, Yaozhi; Abad, Joseph; Ray, Andrew P.; Thrush, Gerald R.; Ramirez, Juan

    2008-01-01

    Substance P (SP) is thought to play a cardinal role in emesis via the activation of central tachykinin NK1 receptors during the delayed phase of vomiting produced by chemotherapeutics. Although the existing supportive evidence is significant, due to lack of an appropriate animal model, the evidence is indirect. As yet, no study has confirmed that emesis produced by SP or a selective NK1 receptor agonist is sensitive to brain penetrating antagonists of either NK1, NK2, or NK3 receptors. The goals of this investigation were to demonstrate: 1) whether intraperitoneal (i.p.) administration of either SP, a brain penetrating (GR73632) or non-penetrating (e.g. SarMet – SP) NK1 receptor agonist, an NK2 receptor agonist (GR64349), or an NK3 receptor agonist (Pro7-NKB), would induce vomiting and/or scratching in the least shrew (Cryptotis parva) in a dose-dependent manner; and whether these effects are sensitive to the above selective receptor antagonists; 2) whether an exogenous emetic dose of SP (50 mg/kg, i.p.) can penetrate into the shrew brain stem and frontal cortex; 3) whether GR73632 (2.5 mg/kg, i.p.)-induced activation of NK1 receptors increases Fos-measured neuronal activity in the neurons of both brain stem emetic nuclei and the enteric nervous system of the gut; and 4) whether selective ablation of peripheral NK1 receptors can affect emesis produced by GR73632. The results clearly demonstrated that while SP produced vomiting only, GR73632 caused both emesis and scratching behavior dose-dependently in shrews, and these effects were sensitive to NK1-, but not NK2- or NK3-receptor antagonists. Neither the selective, non-penetrating NK1 receptor agonists, nor the selective NK2- or NK3-receptor agonists, caused a significant dose-dependent behavioral effect. An emetic dose of SP selectively and rapidly penetrated the brain stem but not the frontal cortex. Systemic GR73632 increased Fos expression in the enteric nerve plexi, the medial subnucleus of nucleus tractus

  18. Effects of two novel tachykinin antagonists, FK224 and FK888, on neurogenic airway plasma exudation, bronchoconstriction and systemic hypotension in guinea-pigs in vivo.

    PubMed Central

    Hirayama, Y.; Lei, Y. H.; Barnes, P. J.; Rogers, D. F.

    1993-01-01

    1. We compared the effects of two novel tachykinin receptor antagonists, FK888 (selective at the tachykinin NK1 receptor) and FK224 (dual antagonist at NK1 and NK2 tachykinin receptors) on stimulus-evoked airway plasma exudation, bronchoconstriction and systemic hypotension in guinea-pigs in vivo. Plasma exudation was induced by substance P (SP), synthetic tachykinin receptor agonists, platelet activating factor (PAF), electrical stimulation of the cervical vagus nerves or by inhalation of cigarette smoke. Changes in airway tone and in carotid artery blood pressure (BP) were induced by synthetic tachykinin agonists, PAF and vagal stimulation. 2. Both FK224 and FK888 dose-dependently inhibited SP-induced plasma exudation in the lower trachea and main bronchi (ID50 values respectively of 1.1 and 0.1 mumol kg-1 in lower trachea, and of 0.5 and 0.1 mumol kg-1 in main bronchi) with complete inhibition at both airway levels at 10 mumol kg-1 for FK224 and at 2 mumol kg-1 for FK888. 3. The NK1-selective tachykinin receptor agonist, [Sar9,Met(O2)11]substance P ([Sar]SP), induced plasma exudation, a response which was blocked by both FK888 and FK224. The NK2-selective agonist, [beta-Ala8]neurokinin A-(4-10) ([beta-Ala]NKA), did not induce plasma exudation: neither FK888 nor FK224 affected this lack of response to [beta-Ala]NKA. 4. [beta-Ala]NKA induced bronchoconstriction, a response which was blocked by FK224 but which was completely unaffected by FK888. [Sar]SP induced a small but significant bronchoconstriction which was completely inhibited by both tachykinin antagonists. 5. In animals pretreated with capsaicin to deplete sensory neuropeptides, PAF induced both plasma exudation and bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682142

  19. Targeting tachykinin receptors in neuroblastoma.

    PubMed

    Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H

    2017-01-03

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.

  20. Smooth muscle neurokinin-2 receptors mediate contraction in human saphenous veins.

    PubMed

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Pinto, Francisco M; Buenestado, Amparo; Candenas, Luz; Devillier, Philippe

    2011-05-01

    Substance P (SP) and neurokinin A (NKA) are members of the tachykinin peptides family. SP causes endothelial-dependant relaxation but the contractile response to tachykinins in human vessels remains unknown. The objective was to assess the expression and the contractile effects of tachykinins and their receptors in human saphenous veins (SV). Tachykinin expression was assessed with RT-PCR, tachykinin receptors expression with RT-PCR and immunohistochemistry, and functional studies were performed in organ bath. Transcripts of all tachykinin and tachykinin receptor genes were found in SV. NK(1)-receptors were localized in both endothelial and smooth muscle layers of undistended SV, whereas they were only found in smooth muscle layers of varicose SV. The expression of NK(2)- and NK(3)-receptors was limited to the smooth muscle in both preparations. NKA induced concentration-dependent contractions in about half the varicose SV. Maximum effect reached 27.6±5.5% of 90 mM KCl and the pD(2) value was 7.3±0.2. NKA also induced the contraction of undistended veins from bypass and did not cause the relaxation of these vessels after precontraction. The NK(2)-receptor antagonist SR48968 abolished the contraction induced by NKA, and a rapid desensitization of the NK(2)-receptor was observed. In varicose SV, the agonists specific to NK(1)- or NK(3)-receptors did not cause either contraction or relaxation. The stimulation of smooth muscle NK(2)-receptors can induce the contraction of human SV. As SV is richly innervated, tachykinins may participate in the regulation of the tone in this portion of the low pressure vascular system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding

  2. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells.

    PubMed

    García-Ortega, J; Pinto, F M; Fernández-Sánchez, M; Prados, N; Cejudo-Román, A; Almeida, T A; Hernández, M; Romero, M; Tena-Sempere, M; Candenas, L

    2014-12-01

    Are neurokinin B (NKB), NK3 receptor (NK3R), kisspeptin (KISS1) and kisspeptin receptor (KISS1R) expressed in human ovarian granulosa cells? The NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and functionally active in ovarian granulosa cells. The NKB/NK3R and KISS1/KISS1R systems are essential for reproduction. In addition to their well-recognized role in hypothalamic neurons, these peptide systems may contribute to the control of fertility by acting directly on the gonads, but such a direct gonadal role remains largely unknown. This study analyzed matched mural granulosa cells (MGCs) and cumulus cells (CCs) collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. The samples were provided by 56 oocyte donor women undergoing ovarian stimulation treatment. Follicular fluid samples containing MGCs and cumulus-oocyte complexes were collected after transvaginal ultrasound-guided oocyte retrieval. RT-PCR, quantitative real-time PCR, immunocytochemistry and western blot were used to investigate the pattern of expression of the NKB/NK3R and KISS/KISS1R systems in MGCs and CCs. Intracellular free Ca(2+) levels, [Ca(2+)]i, in MGCs after exposure to NKB or KISS1, in the presence or not of tachykinin receptor antagonists, were also measured. NKB/NK3R and KISS1/KISS1R systems were expressed, at the mRNA and protein levels, in MGCs and CCs, with significantly higher expression in CCs. Kisspeptin increased the [Ca(2+)]i in the cytosol of human MGCs while exposure to NKB failed to induce any change in [Ca(2+)]i. However, the [Ca(2+)]i response to kisspeptin was reduced in the presence of NKB. The inhibitory effect of NKB was only partially mimicked by the NK3R agonist, senktide and marginally suppressed by the NK3R-selective antagonist SB 222200. Yet, a cocktail of antagonists selective for the NK1, NK2 and NK3 receptors blocked the effect of NKB. The granulosa and cumulus cells were obtained from oocyte donors undergoing ovarian

  3. Bronchodilatation by tachykinins and capsaicin in the mouse main bronchus.

    PubMed

    Manzini, S

    1992-04-01

    1. The effect of sensory neuropeptides and capsaicin on basal and stimulated tone of mouse bronchial smooth muscle has been evaluated. 2. In basal conditions neither sensory neuropeptides (substance P, neurokinin A or calcitonin gene-related peptide (CGRP) nor capsaicin exerted any contractile effects. However, when a tonic contraction was induced with carbachol (1 microM) a prompt relaxation was induced by substance P (1- 100 nM) and by neurokinin A (1- 100 nM), with substance P being more potent. A second application of substance P was without effect. CGRP (10 nM) produced only a very small and erratic relaxation. Relaxation was also induced by capsaicin (1 microM), and this response could be evoked only once in each preparation. In 4 out of 6 preparations a cross-desensitization between substance P and capsaicin was observed. 3. The selective NK1 tachykinin agonist, [Pro9]-SP sulphone (1 microM), exerted potent bronchodilator actions on carbachol-contracted mouse bronchial preparations. In contrast, neither [beta Ala8]-NKA (4-10) nor [MePhe7]-NKB (both at a concentration of 1 microM), selective synthetic agonists for NK2 and NK3 receptors, exerted significant relaxant effects. Furthermore, the selective NK1 tachykinin antagonist, (+/-)-CP 96,345 (1 microM), abolished substance P (1 nM)- but not isoprenaline (0.1 microM)-induced relaxations. 4. Application of electrical field stimulation (EFS) (20 Hz, supramaximal voltage, 0.5 ms for 10 s) to carbachol-contracted preparations evoked a transient contraction followed by a relaxation. The tetrodotoxin-sensitive slow component of this relaxation was reduced following capsaicin desensitization. 5. In the presence of indomethacin (5 microM) the relaxation induced by substance P, capsaicin or EFS was suppressed.6. In conclusion, the mouse main bronchus appears to be a monoreceptorial tissue containing only NK, receptors which subserve bronchodilator functions. Such receptors could be activated by exogenous or

  4. Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum

    PubMed Central

    Johnson, P J; Bornstein, J C; Burcher, E

    1998-01-01

    rings of ileum evoked by low concentrations of septide, but not [Sar9,Met(O2)11]substance P, were potentiated by tetrodotoxin (300 nM).Contractile responses evoked by an NK3 receptor agonist, senktide, were non-competitively inhibited by SR142801. After excitatory neuromuscular transmission was blocked, senktide produced inhibitory responses that were also antagonised by SR142801, but to a lesser extent and in an apparently competitive manner.These results indicate that tachykinins acting via NK1 receptors partly mediate transmission to inhibitory motor neurons. NK3 receptors play a role in transmission from intrinsic sensory neurons and from ascending interneurons to excitatory motor neurons during motility reflexes. PMID:9723948

  5. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  6. Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist

    PubMed Central

    Walpole, C S J; Brown, M C S; James, I F; Campbell, E A; McIntyre, P; Docherty, R; Ko, S; Hedley, L; Ewan, S; Buchheit, K-H; Urban, L A

    1998-01-01

    The in vitro and in vivo pharmacology of SDZ NKT 343 (2-nitrophenyl-carbamoyl-(S)-prolyl-(S)-3-(2-naphthyl)alanyl-N-benzyl-N-methylamide), a novel tachykinin NK1 receptor antagonist was investigated.SDZ NKT 343 inhibited [3H]-substance P binding to the human NK1 receptor in transfected Cos-7 cell membranes (IC50=0.62±0.11 nM). In comparison, in the same assay Ki values for FK888, CP 99,994, SR 140,333 and RPR 100,893 were 2.13±0.04 nM, 0.96±0.20 nM, 0.15±0.06 nM and 1.77±0.41 nM, respectively. SDZ NKT 343 showed a markedly lower affinity at rat NK1 receptors in whole forebrain membranes (IC50=451±139 nM).SDZ NKT 343 caused an increase in EC50 as well as reduction in the number of binding sites (Bmax) determined for [3H]-substance P, suggesting a non-competitive interaction at the human NK1 receptor. SDZ NKT 343 also caused a reduction in the maximum elevation of [Ca2+]i evoked by substance P (SP) in human U373MG cells and depressed the maximum [Sar9]SP sulphone-induced contraction of the guinea-pig isolated ileum. The antagonism of SP effects on U373MG cells by SDZ NKT 343 was reversible.SDZ NKT 343 showed weak affinity to human NK2 and NK3 receptors in transfected Cos-7 cells (Ki of 0.52±0.04 μM and 3.4±1.2 μM, respectively). SDZ NKT 343 was inactive in a broad array of binding assays including the bradykinin B2 receptor the histamine H1 receptor, opiate receptors and adrenoceptors. SDZ NKT 343 only weakly inhibited the voltage-activated Ca2+ and Na+currents in guinea-pig dorsal root ganglion neurones. The enantiomer of SDZ NKT 343, (R,R)-SDZ NKT 343 was about 1000 times less active at human NK1 receptors expressed in Cos-7 cell membranes.Contractions of the guinea-pig ileum by [Sar9]SP sulphone were inhibited by SDZ NKT 343 in a concentration-dependent manner, with an IC50=1.60±0.94 nM, while the enantiomer (R,R)-SDZ NKT 343 was 100 times less active (IC50=162±26 nM). In comparison, in the same assay IC50 values for other NK1

  7. Novel selective agonists and antagonists confirm neurokinin NK1 receptors in guinea-pig vas deferens.

    PubMed Central

    Hall, J. M.; Morton, I. K.

    1991-01-01

    1. This study investigated the recognition characteristics of neurokinin receptors mediating potentiation of the contractile response to field stimulation in the guinea-pig vas deferens. 2. A predominant NK1 receptor population is strongly suggested by the relative activities of the common naturally-occurring tachykinin agonists, which fall within less than one order of magnitude. This conclusion is supported by the relative activities of the synthetic NK1 selective agonists substance P methyl ester, [Glp6,L-Pro9]-SP(6-11) and delta-aminovaleryl-[L-Pro9,N-MeLeu10]- SP(7-11) (GR73632) which were 0.78, 9.3 and 120 as active as substance P, respectively. Furthermore, the NK2 selective agonist [Lys3, Gly8,-R-gamma-lactam-Leu9]-NKA(3-10) (GR64349) was active only at the highest concentrations tested (greater than 10 microM), and the NK3 selective agonist, succ-[Asp6,N-MePhe8]-SP(6-11) (senktide) was essentially inactive (10 nM-32 microM). 3. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP(1-11) antagonized responses to neurokinin A, neurokinin B, physalaemin, eledoisin, [Glp6,D-Pro9]-SP(6-11), GR73632 and GR64349 (apparent pKB s 5.6-6.2), but was less potent in antagonizing responses to substance P, substance P methyl ester and [Glp6,L-Pro9]-SP(6-11) (apparent pKB s less than or equal to 5.0-5.0). 4. In contrast, the recently developed NK1-selective receptor antagonist [D-Pro9[Spiro-gamma-lactam]Leu10,Trp11]-SP(1-11) (GR71251) did not produce agonist-dependent pKB estimates. Schild plot analysis indicated a competitive interaction with a single receptor population where the antagonist had an estimated overall pKB of 7.58 +/- 0.13 for the four agonists of differing subtype selectivity tested (GR73632, GR64349, substance P methyl ester and neurokinin B).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707714

  8. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones.

    PubMed Central

    Myers, A C; Undem, B J

    1993-01-01

    1. We evaluated the effects of neurokinins, tachykinin analogues, or capsaicin on passive membrane properties of guinea-pig bronchial parasympathetic neurones using intracellular recording techniques. 2. Substance P (SP) and the tachykinin analogue, acetyl-[Arg6,Sar9,Met(O2)11]-SP(6-11) (ASMSP), at concentrations selective for the neurokinin (NK)-1 receptor subtype, depolarized the resting potential (3 and 5 mV, respectively) with no change in input resistance. Neurokinin A and beta Ala8NKA(4-10), at concentrations selective for the NK-2 receptor subtype (0.1 microM), were without effect. 3. Neurokinin B (NKB) and [Asp5,6,methyl-Phe8]SP(5-11) (senktide analogue), at concentrations selective for NK-3 receptor subtype, elicited maximum depolarizations of 16 +/- 2 mV for both agonists. The peak of the depolarization was associated with an decrease in membrane resistance (35 +/- 4 and 50 +/- 7%, respectively). 4. Capsaicin (1 microM) elicited a 3-24 mV depolarization of the resting potential of thirteen of eighteen bronchial ganglion neurones and decreased the input resistance of seven of thirteen of these neurones. The effects of capsaicin were reduced by desensitization with senktide analogue at a concentration selective for the NK-3 receptor subtype, whereas a non-peptide NK-1 receptor antagonist had no effect. 5. Using voltage clamp analysis, capsaicin and senktide analogue evoked an inward current and an increase in membrane conductance at the resting membrane potential. The reversal potential for senktide analogue was estimated to be + 4 mV. 6. These data support the hypothesis that neurokinin-containing nerve terminals are localized within guinea-pig bronchial parasympathetic ganglia and, when released, the predominant effect of the neurokinins is by activation of NK-3 receptors. PMID:7508508

  9. Contribution of NK3 tachykinin receptors to propulsion in the rabbit isolated distal colon.

    PubMed

    Onori, L; Aggio, A; Taddei, G; Ciccocioppo, R; Severi, C; Carnicelli, V; Tonini, M

    2001-06-01

    The role of NK3 receptors in rabbit colonic propulsion has been investigated in vitro with the selective agonist, senktide, and two selective antagonists, SR142801 and SB222200. Peristalsis was elicited by distending a rubber balloon with 0.3 and 1.0 mL of water leading to a velocity of 2.2 and 2.8 mm s-1, respectively. At concentrations of 1 nM, senktide inhibited propulsion evoked by both distensions (range 25-40%), whereas at 6 and 60 nmol L-1 facilitated 'submaximal' propulsion by 30%. In the presence of Nomega-nitro-L-arginine (L-NNA, 200 micromol L-1), which per se caused a slight prokinetic effect, 1 nmol L-1 senktide markedly accelerated propulsion (range 35-50%). Hexamethonium (200 micromol L-1) had minor effects on propulsion. In its presence, 60 nmol L-1 senktide significantly inhibited propulsion induced by both stimuli (range 20-50%). SR142801 (0.3, 3 nmol L-1) and SB222200 (30, 300 nmol L-1) facilitated 'submaximal' propulsion (range 20-40%). Conversely, higher antagonist concentrations (SR142801: 30, 300 nM; SB222200: 1, 10 micromol L-1) inhibited propulsion to both distensions by 20%. A combination of SR142801 (300 nmol L-1) plus hexamethonium (200 micromol L-1) induced an approximately four-fold greater inhibition of propulsion than that induced by SR142801 alone. In conclusion, in the rabbit-isolated distal colon, a subset of NK3 receptors located on descending pathways mediates an inhibitory effect on propulsion by activating a NO-dependent mechanism. Another subset of NK3 receptors, located on ascending pathways mediates a facilitative effect involving a synergistic interaction with cholinergic nicotinic receptors.

  10. Effect of thiorphan on response of the guinea-pig gallbladder to tachykinins.

    PubMed

    Maggi, C A; Patacchini, R; Renzi, D; Santicioli, P; Regoli, D; Rovero, P; Drapeau, G; Surrenti, C; Meli, A

    1989-06-08

    Tachykinins produced a concentration-related contraction of the isolated guinea-pig gallbladder, with a rank order of potency neurokinin A (NKA) greater than Arg-neurokinin B = neurokinin B (NKB) greater than substance P (SP). Only the effect of SP was potentiated by thiorphan (0.1-10 microM). A significant enhancement of the response to SP was also produced by captopril (1 microM). [Nle10]NKA-(4-10) and [beta-Ala8]NKA-(4-10), selective NK-2 receptor agonists, were active, whereas [Pro9]SP sulfone (selective NK-1 agonist) was almost ineffective. [MePhe7]NKB (selective NK-3 agonist) had some activity but only at high concentrations. Septide was almost ineffective and DiMeC7 had an action comparable to that of [MePhe7]NKB. None of the effects induced by these synthetic tachykinin analogs were significantly potentiated by thiorphan. Capsaicin (10 microM) produced a contraction which was unaffected by thiorphan. Both capsaicin and NKA-induced contractions were antagonized by Spantide at concentrations (5-10 microM) which had no effect against the atropine-sensitive contractions produced by electrical field stimulation. Capsaicin (1 microM) produced a consistent release of SP-like immunoreactivity (SP-LI) and a second application of the drug had no further effect, indicating complete desensitization. SP-LI release by capsaicin was almost doubled in the presence of thiorphan. These findings indicate that NK-2 and possibly some NK-3 receptors mediate the contractile response of the guinea-pig gallbladder to tachykinins. Both exogenous and endogenous (released by capsaicin) SP were degraded to a significant extent in this organ via a thiorphan-sensitive mechanism, the identity of which remains to be established.

  11. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  12. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees.

    PubMed

    Borbély, Éva; Sándor, Katalin; Markovics, Adrienn; Kemény, Ágnes; Pintér, Erika; Szolcsányi, János; Quinn, John P; McDougall, Jason J; Helyes, Zsuzsanna

    2016-09-01

    Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.

  13. The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with beta-arrestins.

    PubMed

    Schmidlin, Fabien; Roosterman, Dirk; Bunnett, Nigel W

    2003-10-01

    Tachykinins interact with three neurokinin receptors (NKRs) that are often coexpressed by the same cell. Cellular responses to tachykinins depend on the NKR subtype that is activated. We compared the colocalization of NK1R and NK3R with beta-arrestins 1 and 2, which play major roles in receptor desensitization, endocytosis, and signaling. In cells expressing NK1R, the selective agonist Sar-Met-substance P induced rapid translocation of beta-arrestins 1 and 2 from the cytosol to the plasma membrane and then endosomes, indicative of interaction with both isoforms. In contrast, the NK3R interacted transiently with only beta-arrestin 2 at the plasma membrane. Despite these differences, both NK1R and NK3R similarly desensitized, internalized, and activated MAP kinases. Because interactions with beta-arrestins can explain differences in the rate of receptor resensitization, we compared resensitization of agonist-induced Ca2+ mobilization. The NK1R resensitized greater than twofold more slowly than the NK3R. Replacement of intracellular loop 3 and the COOH tail of the NK1R with comparable domains of the NK3R diminished colocalization of the NK1R with beta-arrestin 1 and accelerated resensitization to that of the NK3R. Thus loop 3 and the COOH tail specify colocalization of the NK1R with beta-arrestin 1 and determine the rate of resensitization.

  14. Renal effects of intrathecally injected tachykinins in the conscious saline-loaded rat: receptor and mechanism of action

    PubMed Central

    Ding Yuan, Yi; Couture, Réjean

    1997-01-01

    .4 μmol min−1, P<0.05) at 15 min post-injection. However, the same doses (6.5 nmol) of selective agonists for tachykinin NK2 ([β-Ala8]NKA(4-10)) and NK3 ([MePhe7]NKB) receptors were devoid of renal effects. This study provided functional evidence that tachykinins may be involved in the renal control of water and electrolyte excretion at the level of the rat spinal cord through the activation of NK1 receptors and the sympathetic renal nerve. PMID:9249250

  15. Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease

    PubMed Central

    Steinhoff, Martin S.; von Mentzer, Bengt; Geppetti, Pierangelo; Pothoulakis, Charalabos; Bunnett, Nigel W.

    2014-01-01

    The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists. PMID:24382888

  16. Cell-Based Selection Expands the Utility of DNA-Encoded Small-Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel Antagonists of the NK3 Tachykinin Receptor.

    PubMed

    Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I

    2015-12-14

    DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.

  17. Evidence for the presence of NK1 and NK3 receptors on cholinergic neurones in the guinea-pig ileum.

    PubMed

    Legat, F J; Althuber, P; Maier, R; Griesbacher, T; Lembeck, F

    1996-03-29

    In a guinea-pig ileum longitudinal muscle preparation, substance P (SP) (> or = 6 nM) caused an initial contraction followed by a sustained plateau contraction of about 20-50% of the initial response. This plateau contraction is caused by the SP-induced activation of cholinergic motoneurones which contract the smooth muscles by the released acetylcholine (ACh). We investigated the contribution of neurokinin NK1 and NK3 receptors during this 'plateau phase' of contraction. The plateau contraction induced by SP (60 nM) was significantly reduced by the NK1 receptor antagonist CP-96,345 (200 nM) added 5 min after SP, but was not affected by its inactive enantiomer CP-96,344 (200 nM). The NK1 receptor antagonist CP-99,994 (100 nM) significantly reduced the plateau contraction induced by SP (60 nM and 600 nM) and that induced by the NK1 receptor agonist substance P-O-methylester (SPOMe; 100 nM). CP-99,994 (100 nM), however did not affect the plateau contraction induced by the NK3 receptor agonist [Asp5,6, MePhe8]-SP(5-11) (100 nM). The plateau contraction induced by SP (600 nM) was not affected by the NK3 receptor antagonist SR-142,801 (100 nM), added 5 min after SP. Pre-incubation of the ileum with SR-142,801 (100 nM) 30 min prior to the addition of SP (600 nM) also had no significant effect on the plateau contraction. However, it significantly reduced the ileal contraction in the first minutes after the initial spasmogenic contraction. We suggest that SP induces the plateau contraction of the guinea-pig ileum longitudinal muscle mainly by the activation of NK1 receptors on cholinergic neurones.

  18. Receptor-selective, peptidase-resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function.

    PubMed

    Hagan, R M; Ireland, S J; Jordan, C C; Beresford, I J; Deal, M J; Ward, P

    1991-06-01

    The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.

  19. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats.

    PubMed

    Ruiz-Pino, F; Garcia-Galiano, D; Manfredi-Lozano, M; Leon, S; Sánchez-Garrido, M A; Roa, J; Pinilla, L; Navarro, V M; Tena-Sempere, M

    2015-02-01

    Kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which coexpress kisspeptins (Kps), neurokinin B (NKB), and dynorphin (Dyn), regulate gonadotropin secretion. The KNDy model proposes that NKB (a stimulator, through NK3R) and Dyn (an inhibitor, through κ-opioid receptor) shape Kp secretion onto GnRH neurons. However, some aspects of this paradigm remain ill defined. Here we aimed to characterize the following: 1) the effects of NKB signaling on FSH secretion and 2) the role of Dyn in gonadotropin secretion after NK3R activation; 3) additionally, we explored the roles of other tachykinin receptors, NK1R and NK2R, on gonadotropin release. Thus, the effects of the NK3R agonist, senktide, on FSH release were explored across postnatal development in male and female rats; gonadotropin responses to agonists of NK1R substance P and NK2R [neurokinin A (NKA)] were also monitored. Moreover, the effects of senktide on gonadotropin secretion were assessed after antagonizing Dyn actions by nor-binaltorphimine didydrochloride. Before puberty, rats of both sexes showed increased FSH secretion to senktide (and Kp-10). Conversely, adult female rats were irresponsive to senktide in terms of FSH, despite proven LH responses, whereas the adult males did not display FSH or LH responses to senktide, even at high doses. In turn, substance P and NKA stimulated gonadotropin secretion in prepubertal rats, whereas in adults modest gonadotropin responses to NKA were detected. By pretreatment with a Dyn antagonist, adult males became responsive to senktide in terms of LH secretion and displayed elevated basal LH and FSH levels; nor-binaltorphimine didydrochloride treatment uncovered FSH responses to senktide in adult females. Furthermore, the expression of Pdyn and Opkr1 (encoding Dyn and κ-opioid receptor, respectively) in the mediobasal hypothalamus was greater in males than in females at prepubertal ages. Overall, our data contribute to refining our understanding on how the elements of the

  20. Non-specific actions of the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, on neurotransmission.

    PubMed Central

    Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.

    1994-01-01

    1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694

  1. Bronchodilatation by tachykinins and capsaicin in the mouse main bronchus.

    PubMed Central

    Manzini, S.

    1992-01-01

    1. The effect of sensory neuropeptides and capsaicin on basal and stimulated tone of mouse bronchial smooth muscle has been evaluated. 2. In basal conditions neither sensory neuropeptides (substance P, neurokinin A or calcitonin gene-related peptide (CGRP) nor capsaicin exerted any contractile effects. However, when a tonic contraction was induced with carbachol (1 microM) a prompt relaxation was induced by substance P (1- 100 nM) and by neurokinin A (1- 100 nM), with substance P being more potent. A second application of substance P was without effect. CGRP (10 nM) produced only a very small and erratic relaxation. Relaxation was also induced by capsaicin (1 microM), and this response could be evoked only once in each preparation. In 4 out of 6 preparations a cross-desensitization between substance P and capsaicin was observed. 3. The selective NK1 tachykinin agonist, [Pro9]-SP sulphone (1 microM), exerted potent bronchodilator actions on carbachol-contracted mouse bronchial preparations. In contrast, neither [beta Ala8]-NKA (4-10) nor [MePhe7]-NKB (both at a concentration of 1 microM), selective synthetic agonists for NK2 and NK3 receptors, exerted significant relaxant effects. Furthermore, the selective NK1 tachykinin antagonist, (+/-)-CP 96,345 (1 microM), abolished substance P (1 nM)- but not isoprenaline (0.1 microM)-induced relaxations. 4. Application of electrical field stimulation (EFS) (20 Hz, supramaximal voltage, 0.5 ms for 10 s) to carbachol-contracted preparations evoked a transient contraction followed by a relaxation. The tetrodotoxin-sensitive slow component of this relaxation was reduced following capsaicin desensitization. 5. In the presence of indomethacin (5 microM) the relaxation induced by substance P, capsaicin or EFS was suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380376

  2. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Integrated Hypothalamic Tachykinin-Kisspeptin System as a Central Coordinator for Reproduction

    PubMed Central

    Bosch, Martha A.; León, Silvia; Simavli, Serap; True, Cadence; Pinilla, Leonor; Carroll, Rona S.; Seminara, Stephanie B.; Tena-Sempere, Manuel; Rønnekleiv, Oline K.; Kaiser, Ursula B.

    2015-01-01

    Tachykinins are comprised of the family of related peptides, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). NKB has emerged as regulator of kisspeptin release in the arcuate nucleus (ARC), whereas the roles of SP and NKA in reproduction remain unknown. This work explores the roles of SP and NKA in the central regulation of GnRH release. First, central infusion of specific agonists for the receptors of SP (neurokinin receptor 1, NK1R), NKA (NK2R) and NKB (NK3R) each induced gonadotropin release in adult male and ovariectomized, estradiol-replaced female mice, which was absent in Kiss1r−/− mice, indicating a kisspeptin-dependent action. The NK2R agonist, however, decreased LH release in ovariectomized-sham replaced females, as documented for NK3R agonists but in contrast to the NK1R agonist, which further increased LH release. Second, Tac1 (encoding SP and NKA) expression in the ARC and ventromedial nucleus was inhibited by circulating estradiol but did not colocalize with Kiss1 mRNA. Third, about half of isolated ARC Kiss1 neurons expressed Tacr1 (NK1R) and 100% Tacr3 (NK3R); for anteroventral-periventricular Kiss1 neurons and GnRH neurons, approximately one-fourth expressed Tacr1 and one-tenth Tacr3; Tacr2 (NK2R) expression was absent in all cases. Overall, these results identify a potent regulation of gonadotropin release by the SP/NK1R and NKA/NK2R systems in the presence of kisspeptin-Kiss1r signaling, indicating that they may, along with NKB/NK3R, control GnRH release, at least in part through actions on Kiss1 neurons. PMID:25422875

  4. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction.

    PubMed

    Navarro, Víctor M; Bosch, Martha A; León, Silvia; Simavli, Serap; True, Cadence; Pinilla, Leonor; Carroll, Rona S; Seminara, Stephanie B; Tena-Sempere, Manuel; Rønnekleiv, Oline K; Kaiser, Ursula B

    2015-02-01

    Tachykinins are comprised of the family of related peptides, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). NKB has emerged as regulator of kisspeptin release in the arcuate nucleus (ARC), whereas the roles of SP and NKA in reproduction remain unknown. This work explores the roles of SP and NKA in the central regulation of GnRH release. First, central infusion of specific agonists for the receptors of SP (neurokinin receptor 1, NK1R), NKA (NK2R) and NKB (NK3R) each induced gonadotropin release in adult male and ovariectomized, estradiol-replaced female mice, which was absent in Kiss1r(-/-) mice, indicating a kisspeptin-dependent action. The NK2R agonist, however, decreased LH release in ovariectomized-sham replaced females, as documented for NK3R agonists but in contrast to the NK1R agonist, which further increased LH release. Second, Tac1 (encoding SP and NKA) expression in the ARC and ventromedial nucleus was inhibited by circulating estradiol but did not colocalize with Kiss1 mRNA. Third, about half of isolated ARC Kiss1 neurons expressed Tacr1 (NK1R) and 100% Tacr3 (NK3R); for anteroventral-periventricular Kiss1 neurons and GnRH neurons, approximately one-fourth expressed Tacr1 and one-tenth Tacr3; Tacr2 (NK2R) expression was absent in all cases. Overall, these results identify a potent regulation of gonadotropin release by the SP/NK1R and NKA/NK2R systems in the presence of kisspeptin-Kiss1r signaling, indicating that they may, along with NKB/NK3R, control GnRH release, at least in part through actions on Kiss1 neurons.

  5. Tachykinin antagonists and capsaicin-induced contraction of the rat isolated urinary bladder: evidence for tachykinin-mediated cotransmission.

    PubMed

    Maggi, C A; Patacchini, R; Santicioli, P; Giuliani, S

    1991-06-01

    1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA. The response to bombesin was not affected by spantide, L-659,877 or MEN 10,376. 7 P2. purinoceptor desensitization by repeated administration of alpha,betal-methylene ATP depressed the twitch response to electrical stimulation of postganglionic nerves but did not affect the peak or the late response to capsaicin. 8. We

  6. Immunolocalization of Substance P and NK-1 Receptor in ADIPOSE Stem Cells.

    PubMed

    Muñoz, Miguel; Muñoz, Mario F; Ayala, Antonio

    2017-12-01

    Substance P (SP) is a neuropeptide belonging to the thachykinin peptide family. SP, after binding to its receptor, the neurokinin 1 receptor (NK1R), controls several transcription factors such as NF-κB, hypoxia inducible factor (HIF-1α), c-myc, c-fos, c-jun, and AP-1. SP and NK1R have a widespread distribution in both the central and peripheral nervous systems. They are also present in cells not belonging to the nervous system (immune cells, placenta, etc.). SP is located in all body fluids, that is, blood, cerebrospinal fluid, etc., making it ubiquitous throughout the human body. SP and NK1R genes are expressed in the stem cell line TF-1 and in primary stem cells derived from human placental cord blood. However, to our knowledge, the presence of SP and the NK1R receptor in adipose stem cells (ADSC) is unknown. We demonstrated by immunofluorescence the localization of SP and NK1R in human and rat ADSC. SP and NK1R are located in both the cytoplasm and the nucleus of these cells. The NK1R is higher in the nucleus than in the cytoplasm of ADSCs. By Western blot we demonstrated the presence of different isoforms of NK1R that have different subcellular locations in the ADSC. SP induces proliferation and mitogenesis through NK1R in ADSCs. These findings reported here for the first time suggest an important role for a SP/NK1R system, either as genetic and/or epigenetic factor, in both the cytoplasm and nucleus functions of the ADSCs. J. Cell. Biochem. 118: 4686-4696, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    PubMed Central

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC. PMID:26154566

  8. Role of tachykinins in bronchial hyper-responsiveness.

    PubMed

    Reynolds, P N; Holmes, M D; Scicchitano, R

    1997-01-01

    1. Sensory afferent fibres mediate important protective reflexes in the lung. Small, unmyelinated C-fibre nerves have both sensory afferent and effector functions. C-fibres contain a number of neuropeptides, including the tachykinins, which have pro-inflammatory effects in the airways. Following stimulation with capsaicin and other stimuli, neuropeptides are released from the nerve endings, either directly or by axonal reflexes. 2. Important tachykinin effects include smooth muscle contraction, vasodilatation and oedema, mucus secretion and inflammatory cell activation. There are also trophic effects, including proliferation of fibroblasts, smooth muscle and epithelial cells. 3. Tachykinins mediate their effects by binding to G-proteinlinked receptors. Receptor-specific agonists and antagonists are available, which have helped clarify the effects of tachykinins. These agents may have therapeutic potential. 4. Tachykinins are degraded by the enzyme neutral endo-peptidase. 5. Studies in humans in vivo show an increase in airways resistance following challenge with tachykinins. There is some evidence for an increase in tachykinins and their receptors in airway inflammation, but this has not been found in all studies. A reduction in neutral endopeptidase has been seen in some animal models of airway inflammation, but this has not been shown in human disease. 6. Trials of tachykinin receptor antagonists in human asthma have begun, but it is too early to say what their therapeutic impact will be.

  9. Expression and function of human hemokinin-1 in human and guinea pig airways.

    PubMed

    Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe

    2010-10-07

    Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.

  10. Neurokinin receptors in the rabbit iris sphincter characterised by novel agonist ligands.

    PubMed

    Hall, J M; Mitchell, D; Morton, I K

    1991-06-18

    We have used novel selective agonist ligands to examine neurokinin receptors mediating the contractile response to tachykinins in the rabbit iris sphincter preparation in vitro. The selective NK-1 receptor agonist delta-amino valeryl-[L-Pro9,N-Me Leu10]SP-(7-11) (GR73632) and the NK-3 receptor-selective agonist succ-[Asp6,N-Me-Phe8] SP-(6-11) (senktide) were both very active (concentration range 0.032 pM-10 nM and 0.1 pM-32 nM respectively), and were 933 and 16.6 times more potent than substance P, respectively, in contracting the iris. In contrast, the NK-2 selective agonist [Lys3,Gly8-R-gamma-lactam,Leu9]NKA-(3-10) (GR64349) was active only at the highest concentrations tested (3.2 nM-32 microM), and had 0.054 the activity of substance P. The presence of several peptidase inhibitors was without effect on the concentration-response relationship to substance P, GR73632, GR64349 or senktide. Tachykinins differed in their offset kinetics. Responses to GR73632, GR64349 and senktide were rapid in offset (times to reach half maximal responses were 1.5, 1.1 and 5.1 min, respectively), whereas responses to substance P were very much more prolonged in duration (time to reach half maximal response was 35.3 min). These results suggest the presence of both NK-1 and NK-3 receptors mediating contraction of the rabbit iris sphincter preparation. In addition, differences in response offset kinetics seem not to be due to differences in peptide metabolism, and suggest a property of substance P not shared by the other tachykinins used in this study.

  11. MicroRNAs May Mediate the Down-Regulation of Neurokinin-1 Receptor in Chronic Bladder Pain Syndrome

    PubMed Central

    Sanchez Freire, Veronica; Burkhard, Fiona C.; Kessler, Thomas M.; Kuhn, Annette; Draeger, Annette; Monastyrskaya, Katia

    2010-01-01

    Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B1 receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor. PMID:20008142

  12. Disordered expression of inhibitory receptors on the NK1-type natural killer (NK) leukaemic cells from patients with hypersensitivity to mosquito bites

    PubMed Central

    Seo, N; Tokura, Y; Ishihara, S; Takeoka, Y; Tagawa, S; Takigawa, M

    2000-01-01

    Recent studies have revealed the existence of a distinct type of NK cell leukaemia of the juvenile type, which presents with hypersensitivity to mosquito bites (HMB) as an essential clinical manifestation and is infected with clonal Epstein–Barr virus (EBV). This disorder is thus called HMB-EBV-NK disease and has been reported in Orientals, mostly from Japan. We investigated the profile of cytokine production and the expression of both types of NK inhibitory receptors, i.e. CD94 lectin-like dimers and killer-cell immunoglobulin-like receptors, in NK leukaemic cells from three patients with HMB-EBV-NK disease. It was found that freshly isolated NK leukaemic cells expressed mRNA for interferon-gamma (IFN-γ) and additionally produced IL-10 upon stimulation with IL-2, indicating that the NK cells were of NK1 type. More than 98% of NK cells from the patients bore CD94 at a higher level than did normal NK cells, whereas p70 or NKAT2, belonging to immunoglobulin-like receptor, was not expressed in those NK cells. Freshly isolated leukaemic NK cells transcribed mRNA for CD94-associated molecule NKG2C at an abnormally high level, and upon stimulation with IL-2 and/or IL-12 they expressed NKG2A as well. The disordered expression of these inhibitory receptors not only provides some insights into the pathogenesis of HMB-EBV-NK disease but also can be used as phenotypic markers for the diagnosis of this type of NK cell leukaemia. PMID:10844517

  13. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    PubMed

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  14. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Muller, Laurent; Eckman, Christopher B; Bunnett, Nigel W; Steinhoff, Martin

    2007-07-10

    Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are

  15. NK1 receptor antagonism and emotional processing in healthy volunteers.

    PubMed

    Chandra, P; Hafizi, S; Massey-Chase, R M; Goodwin, G M; Cowen, P J; Harmer, C J

    2010-04-01

    The neurokinin-1 (NK(1)) receptor antagonist, aprepitant, showed activity in several animal models of depression; however, its efficacy in clinical trials was disappointing. There is little knowledge of the role of NK(1) receptors in human emotional behaviour to help explain this discrepancy. The aim of the current study was to assess the effects of a single oral dose of aprepitant (125 mg) on models of emotional processing sensitive to conventional antidepressant drug administration in 38 healthy volunteers, randomly allocated to receive aprepitant or placebo in a between groups double blind design. Performance on measures of facial expression recognition, emotional categorisation, memory and attentional visual-probe were assessed following the drug absorption. Relative to placebo, aprepitant improved recognition of happy facial expressions and increased vigilance to emotional information in the unmasked condition of the visual probe task. In contrast, aprepitant impaired emotional memory and slowed responses in the facial expression recognition task suggesting possible deleterious effects on cognition. These results suggest that while antagonism of NK(1) receptors does affect emotional processing in humans, its effects are more restricted and less consistent across tasks than those of conventional antidepressants. Human models of emotional processing may provide a useful means of assessing the likely therapeutic potential of new treatments for depression.

  16. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  17. Involvement of substance P and the NK-1 receptor in human pathology.

    PubMed

    Muñoz, Miguel; Coveñas, Rafael

    2014-07-01

    The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.

  18. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R)

    PubMed Central

    Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.

    2009-01-01

    Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883

  19. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders

    PubMed Central

    Johnson, M. Brittany; Young, Ada D.; Marriott, Ian

    2017-01-01

    The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson’s disease, Alzheimer’s disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions. PMID:28101005

  20. The relationship between the agonist-induced activation and desensitization of the human tachykinin NK2 receptor expressed in Xenopus oocytes

    PubMed Central

    Maudsley, S; Gent, J P; Findlay, J B C; Donnelly, D

    1998-01-01

    Repeated applications of neurokinin A (NKA) to oocytes injected with 25 ng wild-type hNK2 receptor cRNA caused complete attenuation of second and subsequent NKA-induced responses while analogous experiments using repeated applications of GR64349 and [Nle10]NKA(4–10) resulted in no such desensitization. This behaviour has been previously attributed to the ability of the different ligands to stabilize different active conformations of the receptor that have differing susceptibilities to receptor kinases (Nemeth & Chollet, 1995).However, for Xenopus oocytes injected (into the nucleus) with 10 ng wild-type hNK2 receptor cDNA, a single 100 nM concentration of any of the three ligands resulted in complete desensitization to further concentrations.On the other hand, none of the ligands caused any desensitization in oocytes injected with 0.25 ng wild-type hNK2 receptor cRNA, even at concentrations up to 10 μM.The two N-terminally truncated analogues of neurokinin A have a lower efficacy than NKA and it is likely that it is this property which causes the observed differences in desensitization, rather than the formation of alternative active states of the receptor.The peak calcium-dependent chloride current is not a reliable measure of maximal receptor stimulation and efficacy is better measured in this system by studying agonist-induced desensitization.The specific adenylyl cyclase inhibitor SQ22536 can enhance NKA and GR64349-mediated desensitization which suggests that agonist-induced desensitization involves the inhibition of adenylyl cyclase and the subsequent down-regulation of the cyclic AMP-dependent protein kinase, possibly by cross-talk to a second signalling pathway. PMID:9690859

  1. Agonist-induced internalization of the substance P (NK1) receptor expressed in epithelial cells.

    PubMed

    Garland, A M; Grady, E F; Payan, D G; Vigna, S R; Bunnett, N W

    1994-10-01

    Internalization of the NK1 receptor (NK1R) and substance P was observed in cells transfected with cDNA encoding the rat NK1R by using anti-receptor antibodies and cyanine 3-labelled substance P (cy3-substance P). After incubation at 4 degrees C, NK1R immunoreactivity and cy3-substance P were confined to the plasma membrane. Within 3 min of incubation at 37 degrees C, NK1R immunoreactivity and cy3-substance P were internalized into small intracellular vesicles located beneath the plasma membrane. Fluorescein isothiocyanate-labelled transferrin and cy3-substance P were internalized into the same vesicles, identifying them as early endosomes. After 60 min at 37 degrees C, NK1R immunoreactivity was detected in larger, perinuclear vesicles. Internalization of 125I-labelled substance P was studied by using an acid wash to dissociate cell-surface label from that which has been internalized. Binding reached equilibrium after incubation for 60 min at 4 degrees C with no detectable internalization. After 10 min incubation at 37 degrees C, 83.5 +/- 1.0% of specifically bound counts were internalized. Hyperosmolar sucrose and phenylarsine oxide, which are inhibitors of endocytosis, prevented internalization of 125I-labelled substance P and accumulation of NK1R immunoreactivity into endosomes. Acidotropic agents caused retention of 125I-labelled substance P within the cell and inhibited degradation of the internalized peptide. Continuous incubation of cells with substance P at 37 degrees C reduced 125I-substance P binding at the cell surface. Therefore, substance P and its receptor are internalized into early endosomes within minutes of binding, and internalized substance P is degraded. Internalization depletes NK1Rs from the cell surface and may down-regulate the response of a cell to substance P.

  2. Substance P and the Neurokinin-1 Receptor: The New CRF.

    PubMed

    Schank, Jesse R; Heilig, Markus

    2017-01-01

    Substance P (SP) is an 11-amino acid neuropeptide of the tachykinin family that preferentially activates the neurokinin-1 receptor (NK1R). First isolated 85 years ago and sequenced 40 years later, SP has been extensively studied. Early studies identified a role for SP and the NK1R in contraction of intestinal smooth muscle, central pain processing, and neurogenic inflammation. An FDA-approved NK1R antagonist, aprepitant, is used clinically for the treatment of chemotherapy-induced nausea, as the NK1R influences the activity of the brain stem emesis centers. More recently, SP and the NK1R have gained attention for their role in complex psychiatric processes including stress, anxiety, and depression. However, clinical development of NK1R antagonists for these indications has so far been unsuccessful. Several preclinical studies have also demonstrated a role of the NK1R in drug taking and drug seeking, especially as it relates to escalated consumption and stress-elicited seeking. This line of research developed in parallel with findings supporting a role of corticotropin-releasing factor (CRF) in stress-induced drug seeking. Over this time, CRF arguably gained more attention as a target for development of addiction pharmacotherapies. However, this effort has not resulted in a viable drug for use in human populations. Given promising clinical findings for the efficacy of NK1R antagonists on craving in alcoholics, along with recent data suggesting that a number of negative results from NK1R trials were likely due to insufficient receptor occupancy, the NK1R merits being revisited as a target for the development of novel pharmacotherapeutics for addiction. © 2017 Elsevier Inc. All rights reserved.

  3. Chronic intermittent hypoxia reduces neurokinin-1 (NK1) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius

    PubMed Central

    Lessard, Andrée; Coleman, Christal G.; Pickel, Virginia M.

    2010-01-01

    Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK1) receptors. Acute hypoxia results in internalization of NK1 receptors, suggesting that CIH also may affect the subcellular distribution of NK1 receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK1 receptor and TH in the cNTS of male mice subjected to 10 days or 35 days of CIH or intermittent air. Electron microscopy revealed that NK1 receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK1 receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35 days, P< 0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35 days, P< 0.01, unpaired Student t-test) density of NK1 immunogold particles exclusively in small (<0.1 µm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK1 receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. PMID:20206166

  4. Contractile responses induced by physalaemin, an analogue of substance P, in the rat esophagus.

    PubMed

    Shiina, Takahiko; Shima, Takeshi; Hirayama, Haruko; Kuramoto, Hirofumi; Takewaki, Tadashi; Shimizu, Yasutake

    2010-02-25

    We examined the effects of physalaemin, an agonist of tachykinin receptors, on mechanical responses in the rat esophagus to clarify possible regulatory roles of tachykinins in esophageal motility. Exogenous application of physalaemin caused tonic contractions in rat esophageal segments when tension was recorded in the longitudinal direction but not when tension was recorded in the circular direction. The physalaemin-evoked contractions were blocked by pretreatment with nifedipine, a blocker of L-type calcium channels in both striated and smooth muscle cells. However, tetrodotoxin, a blocker of voltage-dependent sodium channels in striated muscle cells and neurons, did not affect the physalaemin-induced contractions. These results indicate that physalaemin might induce contractile responses in longitudinal smooth muscle of the muscularis mucosa via direct actions on muscle cells but not on neurons. Although pretreatment with a tachykinin NK(1) receptor antagonist, N-acetyl-l-tryptophan 3,5-bis (trifluoromethyl) benzyl ester (L-732,138), did not significantly affect the physalaemin-evoked contractions in rat esophageal segments, a tachykinin NK(2) receptor antagonist, (S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl) butyl] benzamide (SR48968), and a tachykinin NK(3) receptor antagonist, (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl) piperidin-3-yl)propyl)-4-phenylpiperidin-4-yl)-N-methylacetamide (SR142801), significantly inhibited the physalaemin-evoked contractions. These results suggest that tachykinins can activate longitudinal contraction of smooth muscle in the muscularis mucosa, mediated via tachykinin NK(2) and NK(3) receptors on muscle cells, in the rat esophagus.

  5. Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice.

    PubMed

    Rupniak, N M; Carlson, E C; Harrison, T; Oates, B; Seward, E; Owen, S; de Felipe, C; Hunt, S; Wheeldon, A

    2000-06-08

    The regulation of stress-induced vocalisations by central NK(1) receptors was investigated using pharmacological antagonists in guinea-pigs, a species with human-like NK(1) receptors, and transgenic NK1R-/- mice. In guinea-pigs, i.c.v. infusion of the selective substance P agonist GR73632 (0.1 nmol) elicited a pronounced vocalisation response that was blocked enantioselectively by the NK(1) receptor antagonists CP-99,994 and L-733,060 (0.1-10 mg/kg). GR73632-induced vocalisations were also markedly attenuated by the antidepressant drugs imipramine and fluoxetine (30 mg/kg), but not by the benzodiazepine anxiolytic diazepam (3 mg/kg) or the 5-HT(1A) agonist buspirone (10 mg/kg). Similarly, vocalisations in guinea-pig pups separated from their mothers were blocked enantioselectively by the highly brain-penetrant NK(1) receptor antagonists L-733,060 and GR205171 (ID(50) 3 mg/kg), but not by the poorly brain-penetrant compounds LY303870 and CGP49823 (30 mg/kg). Separation-induced vocalisations were also blocked by the anxiolytic drugs diazepam, chlordiazepoxide and buspirone (ID(50) 0.5-1 mg/kg), and by the antidepressant drugs phenelzine, imipramine, fluoxetine and venlafaxine (ID(50) 3-8 mg/kg). In normal mouse pups, GR205171 attenuated neonatal vocalisations when administered at a high dose (30 mg/kg) only, consistent with its lower affinity for the rat than the guinea-pig NK(1) receptor. Ultrasound calls in NK1R-/- mouse pups were markedly reduced compared with those in WT pups, confirming the specific involvement of NK(1) receptors in the regulation of vocalisation. These observations suggest that centrally-acting NK(1) receptor antagonists may have clinical utility in the treatment of a range of anxiety and mood disorders.

  6. In vitro characterization of the effects of rat/mouse hemokinin-1 on mouse colonic contractile activity: a comparison with substance P.

    PubMed

    Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui

    2009-06-01

    Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.

  7. Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius.

    PubMed

    Lessard, Andrée; Coleman, Christal G; Pickel, Virginia M

    2010-06-01

    Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Maternal uterine NK cell–activating receptor KIR2DS1 enhances placentation

    PubMed Central

    Xiong, Shiqiu; Sharkey, Andrew M.; Kennedy, Philippa R.; Gardner, Lucy; Farrell, Lydia E.; Chazara, Olympe; Bauer, Julien; Hiby, Susan E.; Colucci, Francesco; Moffett, Ashley

    2013-01-01

    Reduced trophoblast invasion and vascular conversion in decidua are thought to be the primary defect of common pregnancy disorders including preeclampsia and fetal growth restriction. Genetic studies suggest these conditions are linked to combinations of polymorphic killer cell Ig-like receptor (KIR) genes expressed by maternal decidual NK cells (dNK) and HLA-C genes expressed by fetal trophoblast. Inhibitory KIR2DL1 and activating KIR2DS1 both bind HLA-C2, but confer increased risk or protection from pregnancy disorders, respectively. The mechanisms underlying these genetic associations with opposing outcomes are unknown. We show that KIR2DS1 is highly expressed in dNK, stimulating strong activation of KIR2DS1+ dNK. We used microarrays to identify additional responses triggered by binding of KIR2DS1 or KIR2DL1 to HLA-C2 and found different responses in dNK coexpressing KIR2DS1 with KIR2DL1 compared with dNK only expressing KIR2DL1. Activation of KIR2DS1+ dNK by HLA-C2 stimulated production of soluble products including GM-CSF, detected by intracellular FACS and ELISA. We demonstrated that GM-CSF enhanced migration of primary trophoblast and JEG-3 trophoblast cells in vitro. These findings provide a molecular mechanism explaining how recognition of HLA class I molecules on fetal trophoblast by an activating KIR on maternal dNK may be beneficial for placentation. PMID:24091323

  9. Regulation of the stimulant actions of neurokinin a and human hemokinin-1 on the human uterus: a comparison with histamine.

    PubMed

    Pennefather, Jocelyn N; Patak, Eva; Ziccone, Sebastian; Lilley, Alison; Pinto, Francisco M; Page, Nigel M; Story, Margot E; Grover, Sonia; Candenas, M Luz

    2006-09-01

    Regulation of the contractile effects of tachykinins and histamine on the human uterus was investigated with biopsy sections of the outer myometrial layer. The effects of neurokinin A (NKA) and human hemokinin-1 (hHK-1) in tissues from pregnant but not from nonpregnant women were enhanced by the inhibition of neprilysin. The effects of NKA and eledoisin were blocked by the NK2 receptor antagonist SR 48968 but not by the NK1 receptor antagonist SR 140333 in tissues from both groups of women. Human HK-1 acted as a partial agonist blocked by SR 48968 and, to a lesser extent, by SR 140333; endokinin D was inactive. In tissues from pregnant women, responses to high potassium-containing Krebs solution were 2-3-fold higher than those from nonpregnant women. Mepyramine-sensitive maximal responses to histamine were similarly enhanced. The absolute maximum responses to NKA and its stable NK2 receptor-selective analogue, [Lys5MeLeu9Nle10]NKA(4-10), were increased in pregnancy, but their efficacies relative to potassium responses were decreased. Tachykinin potencies were lower in tissues from pregnant women than in those from nonpregnant women. These data 1) show for the first time that hHK-1 is a uterine stimulant in the human, 2) confirm that the NK2 receptor is predominant in mediating tachykinin actions on the human myometrium, and 3) indicate that mammalian tachykinin effects are tightly regulated during pregnancy in a manner that would negate an inappropriate uterotonic effect. The potencies of these peptides in tissues from nonpregnant women undergoing hysterectomy are consistent with their possible role in menstrual and menopausal disorders.

  10. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    PubMed Central

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  11. PepPat, a pattern-based oligopeptide homology search method and the identification of a novel tachykinin-like peptide.

    PubMed

    Jiang, Ying; Gao, Ge; Fang, Gang; Gustafson, Eric L; Laverty, Maureen; Yin, Yanbin; Zhang, Yong; Luo, Jingchu; Greene, Jonathan R; Bayne, Marvin L; Hedrick, Joseph A; Murgolo, Nicholas J

    2003-05-01

    PepPat, a hybrid method that combines pattern matching with similarity scoring, is described. We also report PepPat's application in the identification of a novel tachykinin-like peptide. PepPat takes as input a query peptide and a user-specified regular expression pattern within the peptide. It first performs a database pattern match and then ranks candidates on the basis of their similarity to the query peptide. PepPat calculates similarity over the pattern spanning region, enhancing PepPat's sensitivity for short query peptides. PepPat can also search for a user-specified number of occurrences of a repeated pattern within the target sequence. We illustrate PepPat's application in short peptide ligand mining. As a validation example, we report the identification of a novel tachykinin-like peptide, C14TKL-1, and show it is an NK1 (neuokinin receptor 1) agonist whose message is widely expressed in human periphery. PepPat is offered online at: http://peppat.cbi.pku.edu.cn.

  12. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex.

    PubMed

    Makeham, John M; Goodchild, Ann K; Pilowsky, Paul M

    2005-06-01

    The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.

  13. Signalling through NK1.1 triggers NK cells to die but induces NK T cells to produce interleukin-4.

    PubMed

    Asea, A; Stein-Streilein, J

    1998-02-01

    In vivo inoculation of specific antibody is an accepted protocol for elimination of specific cell populations. Except for anti-CD3 and anti-CD4, it is not known if the depleted cells are eliminated by signalling through the target molecule or through a more non-specific mechanism. C57BL/6 mice were inoculated with anti-natural killer (NK1.1) monoclonal antibody (mAb). Thereafter spleen cells were harvested, stained for both surface and intracellular markers, and analysed by flow cytometry. As early as 2 hr post inoculation, NK cells were signalled to become apoptotic while signalling through the NK1.1 molecule activated NK1.1+ T-cell receptor (TCR)+ (NK T) cells to increase in number, and produce interleukin-4 (IL-4). Anti NK1.1 mAb was less efficient at signalling apoptosis in NK cells when NK T-cell deficient [beta 2-microglobulin beta 2m-deficient] mice were used compared with wild type mice. Efficient apoptotic signalling was restored when beta 2m-deficient mice were reconstituted with NK T cells. NK-specific antibody best signals the apoptotic process in susceptible NK cells when resistant NK T cells are present, activated, and secrete IL-4.

  14. Substance P and central respiratory activity: a comparative in vitro study in NK1 receptor knockout and wild-type mice.

    PubMed

    Ptak, K; Hunt, S P; Monteau, R

    2000-07-01

    Neurokinin-1 receptors (NK1) are present within the respiratory medullary network and in the phrenic nucleus, which controls the diaphragm. We compared the efficacy of substance P (SP) at inducing changes in respiratory frequency or the amplitude of the respiratory motor output between NK1 knockout (NK1-/-) and wild-type mice, using the in vitro brainstem-spinal cord preparation. The in vitro respiratory frequency, as well as the variability of the rhythm and the amplitude of the motor output were similar in both lines. In wild-type mice, application of exogenous SP induced either an increase in respiratory frequency (superfusion of the medulla) or an increase of the inspiratory motor output, as defined by the integral of C4 cervical ventral root activity (superfusion of the spinal cord). These two effects were not apparent in NK1-/- mice. In conclusion, NK1 receptors mediate the respiratory responses to SP but the lack of NK1 receptors in newborn NK1-/- mice does not change the respiratory activity.

  15. Trigeminal Medullary Dorsal Horn Neurons Activated by Nasal Stimulation Coexpress AMPA, NMDA, and NK1 Receptors

    PubMed Central

    McCulloch, P. F.; DiNovo, K. M.; Westerhaus, D. J.; Vizinas, T. A.; Peevey, J. F.; Lach, M. A.; Czarnocki, P.

    2013-01-01

    Afferent information initiating the cardiorespiratory responses during nasal stimulation projects from the nasal passages to neurons within the trigeminal medullary dorsal horn (MDH) via the anterior ethmoidal nerve (AEN). Central AEN terminals are thought to release glutamate to activate the MDH neurons. This study was designed to determine which neurotransmitter receptors (AMPA, kainate, or NMDA glutamate receptor subtypes or the Substance P receptor NK1) are expressed by these activated MDH neurons. Fos was used as a neuronal marker of activated neurons, and immunohistochemistry combined with epifluorescent microscopy was used to determine which neurotransmitter receptor subunits were coexpressed by activated MDH neurons. Results indicate that, during nasal stimulation with ammonia vapors in urethane-anesthetized Sprague-Dawley rats, activated neurons within the superficial MDH coexpress the AMPA glutamate receptor subunits GluA1 (95.8%) and GluA2/3 (88.2%), the NMDA glutamate receptor subunits GluN1 (89.1%) and GluN2A (41.4%), and NK1 receptors (64.0%). It is therefore likely that during nasal stimulation the central terminals of the AEN release glutamate and substance P that then produces activation of these MDH neurons. The involvement of AMPA and NMDA receptors may mediate fast and slow neurotransmission, respectively, while NK1 receptor involvement may indicate activation of a nociceptive pathway. PMID:24967301

  16. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine.

    PubMed

    Geber, Christian; Mang, Christian F; Kilbinger, Heinz

    2006-01-01

    The effects of capsaicin on [3H]acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]choline. Capsaicin concentration-dependently increased both basal [3H]acetylcholine release (pEC50 7.0) and muscle tone (pEC50 6.1). The facilitatory effects of capsaicin were antagonized by 1 microM capsazepine (pK (B) 7.0 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). This suggests that stimulation by capsaicin of TRPV1 receptors on primary afferent fibres causes a release of tachykinins which, in turn, mediate via NK1 and NK3 receptors an increase in acetylcholine release. The capsaicin-induced acetylcholine release was significantly enhanced by the NO synthase inhibitor L-NG-nitroarginine (100 microM). This indicates that tachykinins released from sensory neurons also stimulate nitrergic neurons and thus lead, via NO release, to inhibition of acetylcholine release. Capsaicin concentration-dependently reduced the electrically-evoked [3H]acetylcholine release (pEC50 6.4) and twitch contractions (pEC50 5.9). The inhibitory effects were not affected by either capsazepine, NK1 and NK3 receptor antagonists, the cannabinoid CB1 antagonist SR141716A or by L-NG-nitroarginine. Desensitization of TRPV1 receptors by a short exposure to 3 microM capsaicin abolished the facilitatory responses to a subsequent administration, but did not modify the inhibitory effects. In summary, capsaicin has a dual effect on cholinergic neurotransmission. The facilitatory effect is indirect and involves tachykinin release and excitation of NK1 and NK3 receptors on cholinergic neurons. The inhibition of acetylcholine release may be due to a decrease of Ca2+ influx into cholinergic neurons.

  17. The impact of chronic nandrolone decanoate administration on the NK1 receptor density in rat brain as determined by autoradiography.

    PubMed

    Hallberg, Mathias; Kindlundh, Anna M S; Nyberg, Fred

    2005-07-01

    Adult male Sprague-Dawley rats were treated with the anabolic androgenic steroid nandrolone decanoate (15 mg/kg day) or oil vehicle (sterile arachidis oleum) during 14 days. The effect on the densities of the neurokinin NK1 receptor in brain was examined with autoradiography. An overall tendency of attenuation of NK1 receptor density was observed after completed treatment with nandrolone decanoate. The density of the NK1 receptor was found to be significantly lower compared to control animals in the nucleus accumbens core (37% density reduction), in dentate gyrus (26%), in basolateral amygdaloid nucleus (23%), in ventromedial hypothalamic nucleus (36%), in dorsomedial hypothalamic nucleus (43%) and finally in the periaqueductal gray (PAG) (24%). In the cortex region, no structures exhibited any significant reduction of NK1 receptor density. This result provides additional support to the hypothesis that substance P and the NK1 receptor may be involved as important components that participate in mediating physiological responses including the adverse behaviors often associated with chronically administrated anabolic androgenic steroids in human.

  18. Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice

    PubMed Central

    Grady, Eileen F; Yoshimi, Shandra K; Maa, John; Valeroso, Dahlia; Vartanian, Robert K; Rahim, Shamila; Kim, Edward H; Gerard, Craig; Gerard, Norma; Bunnett, Nigel W; Kirkwood, Kimberly S

    2000-01-01

    Pancreatic oedema occurs early in the development of acute pancreatitis, and the overall extent of fluid loss correlates with disease severity. The tachykinin substance P (SP) is released from sensory nerves, binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and induces plasma extravasation, oedema, and neutrophil infiltration, a process termed neurogenic inflammation. We sought to determine the importance of neurogenic mechanisms in acute pancreatitis.Pancreatic plasma extravasation was measured using the intravascular tracers Evans blue and Monastral blue after administration of specific NK1-R agonists/antagonists in rats and NK1-R(+/+)/(−/−) mice. The effects of NK1-R genetic deletion/antagonism on pancreatic plasma extravasation, amylase, myeloperoxidase (MPO), and histology in cerulein-induced pancreatitis were characterized.In rats, both SP and the NK1-R selective agonist [Sar9 Met(O2)11]SP stimulated pancreatic plasma extravasation, and this response was blocked by the NK1-R antagonist CP 96,345. Selective agonists of the NK-2 or NK-3 receptors had no effect.In rats, cerulein stimulated pancreatic plasma extravasation and serum amylase. These responses were blocked by the NK1-R antagonist CP 96,345.In wildtype mice, SP induced plasma extravasation while SP had no effect in NK1-R knockout mice.In NK1-R knockout mice, the effects of cerulein on pancreatic plasma extravasation and hyperamylasemia were reduced by 60%, and pancreatic MPO by 75%, as compared to wildtype animals.Neurogenic mechanisms of inflammation are important in the development of inflammatory oedema in acute interstitial pancreatitis. PMID:10821777

  19. TAC1 Gene Products Regulate Pituitary Hormone Secretion and Gene Expression in Prepubertal Grass Carp Pituitary Cells.

    PubMed

    Hu, Guangfu; He, Mulan; Ko, Wendy K W; Wong, Anderson O L

    2017-06-01

    Tachykinin-1 (TAC1) is known to have diverse functions in mammals, but similar information is scarce in fish species. Using grass carp as a model, the pituitary actions, receptor specificity and postreceptor signaling of TAC1 gene products, namely substance P (SP) and neurokinin A (NKA), were examined. TAC1 encoding SP and NKA as well as tachykinin receptors NK1R and NK2R were cloned in the carp pituitary. The newly cloned receptors were shown to be functional with properties similar to mammalian counterparts. In carp pituitary cells, SP and NKA could trigger luteinizing hormone (LH), prolactin (PRL), and somatolactin α (SLα) secretion, with parallel rises in PRL and SLα transcripts. Short-term SP treatment (3 hours) induced LH release, whereas prolonged induction (24 hours) could attenuate LHβ messenger RNA (mRNA) expression. At pituitary cell level, LH, PRL, and SLα regulation by TAC1 gene products were mediated by NK1R, NK2R, and NK3R, respectively. Apparently, SP- and NKA-induced LH and SLα secretion and transcript expression were mediated by adenylyl cyclase/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholiphase C (PLC)/inositol 1,4,5-triphosphate/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/CaM-dependent protein kinase-II pathways. The signal transduction for PRL responses was similar, except for the absence of a PKC component. Regarding SP inhibition of LHβ mRNA expression, the cAMP/PKA- and PLC/PKC-dependent (but not Ca2+/CaM-dependent) cascades were involved. These results, as a whole, suggest that TAC1 gene products play a role in LH, PRL, and SLα regulation via overlapping postreceptor signaling coupled to different subtypes of tachykinin receptor expressed in the carp pituitary. Copyright © 2017 Endocrine Society.

  20. NK-1 receptor desensitization and neutral endopeptidase terminate SP-induced pancreatic plasma extravasation.

    PubMed

    Maa, J; Grady, E F; Kim, E H; Yoshimi, S K; Hutter, M M; Bunnett, N W; Kirkwood, K S

    2000-10-01

    Substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin-1 receptor (NK1-R). We characterized the mechanisms regulating this response in the rat pancreas. Anesthetized rats were continuously infused with SP, and plasma extravasation was quantified using Evans blue (EB) dye. Continuous infusion of SP (8 nmol. kg(-1). h(-1)) resulted in a threshold increase in EB at 15 min, a peak effect at 30 min (150% increase), and a return to baseline by 60 min. The NK1-R antagonist CP-96,345 blocked SP-induced plasma extravasation. After 60 min, the NK1-R was desensitized to agonist challenge. Resensitization was first detected at 20 min and increased until full recovery was seen at 30 min. Inhibition of the cell-surface protease neutral endopeptidase (NEP) by phosphoramidon potentiated the effect of exogenous SP; therefore endogenous NEP attenuates SP-induced plasma extravasation. Thus the continuous infusion of SP stimulates plasma extravasation in the rat pancreas via activation of the NK1-R, and these effects are terminated by both desensitization of the NK1-R and the cell-surface protease NEP.

  1. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    PubMed

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  2. Interaction of tachykinins with their receptors studied with cyclic analogues of substance P and neurokinin B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploux, O.; Lavielle, S.; Chassaing, G.

    1987-11-01

    The activities of two groups of cyclic agonists of substance P (SP) have been studied. The disulfide bridge constraints have been designed on the basis of conformational studies on SP and physalaemin indicating an ..cap alpha..-helical structure for the core of these two tachykinins (group I) and a folding of the C-terminal carboxamide towards the side chains of the glutamines 5 and 6 (group II). Only peptides simulating the ..cap alpha..-helix present substantial potencies. (Cys/sup 3,6/)SP is as active as SP in inhibiting /sup 125/I-labeled Bolton and Hunter SP-specific binding on rat brain synaptosomes and on dog carotid bioassay, twomore » assays specific for the neurokinin 1 receptor. Moreover, (Cys/sup 3,6/)SP is a potent as neurokinin B in inhibiting /sup 125/I-labeled Bolton and Hunter eledoisin-specific binding on rat cortical synaptosomes as well as in stimulating rat portal vein, two tests specific for the neurokinin 3 receptor. Interestingly, in contrast to neurokinin B, (Cys/sup 3,6/)SP is a weak agonist of the neurokinin 2 receptor subtype, as evidenced by its binding potency in inhibiting /sup 3/H-labeled neurokinin A-specific binding on rat duodenum and in inducing the contractions of the rabbit pulmonary artery, a neurokinin 2-type bioassay. To increase the specificity of the cyclic analogue (Cys/sup 3,6/)SP positions 8 and 9 were modified. Collectively, these results suggest that the neurokinin 1 and neurokinin 3 tachykinin receptors may recognize a similar three-dimensional structure of the core of the tachykinins. Different orientations of the common C-terminal tripeptide may be related to the selectivity for the different receptor subtypes.« less

  3. Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment

    PubMed Central

    Parodi, Monica; Pedrazzi, Marco; Cantoni, Claudia; Averna, Monica; Patrone, Mauro; Cavaletto, Maria; Spertino, Stefano; Pende, Daniela; Balsamo, Mirna; Pietra, Gabriella; Sivori, Simona; Carlomagno, Simona; Mingari, Maria Cristina; Moretta, Lorenzo; Sparatore, Bianca; Vitale, Massimo

    2015-01-01

    In this study we characterize a new mechanism by which Natural Killer (NK) cells may amplify their recruitment to tumors. We show that NK cells, upon interaction with melanoma cells, can release a chemotactic form of High Mobility Group Box-1 (HMGB1) protein capable of attracting additional activated NK cells. We first demonstrate that the engagement of different activating NK cell receptors, including those mainly involved in tumor cell recognition can induce the active release of HMGB1. Then we show that during NK-mediated tumor cell killing two HMGB1 forms are released, each displaying a specific electrophoretic mobility possibly corresponding to a different redox status. By the comparison of normal and perforin-defective NK cells (which are unable to kill target cells) we demonstrate that, in NK/melanoma cell co-cultures, NK cells specifically release an HMGB1 form that acts as chemoattractant, while dying tumor cells passively release a non-chemotactic HMGB1. Finally, we show that Receptor for Advanced Glycation End products is expressed by NK cells and mediates HMGB1-induced NK cell chemotaxis. Proteomic analysis of NK cells exposed to recombinant HMGB1 revealed that this molecule, besides inducing immediate chemotaxis, also promotes changes in the expression of proteins involved in the regulation of the cytoskeletal network. Importantly, these modifications could be associated with an increased motility of NK cells. Thus, our findings allow the definition of a previously unidentified mechanism used by NK cells to amplify their response to tumors, and provide additional clues for the emerging role of HMGB1 in immunomodulation and tumor immunity. PMID:26587323

  4. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R.

    PubMed

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J; Zawieja, David C; Muthuchamy, Mariappan

    2011-01-01

    The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. © 2010 John Wiley & Sons Ltd.

  5. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R

    PubMed Central

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J.; Zawieja, David C.; Muthuchamy, Mariappan

    2010-01-01

    Objective The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. Methods A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP mediated signaling pathways in lymphatics. Results We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC20) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC20 after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. Conclusions These data provide the first evidence that SP mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. PMID:21166923

  6. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro

    PubMed Central

    Yasuda, Kouichi; Robinson, Dean M; Selvaratnam, Subramaniam R; Walsh, Carmen W; McMorland, Angus J C; Funk, Gregory D

    2001-01-01

    The effects of substance P (SP), acting at NK1 receptors, on the excitability and inspiratory activity of hypoglossal (XII) motoneurons (MNs) were investigated using rhythmically active medullary-slice preparations from neonatal mice (postnatal day 0–3). Local application of the NK1 agonist [SAR9,Met (O2)11]-SP (SPNK1) produced a dose-dependent, spantide- (a non-specific NK receptor antagonist) and GR82334-(an NK1 antagonist) sensitive increase in inspiratory burst amplitude recorded from XII nerves. Under current clamp, SPNK1 significantly depolarized XII MNs, potentiated repetitive firing responses to injected currents and produced a leftward shift in the firing frequency-current relationships without affecting slope. Under voltage clamp, SPNK1 evoked an inward current and increased input resistance, but had no effect on inspiratory synaptic currents. SPNK1 currents persisted in the presence of TTX, were GR82334 sensitive, were reduced with hyperpolarization and reversed near the expected EK. Effects of the α1-noradrenergic receptor agonist phenylephrine (PE) on repetitive firing behaviour were virtually identical to those of SPNK1. Moreover, SPNK1 currents were completely occluded by PE, suggesting that common intracellular pathways mediate the actions of NK1 and α1-noradrenergic receptors. In spite of the similar actions of SPNK1 and PE on XII MN responses to somally injected current, α1-noradrenergic receptor activation potentiated inspiratory synaptic currents and was more than twice as effective in potentiating XII nerve inspiratory burst amplitude. GR82334 reduced XII nerve inspiratory burst amplitude and generated a small outward current in XII MNs. These observations, together with the first immunohistochemical evidence in the newborn for SP immunopositive terminals in the vicinity of SPNK1-sensitive inspiratory XII MNs, support the endogenous modulation of XII MN excitability by SP. In contrast to phrenic MNs (Ptak et al. 2000), blocking NMDA

  7. Effects of tachykinins and capsaicin on the mechanical and electrical activity of the guinea-pig isolated trachea

    PubMed Central

    Girard, Valerie; Félétou, Michel; Advenier, Charles; Canet, Emmanuel

    1997-01-01

    The effects of tachykinins and capsaicin were studied by means of intracellular membrane potential and isometric tension recordings in the isolated trachea of the guinea-pig. The basal membrane potential averaged −51 mV, and most preparations demonstrated spontaneous slow waves. Tetraethylammonium (TEA), a potassium channel blocker (8×10−3 M), depolarized the membrane potential to −44 mV and induced a rhythmic activity. In control solution, substance P (10−8–10−6 M), [Nle10]-neurokinin A(4–10) (10−8–10−6 M) and capsaicin (10−7–10−6 M) induced concentration-dependent depolarizations which were statistically significant at the highest concentration tested (depolarization by 10−6 M: 8, 11 and 16 mV for the NK1 agonist, the NK2 agonist and capsaicin, respectively). In the presence of TEA (8×10−3 M), the three substances induced depolarizations which were statistically significant at the highest concentration tested for substance P (10−6 M) and at 10−7 and 10−6 M for both [Nle10]-neurokinin A(4–10) and capsaicin (depolarization by 10−6 M: 11, 17 and 10 mV for substance P, [Nle10]neurokinin A(4–10) and capsaicin, respectively). In the presence or absence of tetraethylammonium, [MePhe7]-neurokinin B (10−8–10−6 M) did not induce any significant changes in membrane potential. The depolarizing effects of substance P (10−6 M) and [Nle10]-neurokinin A(4–10) (10−6 M) were blocked only by the specific antagonists for NK1 and NK2 receptors, SR 140333 (10−7 M) and SR 48968 (10−7 M), respectively. The effects of capsaicin (10−6 M) were partially inhibited by each antagonist and fully blocked by their combination. Substance P (10−9 to 10−4 M), [Nle10]-neurokinin A(4–10) (10−10 to 10−5 M), [MePhe7]-neurokinin B and capsaicin (10−7 to 10−5 M) evoked concentration-dependent contractions. The contractions to substance P were significantly inhibited by SR 140333 (10−8

  8. Modulation of basal and stress-induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist L-822429.

    PubMed

    Singewald, Nicolas; Chicchi, Gary G; Thurner, Clemens C; Tsao, Kwei-Lan; Spetea, Mariana; Schmidhammer, Helmut; Sreepathi, Hari Kishore; Ferraguti, Francesco; Singewald, Georg M; Ebner, Karl

    2008-09-01

    It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.

  9. Expression of the neurokinin type 1 receptor in the human colon.

    PubMed

    Boutaghou-Cherid, Hikma; Porcher, Christophe; Liberge, Martine; Jule, Yvon; Bunnett, Nigel W; Christen, Marie-Odile

    2006-01-30

    The distribution of the neurokinin type 1 receptor (NK1r) in human intestine, mapped in a few immunohistochemical investigations in the antrum and the duodenum, is comparable to that widely studied in rodents. Importantly, despite pharmacological evidence of their presence in mammalian intestinal muscle, their immunohistochemical visualization in smooth muscle cells remains to be determined in human digestive tract. In the present work, we studied the distribution of NK1r in the human colon, with a particular view to visualize their expression in muscle cells. With this aim, part of colonic segments were incubated with nicardipine and TTX in order to induce accumulation of the NK1r on cell membrane. NK1r were visualized by using immunohistochemistry combined with fluorescence and confocal microscopy. Without incubation, NK1r-IR was clearly observed on the membrane and the cytoplasm of myenteric and submucous neurons and interstitial cells of Cajal, but could not be clearly determined in the longitudinal and circular muscle. NK1r-IR-expressing neurons and interstitial cells were closely surrounded by substance P (SP) immunoreactive nerves. Incubation of colonic segments with nicardipine and TTX at 4 degrees C for 1 h with SP allowed to reveal a strong NK1r-IR at the surface of muscle cells. Incubation with SP (10(-6) M) at 37 degrees C for 1 min induced a relocation of NK1r-IR into the cytoplasm of muscle. This is interpreted as an internalization of NK1r induced by the binding of SP on muscular NK1r. The present data contribute to emphasize the role of NK1r in tachykinin-mediated neuronal processes regulating intestinal motility.

  10. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    PubMed

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  11. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum.

    PubMed

    Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Faussone-Pellegrini, Maria Simonetta; Vannucchi, Maria Giuliana

    2011-11-01

    Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1(-/-) mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1(-/-) mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1(-/-) mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1-knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1-associated proteins. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Interaction of tachykinins with phospholipid membranes: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.

    Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.

  13. Human NK cells: From surface receptors to clinical applications.

    PubMed

    Moretta, Lorenzo; Pietra, Gabriella; Vacca, Paola; Pende, Daniela; Moretta, Francesca; Bertaina, Alice; Mingari, Maria Cristina; Locatelli, Franco; Moretta, Alessandro

    2016-10-01

    Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β(+) T cells and of CD19(+) B cells, allow the infusion, together with CD34(+) HSC, of mature KIR(+) NK cells and of TCR γ/δ(+) T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR(+) NK

  14. Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells

    PubMed Central

    Akazawa, Takashi; Ebihara, Takashi; Okuno, Manabu; Okuda, Yu; Shingai, Masashi; Tsujimura, Kunio; Takahashi, Toshitada; Ikawa, Masahito; Okabe, Masaru; Inoue, Norimitsu; Okamoto-Tanaka, Miki; Ishizaki, Hiroyoshi; Miyoshi, Jun; Matsumoto, Misako; Seya, Tsukasa

    2007-01-01

    Myeloid dendritic cells (mDCs) recognize and respond to polyI:C, an analog of dsRNA, by endosomal Toll-like receptor (TLR) 3 and cytoplasmic receptors. Natural killer (NK) cells are activated in vivo by the administration of polyI:C to mice and in vivo are reciprocally activated by mDCs, although the molecular mechanisms are as yet undetermined. Here, we show that the TLR adaptor TICAM-1 (TRIF) participates in mDC-derived antitumor NK activation. In a syngeneic mouse tumor implant model (C57BL/6 vs. B16 melanoma with low H-2 expresser), i.p. administration of polyI:C led to the retardation of tumor growth, an effect relied on by NK activation. This NK-dependent tumor regression did not occur in TICAM-1−/− or IFNAR−/− mice, whereas a normal NK antitumor response was induced in PKR−/−, MyD88−/−, IFN-β−/−, and wild-type mice. IFNAR was a prerequisite for the induction of IFN-α/β and TLR3. The lack of TICAM-1 did not affect IFN production but resulted in unresponsiveness to IL-12 production, mDC maturation, and polyI:C-mediated NK-antitumor activity. This NK activation required NK-mDC contact but not IL-12 function in in vivo transwell analysis. Implanted tumor growth in IFNAR−/− mice was retarded by adoptively transferring polyI:C-treated TICACM-1-positive mDCs but not TICAM-1−/− mDCs. Thus, TICAM-1 in mDCs critically facilitated mDC-NK contact and activation of antitumor NK, resulting in the regression of low MHC-expressing tumors. PMID:17190817

  15. Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential.

    PubMed

    Sandweiss, A J; McIntosh, M I; Moutal, A; Davidson-Knapp, R; Hu, J; Giri, A K; Yamamoto, T; Hruby, V J; Khanna, R; Largent-Milnes, T M; Vanderah, T W

    2017-05-09

    Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK 1 R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK 1 R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK 1 R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.102.

  16. Spinal action of neurokinins producing cardiovascular responses in the conscious freely moving rat: evidence for a NK-1 receptor mechanism.

    PubMed

    Hasséssian, H; Drapeau, G; Couture, R

    1988-12-01

    This study was initiated to characterize the receptors which mediate the cardiovascular responses elicited by the intrathecal (i.th.) administration of neurokinins (NK) in the conscious freely moving rat. The dose response profile for substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) was determined over 0.065-65 nmol doses of the peptides. After i.th. administration at the T8-T10 thoracic level, only SP elicited a dose dependent pressor response. However, all NK elicited a dose dependent increase in heart rate (HR), and the following rank order of potency was observed: SP greater than NKA greater than NKB. SP (6.5 nmol) produced cardiovascular responses markedly greater than an equimolar dose of any of the seven SP fragments which were studied. The C-terminal sequences SP (4-11), [pGlu5]SP (5-11), [pGlu6]SP (6-11), and SP (7-11), as a group were slightly more potent than the N-terminal fragments, SP (1-4), SP (1-7) and SP (1-9) which were almost inactive. The NK-1 receptor selective agonists [Pro9, Met(O2)11]SP and [beta-Ala4, Sar9, Met(O2)11]SP (4-11), produced pressor and positive chronotropic responses equal to or greater in intensity than SP. With up to 6.5 nmol of the NK-2 receptor selective agonist [Nle10]NKA (4-10), no dose dependent cardiovascular response was produced and the NK-3 receptor selective agonist senktide (succinyl-[Asp6, MePhe8]SP (6-11], produced neither a cardiac nor pressor response when 6.5 nmol was administered. These results are consistent with the hypothesis that, receptors of the NK-1 subtype mediate the cardiovascular responses evoked by the spinal action of NK.

  17. Phosphoramidon potentiates mammalian tachykinin-induced biting, licking and scratching behaviour in mice.

    PubMed

    Sakurada, T; Tan-No, K; Yamada, T; Sakurada, S; Kisara, K

    1990-12-01

    The effects of peptidase inhibitors were examined upon behavioural responses including scratch, bite and lick produced by intrathecal (IT) injection of substance P (SP) and neurokinin A (NK A) in mice. Phosphoramidon (0.002-2.0 nmol), an endopeptidase-24.11 inhibitor, simultaneously injected with SP or NK A, remarkably enhanced and prolonged SP- or NK A-induced behavioural response in a dose-dependent manner. The behavioural response to SP was significantly increased by 2.0 nmol of bestatin, an aminopeptidase inhibitor, but not by 1.0 nmol. Captopril, an angiotensin-converting enzyme inhibitor, was without effect on both tachykinin-induced responses. When phosphoramidon was injected together with bestatin and captopril which have no significant effect alone, SP- or NK A-induced behavioral response was significantly increased. These data suggest that endopeptidase-24.11 may be an important enzyme responsible for terminating of SP- or NK A-induced behavioral response at the spinal cord level.

  18. The N-terminal domain of substance P is required for complete homologous desensitization but not phosphorylation of the rat neurokinin-1 receptor.

    PubMed

    Vigna, S R

    2001-02-01

    The agonist activity of substance P (SP) is a function of the C-terminal domain of the peptide. A C-terminal SP fragment (SP(6-11)) and analog (septide) and neurokinin A (NKA; a related tachykinin with a divergent N-terminal amino acid sequence) were found to be full neurokinin-1 receptor (NK-1R) agonists, but were not able to desensitize the receptor maximally as much as SP. Substance P caused 95.6 +/- 0.9% maximal desensitization of the NK-1R whereas SP(6-11), septide, and NKA(only)caused 74 +/- 3.5, 50.6 +/- 8, and 71.5 +/- 4.4% maximal desensitization, respectively (mean +/- SEM; P < 0.001 vs SP). When a series of SP C-terminal fragment peptides were tested for their NK-1R desensitizing activity, it was found that SP(5-11)and SP(6-11)caused significantly less maximal NK-1R desensitization than SP. SP N-terminal fragment peptides had no effect on the ability of SP(6-11)to compete with(3)H-SP binding, generate an IP(3)response, or cause NK-1R desensitization when tested with or without SP(6-11). SP, SP(6-11), septide, and NKA all maximally stimulated 8-9-fold increases in NK-1R phosphorylation. When attached to the C-terminal domain of SP responsible for NK-1R binding and agonism, the N-terminus of SP is responsible for 25-50% of homologous desensitization and this may occur via a mechanism other than NK-1R phosphorylation. Copyright 2001 Harcourt Publishers Ltd.

  19. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1−/− mouse ileum

    PubMed Central

    Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Simonetta Faussone-Pellegrini, Maria; Vannucchi, Maria Giuliana

    2011-01-01

    Abstract Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins. PMID:21535398

  20. N- and C-terminal substance P fragments: differential effects on striatal [3H]substance P binding and NK1 receptor internalization.

    PubMed

    Michael-Titus, A T; Blackburn, D; Connolly, Y; Priestley, J V; Whelpton, R

    1999-07-13

    N- and C-terminal substance P (SP) fragments increase striatal dopamine outflow at nanomolar concentrations. This contrasts with their low affinity for NK1 receptors. To explore this discrepancy, we investigated the interaction of SP and SP fragments with NK1 sites in fresh striatal slices, the same model used in the functional studies on dopamine outflow. [3H]SP bound specifically to one site (Kd = 6.6 +/- 0.9 nM; Bmax = 12.6 +/- 0.7 fmol/mg protein). [3H]SP binding was displaced by SP (IC50 = 11.8 nM), but not by SP(1-7) or SP(5-11), up to 10 microM. In contrast, 10 nM SP(1-7) or SP(5-11) induced significant internalization of the NK1 receptor, similar to that induced by SP. We suggest that SP fragments have high affinity for an NK1 receptor conformer which is different from that labelled by [3H]SP.

  1. Evidence of NK1 and NK2 Tachykinin Receptors and their Involvement in Histamine Release in a Murine Mast Cell Line

    DTIC Science & Technology

    1992-01-01

    either human p ~ulmo(nary,. Delectaible in the absence of estrmcclular CaCI’. i’Potent 4.23ug/105 cells, or rat peritoneal mast cells. bousbesin...ABSTRACT (Maximum 200 words) Abstract-Binding of )kH substance P (SP) and histamine release were examined using a cloned mouse mast cell line SP binding...the cells with the NK2 antagonist peptide A reduced NKA-induced histamine release ID.Arg’,D.Phe’,D-Trp 0 3 .Leu t )nsu b s tance P , a putative SP

  2. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis.

    PubMed

    Wu, Huali; Zhao, Yucheng; Huang, Qiaoling; Cai, Minxuan; Pan, Qi; Fu, Mengsi; An, Xiaohong; Xia, Zhenjiang; Liu, Meng; Jin, Yu; He, Ling; Shang, Jing

    2018-06-01

    Substance P (SP) is a candidate mediator along the brain-skin axis and can mimic the effects of stress to regulate melanogenesis. Previously, we and others have found that the regulation of SP for pigmentary function was mediated by neurokinin 1 receptor (NK1R). Emerging evidence has accumulated that psychologic stress can induce dysfunction in the cutaneous serotonin 5-hydroxytryptamine (5-HT)-5-HT1A/1B receptor system, thereby resulting in skin hypopigmentation. Moreover, NK1R and 5-HTR (except 5-HT3) belong to GPCR. The present study aimed at assessing the possible existence of NK1R-5-HTR interactions and related melanogenic functions. Western blot and PCR detection revealed that SP reduced expression of 5-HT1A receptor via the NK1 receptor. Biochemical analyses showed that NK1R and 5-HT1AR could colocalize and interact in a cell and in the skin. When the N terminus of the NK1R protein was removed NK1R surface targeting was prevented, the interaction between NK1R-5-HT1AR decreased, and the depigmentation caused by SP and WAY100635 could be rescued. Importantly, pharmaceutical coadministration of NK1R agonist (SP) and 5-HT1A antagonist (WAY100635) enhanced the NK1-5-HT1A receptor coimmunoprecipitation along with the depigmentary response. SP and WAY100635 cooperation elicited activation of a signaling cascade (the extracellular, regulated protein kinase p-JNK signaling pathway) and inhibition of p70S6K1 phosphorylation and greatly reduced melanin production in vitro and in vivo in mice and zebrafish. Moreover, the SP-induced depigmentation response did not be occur in 5-htr1aa +/- zebrafish embryos. Taken together, the results of our systemic study increases our knowledge of the roles of NK1R and 5-HT1AR in melanogenesis and provides possible, novel therapeutic strategies for treatment of skin hypo/hyperpigmentation.-Wu, H., Zhao, Y., Huang, Q., Cai, M., Pan, Q., Fu, M., An, X., Xia, Z., Liu, M., Jin, Y., He, L., Shang, J. NK1R/5-HT1AR interaction is related to

  3. Effect of tachykinins on the need-free sodium intake of female rats: a continuous intracerebroventricular infusion study.

    PubMed

    Polidori, C; Ciccocioppo, R; Epstein, A N; de Caro, G; Massi, M

    1994-11-01

    The present study investigated the effect of 24-h continuous ICV infusion of four different tachykinins on the enhanced need-free sodium intake induced by previous repeated sodium depletions in female rats. Female rats were employed because, in response to sodium depletions, they develop a higher need-free sodium intake than male rats. The following tachykinins were used: eledoisin, substance P (SP), [Sar9,Met(O2)11]SP and [Asp5,6,MePhe8]SP(5-11), also referred to as NH2-senktide, all at the same doses of 300 or 600 ng/h x 24 h. Food pellets, water, and 3% NaCl sodium solution were freely available. Eledoisin and NH2-senktide were more potent than SP in reducing the need-free sodium intake. On the other hand, [Sar9,Met(O2)11]SP had no effect. None of the tachykinins employed completely blocked the intake. Water intake was reduced, but this reduction was apparently a consequence of reduced intake of hypertonic sodium chloride solution, because at the same doses TKs did not inhibit water intake in a single-bottle test. Food intake remained unchanged at either dose used. These findings confirm previous studies in which pulse injection of the same drugs potently inhibited sodium intake. They also demonstrate that tachykinins endowed with high affinity for the NK3 receptor are the most potent in inhibiting sodium intake. Furthermore, these findings indicate that the tachykinins reduce the need-free sodium intake only during the infusion period, indicating that in these conditions they do not evoke either aversion for salt, or toxic consequences in the follow-up period.

  4. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma.

    PubMed

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-06-01

    Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy.

  5. Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation.

    PubMed

    Backman, Ludvig J; Eriksson, Daniella E; Danielson, Patrik

    2014-10-01

    It has been hypothesised that an upregulation of the neuropeptide substance P (SP) and its preferred receptor, the neurokinin-1 receptor (NK-1 R), is a causative factor in inducing tenocyte hypercellularity, a characteristic of tendinosis, through both proliferative and antiapoptotic stimuli. We have demonstrated earlier that SP stimulates proliferation of human tenocytes in culture. The aim of this study was to investigate whether SP can mediate an antiapoptotic effect in tumour necrosis factor-α (TNF-α)-induced apoptosis of human tenocytes in vitro. A majority (approximately 75%) of tenocytes in culture were immunopositive for TNF Receptor-1 and TNF Receptor-2. Exposure of the cells to TNF-α significantly decreased cell viability, as shown with crystal violet staining. TNF-α furthermore significantly increased the amount of caspase-10 and caspase-3 mRNA, as well as both BID and cleaved-poly ADP ribosome polymerase (c-PARP) protein. Incubation of SP together with TNF-α resulted in a decreased amount of BID and c-PARP, and in a reduced lactate dehydrogenase release, as compared to incubation with TNF-α alone. The SP effect was blocked with a NK-1 R inhibitor. This study shows that SP, through stimulation of the NK-1 R, has the ability to reduce TNF-α-induced apoptosis of human tenocytes. Considering that SP has previously been shown to stimulate tenocyte proliferation, the study confirms SP as a potent regulator of cell-turnover in tendon tissue, capable of stimulating hypercellularity through different mechanisms. This gives further support for the theory that the upregulated amount of SP seen in tendinosis could contribute to hypercellularity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. A novel system of polymorphic and diverse NK cell receptors in primates.

    PubMed

    Averdam, Anne; Petersen, Beatrix; Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-10-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.

  7. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    PubMed Central

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  8. Receptor binding sites for substance P in surgical specimens obtained from patients with ulcerative colitis and Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, C.R.; Gates, T.S.; Zimmerman, R.P.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides (substance P (SP), substance K (SK), and neuromedin K (NK)) play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. In all cases, specimens were processed for quantitative receptor autoradiography by using /sup 125/I-labeled Bolton-Hunter conjugates of NK, SK, and SP. In colon tissue obtained from ulcerative colitis and Crohn disease patients, very high concentrations of SP receptor binding sites aremore » expressed by arterioles and venules located in the submucosa, muscalairs mucosa, external circular muscle, external longitudinal muscle, and serosa, in contrast to control patients. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.« less

  9. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi.

    PubMed

    Furuya, Sonoko; Furuya, Kishio; Shigemoto, Ryuichi; Sokabe, Masahiro

    2010-11-01

    Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.

  10. A role for the substance P/NK-1 receptor complex in cell proliferation and apoptosis in oral lichen planus.

    PubMed

    González Moles, M A; Esteban, F; Ruiz-Avila, I; Gil Montoya, J A; Brener, S; Bascones-Martínez, A; Muñoz, M

    2009-03-01

    To determine whether substance P (SP) and NK-1 receptor (NK-1R) are expressed in oral lichen planus (OLP) and are related to cell proliferation and apoptosis in this disease. Tissue samples from 50 OLP patients and 26 healthy controls were studied. Immunohistochemistry was performed with anti-SP, anti-NK-1R, anti-ki-67 and anti-caspase-3 monoclonal antibodies and the clinical and pathological data of the OLP patients were evaluated. With the exception of NK-1R expression in epithelial cell membrane and cytoplasm, all markers were more frequently present in OLP patients than in controls (P < 0.05). Higher cytoplasmatic expression of NK-1R was associated with higher epithelial expression of caspase-3 (P < 0.05). Higher epithelial expression of NK-1R and SP was associated with higher suprabasal and basal epithelial expression of ki-67 (P < 0.05 and P < 0.005, respectively). Actions of the SP/NK-1R complex may contribute to the immune disorder underlying OLP and trigger stimuli to induce cell proliferation. These results indicate that this complex might play a role in the malignant transformation of OLP.

  11. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors

    PubMed Central

    Anton, Olga M.; Vielkind, Susina; Peterson, Mary E.; Tagaya, Yutaka; Long, Eric O.

    2015-01-01

    IL-15 bound to the IL-15 receptor α chain (IL-15Rα) is presented in trans to cells bearing the IL-2 receptor β and γc chains. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor–ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR–HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to down-regulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A+ cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Co-engagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15 dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  12. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  13. Sensory neuropeptides and the human lower airways: present state and future directions.

    PubMed

    Joos, G F; Germonpre, P R; Kips, J C; Peleman, R A; Pauwels, R A

    1994-06-01

    The sensory neuropeptides, substance P and neurokinin A, are present in human airway nerves, beneath and within the epithelium, around blood vessels and submucosal glands, and within the bronchial smooth muscle layer. Studies on autopsy tissue, bronchoalveolar lavage and sputum suggest that in asthma the substance P content of the airways may be increased. Neurokinin A is a more potent bronchoconstrictor than substance P. Asthmatics are hyperresponsive to neurokinin A and substance P. The neuropeptide degrading enzyme, neutral endopeptidase is present in the airways and is involved in the degradation of endogenously released and exogenously administered substance P and neurokinin A, both in normal and asthmatic subjects. As for other indirect bronchoconstrictor stimuli, the effect of neurokinin A on airway calibre in asthmatics can be inhibited by pretreatment with nedocromil sodium. Evidence is accumulating, not only from studies in animals but also from experiments on human airways, that tachykinins may also cause mucus secretion and plasma extravasation. They also have important proinflammatory effects, such as the chemoattraction of eosinophils and neutrophils, the adhesion of neutrophils, and the stimulation of lymphocytes, macrophages and mast cells. The tachykinins interact with the targets on the airways by specific tachykinin receptors. The NK1 and the NK2 receptor have been characterized in human airways, both pharmacologically and by cloning. The NK2 receptor is responsible for the in vitro contraction of normal airways, whilst the NK1 receptor is responsible for most of the other airway effects. Because of their presence in the airways and because of their ability to mimic the various pathophysiological features of asthma, substance P and neurokinin A are presently considered as possible mediators of asthma. The present development of potent and selective tachykinin antagonists will allow us to further define the role of tachykinins in the pathogenesis

  14. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors.

    PubMed

    Anton, Olga M; Vielkind, Susina; Peterson, Mary E; Tagaya, Yutaka; Long, Eric O

    2015-11-15

    IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Substance P and the neurokinin-1 receptor expression in dog ileum with and without inflammation.

    PubMed

    Polidoro, Giulia; Giancola, Fiorella; Fracassi, Federico; Pietra, Marco; Bettini, Giuliano; Asti, Martina; Chiocchetti, Roberto

    2017-10-01

    In the gastrointestinal tract, the tachykinin Substance P (SP) is involved in motility, fluid and electrolyte secretion, and blood flow and regulation of immunoinflammatory response. SP exerts its biological activity on target cells by interacting mainly with the neurokinin-1 receptor (NK 1 R). The present study aims to quantify the percentage of SP-immunoreactive (SP-IR) enteric neurons and the density of SP-IR nerve fibers in the ileum of control dogs (CTRL-dogs; n=7) vs dogs with spontaneous ileal inflammation (INF-dogs; n=8). In addition, the percentage of enteric neurons bearing NK 1 R, and nitrergic neurons (nNOS-IR) expressing NK 1 R immunoreactivity were evaluated in both groups. The percentages of SP-IR neurons were similar in CTRL- and INF-dogs, in either the myenteric (MP) (15±8% vs. 16±7%, respectively) and submucosal plexus (SMP) (26±7% vs. 24±14%, respectively). In INF-dogs, the density of SP-IR mucosal nerve fibers showed a trend to decrease (P=0.07). Myenteric neurons of CTRL- and INF-dogs expressed similar percentages of NK 1 R-immunoreactivity (39±5% vs. 38±20%, respectively). Submucosal NK 1 R-IR neurons were occasionally observed in a CTRL-dog. MP nitrergic neurons bearing NK 1 R showed a trend to decrease in INF-dogs vs. CTRL- dogs (41±22% vs. 65±10%, respectively; P=0.11). In INF-dogs, muscle cells and immune cells overexpressed NK 1 R immunoreactivity. These findings should be taken as a warning for possible intestinal motility disorders, which might occur during administration of NK 1 R-antagonist drugs. Conversely, the strong expression of NK 1 R immunoreactivity observed in muscle and mucosal immune cells of inflamed tissues may provide a rationale for the use of NK 1 R antagonist drugs in the treatment of intestinal inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of substance P and other tachykinins on arterial pressure in guinea-pigs.

    PubMed

    Hancock, J C; Hoover, D B

    1985-03-01

    The blood pressure and respiratory effects of i.v. administration of the tachykinins substance P (SP), physalaemin (P), eledoisin (E) and kassinin (K) and purported antagonists of SP were compared in guinea-pigs anaesthetized with sodium pentobarbital. Tachykinins caused a dose-dependent decrease in diastolic and systolic pressure with systolic pressure decreased more than diastolic. Heart rate was not affected. Duration of response was directly related to dosage. These data are in agreement with observations that tachykinins decrease peripheral vascular resistance in other species. Tachyphylaxis did not develop to the vascular actions of tachykinins. Comparison of ED50's demonstrated a rank order of potency of SP greater than P congruent to E greater than K suggesting that the vascular receptor for SP is of the SP-P type. Analysis of the regression lines for log dose of tachykinin vs. percent decrease in diastolic blood pressure revealed similar slopes for SP and E and for P and K. The maximal response caused by P was greater than that caused by SP, E or K. These observations are not consistent with postulated classifications of tachykinins or tachykinin receptors suggesting that undefined tissue factors may have affected the relative in vivo potencies of these peptides. Apnoea occurred with K and E throughout the effective dosage range. SP caused apnoea only in doses in excess of those causing maximal vasodilation. P did not cause apnoea. These observations suggest that the SP-receptor mediating respiratory depression is of the SP-E type.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    PubMed

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  18. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma

    PubMed Central

    Beldi-Ferchiou, Asma; Lambert, Marion; Dogniaux, Stéphanie; Vély, Frédéric; Vivier, Eric; Olive, Daniel; Dupuy, Stéphanie; Levasseur, Frank; Zucman, David; Lebbé, Céleste; Sène, Damien; Hivroz, Claire; Caillat-Zucman, Sophie

    2016-01-01

    Programmed Death-1 (PD-1), an inhibitory receptor expressed by activated lymphocytes, is involved in regulating T- and B-cell responses. PD-1 and its ligands are exploited by a variety of cancers to facilitate tumor escape through PD-1-mediated functional exhaustion of effector T cells. Here, we report that PD-1 is upregulated on Natural Killer (NK) cells from patients with Kaposi sarcoma (KS). PD-1 was expressed in a sub-population of activated, mature CD56dimCD16pos NK cells with otherwise normal expression of NK surface receptors. PD-1pos NK cells from KS patients were hyporesponsive ex vivo following direct triggering of NKp30, NKp46 or CD16 activating receptors, or short stimulation with NK cell targets. PD-1pos NK cells failed to degranulate and release IFNγ, but exogenous IL-2 or IL-15 restored this defect. That PD-1 contributed to NK cell functional impairment and was not simply a marker of dysfunctional NK cells was confirmed in PD-1-transduced NKL cells. In vitro, PD-1 was induced at the surface of healthy control NK cells upon prolonged contact with cells expressing activating ligands, i.e. a condition mimicking persistent stimulation by tumor cells. Thus, PD-1 appears to plays a critical role in mediating NK cell exhaustion. The existence of this negative checkpoint fine-tuning NK activation highlights the possibility that manipulation of the PD-1 pathway may be a strategy for circumventing tumor escape not only from the T cell-, but also the NK-cell mediated immune surveillance. PMID:27662664

  19. The Hypothalamic-Pituitary-Adrenal Axis and Serotonin Metabolism in Individual Brain Nuclei of Mice with Genetic Disruption of the NK1 Receptor Exposed to Acute Stress.

    PubMed

    Culman, Juraj; Mühlenhoff, Stephan; Blume, Annegret; Hedderich, Jürgen; Lützen, Ulf; Hunt, Stephen P; Rupniak, Nadia M J; Zhao, Yi

    2018-06-15

    Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.

  20. Altered respiratory response to substance P and reduced NK1 receptor binding in the nucleus of the solitary tract of aged rats.

    PubMed

    Mazzone, S B; Geraghty, D P

    1999-04-24

    The respiratory response to microinjection of substance P (SP) into the commissural nucleus of the solitary tract (cNTS) and binding of [125I]-Bolton-Hunter SP ([125I]-BHSP) to brain stem NK1 receptors were compared in young and aged rats. Injection of SP (750 pmol) into the cNTS of young rats (2 months) increased tidal volume (VT) but had no effect on respiratory rate (f). In aged rats (19-21 months), injection of SP had no significant effect on f or VT. The NTS of aged rats displayed significantly lower specific [125I]-BHSP binding than young rats, indicating a reduction in the number in NK1 receptors. These findings show that the respiratory response to microinjection of SP into the cNTS of aged rats is severely blunted and that this phenomenon may be due to a decrease in the number of NK1 receptors in the NTS. Copyright 1999 Elsevier Science B.V.

  1. Cardiorespiratory action of opioid/tachykinin agonist peptide hybrid in anaesthetized rats: Transduction pathways.

    PubMed

    Wojciechowski, Piotr; Szereda-Przestaszewska, Małgorzata; Lipkowski, Andrzej Wojciech

    2017-09-05

    AWL3106 composed of opioid (dermorphin) and tachykinin (substance P 7-11 ) pharmacophores is a new compound with high analgesic potency and markedly reduced ability to induce tolerance and dependence. The present study aimed to determine the respiratory and cardiovascular responses evoked by this peptide in urethane-chloralose anaesthetized, spontaneously breathing rats in the presence or absence of vagal connection. Intravenous injection of AWL3106 at a dose of 0.3μmol/kg in intact rats resulted in apnoea lasting 5.1 ± 0.7s. Breathing that followed was of diminished frequency (F) and augmented tidal volume (V T ) with no significant impact on minute ventilation. AWL3106-challenge induced biphasic fall in arterial blood pressure with no effect on heart rate. Midcervical and supranodosal sectioning the vagal nerves prevented the occurrence of the apnoea and abrogated the post-AWL3106 reduction in F but failed to eliminate the increase in V T . Hypotensive response appeared to be less profound following supranodose vagotomy. NaloxoneHCl abolished solely the occurrence of apnoea. However additional blockade of tachykinin NK 1 receptors with SR140333 was required to abolish V T increase, deceleration of breathing and to markedly suppress AWL3106-induced hypotension. The present study shows that extravagally controlled stimulation of V T maintains fairly regular ventilation by levelling the bradypnoeic effects. Although the peptide showed no cardiac effects, hypotension occurring beyond the vagal loop may limit future therapeutic benefits of this chimeric compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Substance P receptors in brain stem respiratory centers of the rat: regulation of NK1 receptors by hypoxia.

    PubMed

    Mazzone, S B; Hinrichsen, C F; Geraghty, D P

    1997-09-01

    Substance P (SP) is a key neurotransmitter involved in the brain stem integration of carotid body chemoreceptor reflexes. In this study, the characteristics and location of SP receptors in the rat brain stem and their regulation by hypoxia were investigated using homogenate radioligand binding and quantitative autoradiography. Specific binding of [125I] Bolton-Hunter SP (BHSP) to brain stem homogenates was saturable (approximately 0.3 nM) and to a single class of high-affinity sites (K(d), 0.16 nM; maximum density of binding sites, 0.43 fmol/mg wet weight tissue). The order of potency of agonists for inhibition of BHSP binding was SP > [Sar9Met(O2)11]SP > neurokinin A > septide > neurokinin B > [Nle10]-neurokinin A(4-10) = senktide, and for nonpeptide antagonists, RP 67580 > CP-96,345 > RP 68651 = CP-96,344, consistent with binding to NK1 receptors. The effect of single and multiple, 5-min bouts of hypoxia (8.5% O2/91.5% N2) on BHSP binding was investigated using quantitative autoradiography. Binding sites were localized to the lateral, medial and commissural nucleus of the solitary tract (NTS), the hypoglossal nucleus, central gray and the spinal trigeminal tract and nucleus (Sp5 and nSp5, respectively). Five min after a single bout of hypoxia, the density of BHSP binding sites had decreased significantly (P < .05) in the medial NTS (-33%) and lateral NTS (-24%) when compared to normoxic controls. However, the normal receptor complement was restored within 60 min of the hypoxic challenge. In the Sp5, a significant decrease (P < .05) in binding was observed 5 min after hypoxia which was still apparent after 60 min. In contrast, the density of BHSP binding sites in the hypoglossal nucleus decreased slowly and was significantly lower (P < .05) than normoxic controls 60 min after hypoxia. Five min after repetitive hypoxia (3 x 5 min bouts), BHSP binding in the NTS was reduced by more than 40%. Studies in homogenates showed that the affinity of SP for BHSP binding

  3. Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy.

    PubMed

    Chu, Yaya; Flower, Allyson; Cairo, Mitchell S

    2016-01-01

    NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors and cells infected by viruses. The regulation of NK activation vs inhibition is regulated by the expression of a variety of NK receptors (NKRs) and specific NKRs' ligands expressed on their targets. However, factors limiting NK therapy include small numbers of active NK cells in unexpanded peripheral blood and lack of specific tumor targeting. Chimeric antigen receptors (CAR) usually include a single-chain Fv variable fragment from a monoclonal antibody, a transmembrane hinge region, and a signaling domain such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4 (CD244) endodimers. Redirecting NK cells with a CAR will circumvent the limitations of the lack of NK targeting specificity. This chapter focuses on the methods to expand human NK cells from peripheral blood by co-culturing with feeder cells and to modify the expanded NK cells efficiently with the in vitro transcribed CAR mRNA by electroporation and to test the functionality of the CAR-modified expanded NK cells for use in adoptive cellular immunotherapy.

  4. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists.

    PubMed

    Bošnjak, Snežana M; Gralla, Richard J; Schwartzberg, Lee

    2017-05-01

    Chemotherapy-induced nausea (CIN) has a significant negative impact on the quality of life of cancer patients. The use of 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists (RAs) has reduced the risk of vomiting, but (except for palonosetron) their effect on nausea, especially delayed nausea, is limited. This article reviews the role of NK 1 RAs when combined with 5-HT 3 RA-dexamethasone in CIN prophylaxis. Aprepitant has not shown consistent superiority over a two-drug (ondansetron-dexamethasone) combination in nausea control after cisplatin- or anthracycline-cyclophosphamide (AC)-based highly emetogenic chemotherapy (HEC). Recently, dexamethasone and dexamethasone-metoclopramide were demonstrated to be non-inferior to aprepitant and aprepitant-dexamethasone, respectively, for the control of delayed nausea after HEC (AC/cisplatin), and are now recognized in the guidelines. The potential impact of the new NK 1 RAs rolapitant and netupitant (oral fixed combination with palonosetron, as NEPA) in CIN prophylaxis is discussed. While the clinical significance of the effect on nausea of the rolapitant-granisetron-dexamethasone combination after cisplatin is not conclusive, rolapitant addition showed no improvement in nausea prophylaxis after AC or moderately emetogenic chemotherapy (MEC). NEPA was superior to palonosetron in the control of nausea after HEC (AC/cisplatin). Moreover, the efficacy of NEPA in nausea control was maintained over multiple cycles of HEC/MEC. Recently, NK 1 RAs have been challenged by olanzapine, with olanzapine showing superior efficacy in nausea prevention after HEC. Fixed antiemetic combinations (such as NEPA) or new antiemetics with a long half-life that may be given once per chemotherapy cycle (rolapitant or NEPA) may improve patient compliance with antiemetic treatment.

  5. Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea.

    PubMed

    Sekizawa, K; Tamaoki, J; Graf, P D; Basbaum, C B; Borson, D B; Nadel, J A

    1987-12-01

    To determine the roles of endogenous enkephalinase (EC.3.4.24.11) in regulating tachykinin-induced contraction of airway smooth muscle, the authors studied the effects of the enkephalinase inhibitor leucine-thiorphan on the contractile responses to substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) in isolated ferret tracheal smooth muscle segments. Leucine-thiorphan shifted, in concentration-dependent fashions, the dose-response curves to all tachykinins to lower concentrations. Leucine-thiorphan changed the rank order of tachykinin potency from NKA greater than SP greater than NKB to NKA = NKB greater than SP. Removal of the epithelium slightly enhanced the contractile responses to SP and NKA but not to NKB. Atropine shifted the dose-response curves of all tachykinins to higher concentrations. Each tachykinin increased the contractile response to electrical field stimulation (5 Hz, 20 sec of duration, 20 V) in a dose-dependent fashion. This effect was not altered by hexamethonium, indomethacin, BW755C or naloxone but was potentiated by leucine-thiorphan and inhibited by the tachykinin receptor antagonist (D-Pro2, D-Trp7,9)-SP and by atropine. Because tachykinins did not affect contractile responses to acetylcholine significantly, their effects were probably on presynaptic postganglionic nerves. Captopril, bestatin and leupeptin did not alter contractile responses, suggesting that angiotensin converting enzyme, aminopeptidases and serine proteinases did not modulate tachykinin-induced effects. Enkephalinase immunofluorescence was found in the smooth muscle and epithelium and confirmed the authors' finding of enkephalinase-like activity in the muscle. The results suggest that tracheal enkephalinase is an important modulator of tachykinin-induced effects.

  6. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors.

    PubMed

    Rahman, Wahida; Sikandar, Shafaq; Sikander, Shafaq; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2007-06-04

    Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.

  7. NK cells and their receptors in naive and rituximab-treated patients with anti-MAG polyneuropathy.

    PubMed

    Benedetti, Luana; Facco, Monica; Franciotta, Diego; Dalla Torre, Chiara; Campagnolo, Marta; Lucchetta, Marta; Boscaro, Elisa; Ermani, Mario; Del Sette, Massimo; Berno, Tamara; Candiotto, Laura; Zambello, Renato; Briani, Chiara

    2013-08-15

    Natural killer (NK) cells can bridge innate and acquired immunity, and play a role in autoimmunity. A few studies evaluated the distribution of NK cells and the expression of their receptors in chronic immune-mediated demyelinating polyneuropathies. We investigated NK cell distribution and NK cell receptor expression in 20 naïve patients with anti-MAG polyneuropathy (MAG-PN). Using flow cytometry, we analysed NK cells and a series of NK cell receptors in the peripheral blood of patients with MAG-PN, and, as controls, in patients with chronic inflammatory demyelinating peripheral polyradiculoneuropathy (CIDP) and in healthy subjects. Six MAG-PN patients were also tested after rituximab treatment. At baseline the percentage of NK cells did not differ among the groups. KIR2DL2 receptor expression in MAG-PN patients was higher, andCD94/NKG2A receptor expression in both MAG-PN and CIDP patients was lower than in healthy controls. These abnormalities did not correlate with any clinical or demographic variable. No modification was found after rituximab therapy. The data suggest that MAG-PN shows abnormalities in NK cell receptors that characterise other autoimmune diseases, and cannot help in differential diagnosis with CIDP. The impairment of the relevant CD94/NKG2A inhibitory pathway, which might play a central role in the development and perpetuation of MAG-PN, warrants further functional investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Tachykinin antagonists and capsaicin-induced contraction of the rat isolated urinary bladder: evidence for tachykinin-mediated cotransmission.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Santicioli, P.; Giuliani, S.

    1991-01-01

    1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1715797

  9. Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon

    PubMed Central

    Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth

    1999-01-01

    Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255

  10. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis

    PubMed Central

    2013-01-01

    Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The

  11. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis.

    PubMed

    Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Forsgren, Sture

    2013-04-12

    Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1-6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. The observations show an up-regulation of the tachykinin

  12. Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Lao, Lijun; Marvizón, Juan Carlos G.

    2010-01-01

    The contribution of CB1 receptors in the spinal cord to cannabinoid analgesia is still unclear. The objective of this study was to investigate the effect of CB1 receptors on substance P release from primary afferent terminals in the spinal cord. Substance P release was measured as NK1 receptor internalization in lamina I neurons. It was induced in spinal cord slices by dorsal root stimulation and in live rats by a noxious stimulus. In spinal cord slices, the CB1 receptor antagonists AM251, AM281 and rimonabant partially but potently inhibited NK1 receptor internalization induced by electrical stimulation of the dorsal root. This was due to an inhibition of substance P release and not of NK1 receptor internalization itself, because AM251 and AM281 did not inhibit NK1 receptor internalization induced by exogenous substance P. The CB1 receptor agonist ACEA increased NK1 receptor internalization evoked by dorsal root stimulation. The effects of AM251 and ACEA cancelled each other. In vivo, AM251 injected intrathecally decreased NK1 receptor internalization in spinal segments L5 and L6 induced by noxious hind paw clamp. Intrathecal AM251 also produced analgesia to radiant heat stimulation of the paw. The inhibition by AM251 of NK1 receptor internalization was reversed by antagonists of μ-opioid and GABAB receptors. This indicates that CB1 receptors facilitate substance P release by inhibiting the release of GABA and opioids next to primary afferent terminals, producing disinhibition. This results in a pronociceptive effect of CB1 receptors in the spinal cord. PMID:20074214

  13. NK-92 cell, another ideal carrier for chimeric antigen receptor.

    PubMed

    Wang, Wan-Ning; Zhou, Guang-Yu; Zhang, Wen-Long

    2017-08-01

    The remarkable clinical outcomes of the treatment for B-cell malignancies through the application of CD19 chimeric antigen receptor T (CAR-T) cells have made adoptive immunotherapy with genetically modified immune effector cells a hotspot in the field of antitumor. However, numerous toxicities of CAR-T cells have been identified. Thus, some studies have resorted to another cytotoxic cell, NK-92 cell, to reach for better efficacy with minimal toxicity. Preclinical studies have confirmed the safety and feasibility of the genetically modified NK-92 cells with highly specific cytotoxicity in vitro and in vivo. Therefore, it is expected that NK-92 cell becomes another ideal carrier for CAR for its unique advantages over primary NK cells, parental NK-92 cells and autologous T cells.

  14. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  15. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts.

    PubMed

    Zhang, Hanwen; Kanduluru, Ananda Kumar; Desai, Pooja; Ahad, Afruja; Carlin, Sean; Tandon, Nidhi; Weber, Wolfgang A; Low, Philip S

    2018-04-18

    Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64 Cu (or 67 Ga for in vitro studies) in the presence of CH 3 COONH 4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64 Cu and >5.0 GBq/μmol for 67 Ga. Both 64 Cu- and 67 Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [ 64 Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [ 64 Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [ 64 Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.

  16. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    PubMed

    Melki, Marie-Thérèse; Saïdi, Héla; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Gougeon, Marie-Lise

    2010-04-15

    Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process") at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV) become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV). The escape of DC(HIV) from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DC(HIV) cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV). Finally, we demonstrate that restoration of DC(HIV) susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific si

  17. THE AP-2 CLATHRIN ADAPTOR MEDIATES ENDOCYTOSIS OF AN INHIBITORY KILLER CELL Ig-LIKE RECEPTOR (KIR) IN HUMAN NK CELLS1

    PubMed Central

    Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.

    2014-01-01

    Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the μ2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/μ2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of μ2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755

  18. Constitutively polarized granules prime KHYG-1 NK cells.

    PubMed

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  19. Do Substance P and Neurokinin A Play Important Roles in the Control of LH Secretion in Ewes?

    PubMed Central

    Fergani, Chrysanthi; Mazzella, Leanne; Coolen, Lique M.; McCosh, Richard B.; Hardy, Steven L.; Newcomb, Nora; Grachev, Pasha; Lehman, Michael N.

    2016-01-01

    There is now general agreement that neurokinin B (NKB) acts via neurokinin-3-receptor (NK3R) to stimulate secretion of GnRH and LH in several species, including rats, mice, sheep, and humans. However, the roles of two other tachykinins, substance P (SP) and neurokinin A, which act primarily via NK1R and NK2R, respectively, are less clear. In rodents, these signaling pathways can stimulate LH release and substitute for NKB signaling; in humans, SP is colocalized with kisspeptin and NKB in the mediobasal hypothalamus. In this study, we examined the possible role of these tachykinins in control of the reproductive axis in sheep. Immunohistochemistry was used to describe the expression of SP and NK1R in the ovine diencephalon and determine whether these proteins are colocalized in kisspeptin or GnRH neurons. SP-containing cell bodies were largely confined to the arcuate nucleus, but NK1R-immunoreactivity was more widespread. However, there was very low coexpression of SP or NK1R in kisspeptin cells and none in GnRH neurons. We next determined the minimal effective dose of these three tachykinins that would stimulate LH secretion when administered into the third ventricle of ovary-intact anestrous sheep. A much lower dose of NKB (0.2 nmol) than of neurokinin A (2 nmol) or SP (10 nmol) consistently stimulated LH secretion. Moreover, the relative potency of these three neuropeptides parallels the relative selectivity of NK3R. Based on these anatomical and pharmacological data, we conclude that NKB-NK3R signaling is the primary pathway for the control of GnRH secretion by tachykinins in ewes. PMID:27704950

  20. Do Substance P and Neurokinin A Play Important Roles in the Control of LH Secretion in Ewes?

    PubMed

    Fergani, Chrysanthi; Mazzella, Leanne; Coolen, Lique M; McCosh, Richard B; Hardy, Steven L; Newcomb, Nora; Grachev, Pasha; Lehman, Michael N; Goodman, Robert L

    2016-12-01

    There is now general agreement that neurokinin B (NKB) acts via neurokinin-3-receptor (NK3R) to stimulate secretion of GnRH and LH in several species, including rats, mice, sheep, and humans. However, the roles of two other tachykinins, substance P (SP) and neurokinin A, which act primarily via NK1R and NK2R, respectively, are less clear. In rodents, these signaling pathways can stimulate LH release and substitute for NKB signaling; in humans, SP is colocalized with kisspeptin and NKB in the mediobasal hypothalamus. In this study, we examined the possible role of these tachykinins in control of the reproductive axis in sheep. Immunohistochemistry was used to describe the expression of SP and NK1R in the ovine diencephalon and determine whether these proteins are colocalized in kisspeptin or GnRH neurons. SP-containing cell bodies were largely confined to the arcuate nucleus, but NK1R-immunoreactivity was more widespread. However, there was very low coexpression of SP or NK1R in kisspeptin cells and none in GnRH neurons. We next determined the minimal effective dose of these three tachykinins that would stimulate LH secretion when administered into the third ventricle of ovary-intact anestrous sheep. A much lower dose of NKB (0.2 nmol) than of neurokinin A (2 nmol) or SP (10 nmol) consistently stimulated LH secretion. Moreover, the relative potency of these three neuropeptides parallels the relative selectivity of NK3R. Based on these anatomical and pharmacological data, we conclude that NKB-NK3R signaling is the primary pathway for the control of GnRH secretion by tachykinins in ewes.

  1. A CONSTITUTIVELY ACTIVE FORM OF NEUROKININ 1 RECEPTOR AND NEUROKININ 1 RECEPTOR-MEDIATED APOPTOSIS IN GLIOBLASTOMAS

    PubMed Central

    Akazawa, Toshimasa; Kwatra, Shawn G.; Goldsmith, Laura E.; Richardson, Mark D.; Cox, Elizabeth A.; Sampson, John H.; Kwatra, Madan M.

    2009-01-01

    Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P (SP) increases Akt phosphorylation by 2.5-fold, with an EC50 of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with SP reduces apoptosis by 53 ± 1% (P < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 ± 16 % (P < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase (PARP). Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and PI-3-kinase, a partial involvement of epidermal growth factor receptor (EGFR), and no involvement of MEK. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis. PMID:19519779

  2. Markers of nonselective and specific NK cell activation.

    PubMed

    Fogel, Leslie A; Sun, Michel M; Geurs, Theresa L; Carayannopoulos, Leonidas N; French, Anthony R

    2013-06-15

    NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.

  3. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    PubMed

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  4. Regulation of NK92-MI cell cytotoxicity by substance P.

    PubMed

    Fu, W X; Qin, B; Zhou, A P; Yu, Q Y; Huang, Q J; Liang, Z F

    2011-08-01

    The neuropeptide substance P (SP) can regulate a number of immunological functions in vitro and in vivo and may regulate natural killer (NK) cell activity. Here, we investigated whether SP has a role in regulating NK92-MI cell function in vitro, and how it influences NK cell activity. We found that SP dose dependently increased the cytotoxicity of NK92-MI cells and had a maximal effect at a concentration of 10(-12) and 10(-10) m. Furthermore, the expression of cytotoxic-associated molecules (perforin, granzyme) and activating receptor NKp46 [a member of natural cytotoxicity receptors (NCRs)] was observed to be upregulated by SP at optimal concentration, at which SP enhanced the cytotoxicity of NK92-MI cells. Neurokinin-1 receptor (NK-1R), a functional receptor of SP, was found on NK92-MI cells, and the observed effects of SP on NK92-MI cells could be more partially blocked by an NK-1R antagonist. Our data suggest that SP induces NK92-MI cell cytotoxicity by directly increasing the expression of cytotoxic granules and upregulates NK92-MI cell receptor-mediated functions indirectly. Thus, SP may regulate NK cell function mainly through NK-1R. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  5. Neutral endopeptidase inhibitor potentiates the tachykinin-induced increase in ciliary beat frequency in rabbit trachea.

    PubMed

    Kondo, M; Tamaoki, J; Takizawa, T

    1990-08-01

    We used cultured rabbit tracheal epithelium to determine the effect of mammalian-derived tachykinin on airway ciliary activity and its modulation by neutral endopeptidase EC 3.4.24.11 (NEP). Neurokinin A (NKA) caused dose-dependent increases in ciliary beat frequency (CBF), as measured by a photoelectric method, with the maximal increase from the baseline 15.7 +/- 1.7% (mean +/- SEM, p less than 0.01), whereas substance P (SP) had no effect. The NKA-induced increase in CBF was not inhibited by phentolamine, propranolol, or atropine, but it was abolished by the tachykinin antagonist [D-Pro2, D-Trp7,9]SP. Pretreatment of tissue with thiorphan (10(-5) M), a NEP inhibitor, had little effect on CBF responses to NKA; however, it significantly potentiated the responses to SP (14.9 +/- 3.0%, p less than 0.01). Other peptidase inhibitors, including captopril, bestatin, and leupeptin, did not alter the tachykinin-induced CBF response, suggesting that angiotensin converting enzyme, aminopeptidases, and serine proteinases do not modulate ciliary activity in response to tachykinins. These results suggest that NKA increases CBF by acting directly on tachykinin receptors and that NEP may play a role in modulating the tachykinin-induced stimulatory effects on CBF.

  6. Tachykinin substance P depletion by capsaicin exacerbates inflammatory response to sidestream cigarette smoke in rats.

    PubMed

    Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L

    2004-09-01

    To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.

  7. A decrease of regulatory T cells and altered expression of NK receptors are observed in subacute sclerosing panencephalitis.

    PubMed

    Yentur, Sibel P; Gurses, Candan; Demirbilek, Veysi; Adin-Cinar, Suzan; Kuru, Umit; Uysal, Serap; Yapici, Zuhal; Yilmaz, Gülden; Cokar, Ozlem; Onal, Emel; Gökyigit, Aysen; Saruhan-Direskeneli, Güher

    2014-12-01

    Subacute sclerosing panencephalitis (SSPE) is caused by a persistent measles virus infection. Regulatory mechanisms can be responsible for a failure of immunosurveillance in children with SSPE. In this study, peripheral blood cells of 71 patients with SSPE and 57 children with other diseases were compared phenotypically. The proportions of CD4(+), CD8(+) T, and NK cells were homogenous, whereas total CD3(+) T and Treg (CD4(+)CD25(+)CD152(+)) cells were decreased in patients with SSPE. The proportion of CD8(+) T cells expressing the inhibitory NKG2A(+) receptor was also decreased (1.7% ± 1.7% vs. 2.6% ± 1.9%, p = 0.007) in patients with SSPE, whereas the proportion of NK cells expressing activating NKG2C was increased compared with the control group (30.0% ± 17.3% vs. 22.2% ± 17.0%, p = 0.039). The decrease in the number of cells with regulatory phenotype, the lower presence of the inhibitory NK receptors on CD8(+) cells, and higher activating NK receptors on NK cells in SSPE indicate an upregulation of these cell types that favors their response. This state of active immune response may be caused by chronic stimulation of viral antigens leading to altered regulatory pathways.

  8. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells.

    PubMed

    Müller, Tina; Uherek, Christoph; Maki, Guitta; Chow, Kai Uwe; Schimpf, Annemarie; Klingemann, Hans-Georg; Tonn, Torsten; Wels, Winfried S

    2008-03-01

    Despite the clinical success of CD20-specific antibody rituximab, malignancies of B-cell origin continue to present a major clinical challenge, in part due to an inability of the antibody to activate antibody-dependent cell-mediated cytotoxicity (ADCC) in some patients, and development of resistance in others. Expression of chimeric antigen receptors in effector cells operative in ADCC might allow to bypass insufficient activation via FcgammaRIII and other resistance mechanisms that limit natural killer (NK)-cell activity. Here we have generated genetically modified NK cells carrying a chimeric antigen receptor that consists of a CD20-specific scFv antibody fragment, via a flexible hinge region connected to the CD3zeta chain as a signaling moiety. As effector cells we employed continuously growing, clinically applicable human NK-92 cells. While activity of the retargeted NK-92 against CD20-negative targets remained unchanged, the gene modified NK cells displayed markedly enhanced cytotoxicity toward NK-sensitive CD20 expressing cells. Importantly, in contrast to parental NK-92, CD20-specific NK cells efficiently lysed CD20 expressing but otherwise NK-resistant established and primary lymphoma and leukemia cells, demonstrating that this strategy can overcome NK-cell resistance and might be suitable for the development of effective cell-based therapeutics for the treatment of B-cell malignancies.

  9. Electrophysiological effects of tachykinin analogues on ganglion cell activity in cyprinid fish retina.

    PubMed

    Downing, J E; Djamgoź, M B

    1993-02-01

    Electrical spike activity of ganglion cells has been recorded extracellularly in the teleost (roach) retina, and effects of a variety of tachykinins studied at a working concentration of 1 microM. Application of substance P mostly caused a slow and prolonged increase in background activity. In contrast, the response to carbachol was very brisk and short-lasting. Substance P and physalaemin predominantly induced an enhancement of 'On' and 'Off' components of light-evoked responses, whilst eledoisin and neurokinin A were mostly inhibitory. All effects were independent of chromatic and spatial aspects of the responses. Interestingly, in the presence of a tachykinin antagonist, 'Spantide' [D-Arg1,D-Pro2, D-Trp7.9, Leu11]SP, the profile of the effect of substance P reversed, inhibitory actions becoming much more common. Taken together, the results suggest that a tachykinin system utilising two subtypes of the receptor may be active in the roach retina and these may be involved in differential control of visual sensitivity.

  10. NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation

    PubMed Central

    Yang, Meixiang; Chen, Shasha; Du, Juan; He, Junming; Wang, Yuande; Li, Zehua; Liu, Guangao; Peng, Wanwen; Zeng, Xiaokang; Li, Dan; Xu, Panglian; Guo, Wei; Chang, Zai; Wang, Song; Tian, Zhigang; Dong, Zhongjun

    2016-01-01

    Activation of metabolic signalling by IL-15 is required for natural killer (NK) cell development. Here we show that Tsc1, a repressor of mTOR, is dispensable for the terminal maturation, survival and function of NK cells but is critical to restrict exhaustive proliferation of immature NK cells and activation downstream of IL-15 during NK cell development. Tsc1 is expressed in immature NK cells and is upregulated by IL-15. Haematopoietic-specific deletion of Tsc1 causes a marked decrease in the number of NK cells and compromises rejection of ‘missing-self' haematopoietic tumours and allogeneic bone marrow. The residual Tsc1-null NK cells display activated, pro-apoptotic phenotype and elevated mTORC1 activity. Deletion of Raptor, a component of mTORC1, largely reverses these defects. Tsc1-deficient NK cells express increased levels of T-bet and downregulate Eomes and CD122, a subunit of IL-15 receptor. These results reveal a role for Tsc1-dependent inhibition of mTORC1 activation during immature NK cell development. PMID:27601261

  11. Tissue-Specific Education of Decidual NK Cells

    PubMed Central

    Xiong, Shiqiu; Kennedy, Philippa R.; Gardner, Lucy; Farrell, Lydia E.; Chazara, Olympe; Ivarsson, Martin A.; Hiby, Susan E.; Colucci, Francesco; Moffett, Ashley

    2015-01-01

    During human pregnancy, fetal trophoblast cells invade the decidua and remodel maternal spiral arteries to establish adequate nutrition during gestation. Tissue NK cells in the decidua (dNK) express inhibitory NK receptors (iNKR) that recognize allogeneic HLA-C molecules on trophoblast. Where this results in excessive dNK inhibition, the risk of pre-eclampsia or growth restriction is increased. However, the role of maternal, self–HLA-C in regulating dNK responsiveness is unknown. We investigated how the expression and function of five iNKR in dNK is influenced by maternal HLA-C. In dNK isolated from women who have HLA-C alleles that carry a C2 epitope, there is decreased expression frequency of the cognate receptor, KIR2DL1. In contrast, women with HLA-C alleles bearing a C1 epitope have increased frequency of the corresponding receptor, KIR2DL3. Maternal HLA-C had no significant effect on KIR2DL1 or KIR2DL3 in peripheral blood NK cells (pbNK). This resulted in a very different KIR repertoire for dNK capable of binding C1 or C2 epitopes compared with pbNK. We also show that, although maternal KIR2DL1 binding to C2 epitope educates dNK cells to acquire functional competence, the effects of other iNKR on dNK responsiveness are quite different from those in pbNK. This provides a basis for understanding how dNK responses to allogeneic trophoblast affect the outcome of pregnancy. Our findings suggest that the mechanisms that determine the repertoire of iNKR and the effect of self-MHC on NK education may differ in tissue NK cells compared with pbNK. PMID:26320253

  12. Activation-specific metabolic requirements for NK cell IFN-γ production1

    PubMed Central

    Keppel, Molly P.; Topcagic, Nermina; Mah, Annelise Y.; Vogel, Tiphanie P.; Cooper, Megan A.

    2014-01-01

    There has been increasing recognition of the importance of cellular metabolism and metabolic substrates for the function and differentiation of immune cells. Here, for the first time, we investigate the metabolic requirements for production of IFN-γ by freshly isolated NK cells. Primary murine NK cells mainly utilize mitochondrial oxidative phosphorylation at rest and with short-term activation. Remarkably, we discovered significant differences in the metabolic requirements of murine NK cell IFN-γ production depending upon the activation signal. Stimulation of NK cell IFN-γ production was independent of glycolysis or mitochondrial oxidative phosphorylation when cells were activated with IL-12+IL-18. By contrast, stimulation via activating NK receptors required glucose-driven oxidative phosphorylation. Prolonged treatment with high-dose, but not low dose, IL-15 eliminated the metabolic requirement for receptor stimulation. In summary, this study demonstrates that metabolism provides an essential second signal for induction of IFN-γ production by activating NK cell receptors that can be reversed with prolonged high-dose IL-15 treatment. PMID:25595780

  13. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    PubMed Central

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  14. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction.

    PubMed

    Mathew, Stephen O; Chaudhary, Pankaj; Powers, Sheila B; Vishwanatha, Jamboor K; Mathew, Porunelloor A

    2016-10-18

    Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.

  15. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells.

    PubMed

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A; Yang, Jay; Emala, Charles W

    2008-03-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.

  16. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection.

    PubMed

    Lee, Seung-Hwan; Kim, Kwang-Sin; Fodil-Cornu, Nassima; Vidal, Silvia M; Biron, Christine A

    2009-09-28

    Natural killer (NK) cells have the potential to deliver both direct antimicrobial effects and regulate adaptive immune responses, but NK cell yields have been reported to vary greatly during different viral infections. Activating receptors, including the Ly49H molecule recognizing mouse cytomegalovirus (MCMV), can stimulate NK cell expansion. To define Ly49H's role in supporting NK cell proliferation and maintenance under conditions of uncontrolled viral infection, experiments were performed in Ly49h(-/-), perforin 1 (Prf1)(-/-), and wild-type (wt) B6 mice. NK cell numbers were similar in uninfected mice, but relative to responses in MCMV-infected wt mice, NK cell yields declined in the absence of Ly49h and increased in the absence of Prf1, with high rates of proliferation and Ly49H expression on nearly all cells. The expansion was abolished in mice deficient for both Ly49h and Prf1 (Ly49h(-/-)Prf1(-/-)), and negative consequences for survival were revealed. The Ly49H-dependent protection mechanism delivered in the absence of Prf1 was a result of interleukin 10 production, by the sustained NK cells, to regulate the magnitude of CD8 T cell responses. Thus, the studies demonstrate a previously unappreciated critical role for activating receptors in keeping NK cells present during viral infection to regulate adaptive immune responses.

  17. Viral antigen mediated NKp46 activation of NK cells results in tumor rejection via NK-DC crosstalk

    PubMed Central

    Chinnery, Fay; King, Catherine A.; Elliott, Tim; Bateman, Andrew R.; James, Edward

    2012-01-01

    Natural killer (NK) cells play a critical role in antitumor immunity, their activation being regulated through NK cell receptors. Although the endogenous ligands for these receptors are largely unknown, viral ligands have been identified. We investigated the ability of an activating NK receptor ligand derived from the mumps virus, haemagglutinin-neuraminidase (HN) to enhance NK activation against tumor cells. HN-expressing B16.OVA tumor cells induced stronger activation of NK cells compared with B16.OVA cells and also promoted dendritic cell (DC) activation toward a DC1 phenotype, in vitro. Moreover, incubation of DCs, NK cells and HN-expressing B16-OVA cells further enhanced NK cell activation through the NK-DC crosstalk, in a cell-to-cell contact- and IL-12-dependent fashion. Immunization of mice with HN-expressing B16-OVA cells resulted in > 85% survival rate after subsequent challenge with parental B16 or B16.OVA tumor cells. Tumor rejection was dependent on both NK and CD8+ T cells but not on CD4+ T cells, demonstrating induction of an effective adaptive immune response through innate immune cell activation. Our data indicate the potential of using robust NK cell activation, which through the NK-DC crosstalk stimulates effective antitumor responses, providing an alternate vaccine strategy. PMID:23162755

  18. The behavioural response of mice lacking NK1 receptors to guanfacine resembles its clinical profile in treatment of ADHD

    PubMed Central

    Pillidge, Katharine; Porter, Ashley J; Dudley, Julia A; Tsai, Yuan-Chen; Heal, David J; Stanford, S Clare

    2014-01-01

    Background and Purpose Mice with functional ablation of substance P-preferring neurokinin-1 receptors (NK1R−/− mice) display behavioural abnormalities resembling those in attention deficit hyperactivity disorder (ADHD). Here, we investigated whether the ADHD treatment, guanfacine, alleviated the hyperactivity and impulsivity/inattention displayed by NK1R−/− mice in the light/dark exploration box (LDEB) and 5-choice serial reaction–time task (5-CSRTT), respectively. Following reports of co-morbid anxiety in ADHD, we also investigated effects of guanfacine on anxiety-like behaviour displayed by NK1R−/− and wild-type (WT) mice in the elevated plus maze (EPM). Experimental Approach Mice were treated with guanfacine (0.1, 0.3 or 1.0 mg·kg−1, i.p.), vehicle or no injection and tested in the 5-CSRTT or the LDEB. Only the lowest dose of guanfacine was used in the EPM assays. Key Results In the 5-CSRTT, a low dose of guanfacine (0.1 mg·kg−1) increased attention in NK1R−/− mice, but not in WT mice. This dose did not affect the total number of trials completed, latencies to respond or locomotor activity in the LDEB. Impulsivity was decreased by the high dose (1.0 mg·kg−1) of guanfacine, but this was evident in both genotypes and is likely to be secondary to a generalized blunting of behaviour. Although the NK1R−/− mice displayed marked anxiety-like behaviour, guanfacine did not affect the behaviour of either genotype in the EPM. Conclusions and Implications This evidence that guanfacine improves attention at a dose that did not affect arousal or emotionality supports our proposal that NK1R−/− mice express an attention deficit resembling that of ADHD patients. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:25074741

  19. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Rünzi, Anna; Kuhlmann, Tanja; Posevitz-Fejfár, Anita; Schwab, Nicholas; Schneider-Hohendorf, Tilman; Herich, Sebastian; Held, Kathrin; Konjević, Matea; Hartwig, Marvin; Dornmair, Klaus; Hohlfeld, Reinhard; Ziemssen, Tjalf; Klotz, Luisa; Meuth, Sven G.; Wiendl, Heinz

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood–brain barrier, CD56bright NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4+ T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4+ T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor’s ligand CD155 on CD4+ T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4+ T cells and the cytolytic activity of NK cells. PMID:27162345

  20. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity.

    PubMed

    Woll, Petter S; Martin, Colin H; Miller, Jeffrey S; Kaufman, Dan S

    2005-10-15

    Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

  1. Behavioural effects of tachykinins and related peptides.

    PubMed

    Elliott, P J; Iversen, S D

    1986-08-27

    Substance P (SP) and related tachykinins administered either intracerebroventricularly or directly into the ventral tegmental area of the mesencephalon of rat brain caused increased locomotor activity, grooming behaviour and wet dog shakes. Kassinin, eledoisin, neurokinin A and DiMe-C7, agonists with some selectivity for the SP-E-receptor elicited the greatest locomotor activity and wet dog shake responses, whereas SP and physalaemin which are more selective for the SP-P-receptor were most effective in eliciting the grooming response.

  2. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    PubMed

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  3. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses.

    PubMed

    Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H

    2010-12-01

    Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.

  4. Eledoisin and Kassinin, but not Enterokassinin, stimulate ion transport in frog skin.

    PubMed

    Lippe, Claudio; Bellantuono, Vito; Ardizzone, Concetta; Cassano, Giuseppe

    2004-11-01

    In frog skin, tachykinins stimulate the ion transport, estimated by measuring the short-circuit current (SCC) value, by interacting with NK1-like receptors. In this paper we show that Kassinin (NK2 preferring in mammals) increases the SCC, while Enterokassinin has no effect. Therefore, either 2 Pro residues or 1 Pro and 1 basic amino acid must be present in the part exceeding the C-terminal pentapeptide. Eledoisin (NK3 preferring in mammals) stimulation of SCC is reduced by CP99994 and SR48968 (NK1 and NK2 antagonists) and not affected by SB222200 (NK3 antagonist). None of the three antagonists affects Kassinin stimulation of SCC.

  5. Influence of human cytomegalovirus infection on the NK cell receptor repertoire in children.

    PubMed

    Monsiváis-Urenda, Adriana; Noyola-Cherpitel, Daniel; Hernández-Salinas, Alba; García-Sepúlveda, Christian; Romo, Neus; Baranda, Lourdes; López-Botet, Miguel; González-Amaro, Roberto

    2010-05-01

    Human cytomegalovirus (hCMV) infection is usually asymptomatic but may cause disease in immunocompromised hosts. It has been reported that hCMV infection may shape the NK cell receptor (NKR) repertoire in adult individuals, promoting a variable expansion of the CD94/NKG2C+ NK cell subset. We explored the possible relationship between this viral infection and the expression pattern of different NKR including CD94/NKG2C, CD94/NKG2A, immunoglobulin-like transcript 2 (ILT2, CD85j), KIR2DL1/2DS1, KIR3DL1, and CD161 in peripheral blood lymphocytes from healthy children, seropositive (n=21) and seronegative (n=20) for hCMV. Consistent with previous observations in adults, a positive serology for hCMV was associated with increased numbers of NKG2C+ NK and T cells as well as with ILT2+ T lymphocytes. Moreover, the proportions of CD161+ and NKG2C+CD56-CD3- NK cells also tended to be increased in hCMV+ individuals. Excretion of the virus was associated with higher proportions of NKG2C+ NK cells. Altogether, these data reveal that hCMV may have a profound influence on the NKR repertoire in early childhood.

  6. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  7. Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor.

    PubMed

    Verhein, Kirsten C; Hazari, Mehdi S; Moulton, Bart C; Jacoby, Isabella W; Jacoby, David B; Fryer, Allison D

    2011-02-01

    Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.

  8. Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor

    PubMed Central

    Verhein, Kirsten C.; Hazari, Mehdi S.; Moulton, Bart C.; Jacoby, Isabella W.; Jacoby, David B.

    2011-01-01

    Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M2 muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK1 and NK2 receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK2 receptors was independent of ozone, the NK1 receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK1 receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone. PMID:21056958

  9. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to changemore » BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and

  10. Role of tachykinins in airway responses to ozone in rats.

    PubMed

    Takebayashi, T; Abraham, J; Murthy, G G; Lilly, C; Rodger, I; Shore, S A

    1998-08-01

    Previous studies that used neonatal capsaicin (Cap) treatment to ablate C fibers indicate that C fibers act to inhibit lung damage and airway hyperresponsiveness after ozone (O3) exposure in rats. The purpose of this study was to determine 1) the role of tachykinins in these protective effects and 2) whether differences in minute ventilation (VE) during O3 exposure might account for the effect of Cap. In the first study, male Sprague-Dawley rats were exposed to 1 part/million O3 or air for 3 h. Four hours later, a bronchoalveolar lavage (BAL) was performed or airway responsiveness was measured. Rats were treated with CP-99994 and SR-48968, selective neurokinin-1- and -2-receptor antagonists, respectively, or with vehicle (Veh). O3 caused an increase in the number of neutrophils recovered from BAL fluid in both the Veh-treated and tachykinin-receptor antagonist (TKRA)-treated rats, but the number of neutrophils was approximately twofold greater in the TKRA-treated rats. In contrast, TKRA treatment had no effect on baseline pulmonary mechanics or airway responsiveness. After O3 exposure, the number of neutrophils in BAL fluid was also greater in Cap- than in Veh-treated rats. O3 reduced VE in both Veh- and Cap-treated rats, but the response was greater (reduction of 44.7 +/- 3.7 vs. 27.8 +/- 6.8%) and occurred earlier (10 vs. 70 min) in Cap- than in Veh-treated rats (P < 0.02). These results suggest that tachykinins mediate protective effects of C fibers against O3-induced lung inflammation. The results also indicate that the more pronounced effect of O3 on BAL neutrophils in Cap-treated rats is not the result of a greater inhaled dose of O3 resulting from greater VE.

  11. Prenatal Nicotinic Exposure Upregulates Pulmonary C-fiber NK1R Expression to Prolong Pulmonary C-fiber-Mediated Apneic Response

    PubMed Central

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2015-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA1 receptor, ADA1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA1R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChRs or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. PMID:26524655

  12. NK Cell-derived Exosomes From NK Cells Previously Exposed to Neuroblastoma Cells Augment the Antitumor Activity of Cytokine-activated NK Cells.

    PubMed

    Shoae-Hassani, Alireza; Hamidieh, Amir Ali; Behfar, Maryam; Mohseni, Rashin; Mortazavi-Tabatabaei, Seyed A; Asgharzadeh, Shahab

    2017-09-01

    Immune cell-derived exosomes can increase immunity against tumors. In contrast, tumor-derived exosomes can reduce the immunity and can change the tumor microenvironment to further develop and provide metastasis. These effects take place by an alteration in the innate and adaptive immune cell functions. In this experiment, we studied the natural killer (NK) cells' effectiveness on tumor cells after expansion and thereafter incubated it with exosomes. The exosomes were derived from 2 populations of NK cells: (1) naive NK cells and, (2) NK cells previously exposed to neuroblastoma (NB) cells. Moreover, we have studied the NB-derived exosomes on NK cell function. The molecular load of the characterized exosomes (by means of nanoparticle-tracking analysis, flow cytometry, scanning electron microscopy, and western blot) from NK cells exposed to the NB cell revealed their expression of natural killer cell receptors in addition to CD56, NKG2D, and KIR2DL2 receptors. These exosomes were used to treat NK cells and thereafter administered to NB tumor cells both in vitro and in vivo. Our results showed some kind of NK cells' education by the exosomes. This education from NK cells previously exposed to NB cell-derived exosomes caused efficient and greater cytotoxicity against NB tumors, but NB-derived exosomes act as tumor promoters by providing a tumor supporting niche. Hence, this method of preparing the exosomes has a dramatic effect on activation of anti-NK cells against NB cells.

  13. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells

    PubMed Central

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A.; Yang, Jay; Emala, Charles W.

    2013-01-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase. PMID:18203813

  14. A novel activity for substance P: stimulation of peroxisome proliferator-activated receptor-γ protein expression in human monocytes and macrophages

    PubMed Central

    Amoruso, A; Bardelli, C; Gunella, G; Ribichini, F; Brunelleschi, S

    2008-01-01

    Background and purpose: Substance P (SP) and peroxisome proliferator-activated receptor-γ (PPAR-γ) play important roles in different inflammatory conditions and are both expressed in human monocytes and macrophages. However, it is not known whether or not they interact. This study was undertaken to evaluate the effects of SP on PPAR-γ protein expression in monocytes and macrophages (MDMs: monocyte-derived macrophages) from healthy smokers and non-smokers. Experimental approach: PPAR-γ protein was detected by western blot and quantified by calculating the ratio between PPAR-γ and β-actin protein expression. Constitutive tachykinin NK1 receptor expression in monocytes and MDMs from healthy smokers and non-smokers was evaluated by western blot. Cytokine release was evaluated by ELISA. Key results: In the concentration range 10−10–10−6 M, SP stimulated PPAR-γ protein expression in monocytes and MDMs, being more effective in cells from healthy smokers. Moreover, in these cells there was a constitutively increased expression of NK1 receptors. SP-induced expression of the PPAR-γ protein was receptor-mediated, as it was reproduced by the NK1 selective agonist [Sar9Met(O2)11]SP and reversed by the competitive NK1 antagonist GR71251. SP-induced maximal effects were similar to those evoked by 15-deoxy-Δ12,14-prostaglandin J2; an endogenous PPAR-γ agonist, and were significantly reduced by a PPAR-γ antagonist. NK1 and PPAR-γ agonists exerted opposite effects on TNF-α release from monocytes and MDMs. Conclusions and implications: Enhancement of PPAR-γ protein expression represents a novel activity for SP, which could contribute to a range of chronic inflammatory disorders. PMID:18278062

  15. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor

  16. Substance P–saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity

    PubMed Central

    Nattie, Eugene E; Li, Aihua

    2002-01-01

    All medullary central chemoreceptor sites contain neurokinin-1 receptor immunoreactivity (NK1R-ir). We ask if NK1R-ir neurons and processes are involved in chemoreception. At one site, the retrotrapezoid nucleus/parapyramidal region (RTN/Ppy), we injected a substance P–saporin conjugate (SP-SAP; 0.1 pmol in 100 nl) to kill NK1R-ir neurons specifically, or SAP alone as a control. We made measurements for 15 days after the injections in two groups of rats. In group 1, with unilateral injections made in the awake state via a pre-implanted guide cannula, we compared responses within rats using initial baseline data. In group 2, with bilateral injections made under anaesthesia at surgery, we compared responses between SP-SAP- and SAP-treated rats. SP-SAP treatment reduced the volume of the RTN/Ppy region that contained NK1R-ir neuronal somata and processes by 44 % (group 1) and by 47 and 40 % on each side, respectively (group 2). Ventilation () and tidal volume (VT) were decreased during air breathing in sleep and wakefulness (group 2; P < 0.001; two-way ANOVA) and Pa,CO2 was increased (group 2; P < 0.05; Student's t test). When rats breathed an air mixture containing 7 % CO2 during sleep and wakefulness, and VT were lower (groups 1 and 2; P < 0.001; ANOVA) and the Δ in air containing 7 % CO2 compared to air was decreased by 28-30 % (group 1) and 17-22 % (group 2). SP-SAP-treated rats also slept less during air breathing. We conclude that neurons with NK1R-ir somata or processes in the RTN/Ppy region are either chemosensitive or they modulate chemosensitivity. They also provide a tonic drive to breathe and may affect arousal. PMID:12381830

  17. Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity.

    PubMed

    Nattie, Eugene E; Li, Aihua

    2002-10-15

    All medullary central chemoreceptor sites contain neurokinin-1 receptor immunoreactivity (NK1R-ir). We ask if NK1R-ir neurons and processes are involved in chemoreception. At one site, the retrotrapezoid nucleus/parapyramidal region (RTN/Ppy), we injected a substance P-saporin conjugate (SP-SAP; 0.1 pmol in 100 nl) to kill NK1R-ir neurons specifically, or SAP alone as a control. We made measurements for 15 days after the injections in two groups of rats. In group 1, with unilateral injections made in the awake state via a pre-implanted guide cannula, we compared responses within rats using initial baseline data. In group 2, with bilateral injections made under anaesthesia at surgery, we compared responses between SP-SAP- and SAP-treated rats. SP-SAP treatment reduced the volume of the RTN/Ppy region that contained NK1R-ir neuronal somata and processes by 44 % (group 1) and by 47 and 40 % on each side, respectively (group 2). Ventilation (.V(E)) and tidal volume (V(T)) were decreased during air breathing in sleep and wakefulness (group 2; P < 0.001; two-way ANOVA) and P(a,CO2) was increased (group 2; P < 0.05; Student's t test). When rats breathed an air mixture containing 7 % CO(2) during sleep and wakefulness, .V(E) and V(T) were lower (groups 1 and 2; P < 0.001; ANOVA) and the Delta.V(E) in air containing 7 % CO(2) compared to air was decreased by 28-30 % (group 1) and 17-22 % (group 2). SP-SAP-treated rats also slept less during air breathing. We conclude that neurons with NK1R-ir somata or processes in the RTN/Ppy region are either chemosensitive or they modulate chemosensitivity. They also provide a tonic drive to breathe and may affect arousal.

  18. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  19. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor

    PubMed Central

    Murphy, Jane E.; Roosterman, Dirk; Cottrell, Graeme S.; Padilla, Benjamin E.; Feld, Micha; Brand, Eva; Cedron, Wendy J.; Steinhoff, Martin

    2011-01-01

    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK1R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK1R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca2+ signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK1R. SP induced association of β-arrestin1 and PP2A with noninternalized NK1R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK1R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK1R with PP2A. Resensitization of NK1R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK1R and mediates resensitization. PP2A interaction with NK1R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK1R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs. PMID:21795521

  20. The contractile effect of anandamide in the guinea-pig small intestine is mediated by prostanoids but not TRPV1 receptors or capsaicin-sensitive nerves.

    PubMed

    Dékány, András; Benko, Rita; Szombati, Veronika; Bartho, Lorand

    2013-05-01

    Although exogenous and endogenous cannabinoid receptor agonists have well-documented inhibitory effects on gastrointestinal motility, a TRPV1 receptor-mediated excitatory action of anandamide (arachidonoyl ethanolamide, AEA) in the guinea-pig ileum strip has also been described. We used in vitro capsaicin desensitization for assessing the possible participation of sensory neurons in the contractile effect of anandamide on the guinea-pig whole ileum, as well as autonomic drugs and a cyclooxygenase inhibitor for characterizing this response. Isolated organ experiments were used with isotonic recording. Contractions induced by anandamide (1 or 10 μM) were strongly inhibited by tetrodotoxin, indomethacin or atropine plus a tachykinin NK(1) receptor antagonist, but weakly to moderately reduced by atropine alone and partly diminished by the fatty acid amide hydrolase inhibitor URB 597. Neither capsaicin pre-treatment nor the TRPV1 receptor antagonist BCTC, the ganglionic blocking drug hexamethonium or cannabinoid (CB1 or CB2 ) receptor antagonists, influenced the effect of anandamide. It is concluded that the capsaicin-insensitive, neuronal excitatory effect of anandamide in the intestine is most probably mediated by cyclooxygenase products. Such a mechanism may also play a role at other sites in the mammalian body. © 2012 Nordic Pharmacological Society. Published by Blackwell Publishing Ltd.

  1. Chemokine Receptor Expression on Normal Blood CD56+ NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population

    PubMed Central

    Queirós, Maria Luís; Gonçalves, Marta; Fonseca, Sónia; Moura, João

    2015-01-01

    Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56+low CD16+ and CD56+high  CD16−/+low NK-cells. Conventional CD56+low and CD56+high NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56+low NK-cells are mainly CXCR1/CXCR2+ and CXCR3/CCR5−/+, whereas mostly CD56+high NK-cells are CXCR1/CXCR2− and CXCR3/CCR5+. Both NK-cell subsets have variable CXCR4 expression and are CCR4− and CCR6−. The CKR repertoire of the CD56+low NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56+high NK-cells mimics that of Th1+ T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56+int NK-cells. These NK-cells are CXCR3/CCR5+, they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57− and CD158a−. In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56+high and CD56+low NK-cells populations. PMID:26543875

  2. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody.

    PubMed

    Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey

    2017-08-01

    NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.

  3. Cardiovascular and behavioural effects of centrally administered neuropeptide K in the rat: receptor characterization.

    PubMed Central

    Prat, A.; Picard, P.; Couture, R.

    1994-01-01

    1. The cardiovascular and behavioural responses to intracerebroventricularly (i.c.v.) administered neuropeptide K (NPK) were studied in conscious rats. The central effects of NPK were characterized by pretreatment (i.c.v.) with selective antagonists for the NK1 ((+/-)-CP 96345 and RP 67580), NK2 (SR 48968) and NK3 (R 487) receptors. 2. NPK (10-65 pmol) induced tachycardia and dose-dependent increases of mean arterial blood pressure. The cardiovascular responses reached a maximum within 3 min post-injection and lasted for more than 1 h. Concurrently, NPK produced dose-dependent increases of face washing, head scratching, grooming, walking and wet dog shakes. 3. A desensitization of most of the behavioural responses (except head scratching) but not of the cardiovascular response was shown when two consecutive injections of 25 pmol NPK were given 24 h apart. 4. Both the cardiovascular and behavioural responses (except the head scratching) to 25 pmol NPK were blocked by pre-administration (i.c.v.) of 6.5 nmol (+/-)-CP 96345 or RP 67580 given 5 min earlier. No inhibition of NPK responses was observed when 6.5 nmol SR 48968 or R 487 were used in a similar study. Additionally, NPK effects were significantly reduced 24 h after the prior injection of (+/-)-CP 96345 but not of RP 67580. 5. These results support the involvement of NK1 receptors in the cardiovascular and behavioural effects of i.c.v. NPK. Thus, this peptide may play a putative role in central cardiovascular regulation as it is the most potent endogenous tachykinin described centrally, to date. PMID:7518305

  4. Development of novel neurokinin 3 receptor (NK3R) selective agonists with resistance to proteolytic degradation.

    PubMed

    Misu, Ryosuke; Oishi, Shinya; Yamada, Ai; Yamamura, Takashi; Matsuda, Fuko; Yamamoto, Koki; Noguchi, Taro; Ohno, Hiroaki; Okamura, Hiroaki; Ohkura, Satoshi; Fujii, Nobutaka

    2014-10-23

    Neurokinin B (NKB) regulates the release of gonadotropin-releasing hormone (GnRH) via activation of the neurokinin-3 receptor (NK3R). We evaluated the biological stability of NK3R selective agonists to develop novel NK3R agonists to regulate reproductive functions. On the basis of degradation profiles, several peptidomimetic derivatives were designed. The modification of senktide with (E)-alkene dipeptide isostere generated a novel potent NK3R agonist with high stability and prolonged bioactivity.

  5. Receptor Binding Sites for Substance P, but not Substance K or Neuromedin K, are Expressed in High Concentrations by Arterioles, Venules, and Lymph Nodules in Surgical Specimens Obtained from Patients with Ulcerative Colitis and Crohn Disease

    NASA Astrophysics Data System (ADS)

    Mantyh, Christopher R.; Gates, Troy S.; Zimmerman, Robert P.; Welton, Mark L.; Passaro, Edward P.; Vigna, Steven R.; Maggio, John E.; Kruger, Lawrence; Mantyh, Patrick W.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides [substance P (SP), substance K (SK), and neuromedin K (NK)] play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. Surgical specimens of colon were obtained from patients with ulcerative colitis (n = 4) and Crohn disease (n = 4). Normal tissue was obtained from uninvolved areas of extensive resections for carcinoma (n = 6). In all cases, specimens were obtained <5 min after removal to minimize influences associated with degradation artifacts and were processed for quantitative receptor autoradiography by using 125I-labeled Bolton--Hunter conjugates of NK, SK, and SP. In the normal colon a low concentration of SP receptor binding sites is expressed by submucosal arterioles and venules and a moderate concentration is expressed by the external circular muscle, whereas SK receptor binding sites are expressed in low concentrations by the external circular and longitudinal muscle. In contrast, specific NK binding sites were not observed in any area of the human colon. In colon tissue obtained from ulcerative colitis and Crohn disease patients, however, very high concentrations of SP receptor binding sites are expressed by arterioles and venules located in the submucosa, muscularis mucosa, external circular muscle, external longitudinal muscle, and serosa. In addition, very high concentrations of SP receptor binding sites are expressed within the germinal center of lymph nodules, whereas the concentrations of SP and SK binding sites expressed by the external muscle layers are not altered significantly. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations (1000-2000 times normal) by cells

  6. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor

    PubMed Central

    Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.

    2008-01-01

    The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853

  7. CGRP potentiates excitatory transmission to the circular muscle of guinea-pig colon.

    PubMed

    Maggi, C A; Giuliani, S; Santicioli, P

    1997-04-30

    We aimed to assess whether calcitonin gene-related peptide (CGRP) can modulate the release of tachykinins which are the main nonadrenergic noncholinergic (NANC) excitatory transmitters to the circular muscle of the guinea-pig proximal colon. In organ bath experiments, electrical field stimulation (EFS) in the presence of atropine (1 microM) and guanethidine (3 microM) evoked twitch phasic NANC contractions which were abolished by the combined administration of tachykinin NK1 and NK2 receptor antagonists. Human alphaCGRP (CGRP, 1-100 nM) produced a concentration-dependent potentiation of the amplitude of the NANC contractions induced by EFS while salmon calcitonin (up to 1 microM) had no effect. The potentiating effect of CGRP was unaffected by in vitro capsaicin pretreatment (10 microM for 15 min), peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each), apamin (0.3 microM) plus L-nitroarginine (L-NOARG, 100 microM) and by the CGRP1 receptor antagonist, the C-terminal fragment CGRP(8-37) (1 microM). The NK2 receptor antagonist MEN 10627 which, when administered alone, had only a partial inhibitory effect on the amplitude of NANC twitches, concentration-dependently (10 nM-1 microM) inhibited the potentiating effect of CGRP. CGRP (1-100 nM) produced a concentration-dependent potentiation of the atropine-sensitive cholinergic contractions evoked by EFS in the presence of guanethidine and of tachykinin NK1 and NK2 receptor antagonists. Similar to the effect of CGRP, application of capsaicin (0.1-1 microM) potentiated the amplitude of the NANC contraction to EFS, an effect undergoing complete desensitization upon a second application of the drug. CGRP (0.1 microM) did not affect the contractile action of a submaximally effective concentration of neurokinin A (2 nM) while it inhibited that induced by substance P (2 nM). In sucrose gap, single pulse EFS in the presence of atropine (1 microM) and guanethidine (3 microM) induced an inhibitory junction

  8. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    PubMed

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex.

    PubMed

    Bright, Fiona M; Vink, Robert; Byard, Roger W; Duncan, Jhodie R; Krous, Henry F; Paterson, David S

    2017-01-01

    Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and

  10. Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex

    PubMed Central

    Vink, Robert; Byard, Roger W.; Duncan, Jhodie R.; Krous, Henry F.; Paterson, David S.

    2017-01-01

    Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and

  11. Effect of [D-Phe6] bombesin (6-13) methylester, a bombesin receptor antagonist, towards bombesin-induced contractions in the guinea-pig and rat isolated urinary bladder.

    PubMed

    Maggi, C A; Coy, D H; Giuliani, S

    1992-08-01

    1. The effect of [D-Phe6] bombesin (6-13) methylester (OMe), a newly developed potent antagonist of bombesin receptors, has been investigated against bombesin-induced contractions of the guinea-pig and rat isolated urinary bladder. 2. Bombesin (0.1 nM-10 microM) produced a concentration-dependent contraction of the guinea-pig isolated bladder which approached the same maximum response as KCl (80 mM). The response to bombesin was antagonized in a competitive manner (rightward shift of the concentration-response curve without depression of the maximal response) by [D-Phe6] bombesin (6-13) OMe (0.3-10 microM). Degree of antagonism was concentration-dependent between 0.3 and 3 microM (dose ratios = 2.4, 9 and 39 in the presence of 0.3, 1, 3 microM of the antagonist). However, a larger concentration (10 microM) of the antagonist was not more effective (dose ratio = 36) than 3 microM. 3. Neither the action of bombesin nor the activity of the antagonist was influenced by peptidase inhibitors (bestatin, captopril and thiorphan 3 microM each) or by atropine, indomethacin, chlorpheniramine and desensitization of P2x purinoceptors by alpha, beta methylene ATP. 4. The bombesin antagonist was ineffective against contraction of the guinea-pig urinary bladder produced by the NK-1 tachykinin receptor-selective agonist, [Sar9] substance P sulphone. The action of the NK-1 receptor agonist was antagonized by L 668, 169 (3 microM), a cyclic peptide tachykinin antagonist. L 668, 169 had no effect toward bombesin-induced contraction. 5. The bombesin antagonist (1-10 microM) had no effect against the non-adrenergic non-cholinergic response of the guinea-pig isolated urinary bladder to electrical field stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Effects of intravenous administration of neurokinin receptor subtype-selective agonists on gonadotropin-releasing hormone pulse generator activity and luteinizing hormone secretion in goats

    PubMed Central

    YAMAMURA, Takashi; WAKABAYASHI, Yoshihiro; OHKURA, Satoshi; NAVARRO, Victor M.; OKAMURA, Hiroaki

    2014-01-01

    Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats. PMID:25345909

  13. Requirement for Innate Immunity and CD90+ NK1.1− Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy

    PubMed Central

    Moskalenko, Marina; Pan, Michael; Fu, Yichun; de Moll, Ellen H.; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Jayaraman, Padmini; Bernardo, Sebastian; Sikora, Andrew G.; Wolchok, Jedd; Bhardwaj, Nina; Merad, Miriam; Saenger, Yvonne

    2015-01-01

    We sought to define cellular immune mechanisms of synergy between tumor-antigen–targeted monoclonal antibodies and chemotherapy. Established B16 melanoma in mice was treated with cytotoxic doses of cyclophosphamide in combination with an antibody targeting tyrosinase-related protein 1 (αTRP1), a native melanoma differentiation antigen. We find that Fcγ receptors are required for efficacy, showing that antitumor activity of combination therapy is immune mediated. Rag1−/− mice deficient in adaptive immunity are able to clear tumors, and thus innate immunity is sufficient for efficacy. Furthermore, previously treated wild-type mice are not significantly protected against tumor reinduction, as compared with mice inoculated with irradiated B16 alone, consistent with a primarily innate immune mechanism of action of chemo-immunotherapy. In contrast, mice deficient in both classical natural killer (NK) lymphocytes and nonclassical innate lymphocytes (ILC) due to deletion of the IL2 receptor common gamma chain IL2γc−/−) are refractory to chemo-immunotherapy. Classical NK lymphocytes are not critical for treatment, as depletion of NK1.1+ cells does not impair antitumor effect. Depletion of CD90+NK1.1− lymphocytes, however, both diminishes therapeutic benefit and decreases accumulation of macrophages within the tumor. Tumor clearance during combination chemo-immunotherapy with monoclonal antibodies against native antigen is mediated by the innate immune system. We highlight a novel potential role for CD90+NK1.1− ILCs in chemo-immunotherapy. PMID:25600438

  14. Genetic control of indirect airway responsiveness in the rat.

    PubMed

    Pauwels, R A; Germonpré, P R; Kips, J C; Joos, G F

    1995-11-01

    Many of the airway responses to endogenous and exogenous stimuli are caused by indirect mechanisms such as the activation of neurons and/or inflammatory cells. In the present study we compare the bronchoconstrictor and the plasma protein extravasation response to adenosine and tachykinins in two highly inbred rat strains, F344 and BDE. BDE-rats have a bronchoconstrictor response to adenosine at lower doses. Challenge with the A3-adenosine receptor agonist APNEA demonstrates that the difference in airway responsiveness to adenosine between BDE- and F344-rats is probably related to a higher number of A3-receptors on the airway mast cells of BDE-rats. In contrast, F344-rats have a higher airway responsiveness to tachykinins than BDE-rats. Tachykinins cause bronchoconstriction in F344-rats mainly by an indirect mechanism, involving stimulation of NK1-receptors and mast cell activation. In BDE-rats they cause bronchoconstriction by a direct effect on airway smooth muscle via activation of NK2-receptors. Finally we also observed a difference between F344- and BDE-rats with regard to the mechanisms involved in the plasma protein extravasation in the airways caused by substance P or capsaicin. In F344-rats but not in BDE-rats mast cell activation and the release of 5-hydroxytryptamine is partly responsible for this plasma protein extravasation.

  15. Binding characteristics of [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P, a new selective radioligand for the NK1 receptor.

    PubMed

    Lew, R; Geraghty, D P; Drapeau, G; Regoli, D; Burcher, E

    1990-08-02

    The selective tachykinin agonist [Sar9,Met(O2)11]substance P (Sar-SP) was radioiodinated with [125I]Bolton-Hunter reagent and the product [125I]Bolton-Hunter-[Sar9,Met(O)2)11]SP (BHSar-SP) purified using reverse phase HPLC. Autoradiographic studies showed dense specific binding of BHSar-SP over the rat submandibular gland and over several regions in rat brain, with very low nonspecific binding, identical with the pattern of binding sites seen in a parallel study with [125I]Bolton-Hunter SP (BHSP). In homogenate binding experiments, BHSar-SP bound with high affinity to a single site in membranes from rat brain (KD 261 pM) and rat submandibular gland (KD 105 pM). Comparative values for BHSP were 495 and 456 pM, i.e. of two and four fold lower affinity than BHSar-SP. Association of BHSar-SP to membranes from brain (k+1 3.7 x 10(9) M-1 min-1) was faster than to membranes from salivary gland (k+1 5.6 x 10(8) M-1 min-1). In competition studies, BHSar-SP was displaced from salivary gland membranes by substance P (SP) approximately physalaemin greater than or equal to Sar-SP approximately SP-(3-11) greater than SP-(5-11) much greater than neurokinin A (NKA) approximately eledoisin = kassinin = SP-methyl ester greater than or equal to neurokinin B (NKB) much greater than [Nle10]NKA-(4-10) greater than [MePhe7]NKB-(4-10). In brain membranes, the rank potency order was SP greater than Sar-SP greater than or equal to physalaemin greater than SP-(3-11) greater than SP-(5-11) greater than NKA greater than or equal to eledoisin much greater than NKB greater than kassinin greater than SP-methyl ester: however [MePhe7]NKB-(4-10) and [Nle10]NKA-(4-10) were ineffective competitors at concentrations up to 1 microM. Both binding patterns are consistent with BHSar-SP binding to an NK1 site. With the exception of SP, Sar-SP, SP-(3-11) and physalaemin, all competitors were 5 to 54 times less potent at BHSar-SP binding sites in brain than in salivary gland. These data reveal some

  16. Tachykinin actions on deep dorsal horn neurons in vitro: an electrophysiological and morphological study in the immature rat.

    PubMed

    King, A E; Slack, J R; Lopez-Garcia, J A; Ackley, M A

    1997-05-01

    To assess whether functional neurokinin receptors exist in the deep dorsal horn of the rat, the actions of the selective neurokinin-1 receptor (NK1R) agonist [Sar9,Met(O2)11]substance P ([Sar9,Met(O2)11]SP), the neurokinin-2 receptor (NK2R) agonists [beta-Ala8]NKA(4-10) and GR64349 and the neurokinin-3 receptor (NK3R) agonist senktide were examined intracellularly in vitro. [Sar9,Met(O2)11]SP (1-4 microM) and senktide (1-2 microM) elicited slow depolarizations (<10 mV) associated with increased synaptic activity and cell firing. [beta-Ala8]NKA(4-10) (10-20 microM) and GR64349 (0.25-10 microM) caused small depolarizations (<2.0 mV) and no firing. Neurons were categorized as either 'tonic' or 'phasic' depending on their firing response to direct current step depolarizations. Tonic neurons, which, unlike phasic neurons, display no spike firing accommodation, generated a significantly larger depolarization to the NK1R and NK3R agonists. The putative contribution of these receptors to primary afferent-mediated synaptic transmission was assessed by testing the NK1R antagonist GR82334 (1 microM), the NK2R antagonist MEN10,376 (1 microM) and the NK3R antagonist [Trp7,beta-Ala8]NKA(4-10) (1 microM) against the dorsal root-evoked excitatory postsynaptic potential (DR-EPSP). GR82334 and [Trp7,beta-Ala8]NKA(4-10) significantly reduced (P < or = 0.05) the duration but not the amplitude of the DR-EPSP. MEN10,376 (1 microM) had no effect on DR-EPSP amplitude or duration. Morphological detail was obtained for seven biocytin-filled deep dorsal horn neurons tested with [Sar9,Met(O2)11]SP. Five neurons responded to the NK1R agonist, and two of these had dorsally directed dendrites into the substantia gelatinosa. The other three [Sar9,Met(O2)11]SP-sensitive neurons had dendrites within deeper laminae. These data support the existence of functional NK1Rs and NK3Rs in the deep dorsal horn which may be involved in mediating sensory afferent inputs from nociceptors.

  17. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  18. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  19. Regulated Norepinephrine Transporter Interaction with the Neurokinin-1 Receptor Establishes Transporter Subcellular Localization*

    PubMed Central

    Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D.

    2013-01-01

    Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr258 + Ser259 motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation. PMID:23979140

  20. Regulated norepinephrine transporter interaction with the neurokinin-1 receptor establishes transporter subcellular localization.

    PubMed

    Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D

    2013-10-04

    Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.

  1. Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor.

    PubMed

    Monaco-Shawver, Linda; Schwartz, Lynnae; Tuluc, Florin; Guo, Chang-Jiang; Lai, Jian Ping; Gunnam, Satya M; Kilpatrick, Laurie E; Banerjee, Pinaki P; Douglas, Steven D; Orange, Jordan S

    2011-01-01

    SP is a potent neuroimmunomodulator that functions through ligating members of the neurokinin receptor family, one of which, NK1R, is widely expressed in immune cells. As in humans, circulating SP levels are increased in pathologic states associated with impairment of NK cell functions, such as depression and HIV infection, we hypothesized that SP has a direct, inhibitory effect upon NK cells. We have studied a clonal human NK cell line (YTS) as well as ex vivo human NK cells and have determined that truncated and full-length NK1R isoforms are expressed in and SP bound by ex vivo NK cells and the YTS NK cell line. Incubation of YTS cells with 10⁻⁶ M SP and ex vivo NK cells with 10⁻⁵ M SP inhibited cytotoxic ability by ∼20% and reduced degranulation. This inhibitory effect upon cytotoxicity was partially prevented by the NK1R antagonist CP96,345. The treatment of YTS or ex vivo NK cells with SP neither down-modulated NCR expression nor affected triggering receptor-induced NF-κB activation. Preincubation of YTS cells with SP, however, did abbreviate the typically prolonged intracellular calcium increase induced by target cell engagement and reduced triggering receptor-induced pERK. Thus, SP has the potential to regulate NK cell functions and acts downstream from neurokinin receptors to modulate NK cell activation signaling. This mechanism may contribute to impairment of NK cell function in certain disease states associated with increased circulating SP. Antagonism of this system may present an opportunity to augment NK cell function therapeutically in selected human diseases.

  2. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    PubMed Central

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  3. Structure-activity studies of bufokinin, substance P and their C-terminal fragments at bufokinin receptors in the small intestine of the cane toad, Bufo marinus.

    PubMed

    Liu, Lu; Murray, Michael; Burcher, Elizabeth

    2002-01-15

    Bufokinin is a substance P-related tachykinin peptide with potent spasmogenic actions, isolated from the intestine of the cane toad, Bufo marinus. Bufokinin acts via a tachykinin receptor with similarities to the mammalian NK(1) receptor. In this structure-activity study of bufokinin, substance P (SP) and their C-terminal fragments, we have used isolated segments and homogenates of toad small intestine to compare the contractile potencies and abilities to compete for the binding of [125I]-Bolton-Hunter bufokinin. In general, potency was very similar in both studies (r=0.956) and was primarily related to peptide length, with the natural undecapeptide tachykinins bufokinin - ranakinin>SP- cod SP -trout SP being most potent. The weakest peptides were [Pro(9)]SP, BUF(7-11) and SP(7-11). Bufokinin fragments (BUF) were approximately equipotent to the corresponding SP fragments, with only BUF(5-11) showing unexpectedly low binding affinity. Data obtained with SP, bufokinin and fragments were subjected to quantitative structure--activity (QSAR) analysis which demonstrated that molecular connectivity and shape descriptors yielded significant regression equations (r approximately 0.90). The predictive capacity of the equations was confirmed using ranakinin, trout SP and cod SP, but not using the synthetic analogs [Pro(9)]SP and [Sar(9)]SP. The study suggests that the full undecapeptide sequence of bufokinin is required for optimal activity, with high potency conferred by Lys(1), Pro(2), Gly(9) and probably Tyr(8). The finding that receptor-ligand interactions were correlated with the shape descriptor 2kappa(alpha) and favored by basic and rigid residues at position 1-3 is consistent with an important role of conformation at the N-terminus of bufokinin.

  4. Tachykinin antagonist FK224 inhibits neurokinin A-, substance P- and capsaicin-induced human bronchial contraction.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Hamamoto, J; Hirata, N; Iwagoe, H; Fujii, K; Goto, E; Ando, M

    1997-01-01

    To determine the roles of endogenously released tachykinins (substance P [SP] and neurokinin A [NKA]) in the human bronchial tissues, we studied the effects of tachykinin antagonist FK224 on bronchial smooth muscle contraction induced by SP, NKA and capsaicin in an organ bath. FK224 (10(-6) M and 10(-5) M, respectively) significantly inhibited NKA-induced contraction and 10(-5) M FK224 shifted the dose-response curve to more than one log unit higher concentration. Because SP- and capsaicin-induced contractions were small, we pretreated the tissues with the neutral endopeptidase inhibitor phosphoramidon (10(-5) M), which inhibits degradation of exogenous tachykinins in order to potentiate the contractions. FK224 (10(-5) M) significantly inhibited SP-induced contraction and it shifted the dose-response curves to about one log unit higher concentration. FK224 (10(-5) M) also significantly inhibited capsaicin-induced contraction and it shifted the dose-response curves to more than one log unit higher concentration. In contrast, FK224 (10(-5) M) did not affect on acetylcholine-, histamine-, and leukotriene D4-induced contraction. These results suggest that FK224 is a tachykinin receptor antagonist in the human bronchial smooth muscle, and that capsaicin-induced contraction is due to endogenously released tachykinin-like substances in the human bronchus.

  5. NK cell-based immunotherapy for malignant diseases

    PubMed Central

    Cheng, Min; Chen, Yongyan; Xiao, Weihua; Sun, Rui; Tian, Zhigang

    2013-01-01

    Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced. PMID:23604045

  6. Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow.

    PubMed

    Linnman, Clas; Catana, Ciprian; Svärdsudd, Kurt; Appel, Lieuwe; Engler, Henry; Långström, Bengt; Sörensen, Jens; Furmark, Tomas; Fredrikson, Mats; Borsook, David; Peterson, Magnus

    Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.

  7. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  8. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. SHP-2 expression negatively regulates NK cell function1,2

    PubMed Central

    Purdy, Amanda K.; Campbell, Kerry S.

    2009-01-01

    Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2)4 is required for full activation of Ras/ERK in many cytokine and growth factor receptor signaling pathways. In contrast, SHP-2 inhibits activation of human natural killer (NK) cells upon recruitment to killer cell Ig-like receptors (KIR)4. To determine how SHP-2 impacts NK cell activation in KIR-dependent or KIR-independent signaling pathways, we employed knockdown and overexpression strategies in NK-like cell lines and analyzed the consequences on functional responses. In response to stimulation with susceptible target cells, SHP-2-silenced NK cells had elevated cytolytic activity and IFN-γ production, whereas cells overexpressing wild type or gain-of-function mutants of SHP-2 exhibited dampened activities. Increased levels of SHP-2 expression over this range significantly suppressed microtubule organizing center (MTOC)4 polarization and granzyme B release in response to target cells. Interestingly, NK-target cell conjugation was only reduced by overexpressing SHP-2, but not potentiated in SHP-2-silenced cells, indicating that conjugation is not influenced by physiological levels of SHP-2 expression. KIR-dependent inhibition of cytotoxicity was unaffected by significant reductions in SHP-2 levels, presumably because KIR were still capable of recruiting the phosphatase under these limiting conditions. In contrast, the general suppressive effect of SHP-2 on cytotoxicity and cytokine release was much more sensitive to changes in cellular SHP-2 levels. In summary, our studies have identified a new, KIR-independent role for SHP-2 in dampening NK cell activation in response to tumor target cells in a concentration-dependent manner. This suppression of activation impacts MTOC-based cytoskeletal rearrangement and granule release. PMID:19915046

  10. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells

  11. Hypoxia Induced Impairment of NK Cell Cytotoxicity against Multiple Myeloma Can Be Overcome by IL-2 Activation of the NK Cells

    PubMed Central

    Sarkar, Subhashis; Germeraad, Wilfred T. V.; Rouschop, Kasper M. A.; Steeghs, Elisabeth M. P.; van Gelder, Michel; Bos, Gerard M. J.; Wieten, Lotte

    2013-01-01

    Background Multiple Myeloma (MM) is an incurable plasma cell malignancy residing within the bone marrow (BM). We aim to develop allogeneic Natural Killer (NK) cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. Methods NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. Results Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2) and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4). It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. Conclusions Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions. PMID:23724099

  12. CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells.

    PubMed

    Pahl, Jens H W; Koch, Joachim; Götz, Jana-Julia; Arnold, Annette; Reusch, Uwe; Gantke, Thorsten; Rajkovic, Erich; Treder, Martin; Cerwenka, Adelheid

    2018-05-01

    CD16A is a potent cytotoxicity receptor on human natural killer (NK) cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30 + lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2- and IL15-driven NK cell proliferation and expansion. This effect involved the upregulation of CD25 (IL2Rα) and CD132 (γ c ) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed 1 day after CD16A engagement could be recovered by reculture in IL2 or IL15. After reculture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNγ production upon restimulation with tumor cells or cytokines. Importantly, after reculture, CD16A-experienced NK cells also exerted increased cytotoxicity toward different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to restimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell antitumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Cancer Immunol Res; 6(5); 517-27. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Osanetant Sanofi-Synthélabo.

    PubMed

    Kamali, F

    2001-07-01

    Osanetant is a neurokinin (NK3) receptor antagonist under development by Sanofi-Synthélabo (formerly Sanofi) as a potential treatment for schizophrenia [328910]. Sanofi was originally investigating its potential use as a treatment for psychosis and anxiety [169511]. Following phase IIa clinical trials [307656], [328910], [359231], osanetant entered phase IIb development in February 2001 [409432]. Osanetant was the first potent and selective non-peptide antagonist described for the NK3 tachykinin receptor [176305]. It has a higher affinity for human and guinea pig NK3 receptors than for rat NK3 receptors [176305]. In October 1999, Lehman Brothers predicted that the probability of the product reaching the market was 10%, with a possible launch in 2003 and potential peak sales of US $200 million in 2011 [346267].

  14. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G

    PubMed Central

    Kailayangiri, Sareetha; Jamitzky, Silke; Schelhaas, Sonja; Jacobs, Andreas H.; Wiek, Constanze; Hanenberg, Helmut; Hartmann, Wolfgang; Wiendl, Heinz; Pankratz, Susann; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Fluegge, Maike; Rossig, Claudia

    2017-01-01

    ABSTRACT Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers. PMID:28197367

  15. Basic Fibroblast Growth Factor Accelerates Matrix Degradation Via a Neuro-Endocrine Pathway in Human Adult Articular Chondrocytes

    PubMed Central

    IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA

    2010-01-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584

  16. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A

    2008-05-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.

  17. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones

    PubMed Central

    Pelayo, Juan-Carlos; Poole, Daniel P; Steinhoff, Martin; Cottrell, Graeme S; Bunnett, Nigel W

    2011-01-01

    Abstract Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK1R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nm, 10 min) induced interaction of NK1R and β-arrestin at the plasma membrane, and the SP–NK1R–β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK1R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H+ATPase inhibitor bafilomycin A1, which prevent endosomal SP degradation, suppressed NK1R recycling by >50%. Preincubation of neurones with SP (10 nm, 5 min) desensitized Ca2+ transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK1R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP–NK1R–β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK1R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling. PMID:21878523

  18. Role of substance P in the regulation of glucose metabolism via insulin signaling-associated pathways.

    PubMed

    Karagiannides, Iordanes; Bakirtzi, Kyriaki; Kokkotou, Efi; Stavrakis, Dimitris; Margolis, Kara Gross; Thomou, Thomas; Giorgadze, Nino; Kirkland, James L; Pothoulakis, Charalabos

    2011-12-01

    Substance P (SP), encoded by the tachykinin 1 (Tac1) gene, is the most potent tachykinin ligand for the high-affinity neurokinin-1 receptor (NK-1R). We previously reported that NK-1R-deficient mice show less weight gain and reduced circulating levels of leptin and insulin in response to a high-fat diet (HFD) and demonstrated the presence of functional NK-1R in isolated human preadipocytes. Here we assessed the effects of SP on weight gain in response to HFD and determined glucose metabolism in Tac1-deficient (Tac1(-/-)) mice. The effect of SP on the expression of molecules that may predispose to reduced glucose uptake was also determined in isolated human mesenteric, omental, and sc preadipocytes. We show that although weight accumulation in response to HFD was similar between Tac1(-/-) mice and wild-type littermates, Tac1(-/-) mice demonstrated lower glucose and leptin and increased adiponectin blood levels and showed improved responses to insulin challenge after HFD. SP stimulated phosphorylation of c-Jun N-terminal kinase, protein kinase C, mammalian target of rapamycin, and inhibitory serine insulin receptor substrate-1 phosphorylation in human preadipocytes in vitro. Preincubation of human mesenteric preadipocytes with the protein kinase C pseudosubstrate inhibitor reduced insulin receptor substrate 1 phosphorylation in response to SP. Lastly, SP also induced insulin receptor substrate-1 phosphorylation in mature human sc adipocytes. Our results demonstrate an important role for SP in adipose tissue responses and obesity-associated pathologies. These novel SP effects on molecules that enhance insulin resistance at the adipocyte level may reflect an important role for this peptide in the pathophysiology of type 2 diabetes.

  19. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation

    PubMed Central

    Douglas, Steven D.; Leeman, Susan E.

    2010-01-01

    The G-protein coupled receptor (GPCR), Neurokinin-1 Receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and substance P are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa-b (NF-κb) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by substance P are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major Class 1, rhodopsin-like GPCR ligand-receptor interaction. PMID:21091716

  20. The Human NK Cell Response to Yellow Fever Virus 17D Is Primarily Governed by NK Cell Differentiation Independently of NK Cell Education.

    PubMed

    Marquardt, Nicole; Ivarsson, Martin A; Blom, Kim; Gonzalez, Veronica D; Braun, Monika; Falconer, Karolin; Gustafsson, Rasmus; Fogdell-Hahn, Anna; Sandberg, Johan K; Michaëlsson, Jakob

    2015-10-01

    NK cells play an important role in the defense against viral infections. However, little is known about the regulation of NK cell responses during the first days of acute viral infections in humans. In this study, we used the live attenuated yellow fever virus (YFV) vaccine 17D as a human in vivo model to study the temporal dynamics and regulation of NK cell responses in an acute viral infection. YFV induced a robust NK cell response in vivo, with an early activation and peak in NK cell function at day 6, followed by a delayed peak in Ki67 expression, which was indicative of proliferation, at day 10. The in vivo NK cell response correlated positively with plasma type I/III IFN levels at day 6, as well as with the viral load. YFV induced an increased functional responsiveness to IL-12 and IL-18, as well as to K562 cells, indicating that the NK cells were primed in vivo. The NK cell responses were associated primarily with the stage of differentiation, because the magnitude of induced Ki67 and CD69 expression was distinctly higher in CD57(-) NK cells. In contrast, NK cells expressing self- and nonself-HLA class I-binding inhibitory killer cell Ig-like receptors contributed, to a similar degree, to the response. Taken together, our results indicate that NK cells are primed by type I/III IFN in vivo early after YFV infection and that their response is governed primarily by the differentiation stage, independently of killer cell Ig-like receptor/HLA class I-mediated inhibition or education. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. NK cells and poxvirus infection

    PubMed Central

    Burshtyn, Deborah N.

    2013-01-01

    In recent years, our understanding of the role of natural killer (NK) cells in the response to viral infection has grown rapidly. Not only do we realize viruses have many immune-evasion strategies to escape NK cell responses, but that stimulation of NK cell subsets during an antiviral response occurs through receptors seemingly geared directly at viral products and that NK cells can provide a memory response to viral pathogens. Tremendous knowledge has been gained in this area through the study of herpes viruses, but appreciation for the significance of NK cells in the response to other types of viral infections is growing. The function of NK cells in defense against poxviruses has emerged over several decades beginning with the early seminal studies showing the role of NK cells and the NK gene complex in susceptibility of mouse strains to ectromelia, a poxvirus pathogen of mice. More recently, greater understanding has emerged of the molecular details of the response. Given that human diseases caused by poxviruses can be as lethal as smallpox or as benign as Molluscum contagiosum, and that vaccinia virus, the prototypic member of the pox family, persists as a mainstay of vaccine design and has potential as an oncolytic virus for tumor therapy, further research in this area remains important. This review focuses on recent advances in understanding the role of NK cells in the immune response to poxviruses, the receptors involved in activation of NK cells during poxvirus infection, and the viral evasion strategies poxviruses employ to avoid the NK response. PMID:23372568

  2. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  3. Up-regulation of NKG2A inhibitory receptor on circulating NK cells contributes to transfusion-induced immunodepression in patients with β-thalassemia major.

    PubMed

    Zou, Yong; Song, Zhi-Xing; Lu, Ying; Liang, Xiao-Li; Yuan, Qing; Liao, Si-Hong; Bao, Jun-Jie

    2016-08-01

    Accumulating evidence has shown that allogeneic blood transfusions can induce significant immunosuppression in recipients, and thereby increase the risk of postoperative infection and/or tumor relapse. Although it is well known that natural killer (NK) cells are responsible for the immunodepression effects of transfusion, the underlying mechanisms remain obscure. In this study, we investigated the role of NK cells in transfusion-induced immunodepression in β-thalassemia major. The proportion of circulating NK cells and the expression of NK receptors (NKG2A, CD158a, NKP30, NKP46 and NKG2D) as well as CD107a were detected by multicolor flow cytometry. IFN-γ production by circulating NK cells was detected by intracellular cytokine staining. Our results showed that the proportion and cytotoxicity (CD107a expression) of circulating NK cells in transfusion-dependent β-thalassemia major patients were remarkably lower than those of β-thalassemia minor patients or healthy volunteers. Expression of NKG2A inhibitory receptor on circulating NK cells in patients with β-thalassemia major was remarkably up-regulated, but there were no significant differences in the expression levels of NKP30, NKP46, NKG2D, CD158a and IFN-γ. These results indicate NKG2A inhibitory receptor may play a key role in transfusion-induced immunodepression of NK cells in patients with β-thalassemia major.

  4. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  5. Cattle NK Cell Heterogeneity and the Influence of MHC Class I

    PubMed Central

    Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.

    2015-01-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890

  6. Evolution and survival of marine carnivores did not require a diversity of KIR or Ly49 NK cell receptors1

    PubMed Central

    Hammond, John A.; Guethlein, Lisbeth A.; Abi-Rached, Laurent; Moesta, Achim K; Parham, Peter

    2009-01-01

    Ly49 lectin-like receptors and killer cell immunoglobulin-like receptors (KIR) are structurally unrelated cell-surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell-surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and likely led to the sea lion’s loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the > 33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK-cell receptors. PMID:19265140

  7. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.

    PubMed

    Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco

    2017-09-01

    Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of 'imprinting' by cytokines of the TGF-β family. We studied mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGFβR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells.

  8. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling

    PubMed Central

    Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco

    2017-01-01

    Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of ‘imprinting’ by cytokines of the TGF-β family. We examined mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGF-βR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells. PMID:28759002

  9. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    PubMed

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Impaired NK Cell Responses to Pertussis and H1N1 Influenza Vaccine Antigens in Human Cytomegalovirus-Infected Individuals

    PubMed Central

    Nielsen, Carolyn M.; White, Matthew J.; Bottomley, Christian; Lusa, Chiara; Rodríguez-Galán, Ana; Turner, Scarlett E. G.; Goodier, Martin R.

    2015-01-01

    NK cells contribute to postvaccination immune responses after activation by IL-2 from Ag-specific memory T cells or by cross-linking of the low-affinity IgG receptor, CD16, by Ag–Ab immune complexes. Sensitivity of NK cells to these signals from the adaptive immune system is heterogeneous and influenced by their stage of differentiation. CD56dimCD57+ NK cells are less responsive to IL-2 and produce less IFN-γ in response to T cell–mediated activation than do CD56bright or CD56dimCD57− NK cells. Conversely, NK cell cytotoxicity, as measured by degranulation, is maintained across the CD56dim subsets. Human CMV (HCMV), a highly prevalent herpes virus causing lifelong, usually latent, infections, drives the expansion of the CD56dimCD57+NKG2C+ NK cell population, skewing the NK cell repertoire in favor of cytotoxic responses at the expense of cytokine-driven responses. We hypothesized, therefore, that HCMV seropositivity would be associated with altered NK cell responses to vaccine Ags. In a cross-sectional study of 152 U.K. adults, with HCMV seroprevalence rate of 36%, we find that HCMV seropositivity is associated with lower NK cell IFN-γ production and degranulation after in vitro restimulation with pertussis or H1N1 influenza vaccine Ags. Higher expression of CD57/NKG2C and lower expression of IL-18Rα on NK cells from HCMV seropositive subjects do not fully explain these impaired responses, which are likely the result of multiple receptor–ligand interactions. This study demonstrates for the first time, to our knowledge, that HCMV serostatus influences NK cell contributions to adaptive immunity and raises important questions regarding the impact of HCMV infection on vaccine efficacy. PMID:25855356

  11. Effects of substance P and Sar-Met-SP, a NK1 agonist, in distinct amygdaloid nuclei on anxiety-like behavior in rats.

    PubMed

    Bassi, Gabriel Shimizu; de Carvalho, Milene Cristina; Brandão, Marcus Lira

    2014-05-21

    The amygdala, together with the dorsal periaqueductal gray (dPAG), medial hypothalamus, and deep layers of the superior and inferior colliculi, constitutes the encephalic aversion system, which has been considered the main neural substrate for the organization of fear and anxiety. The basolateral nucleus of the amygdala (BLA) acts as a filter for aversive stimuli to higher structures while the central (CeA) and the medial (MeA) nuclei constitute the output for the autonomic and somatic components of the emotional reaction through major projections to the limbic and brainstem regions. Although some findings point to the distinct participation of the substance P (SP) and the NK1 receptors system in the different nuclei of the amygdala on the expression of emotional behaviors, it is not clear if this system modulates anxiety-like responses in the distinct nuclei of the amygdala as well as the dPAG. Thus, it was investigated if the injection of SP into the BLA, CeA, or MeA affects the expression of anxiety-like responses of rats submitted to the elevated plus-maze (EPM) test and, if the effects are mediated by NK1 receptors. The results showed that SP and Sar-Met-SP (NK1 receptor selective agonist) injected into the CeA and MeA, but not into the BLA, caused anxiogenic-like effects in the EPM. Altogether, the data indicates that the SP may mimic the effects of anxiogenic stimuli via NK1 receptor activation only in the CeA and MeA (amygdala's nuclei output) and may activate the neural mechanisms involved in the defensive reaction genesis. The SP/NK1 receptors system activation may be phasically involved in very specific aspects of anxiety behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  13. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21.

    PubMed

    Jiang, Bo; Wu, Xuan; Li, Xi-Ning; Yang, Xi; Zhou, Yulai; Yan, Haowei; Wei, An-Hui; Yan, Weiqun

    2014-07-01

    NK cells hold promise for protecting hosts from cancer and pathogen infection through direct killing and expressing immune-regulatory cytokines. In our study, a genetically modified K562 cell line with surface expression of 4-1BBL and MICA was constructed to expand functional NK cells in vitro for further adoptive immunotherapy against cancer. After a long-term up to 21 day co-culture with newly isolated peripheral blood mononuclear cells (PBMCs) in the presence of soluble IL-21 (sIL-21), notable increase in proportion of expanded NK cells was observed, especially the CD56(bright)CD16(+) subset. Apparent up-regulation of activating receptors CD38, CD69 and NKG2D was detected on expanded NK cells, so did inhibitory receptor CD94; the cytotoxicity of expanded NK cells against target tumor cells exceeded that of NK cells within fresh PBMCs. The intracellular staining showed expanded NK cells produced immune-regulatory IFN-γ. Taken together, we expanded NK cells with significant up-regulation of activating NKG2D and moderate enhancement of cytotoxicity, with IFN-γ producing ability and a more heterogeneous population of NK cells. These findings provide a novel perspective on expanding NK cells in vitro for further biology study and adoptive immunotherapy of NK cells against cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Schmidlin, Fabien; Steinhoff, Martin; Bunnett, Nigel W

    2004-07-16

    Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.

  15. Colonic smooth muscle responses in patients with diverticular disease of the colon: effect of the NK2 receptor antagonist SR48968.

    PubMed

    Maselli, M A; Piepoli, A L; Guerra, V; Caruso, M L; Pezzolla, F; Lorusso, D; Demma, I; De Ponti, F

    2004-05-01

    Little is known about the pathophysiology of diverticular disease. To compare passive and active stress and the response to carbachol of colonic smooth muscle specimens from patients with diverticular disease and patients with colon cancer. The effect of the NK2 receptor antagonist, SR48968, on electrically evoked contractions of circular muscle was also investigated. Sigmoid colon segments were obtained from 16 patients (51-83 years) undergoing elective sigmoid resection for diverticular disease and 39 patients (50-88 years) undergoing left hemicolectomy for non-obstructive sigmoid colon cancer. Isometric tension was measured on circular or longitudinal taenial muscle. Strips were stretched gradually to Lo (length allowing the development of optimal active tension with carbachol) and were also exposed to increasing carbachol concentrations. The effects of atropine, tetrodotoxin and SR48968 on electrically evoked (supramaximal strength, 0.3 ms, 0.1-10 Hz) contractions of circular strips from 8 patients with diverticular disease and 19 patients with colon cancer were also studied. Both passive and active stress in circular muscle strips obtained from patients with diverticular disease was higher than in patients with colon cancer (P < 0.05). Electrically evoked contractions were significantly reduced by atropine in all preparations and were virtually suppressed by combined SR48968 and atropine. Tetrodotoxin suppressed electrically evoked contractions only in patients with colon cancer, whereas a tetrodotoxin-resistant component was identified in patients with diverticular disease. The changes in both passive and active stress in specimens from patients with diverticular disease may reflect circular smooth muscle dysfunction. Acetylcholine and tachykinins are the main excitatory neurotransmitters mediating electrically evoked contractions in human sigmoid colon circular muscle.

  16. PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons.

    PubMed

    Cang, Chun-Lei; Zhang, Hua; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2009-06-30

    Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. In this study we investigated the effect of NK-1 receptor agonist on Na(v)1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar(9), Met(O2)(11)]-substance P (Sar-SP) significantly enhanced the Na(v)1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCepsilon, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons. These data suggest that activation of NK-1 receptor potentiates Na(v)1.8 sodium current via PKCepsilon-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.

  17. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  18. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting.

    PubMed

    Aziz, Fahad

    2012-07-01

    Chemotherapy can be a life-prolonging treatment for many cancer patients, but it is often associated with profound nausea and vomiting that is so distressing that patients may delay or decline treatment to avoid these side effects. The discovery of several NK1 receptor antagonists is a big revolution to dealt this problem. NK1 receptor antagonists prevent both acute and delayed chemotherapy-induced nausea and vomiting (CINV). These agents act centrally at NK-1 receptors in vomiting centers within the central nervous system to block their activation by substance P released as an unwanted consequence of chemotherapy. By controlling nausea and vomiting, these agents help improve patients' daily living and their ability to complete multiple cycles of chemotherapy. They are effective for both moderately and highly emetogenic chemotherapy regimens. Their use might be associated with increased infection rates; however, additional appraisal of specific data from RCTs is needed.

  19. Role of Substance P in the Regulation of Glucose Metabolism via Insulin Signaling-Associated Pathways

    PubMed Central

    Bakirtzi, Kyriaki; Kokkotou, Efi; Stavrakis, Dimitris; Margolis, Kara Gross; Thomou, Thomas; Giorgadze, Nino; Kirkland, James L.

    2011-01-01

    Substance P (SP), encoded by the tachykinin 1 (Tac1) gene, is the most potent tachykinin ligand for the high-affinity neurokinin-1 receptor (NK-1R). We previously reported that NK-1R-deficient mice show less weight gain and reduced circulating levels of leptin and insulin in response to a high-fat diet (HFD) and demonstrated the presence of functional NK-1R in isolated human preadipocytes. Here we assessed the effects of SP on weight gain in response to HFD and determined glucose metabolism in Tac1-deficient (Tac1−/−) mice. The effect of SP on the expression of molecules that may predispose to reduced glucose uptake was also determined in isolated human mesenteric, omental, and sc preadipocytes. We show that although weight accumulation in response to HFD was similar between Tac1−/− mice and wild-type littermates, Tac1−/− mice demonstrated lower glucose and leptin and increased adiponectin blood levels and showed improved responses to insulin challenge after HFD. SP stimulated phosphorylation of c-Jun N-terminal kinase, protein kinase Cθ, mammalian target of rapamycin, and inhibitory serine insulin receptor substrate-1 phosphorylation in human preadipocytes in vitro. Preincubation of human mesenteric preadipocytes with the protein kinase Cθ pseudosubstrate inhibitor reduced insulin receptor substrate 1 phosphorylation in response to SP. Lastly, SP also induced insulin receptor substrate-1 phosphorylation in mature human sc adipocytes. Our results demonstrate an important role for SP in adipose tissue responses and obesity-associated pathologies. These novel SP effects on molecules that enhance insulin resistance at the adipocyte level may reflect an important role for this peptide in the pathophysiology of type 2 diabetes. PMID:22009727

  20. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents.

    PubMed

    Brocco, Mauricette; Dekeyne, Anne; Mannoury la Cour, Clotilde; Touzard, Manuelle; Girardon, Sylvie; Veiga, Sylvie; de Nanteuil, Guillaume; deJong, Trynke R; Olivier, Berend; Millan, Mark J

    2008-10-01

    This study characterized the novel neurokinin (NK)(1) antagonist, vestipitant, under clinical evaluation for treatment of anxiety and depression. Vestipitant possessed high affinity for human NK(1) receptors (pK(i), 9.4), and potently blocked Substance P-mediated phosphorylation of Extracellular-Regulated-Kinase. In vivo, it occupied central NK(1) receptors in gerbils (Inhibitory Dose(50), 0.11 mg/kg). At similar doses, it abrogated nociception elicited by formalin in gerbils, and blocked foot-tapping and locomotion elicited by the NK(1) agonist, GR73632, in gerbils and guinea pigs, respectively. Further, vestipitant attenuated fear-induced foot-tapping in gerbils, separation-induced distress-vocalizations in guinea pigs, marble-burying behaviour in mice, and displayed anxiolytic actions in Vogel conflict and fear-induced ultrasonic vocalization procedures in rats. These actions were mimicked by CP99,994, L733,060 and GR205,171 which acted stereoselectively vs its less active isomer, GR226,206. In conclusion, vestipitant is a potent NK(1) receptor antagonist: its actions support the utility of NK(1) receptor blockade in the alleviation of anxiety and, possibly, depression.

  1. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.

    PubMed

    Fujii, Rika; Schlom, Jeffrey; Hodge, James W

    2018-05-01

    OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for

  2. Ubiquitylation of an internalized NK cell receptor by Triad3A disrupts sustained NF-κB signaling1

    PubMed Central

    Shahjahan Miah, S. M.; Purdy, Amanda K.; Rodin, Nicholas B.; MacFarlane, Alexander W.; Oshinsky, Jennifer; Alvarez-Arias, Diana A.; Campbell, Kerry S.

    2011-01-01

    KIR2DL4 (2DL4, CD158d) is a unique killer cell Ig-like receptor (KIR) expressed on human NK cells, which stimulates cytokine production, but mechanisms regulating its expression and function are poorly understood. By yeast two-hybrid screening, we identified the E3 ubiquitin ligase, Triad3A, as an interaction partner for the 2DL4 cytoplasmic domain. The protein interaction was confirmed in vivo, and Triad3A expression induced polyubiquitylation and degradation of 2DL4. Overexpression of Triad3A selectively abrogated cytokine-producing function of 2DL4, while Triad3A shRNA reversed ubiquitylation and restored cytokine production. Expression of Triad3A in an NK cell line did not affect receptor surface expression, internalization, or early signaling, but significantly reduced receptor turnover and suppressed sustained NF-κB activation. 2DL4 endocytosis was found to be vital to stimulate cytokine production, and Triad3A expression diminished localization of internalized receptor in early endosomes. Our results reveal a critical role for endocytosed 2DL4 receptor to generate sustained NF-κB signaling and drive cytokine production. We conclude that Triad3A is a key negative regulator of sustained 2DL4-mediated NF-κB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes. “This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third

  3. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions.

  4. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system

    PubMed Central

    Lieu, TinaMarie; Pelayo, Juan Carlos; Eriksson, Emily M.; Veldhuis, Nicholas A.; Bunnett, Nigel W.

    2015-01-01

    Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10−/−-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions. PMID:26138465

  5. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation.

    PubMed

    Hertwig, Laura; Hamann, Isabell; Romero-Suarez, Silvina; Millward, Jason M; Pietrek, Rebekka; Chanvillard, Coralie; Stuis, Hanna; Pollok, Karolin; Ransohoff, Richard M; Cardona, Astrid E; Infante-Duarte, Carmen

    2016-08-01

    Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. NKG2C zygosity influences CD94/NKG2C receptor function and the NK-cell compartment redistribution in response to human cytomegalovirus.

    PubMed

    Muntasell, Aura; López-Montañés, María; Vera, Andrea; Heredia, Gemma; Romo, Neus; Peñafiel, Judith; Moraru, Manuela; Vila, Joan; Vilches, Carlos; López-Botet, Miguel

    2013-12-01

    Human cytomegalovirus (HCMV) infection promotes a persistent expansion of a functionally competent NK-cell subset expressing the activating CD94/NKG2C receptor. Factors underlying the wide variability of this effect observed in HCMV-seropositive healthy individuals and exacerbated in immunocompromized patients are uncertain. A deletion of the NKG2C gene has been reported, and an apparent relation of NKG2C genotype with circulating NKG2C(+) NK-cell numbers was observed in HCMV(+) children. We have assessed the influence of NKG2C gene dose on the NK-cell repertoire in a cohort of young healthy adults (N = 130, median age 19 years). Our results revealed a relation of NKG2C copy number with surface receptor levels and with NKG2C(+) NK-cell numbers in HCMV(+) subjects, independently of HLA-E dimorphism. Functional studies showed quantitative differences in signaling (i.e. iCa(2+) influx), degranulation, and IL-15-dependent proliferation, in response to NKG2C engagement, between NK cells from NKG2C(+/+) and hemizygous subjects. These observations provide a mechanistic interpretation on the way the NKG2C genotype influences steady-state NKG2C(+) NK-cell numbers, further supporting an active involvement of the receptor in the HCMV-induced reconfiguration of the NK-cell compartment. The putative implications of NKG2C zygosity over viral control and other clinical variables deserve attention. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E.

    PubMed Central

    Valés-Gómez, M; Reyburn, H T; Erskine, R A; López-Botet, M; Strominger, J L

    1999-01-01

    The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells. PMID:10428963

  8. Activation of Neurokinin-1 Receptors during Ozone Inhalation Contributes to Epithelial Injury and Repair

    PubMed Central

    Oslund, Karen L.; Hyde, Dallas M.; Putney, Leialoha F.; Alfaro, Mario F.; Walby, William F.; Tyler, Nancy K.; Schelegle, Edward S.

    2008-01-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2′-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2′-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress–positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways. PMID:18390473

  9. Immunolocalization of a tachykinin-receptor-like protein in the central nervous system of Locusta migratoria migratorioides and neobellieria bullata.

    PubMed

    Veelaert, D; Oonk, H B; Vanden Eynde, G; Torfs, H; Meloen, R H; Schoofs, L; Parmentier, M; De Loof, A; Vanden Broeck, J

    1999-05-10

    Antisera raised against two distinct peptide regions of the Drosophila neurokinin-like receptor NKD were used to immunolocalize tachykinin-receptor-like proteins in the central nervous system of two insect species: the African migratory locust, Locusta migratoria, and the gray fleshfly, Neobellieria bullata. The resulting immunopositive staining patterns were identical for both antisera. Moreover, a very similar distribution of the immunoreactive material was observed in fleshflies and locusts. Immunoreactivity was found in nerve terminals of the retrocerebral complex, suggesting a presynaptic localization of the receptor in this part of the brain. Cell bodies were stained in the subesophageal ganglion: an anterior group of four larger cells and a posterior group of about 20 cells. These cells have axons projecting into the contralateral nervus corporis allati (NCA) II, bypassing the corpus allatum and projecting through the NCA I into the storage part of the corpus cardiacum. In the glandular part of the corpus cardiacum, the glandular adipokinetic hormone-producing cells did not show any immunopositive staining. In the locust, additional immunopositive staining was observed in internolaterally located neurons of the tritocerebrum and in important integrative parts of the neuropil such as the central body and the mushroom bodies.

  10. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-07-01

    Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. The role of Gαs in activation of NK92-MI cells by neuropeptide substance P.

    PubMed

    Diandong, Hou; Kefeng, Sun; Weixin, Fu; Moran, Wang; Jiahui, Wang; Zaifu, Liang

    2014-02-01

    Substance P (SP) is well known for its immunoregulatory influence on NK cells. The biological actions of SP are mediated primarily through the high-affinity neurokinin-1 receptor (NK-1R), a G protein-coupled receptor (GPCR). Receptor binding triggers a cAMP signaling pathway and intracellular levels of cAMP are regulated via Gαs and Gαi. In this study NF449, a Gαs-selective G protein antagonist, was used to study the role of Gαs in the activation of NK92-MI cells by SP. Results show that 10(-12)M SP enhances the expression of Gαs and Gαi3 in NK92-MI cells promoting a cytotoxic phenotype characterized by expression of perforin and granzyme B. Development of a cytotoxic phenotype in NK92-MI cells stimulated with SP is blunted by inhibition of Gαs by NF449. In summary, SP signaling through NK-1R promotes a cytotoxic phenotype in NK92-MI cells characterized by upregulation of both Gαs and Gαi3. NF449 inhibits Gαs, blunts SP-induced expression of perforin and granzyme B, and represents a potential therapeutic avenue for reducing NK-cell mediated cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Contractile properties of the pig bladder mucosa in response to neurokinin A: a role for myofibroblasts?

    PubMed Central

    Sadananda, P; Chess-Williams, R; Burcher, E

    2008-01-01

    Background and purpose: The bladder urothelium is now known to have active properties. Our aim was to investigate the contractile properties of the urinary mucosa in response to the tachykinin neurokinin A (NKA) and carbachol. Experimental approach: Discrete concentration–response curves for carbachol and NKA were obtained in matched strips of porcine detrusor, mucosa and intact bladder, suspended in organ baths. The effects of inhibitors and tachykinin receptor antagonists were studied on NKA-mediated contractions in mucosal strips. Intact sections of bladder and experimental strips were processed for histology and immunohistochemistry. Key results: All types of strips contracted to both carbachol and NKA. Mucosal responses to NKA (pD2 7.2) were higher than those in intact strips and were inhibited by the NK2 receptor antagonist SR48968 (pKB 9.85) but not the NK1 receptor antagonist SR140333, tetrodotoxin or indomethacin. Immunostaining for smooth muscle actin and vimentin occurred under the urothelium and on blood vessels. Desmin immunostaining and histological studies showed only sparse smooth muscle to be present in the mucosal strips. Removal of smooth muscle remnants from mucosal strips did not alter the responses to NKA. Conclusions and implications: This study has shown both functional and histological evidence for contractile properties of the mucosa, distinct from the detrusor. Mucosal contractions to NKA appear to be directly mediated via NK2 receptors. The main cell type mediating mucosal contractions is suggested to be suburothelial myofibroblasts. Mucosal contractions may be important in vivo for matching the luminal surface area to bladder volume. PMID:18264120

  13. Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor.

    PubMed

    Schmidlin, F; Dery, O; DeFea, K O; Slice, L; Patierno, S; Sternini, C; Grady, E F; Bunnett, N W

    2001-07-06

    Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.

  14. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function.

    PubMed

    Conry, Sara J; Milkovich, Kimberly A; Yonkers, Nicole L; Rodriguez, Benigno; Bernstein, Helene B; Asaad, Robert; Heinzel, Frederick P; Tary-Lehmann, Magdalena; Lederman, Michael M; Anthony, Donald D

    2009-11-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-gamma) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-gamma and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-alpha dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-gamma-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-alpha stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-alpha receptor expression, though IFN-alpha receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-alpha-induced NK cell activity and not to altered IFN-alpha receptor, NKP30, NKP44, NKP46, or NKG2D expression.

  15. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Upregulation of the axonal growth and the expression of substance P and its NK1 receptor in human allergic contact dermatitis.

    PubMed

    El-Nour, H; Lundeberg, L; Al-Tawil, R; Granlund, A; Lonne-Rahm, S-B; Nordlind, K

    2006-01-01

    Nerve fibers and sensory neuropeptides substance P and calcitonin gene-related peptide (CGRP) have been reported to be involved in allergic contact dermatitis (ACD). In the present study, we investigated the general innervation (using antibody against protein gene product 9.5, PGP 9.5), axonal growth (using antibody against growth associated protein, GAP-43), CGRP, and substance P with its receptor neurokinin 1 (NK1), in positive epicutaneous reactions to nickel sulphate from nickel-allergic patients, at the peak of inflammation, 72 hr after challenge with the antigen. There was an increased (p < 0.01) number of GAP-43 positive fibers in the eczematous compared with control skin, indicating an increased axonal growth already at 72 hr postchallenge. Double staining revealed a coexpression of CGRP and GAP-43 on dermal nerve fibers. There was no difference in the number of substance P and CGRP positive nerve fibers between eczematous and control skin. However, semiquantification analyses showed an increased expression of substance P positive inflammatory cells, being CD3, CD4, or CD8 positive, and NK1R positive inflammatory cells, being tryptase or CD3 positive. These results indicate a contribution of regenerating nerve fibers and substance P to the contact allergic reaction.

  17. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Neurokinin receptor modulation of respiratory activity in the rabbit.

    PubMed

    Bongianni, Fulvia; Mutolo, Donatella; Cinelli, Elenia; Pantaleo, Tito

    2008-06-01

    The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.

  19. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases.

    PubMed

    Chen, Xilin; Han, Jianfeng; Chu, Jianhong; Zhang, Lingling; Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E Antonio; Yu, Jianhua

    2016-05-10

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs.

  20. TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells

    PubMed Central

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression. PMID:28791023

  1. TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    PubMed

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.

  2. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori

    PubMed Central

    Nagai-Okatani, Chiaki; Nagasawa, Hiromichi

    2016-01-01

    Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A24 as an ion transport peptide-like (ITPL) receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs), we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1–5). In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling. PMID:27248837

  3. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: lineage does not predict clinical behavior.

    PubMed

    Hong, Mineui; Lee, Taehee; Young Kang, So; Kim, Suk-Jin; Kim, Wonseog; Ko, Young-Hyeh

    2016-05-01

    Extranodal natural killer (NK)/T-cell lymphoma (ENKTL), nasal type, comprises NK or cytotoxic T cells. We evaluated the clinical impact of cell type and the usefulness of T-cell receptor (TCR) gene transcripts in distinguishing cell lineage. One hundred and eight cases of ENKTL were analyzed for TCR gene rearrangements using the BIOMED-2 protocol and for TCR gene expression using immunohistochemistry for TCR-βF1 and TCR-cγM1, and RNA in situ hybridization for TCR gene transcripts. Prognostic factors were analyzed. Among the 108 cases, 44 were monoclonal for a TCR rearrangement (40%) while 64 (60%) were undefinable. The monoclonal cases expressed TCR-βF1 in 14 out of 40 cases (35%) and TCR-cγM1 in 1 out of 44 cases (2%). The 64 undetermined cases expressed TCR-βF1 in 15 cases (23%) and TCR-cγM1 in 1 (2%). Thirteen of 40 TCR-β constant gene transcript-positive cases (33%) expressed TCR-βF1 and one of nine TCR-γ constant gene transcript-positive cases (11%) expressed TCR-cγM1. TCR gene transcripts were not useful in the distinction of cell lineages. TCR gene transcripts were positive in ENKTLs as well as in normal B cells and aggressive NK-cell leukemia. Based on gene rearrangements and immunohistochemistry for TCR, there were 60 T-cell type cases (56%), 32 NK-cell type cases (30%), and 16 cases with an undetermined cell type (14%). TCR protein was expressed in 30/60 T-ENKTLs (50%) in a variable fraction of tumor cells. There were no significant differences in clinical findings or overall patient survival between T- or NK-cell types of ENKTL, although those with a T-cell type tended to show a better prognosis for those with localized nasal lymphomas. Univariate and multivariate analysis showed that a non-nasal ENKTL, age >60 years, high level of lactate dehydrogenase, bone marrow involvement, and the absence of radiotherapy were independent prognostic factors.

  4. Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor.

    PubMed

    McConalogue, K; Déry, O; Lovett, M; Wong, H; Walsh, J H; Grady, E F; Bunnett, N W

    1999-06-04

    Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.

  5. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice.

    PubMed

    Delgado-Morales, Raúl; del Río, Eva; Gómez-Román, Almudena; Bisagno, Verónica; Nadal, Roser; de Felipe, Carmen; Armario, Antonio

    2012-02-01

    Brain substance P and its receptor (neurokinin-1, NK1) have a widespread brain distribution and are involved in an important number of behavioural and physiological responses to emotional stimuli. However, the role of NK1 receptors in the consequences of exposure to chronic stress has not been explored. The present study focused on the role of these receptors in the hypothalamic-pituitary-adrenal (HPA) response to daily repeated restraint stress (evaluated by plasma corticosterone levels), as well as on the effect of this procedure on anxiety-like behaviour, spatial learning and memory in the Morris water maze (MWM), a hippocampus-dependent task. Adult null mutant NK1-/- mice, with a C57BL/6J background, and the corresponding wild-type mice showed similar resting corticosterone levels and, also, did not differ in corticosterone response to a first restraint. Nevertheless, adaptation to the repeated stressor was faster in NK1-/- mice. Chronic restraint modestly increased anxiety-like behaviour in the light-dark test, irrespective of genotype. Throughout the days of the MWM trials, NK1-/- mice showed a similar learning rate to that of wild-type mice, but had lower levels of thigmotaxis and showed a better retention in the probe trial. Chronic restraint stress did not affect these variables in either genotype. These results indicate that deletion of the NK1 receptor does not alter behavioural susceptibility to chronic repeated stress in mice, but accelerates adaptation of the HPA axis. In addition, deletion may result in lower levels of thigmotaxis and improved short-term spatial memory, perhaps reflecting a better learning strategy in the MWM. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Tachykinin antagonists have potent local anaesthetic actions.

    PubMed

    Post, C; Butterworth, J F; Strichartz, G R; Karlsson, J A; Persson, C G

    1985-11-19

    Contrary to what would have been expected, an antagonist of substance P (SP) [Arg5,D-Trp7,9]SP-(5-11) inhibited the neurogenic contraction of isolated guinea-pig hilus bronchi more readily than a contraction produced by exogenous SP. Furthermore, it has previously been shown that a tachykinin antagonist given intrathecally produced motor blockade as do local anaesthetic drugs. We therefore examined whether tachykinin antagonists had a depressant action on axonal neurotransmission. The compound action potential (APc) of the frog isolated sciatic nerve was suppressed in a concentration-dependent manner by the tachykinin antagonists [D-Pro2,D-Trp7,9]SP and [Arg5,D-Trp7,9]Sp-(5-11), both being about 4 times more potent than lidocaine. SP itself was without effect. Similarly in the rat isolated sciatic nerve [D-Pro2,D-Trp7,9]SP suppressed the APc. It was more potent in the A alpha- than in the C-fibres. SP did not affect conduction in either fibre type. In conscious guinea-pigs [D-Pro2,D-Trp7,9]SP injected adjacent to the sciatic nerve was found to block motor but not sensory functions of the limb. Thus, commonly used tachykinin antagonists, but not SP itself, have potent local anaesthetic properties. This should be considered when these agents are employed as pharmacological tools.

  7. The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease.

    PubMed

    Kordelas, Lambros; Steckel, Nina-Kristin; Horn, Peter A; Beelen, Dietrich W; Rebmann, Vera

    2016-10-27

    Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention.

  8. The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease

    PubMed Central

    Kordelas, Lambros; Steckel, Nina-Kristin; Horn, Peter A.; Beelen, Dietrich W.; Rebmann, Vera

    2016-01-01

    Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention. PMID:27801784

  9. Metabolic stability of some tachykinin analogues to cell-surface peptidases: roles for endopeptidase-24.11 and aminopeptidase N.

    PubMed

    Medeiros, M D; Turner, A J

    1995-01-01

    The metabolism of several tachykinin antagonists by membrane peptidases has been examined. [beta Ala8]NKA(4-10) was not stabilized against degradation by endopeptidase-24.11 and this was the major activity in renal brush border membranes hydrolyzing this peptide. The antagonist MEN 10263 was much more resistant to hydrolysis by endopeptidase-24.11, although hydrolysis of the C-terminal Leu-Phe bond was detectable. Three other tachykinin receptor antagonists (MEN 10208, MEN 10207, and MEN 10376), by virtue of D-Trp substitutions, were rendered resistant to endopeptidase-24.11 but were still susceptible to aminopeptidase action. These studies provide further insight into design features necessary to produce metabolically stable peptide analogues.

  10. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  11. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tac1 Signaling Is Required for Sexual Maturation and Responsiveness of GnRH Neurons to Kisspeptin in the Male Mouse.

    PubMed

    Maguire, Caroline A; Song, Yong Bhum; Wu, Min; León, Silvia; Carroll, Rona S; Alreja, Meenakshi; Kaiser, Ursula B; Navarro, Víctor M

    2017-07-01

    The tachykinins substance P (SP) and neurokinin A (Tac1) have emerged as novel regulators of kisspeptin/GnRH release. Recently, we documented that SP modulates reproductive function in the female mouse. Here, we extended this characterization to the male mouse. Tac1-/- male mice showed delayed puberty onset. They also presented significantly decreased expression levels of Pdyn (dynorphin) and Nos1 (nitric oxide synthase) in the mediobasal hypothalamus and elevated Gnrh1 levels. Unexpectedly, the response of Tac1-/- mice to central kisspeptin or senktide (neurokinin B receptor-agonist) administration was significantly decreased compared with controls, despite the preserved ability of GnRH neurons to stimulate luteinizing hormone release as demonstrated by central N-methyl-D-aspartate receptor administration, suggesting a deficit at the GnRH neuron level. Importantly, we demonstrated that kisspeptin receptor and SP receptor (NK1R) heterodimerize, indicating that changes in the SP tone could alter the responsiveness of GnRH neurons to kisspeptin. Finally, electrophysiological recordings from arcuate Kiss1 neurons showed that, although virtually all Kiss1 neurons responded to NKB and senktide, only half responded to an NK1R agonist and none to the neurokinin A receptor agonist at a 1-μM dose. In summary, we provide compelling evidence for a role of Tac1 in the control of reproductive function in the male mouse, suggesting a predominant central action that may involve a change in the balance of neural factors that control GnRH expression. Copyright © 2017 Endocrine Society.

  13. Bronchoconstriction induced by increasing airway temperature in ovalbumin-sensitized rats: role of tachykinins.

    PubMed

    Hsu, Chun-Chun; Lin, Ruei-Lung; Lin, You Shuei; Lee, Lu-Yuan

    2013-09-01

    This study was carried out to determine the effect of allergic inflammation on the airway response to increasing airway temperature. Our results showed the following: 1) In Brown-Norway rats actively sensitized by ovalbumin (Ova), isocapnic hyperventilation with humidified warm air (HWA) for 2 min raised tracheal temperature (Ttr) from 33.4 ± 0.6°C to 40.6 ± 0.1°C, which induced an immediate and sustained (>10 min) increase in total pulmonary resistance (Rl) from 0.128 ± 0.004 to 0.212 ± 0.013 cmH2O·ml(-1)·s (n = 6, P < 0.01). In sharp contrast, the HWA challenge caused the same increase in Ttr but did not generate any increase in Rl in control rats. 2) The increase in Rl in sensitized rats was reproducible when the same HWA challenge was repeated 60-90 min later. 3) This bronchoconstrictive effect was temperature dependent: a slightly smaller increase in peak Ttr (39.6 ± 0.2°C) generated a significant but smaller increase in Rl in sensitized rats. 4) The HWA-induced bronchoconstriction was not generated by the humidity delivered by the HWA challenge alone, because the same water content delivered by saline aerosol at room temperature had no effect. 5) The HWA-evoked increase in Rl in sensitized rats was not blocked by atropine but was completely prevented by pretreatment either with a combination of neurokinin (NK)-1 and NK-2 antagonists or with formoterol, a β2 agonist, before the HWA challenge. This study showed that increasing airway temperature evoked a pronounced and reversible increase in airway resistance in sensitized rats and that tachykinins released from the vagal bronchopulmonary C-fiber endings were primarily responsible.

  14. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy.

    PubMed

    Lim, Seon Ah; Kim, Tae-Jin; Lee, Jung Eun; Sonn, Chung Hee; Kim, Kwanghee; Kim, Jiyoung; Choi, Jong Gwon; Choi, Il-Kyu; Yun, Chae-Ok; Kim, Jae-Hong; Yee, Cassian; Kumar, Vinay; Lee, Kyung-Mi

    2013-04-15

    Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation. ©2012 AACR.

  15. IFN-γ Stimulated Human Umbilical-Tissue-Derived Cells Potently Suppress NK Activation and Resist NK-Mediated Cytotoxicity In Vitro

    PubMed Central

    Noone, Cariosa; Kihm, Anthony; O'Dea, Shirley; Mahon, Bernard P.

    2013-01-01

    Umbilical cord tissue represents a unique source of cells with potential for cell therapy applications for multiple diseases. Human umbilical tissue-derived cells (hUTC) are a developmentally early stage, homogenous population of cells that are HLA-ABC dim, HLA-DR negative, and lack expression of co-stimulatory molecules in the unactivated state. The lack of HLA-DR and co-stimulatory molecule expression on unactivated hUTC may account for their reduced immunogenicity, facilitating their use in allogeneic settings. However, such approaches could be confounded by host innate cells such as natural killer (NK) cells. Here, we evaluate in vitro NK cell interactions with hUTC and compare them with human mesenchymal stem cells (MSC). Our investigations show that hUTC suppress NK activation, through prostaglandin-E2 secretion in a contact-independent manner. Prestimulation of hUTC or human MSC with interferon gamma (IFN-γ) induced expression of the tryptophan degrading enzyme indoleamine 2, 3 dioxygenase, facilitating enhanced suppression. However, resting NK cells of different killer immunoglobulin-like receptor haplotypes did not kill hUTC or MSC; only activated NK cells had the ability to kill nonstimulated hUTC and, to a lesser extent, MSC. The cell killing process involved signaling through the NKG2D receptor and the perforin/granzyme pathway; this was supported by CD54 (ICAM-1) expression by hUTC. IFN-γ-stimulated hUTC or hMSC were less susceptible to NK killing; in this case, protection was associated with elevated HLA-ABC expression. These data delineate the different mechanisms in a two-way interaction between NK cells and two distinct cell therapies, hUTC or hMSC, and how these interactions may influence their clinical applications. PMID:23795941

  16. Neurokinin-1 receptor activation in Botzinger complex evokes bradypnoea.

    PubMed

    Fong, Angelina Y; Potts, Jeffrey T

    2006-09-15

    In the present study, we examined the role of the neurokinin-1 receptor (NK1R) in the modulation of respiratory rhythm in a functionally identified bradypnoeic region of the ventral respiratory group (VRG) in the in situ arterially perfused juvenile rat preparation. In electrophysiologically and functionally identified bradypnoeic sites corresponding to the Bötzinger complex (BötC), microinjection of the selective NK1R agonist [Sar(9)-Met(O(2))(11)]-substance P (SSP) produced a significant reduction in phrenic frequency mediated exclusively by an increase in expiratory duration (T(E)). The reduction was characterized by a significant increase in postinspiratory (post-I) duration with no effect on either late-expiratory duration (E2) or inspiratory duration (T(I)). In contrast, in a functionally identified tachypnoeic region, corresponding to the preBötzinger complex (Pre-BötC), control microinjection of SSP elicited tachypnoea. Pretreatment with the NK1R antagonist CP99994 in the BötC significantly attenuated the bradypnoeic response to SSP injection and blunted the increase in T(E) duration. This effect of SSP mimicked the extension of T(E) produced by activation of the Hering-Breuer reflex. Therefore, we hypothesized that activation of NK1Rs in the BötC is requisite for the expiratory-lengthening effect of the Hering-Breuer reflex. Unilateral electrical stimulation of the cervical vagus nerve produced bradypnoea by exclusively extending T(E). Ipsilateral blockade of NK1Rs by CP99994 following blockade of the contralateral BötC by the GABA(A) receptor agonist muscimol significantly reduced the extension of T(E) produced by vagal stimulation. Results from the present study demonstrate that selective activation of NK1Rs in a functionally identified bradypnoeic region of the VRG can depress respiratory frequency by selectively lengthening post-I duration and provide evidence that endogenous activation of NK1Rs in the BötC appears to be involved in the

  17. Up-regulated expression of substance P in CD8+ T cells and NK1R on monocytes of atopic dermatitis.

    PubMed

    Zhang, Zenan; Zheng, Wenjiao; Xie, Hua; Chai, Ruonan; Wang, Junling; Zhang, Huiyun; He, Shaoheng

    2017-05-01

    Large numbers of CD8 + T cells were observed in atopic dermatitis (AD) skin, and monocytes from AD patients showed increased prostaglandin E2 production. However, little is known about the expression of substance P (SP) and its receptor NK1R in blood leukocytes of patients with AD. To explore the expression of SP and NK1R in leukocytes of AD and the influence of allergens on SP and NK1R expression. The expression levels of SP and NK1R in patients with AD were examined by flow cytometry, ELISA and a mouse AD model. The plasma SP level was 4.9-fold higher in patients with AD than in HC subjects. Both the percentage of SP expression in the population and mean fluorescence intensity (MFI) of SP expression were elevated in CD8 + T cells in the blood of AD patients. However, both the CD14 + NK1R + population and MFI of NK1R expression on CD14 + cells were enhanced in the blood of AD patients. Allergens ASWE, HDME and PPE failed to up-regulate SP expression in CD8 + T cells. However, allergens ASWE and HDME both enhanced NK1R expression on CD14 + blood leukocytes regardless of AD or HC subjects. OVA-sensitized AD mice showed an elevated proportion and MFI of SP-expressing CD8 + T cells in the blood, which agrees with the SP expression situation in human AD blood. Injection of SP into mouse skin did not up-regulate NK1R expression on monocytes. An elevated plasma SP level, up-regulated expression of SP and NK1R indicate that the SP/NK1R complex is important in the development of AD. Therefore, SP and NK1R antagonist or blocker agents may help to treat patients with AD. Trial registration Registration number: ChiCTR-BOC-16010279; Registration date: Dec., 28, 2016; retrospectively registered.

  18. Identification of an elaborate NK-specific system regulating HLA-C expression

    PubMed Central

    Ivarsson, Martin A.; Walker-Sperling, Victoria E.; Subleski, Jeff; Johnson, Jenna K.; Wright, Paul W.; Carrington, Mary; McVicar, Daniel W.

    2018-01-01

    The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development. PMID:29329284

  19. Lack of efficacy of L-759274, a novel neurokinin 1 (substance P) receptor antagonist, for the treatment of generalized anxiety disorder.

    PubMed

    Michelson, David; Hargreaves, Richard; Alexander, Robert; Ceesay, Paulette; Hietala, Jarmo; Lines, Christopher; Reines, Scott

    2013-02-01

    Preclinical studies suggest that substance P acting at neurokinin 1 (NK1) receptors may be involved in stress responses and NK1 receptor antagonists show activity in tests of anxiety. These data raise the possibility that NK1 receptor antagonists could be potential anxiolytic treatments in humans. We evaluated this hypothesis clinically using the NK1 antagonist L-759274. This is a randomized, double-blind, placebo- and active-controlled, multicentre, proof-of-concept trial. Patients with generalized anxiety disorder were randomized 1:1:1 to 6 wk of treatment with 40 mg L-759274 (n = 73), 1-6 mg lorazepam (n = 69) or placebo (n = 71). Efficacy was assessed using the Hamilton Anxiety Scale (HAMA). A positron emission tomography (PET) study was also performed in 16 healthy subjects to determine the relationship between NK1 receptor occupancy and plasma levels of L-759274 to verify adequate target engagement by the doses tested during the clinical trial. No statistically significant difference in mean change from baseline HAMA score at 6 wk was seen for L-759274 vs. placebo [difference = 1.0 (95% confidence intervals (CI) -1.2 to 3.2), p = 0.359] whereas the lorazepam group did show a significant improvement vs. placebo (difference = -2.7, 95% CI -5.0 to -0.4, p = 0.020) and L-759274 (difference = 3.7, 95% CI 1.5-6.0, p = 0.001]. Results from the PET study indicated that the L-759274 dosing regimen used in the clinical trial likely provided high levels of NK1 receptor occupancy (>90%), supporting the view that it was an adequate proof-of-concept trial. The NK1 receptor antagonist L-759274 does not appear to be efficacious for the treatment of generalized anxiety disorder.

  20. Immunohistochemical localization of cardio-active neuropeptides in the heart of a living fossil, Nautilus pompilius L. (Cephalopoda, Tetrabranchiata).

    PubMed

    Springer, J; Ruth, P; Beuerlein, K; Westermann, B; Schipp, R

    2004-01-01

    Neuropeptides play an important role in modulating the effects of neurotransmitters such as acetylcholine and noradrenaline in the heart and the vascular system of vertebrates and invertebrates. Various neuropeptides, including substance P (SP), vasoactive intestinal polypeptide (VIP) and FMRFamide, have been localized in the brain in cephalopods and the neurosecretory system of the vena cava. Previous studies involving cephalopods have mainly focussed on the modern, coleoid cephalopods, whereas little attention was paid to the living fossil Nautilus. In this study, the distributions of the peptides related to tachykinins (TKs) and the high affinity receptor for the best characterized TK substance P (tachykinin NK-1), VIP, as well as FMRFamide were investigated in the heart of Nautilus pompilius L. by immunohistochemistry. TK-like immunoreactivity (TK-LI) was seen associated to a sub-population of hemocytes, VIP-LI glial cells in larger nerves entering the heart, whereas FMRFamide immunoreactivity was distributed throughout the entire heart, including the semilunar atrioventricular valves. The pattern of FMRFamide immunoreactivity matched that of Bodian silver staining for nervous tissue. The NK-1-LI receptor was located on endothelial cells, which were also positive for endothelial nitric oxide synthase-LI (eNOS). The results indicate that neuropeptides may be involved in the regulation of the Nautilus heart via different mechanisms, (1) by direct interaction with myocardial receptors (FMRFamide), (2) by interacting with the nervus cardiacus (VIP-related peptides) and (3) indirectly by stimulating eNOS in the endothelium throughout the heart (TK-related peptides).

  1. Peristalsis and fecal pellet propulsion do not require nicotinic, purinergic, 5-HT3, or NK3 receptors in isolated guinea pig distal colon.

    PubMed

    Nicholas, Sarah; Spencer, Nick J

    2010-06-01

    The neuronal mechanism by which distension of the colon triggers peristalsis and the propulsion of colonic contents is incompletely understood. In this study, we used video imaging and spatiotemporal mapping techniques to investigate the neuroneuronal mechanisms underlying peristalsis in isolated guinea pig distal colon. In direct contrast to previous studies, we found that hexamethonium (100 muM-1 mM) or mecamylamine (20 muM) never abolished peristalsis or fecal pellet propulsion, although a temporary blockade of peristalsis was common, giving the impression perhaps that peristalsis was blocked permanently. During the initiation of peristalsis, the intraluminal propulsive force applied to an inserted fecal pellet was significantly reduced by hexamethonium 100 muM, even though, once initiated, the propagation velocity of fecal pellets was never reduced by nicotinic antagonists. In the presence of hexamethonium or mecamylamine, further addition of PPADS (10 muM), ondansetron (1 muM), and SR 142801 (300 nM) had no inhibitory effect on the propagation velocity of fecal pellets. In these preparations, antagonists for nicotinic, purinergic (P2), serotonergic (5-HT3), or tachykinergic (NK3) receptors always abolished responses to the agonists for these receptors, confirming that when peristalsis occurred, nicotinic, P2, 5-HT3, and NK3 receptors were blocked. Tetrodotoxin abolished nonnicotinic peristalsis. In summary, nicotinic transmission contributes to excitatory neuroneuronal transmission underlying peristalsis and fecal pellet propulsion but is not required for peristalsis, nor fecal pellet propulsion, as once thought. These observations could be explained by an excitatory nonnicotinic neuroneuronal pathway that can generate peristalsis and induce normal fecal pellet propagation velocities but does not require nicotinic, P2, 5-HT3, or NK3 receptors.

  2. Selective ablation of dorsal horn NK1 expressing cells reveals a modulation of spinal alpha2-adrenergic inhibition of dorsal horn neurones.

    PubMed

    Rahman, Wahida; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2008-06-01

    Activity in descending systems from the brainstem modulates nociceptive transmission through the dorsal horn. Intrathecal injection of the neurotoxin saporin conjugated to SP (SP-SAP) into the lumbar spinal cord results in the selective ablation of NK(1) receptor expressing (NK(1)+ve) neurones in the superficial dorsal horn (lamina I/III). Loss of these NK(1)+ve neurones attenuates excitability of deep dorsal horn neurones due to a disruption of both intrinsic spinal circuits and a spino-bulbo-spinal loop, which activates a descending excitatory drive, mediated through spinal 5HT(3) receptors. Descending inhibitory pathways also modulate spinal activity and hence control the level of nociceptive transmission relayed to higher centres. To ascertain the spinal origins of the major descending noradrenergic inhibitory pathway we studied the effects of a selective alpha2-adrenoceptor antagonist, atipamezole, on neuronal activity in animals pre-treated with SP-SAP. Intrathecal application of atipamezole dose dependently facilitated the mechanically evoked neuronal responses of deep dorsal horn neurones to low intensity von Frey hairs (5-15 g) and noxious thermal (45-50 degrees C) evoked responses in SAP control animals indicating a physiological alpha2-adrenoceptor control. This facilitatory effect of atipamezole was lost in the SP-SAP treated group. These data suggest that activity within noradrenergic pathways have a dependence on dorsal horn NK(1)+ve cells. Further, noradrenergic descending inhibition may in part be driven by lamina I/III (NK(1)+ve) cells, and mediated via spinal alpha2-adrenoceptor activation. Since the same neuronal population drives descending facilitation and inhibition, the reduced excitability of lamina V/VI WDR neurones seen after loss of these NK(1)+ve neurones indicates a dominant role of descending facilitation.

  3. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  4. Comparison of the spatial distribution of endopeptidase-24.11 with substance P, substance P receptor (NK-1r) and gastric efferent neurons in the dorsal vagal complex of the rat.

    PubMed

    Ladic, L; Buchan, A

    1997-01-24

    The spatial location of neutral endopeptidase 24.11 (NEP) immunoreactivity was compared to that of substance P (SP), SP receptor (NK-1r) and identified gastric efferent neurons in the dorsal vagal complex in rat brainstem. The majority of NEP labeling was observed caudal to the obex. Neutral endopeptidase-immunoreactivity was associated with the central canal, ependyma and blood vessels, and surrounded the area postrema. A comparison of the results of immunocytochemical and retrograde tracing experiments demonstrated the absence of co-labeling of neurons or their process with NEP and either substance P or NK-1r. Furthermore, no NEP-immunoreactivity was observed in the vicinity of identified gastric efferents in the dorsal motor nucleus of the vagus. These results would suggest that NEP does not degrade SP in the vicinity of gastric efferent neurons.

  5. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents

    PubMed Central

    Sreepathi, H.K.; Ferraguti, F.

    2012-01-01

    Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ∼35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ∼75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ∼25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses. PMID:22210508

  6. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  7. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure.

    PubMed

    Li, Ping-Chia; Chen, Wen-Chung; Chang, Li-Ching; Lin, Shao-Chieh

    2008-05-01

    This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.

  8. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    PubMed Central

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  9. Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer

    PubMed Central

    Gillespie, Earl; Leeman, Susan E.; Watts, Luisa A.; Coukos, Jennifer A.; O'Brien, Michael J.; Cerda, Sandra R.; Farraye, Francis A.; Stucchi, Arthur F.; Becker, James M.

    2011-01-01

    Patients with chronic ulcerative colitis (UC) are at high risk for developing colorectal cancer. In this study, archival formalin-fixed paraffin-embedded colonic tissue from patients with UC who developed carcinoma (CA) or high-grade dysplasia (HGD) was examined for changes in expression of the proinflammatory and mitogenic neurokinin-1 receptor (NK-1R). Laser capture microscopy was used to microdissect epithelia from areas of colons that showed histologic evidence of CA, HGD, and epithelia that were not dysplastic or cancerous but did contain evidence of prior inflammation (quiescent colitis). mRNA was extracted from the dissected tissue, and PCR array analysis was performed on extracted mRNA. Two antibodies were necessary to separately estimate the protein levels of the truncated (tr-NK-1R) and full-length (fl-NK-1R) receptors by immunohistochemistry. mRNA expression of tr-NK-1R increased 14-fold (P = 0.02) when comparing the HGD and CA groups. In contrast, the fl-NK-1R transcript showed no significant differences among groups. The protein levels of the total NK-1R increased by 40% (P = 0.02) in HGD and 80% (P = 0.0007) in CA compared with quiescent colitis. There were no significant changes in protein levels of the fl-NK-1R. We conclude that the increase in total NK-1R protein in HGD and CA is attributable to an increase in tr-NK-1R, suggesting there may be a functional role for tr-NK-1R in malignant transformation in colitis-associated cancer. The tr-NK-1R could prove useful as a diagnostic marker to identify patients at risk for neoplasia and may serve as a useful therapeutic target in the treatment of colitis-associated cancer. PMID:21969570

  10. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors.

    PubMed

    Cifaldi, Loredana; Romania, Paolo; Falco, Michela; Lorenzi, Silvia; Meazza, Raffaella; Petrini, Stefania; Andreani, Marco; Pende, Daniela; Locatelli, Franco; Fruci, Doriana

    2015-03-01

    The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by MHC class I (MHC-I) molecules. Herein, we demonstrate that genetic or pharmacological inhibition of ERAP1 on human tumor cell lines perturbs their ability to engage several classes of inhibitory receptors by their specific ligands, including killer cell Ig-like receptors (KIR) by classical MHC-I-peptide (pMHC-I) complexes and the lectin-like receptor CD94-NKG2A by nonclassical pMHC-I complexes, in each case leading to natural killer (NK) cell killing. The protective effect of pMHC-I complexes could be restored in ERAP1-deficient settings by the addition of known high-affinity peptides, suggesting that ERAP1 was needed to positively modify the affinity of natural ligands. Notably, ERAP1 inhibition enhanced the ability of NK cells to kill freshly established human lymphoblastoid cell lines from autologous or allogeneic sources, thereby promoting NK cytotoxic activity against target cells that would not be expected because of KIR-KIR ligand matching. Overall, our results identify ERAP1 as a modifier to leverage immune functions that may improve the efficacy of NK cell-based approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  11. The plasma protein extravasation induced by adenosine and its analogues in the rat dorsal skin: evidence for the involvement of capsaicin sensitive primary afferent neurones and mast cells.

    PubMed

    Esquisatto, L C; Costa, S K; Camargo, E A; Ribela, M T; Brain, S D; de Nucci, G; Antunes, E

    2001-09-01

    1. The contribution of sensory neurons and mast cells to the oedema evoked by adenosine A1 (N(6)-cyclopentyladenosine, CPA, 3 - 30 nmol site(-1)), A2 (5'N-ethylcarboxamidoadenosine, NECA, 1 - 10 nmol site(-1)) and A3 receptor agonists (N6-[3-iodobenzyl]-N-methyl-5'-carboxiamidoadenosine, IB-MECA, 0.01 - 3 nmol site(-1)) was investigated in the rat skin microvasculature, by the extravascular accumulation of intravenously-injected (i.v.) 125I-albumin. 2. Intradermal (i.d.) injection of adenosine and analogues induced increased microvascular permeability in a dose-dependent manner (IB-MECA > NECA > CPA > adenosine). The non-selective adenosine receptor antagonist theophylline (5 - 50 nmol site(-1)) markedly inhibited adenosine, CPA or NECA but not IB-MECA-induced plasma extravasation. The A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.3 - 3 micromol kg(-1), i.v.) significantly reduced CPA-induced plasma extravasation whereas responses to adenosine, NECA or IB-MECA were unchanged. The A2 receptor antagonist 3,7-dymethyl-1-proprargylxanthine (DMPX, 0.5 - 50 nmol site(-1)) significantly reduced NECA-induced plasma extravasation without affecting responses to adenosine, CPA and IB-MECA. 3. The tachykinin NK1 receptor antagonist (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2]octane chloride (SR140333), but not the NK2 receptor antagonist (S)-N-methyl-N[4-acetylamino-4-phenyl piperidino)-2-(3,4-dichlorophenyl)butyl]-benzamide (SR48968), significantly inhibited the plasma extravasation evoked by higher doses of adenosine (100 nmol site(-1)), CPA (100 nmol site(-1)), NECA (1 nmol site(-1)) and IB-MECA (0.1 - 1 nmol site(-1)). In rats treated with capsaicin to destroy sensory neurons, the response to higher doses of adenosine, CPA and NECA, but not IB-MECA, was significantly inhibited. 4. The effects of adenosine and analogues were largely inhibited by histamine and 5-hydroxytryptamine (5

  12. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    PubMed

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  13. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G.

    2017-01-01

    ABSTRACT NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika

  14. Models to Study NK Cell Biology and Possible Clinical Application.

    PubMed

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  15. Spatial association of prolyl oligopeptidase, inositol 1,4,5-triphosphate type 1 receptor, substance P and its neurokinin-1 receptor in the rat brain: an immunohistochemical colocalization study.

    PubMed

    Myöhänen, T T; Venäläinen, J I; Garcia-Horsman, J A; Männistö, P T

    2008-06-02

    Prolyl oligopeptidase (POP) is a serine endopeptidase which hydrolyzes proline-containing peptides shorter than 30 amino acids. It has been suggested that POP is associated with cognitive functions, possibly via the cleavage of neuropeptides such as substance P (SP). Recently, several studies have also linked POP to the inositol 1,4,5-triphosphate (IP(3)) signaling. However, the neuroanatomical interactions between these substances are not known. We used double-labeled immunofluorescence to determine the POP colocalization with SP, SP receptor (neurokinin-1 receptor, NK-1R) and IP(3) type 1 receptor (IP(3)R1) in the rat brain. Furthermore, since striatal and cortical GABAergic neurons are involved in SP neurotransmission, we studied the coexpression of POP, SP and GABA by triple-labeled immunofluorescence. POP was moderately present in IP(3)R1-containing cells in cortex; the colocalization was particularly high in the thalamus, hippocampal CA1 field and cerebellar Purkinje cells. Colocalization of POP with SP and NK1-receptor was infrequent throughout the brain, though some POP and SP coexpression was observed in cerebellar Purkinje cells. We also found that POP partially colocalized with SP-containing GABAergic neurons in striatum and cortex. Our findings support the view that POP is at least spatially associated with the IP(3)-signaling in the thalamus, hippocampus and cerebellar Purkinje cells. This might point to a role for POP in the regulation of long-term potentiation and/or depression. Moreover, the low degree of colocalization of POP, SP and its NK-1R suggests that a transport system is needed either for POP or SP to make hydrolysis possible and that POP may act both intra- and extracellularly.

  16. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    PubMed

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  17. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells

    PubMed Central

    Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell–cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  18. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    PubMed

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  19. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents.

    PubMed

    Sreepathi, H K; Ferraguti, F

    2012-02-17

    Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ~35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ~75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ~25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    PubMed

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex

    PubMed Central

    Corcoran, Andrea E.; Brust, Rachael D.; Chang, YoonJeung; Nattie, Eugene E.

    2017-01-01

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2. Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic

  2. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    PubMed

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  3. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.

    2008-01-01

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016

  4. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells.

    PubMed

    Wan, Ying; Meng, Fanyin; Wu, Nan; Zhou, Tianhao; Venter, Julie; Francis, Heather; Kennedy, Lindsey; Glaser, Trenton; Bernuzzi, Francesca; Invernizzi, Pietro; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco

    2017-08-01

    Substance P (SP) is involved in the proliferation of cholangiocytes in bile duct-ligated (BDL) mice and human cholangiocarcinoma growth by interacting with the neurokinin-1 receptor (NK-1R). To identify whether SP regulates liver fibrosis during cholestasis, wild-type or NK-1R knockout (NK-1R -/- ) mice that received BDL or sham surgery and multidrug resistance protein 2 knockout (Mdr2 -/- ) mice treated with either an NK-1R antagonist (L-733,060) or saline were used. Additionally, wild-type mice were treated with SP or saline intraperitoneally. In vivo, there was increased expression of tachykinin precursor 1 (coding SP) and NK-1R in both BDL and Mdr2 -/- mice compared to wild-type mice. Expression of tachykinin precursor 1 and NK-1R was significantly higher in liver samples from primary sclerosing cholangitis patients compared to healthy controls. Knockout of NK-1R decreased BDL-induced liver fibrosis, and treatment with L-733,060 resulted in decreased liver fibrosis in Mdr2 -/- mice, which was shown by decreased sirius red staining, fibrosis gene and protein expression, and reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatants. Furthermore, we observed that reduced liver fibrosis in NK-1R -/- mice with BDL surgery or Mdr2 -/- mice treated with L-733,060 was associated with enhanced cellular senescence of hepatic stellate cells and decreased senescence of cholangiocytes. In vitro, L-733,060 inhibited SP-induced expression of fibrotic genes in hepatic stellate cells and cholangiocytes; treatment with L-733,060 partially reversed the SP-induced decrease of senescence gene expression in cultured hepatic stellate cells and the SP-induced increase of senescence-related gene expression in cultured cholangiocytes. Collectively, our results demonstrate the regulatory effects of the SP/NK-1R axis on liver fibrosis through changes in cellular senescence during cholestatic liver injury. (Hepatology 2017;66:528-541). © 2017 by the American

  5. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism

    PubMed Central

    Palamiuc, Lavinia; Noble, Tallie; Witham, Emily; Ratanpal, Harkaranveer; Vaughan, Megan; Srinivasan, Supriya

    2017-01-01

    Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity. PMID:28128367

  6. Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses

    PubMed Central

    Brusilovsky, Michael; Cordoba, Moti; Rosental, Benyamin; Hershkovitz, Oren; Andrake, Mark D.; Pecherskaya, Anna; Einarson, Margret B.; Zhou, Yan; Braiman, Alex

    2013-01-01

    KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56high subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cells surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0-domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4) and induces differential localization of KIR2DL4 to rab5+ and rab7+ endosomes, thus leading to down-regulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS Proteo-Glycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking. PMID:24127555

  7. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    PubMed

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    PubMed Central

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  9. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model.

    PubMed

    Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Lorentzon, Ronny; Backman, Clas; Forsgren, Sture

    2014-04-11

    We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced

  10. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    PubMed Central

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  11. Histaminergic regulation of NK-cells: protection against monocyte-induced apoptosis.

    PubMed

    Hansson, M; Asea, A; Hermodsson, S; Hellstrand, K

    1996-08-01

    Human natural killer (NK) cells (with CD3-/56+ phenotype) acquired features characteristic of apoptosis after incubation with autologous monocytes, as revealed by apoptotic nuclear morphology and degradation of DNA into oligonucleosomal fragments. The monocyte-induced apoptosis in NK-cells was prevented by the biogenic amine histamine at concentrations exceeding 0.1 microM. The protective effect of histamine was blocked by the H2-receptor (H2R) antagonist ranitidine but not by AH202399 A, a chemical control to ranitidine devoid of H2R affinity. It is concluded that histaminergic mechanisms may serve to protect NK cells from damage inflicted by products of the oxidative metabolism of monocytes.

  12. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia

    PubMed Central

    Isidro, Raymond A; Cruz, Myrella L; Isidro, Angel A; Baez, Axel; Arroyo, Axel; González-Marqués, William A; González-Keelan, Carmen; Torres, Esther A; Appleyard, Caroline B

    2015-01-01

    AIM: To determine the expression of neurokinin-1 receptor (NK-1R), phosphorylated epidermal growth factor receptor (pEGFR), cyclooxygenase-2 (Cox-2), and vitamin D receptor (VDR) in normal, inflammatory bowel disease (IBD), and colorectal neoplasia tissues from Puerto Ricans. METHODS: Tissues from patients with IBD, colitis-associated colorectal cancer (CAC), sporadic dysplasia, and sporadic colorectal cancer (CRC), as well as normal controls, were identified at several centers in Puerto Rico. Archival formalin-fixed, paraffin-embedded tissues were de-identified and processed by immunohistochemistry for NK-1R, pEGFR, Cox-2, and VDR. Pictures of representative areas of each tissues diagnosis were taken and scored by three observers using a 4-point scale that assessed intensity of staining. Tissues with CAC were further analyzed by photographing representative areas of IBD and the different grades of dysplasia, in addition to the areas of cancer, within each tissue. Differences in the average age between the five patient groups were assessed with one-way analysis of variance and Tukey-Kramer multiple comparisons test. The mean scores for normal tissues and tissues with IBD, dysplasia, CRC, and CAC were calculated and statistically compared using one-way analysis of variance and Dunnett’s multiple comparisons test. Correlations between protein expression patterns were analyzed with the Pearson’s product-moment correlation coefficient. Data are presented as mean ± SE. RESULTS: On average, patients with IBD were younger (34.60 ± 5.81) than normal (63.20 ± 6.13, P < 0.01), sporadic dysplasia (68.80 ± 4.42, P < 0.01), sporadic cancer (74.80 ± 4.91, P < 0.001), and CAC (57.50 ± 5.11, P < 0.05) patients. NK-1R in cancer tissue (sporadic CRC, 1.73 ± 0.34; CAC, 1.57 ± 0.53) and sporadic dysplasia (2.00 ± 0.45) were higher than in normal tissues (0.73 ± 0.19). pEGFR was significantly increased in sporadic CRC (1.53 ± 0.43) and CAC (2.25 ± 0.47) when compared to

  13. HMB-45, S-100, NK1/C3, and MART-1 in metastatic melanoma.

    PubMed

    Zubovits, Judit; Buzney, Elizabeth; Yu, Lawrence; Duncan, Lyn M

    2004-02-01

    The diagnosis of melanoma metastatic to lymph node remains a difficult problem given its histological diversity. We examined the staining patterns of S-100, NK1/C3, HMB-45, and MART-1 (DC10) in melanoma metastases to lymph nodes. Immunohistochemical stains were performed on tissue sections of 126 formalin-fixed lymph nodes from 126 patients with an established diagnosis of metastatic melanoma. A total of 98% of cases (123 of 126) stained positive for S-100, 93% (117 of 125) stained positive for NK1/C3, 82% (103 of 126) stained positive for MART-1, and 76% (95 of 125) stained positive for HMB-45. The distribution and intensity of staining varied among these markers. A diffuse staining pattern, defined as >50% of tumor cells stained, was observed in 83% of MART-1-positive cases but in only 56% of S-100-positive cases, 48% of NK1/C3-positive cases, and 34% of HMB-45-positive cases. A maximally intense signal was almost always observed for MART-1 (83% of positive cases) but was rarely observed for NK1/C3 (20%). S-100 and HMB-45 showed maximally intense staining in 50% and 54% of cases, respectively. S-100 and NK1/C3 stained both histiocytes and melanocytes, whereas MART-1 and HMB-45 stained only melanocytes. Seventy-eight cases (63%) stained positive for all 4 markers, 17 cases (14%) stained for all markers except HMB-45, 13 cases (10%) stained for all markers except MART-1, 6 cases (5%) stained only with S-100 and NK1/C3, 4 cases (3%) stained only with S-100 and HMB-45, and 2 cases stained for all markers except S-100. One case each stained for the following: only S-100, only S-100 and HMB-45, and all markers except NK1/C3. One case exhibited absence of staining for any of these markers. We demonstrate that lymph node metastases of melanoma are heterogeneous with regard to tumor marker expression. S-100 and NK1/C3 were the most sensitive stains for detecting metastatic melanoma; however, they both also stain other nontumor cells in lymph nodes. MART-1 did not stain

  14. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion.

    PubMed

    Correia, Margareta P; Costa, Alexandra V; Uhrberg, Markus; Cardoso, Elsa M; Arosa, Fernando A

    2011-05-01

    During the last years several authors have described a small population of CD8+ T cells expressing NK receptors (NKRs). Although their origin remains largely unknown, we have recently demonstrated that IL-15 is capable of inducing NKR expression in purified human CD8+CD56- T cells. In this study we show that IL-15-driven NKR induction in CD8+ T cells was linked with CD56 de novo acquisition, consistent with an effector-memory phenotype, increased anti-apoptotic levels, high granzyme B/perforin expression and with the ability of displaying in vitro NK-like cytotoxicity. Interestingly, dissection of NKR functional outcome in IL-15-cultured CD8+ T cells revealed: (i) that NKG2D cross-linking was able per se to upregulate degranulation levels and (ii) that KIR and NKG2A cross-linking upregulated secretion of cytokines such as IFN-γ, TNF-α, IL-1β and IL-10. These results suggest that IL-15 is capable of differentiating CD8+ T cells into NK-like T cells displaying a regulatory phenotype. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. CMV drives the expansion of highly functional memory T cells expressing NK-cell receptors in renal transplant recipients.

    PubMed

    Makwana, Nandini; Foley, Bree; Fernandez, Sonia; Lee, Silvia; Irish, Ashley; Pircher, Hanspeter; Price, Patricia

    2017-08-01

    Cytomegalovirus (CMV) is a common opportunistic infection encountered in renal transplant recipients (RTRs) and may be reactivated without symptoms at any time post-transplant. We describe how active and latent CMV affect T-cell subsets in RTRs who are stable on maintenance therapy. T-cell responses to CMV were assessed in RTRs (n = 54) >2 years post-transplant, and healthy controls (n = 38). Seven RTRs had CMV DNA detectable in plasma. CMV antibody and DNA aligned with increased proportions of CD8 + T cells and reduced CD4/CD8 ratios. This paralleled an expansion of effector memory T-cell (T EM ), terminally differentiated T-cell (T EMRA ) and CD57 + T EMRA cell populations. Expression of NK-cell receptors, LIR-1 and KLRG1 on CD4 + and CD8 + CD57 + T EM and T EMRA cells correlated with elevated interferon-γ and cytotoxic responses to anti-CD3 and increased cytotoxic responses to CMV phosphoprotein (pp) 65 in RTRs who carried CMV DNA. CD8 + T cells from all CMV seropositive RTRs responded efficiently to CMV immediate early (IE) -1 peptides. The data show that latent and active CMV infection can alter T-cell subsets in RTRs many years after transplantation, and up-regulate T-cell expression of NK-cell receptors. This may enhance effector responses of CD4 + and CD8 + T cells against CMV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment

    PubMed Central

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Background: Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes–anthracyclines. Methods: Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. Results: A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. Conclusion: A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer. PMID:29558872

  17. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment.

    PubMed

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes-anthracyclines. Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer.

  18. Photoaffinity labeling the substance P receptor using a derivative of substance P containing para-benzoylphenylalanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, N.D.; White, C.F.; Leeman, S.E.

    A novel photoreactive substance P (SP) analogue has been synthesized by solid-phase peptide synthesis methodology to incorporate the amino acid p-benzoyl-L-phenylalanine (L-Phe(pBz)) in place of the Phe{sup 8} residue of SP. (Phe{sup 8}(OpBz))SP was equipotent with SP in competing for SP binding sites on rat submaxillary gland membranes and had potent sialagogic activity in vivo. In the absence of light, the {sup 125}I-labeled Bolton-Hunter conjugate of (Phe{sup 8}(pBz))SP bound in a saturable and reversible manner to an apparently homogeneous class of binding sites with an affinity K{sub D} = 0.4 nM. The binding of {sup 125}I-(Phe{sup 8}(pBz))SP was inhibited competitivelymore » by various tachykinin peptides and analogues with the appropriate specificity for SP/NK-1 receptors. Upon photolysis, up to 70{percent} of the specifically bound {sup 125}I-(Phe{sup 8}(pBz))SP underwent covalent linkage to two polypeptides of M{sub r} = 53 000 and 46 000, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Quantitative analysis of the inhibitory effects of SP and related peptides on {sup 125}I-(Phe{sup 8}(pBz))SP photoincorporation indicated that the binding sites of the two photolabeled polypeptides have the same peptide specificity, namely, that typical of NK-1-type SP receptors. Further information on the relationship between the two labeled SP binding sites was provided by enzymatic digestion studies. The highly specific and remarkably efficient photolabeling achieved with {sup 125}I-(Phe{sup 8}(pBz))SP suggests that this photoaffinity probe will be of considerable value for the characterization of the molecular structure of the SP receptor.« less

  19. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity.

    PubMed

    Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2016-04-01

    Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

  20. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  1. Chronic treatment with otilonium bromide induces changes in L-type Ca²⁺ channel, tachykinins, and nitric oxide synthase expression in rat colon muscle coat.

    PubMed

    Traini, C; Cipriani, G; Evangelista, S; Santicioli, P; Faussone-Pellegrini, M-S; Vannucchi, M-G

    2013-11-01

    Otilonium bromide (OB) is a quaternary ammonium derivative used for the treatment of intestinal hypermotility and is endowed with neurokinin2 receptor (NK2r) antagonist and Ca²⁺ channel blocker properties. Therefore, the possibility that OB might play a role in the neurokinin receptor/Substance-P/nitric oxide (NKr/SP/NO) circuit was investigated after chronic exposition to the drug. Rats were treated with OB 2-20 mg kg⁻¹ for 10 and 30 days. In the proximal colon, the expression and distribution of muscle NOsynthase 1 (NOS1), NK1r, NK2r, SP and Cav 1.2 subunit (for L-type Ca²⁺ channel) and the spontaneous activity and stimulated responses to NK1r and NK2r agonists were investigated. Immunohistochemistry showed a redistribution of NK1r and L-type Ca²⁺ channel in muscle cells with no change of NK2r at 30 days, a significant increase in muscle NOS1 expression at 10 days and a significant decrease in the SP content early in the ganglia and later in the intramuscular nerve fibers. Functional studies showed no change in spontaneous activity but a significant increase in maximal contraction induced by NK1r agonist. Chronic exposition to OB significantly affects the NKr/SP/NO circuit. The progressive decrease in SP-expression might be the consequence of the persistent presence of OB, the increase of NOS1 expression in muscle cells at 10 days in an attempt to guarantee an adequate NO production, and, at 30 days, the redistribution of the L-type Ca²⁺ channel and NK1r as a sign to compensate the drug channel block by re-cycling both of them. The physiological data suggest NK1r hypersensitivity. © 2013 John Wiley & Sons Ltd.

  2. Effects of age and clustered hypoxia on [(125)I] substance P binding to neurotachykinin-1 receptors in brainstem of developing swine.

    PubMed

    Rodier, M E; Laferrière, A; Moss, I R

    2001-03-29

    This work focused on the postnatal development of substance P-bound neurotachykinin-1 (NK-1) receptors in the porcine brainstem using 2-3-, 6-11-, 16-18-, and 21-28-day-old piglets versus adult, and on alterations in these receptors after single and six-daily repeated clustered hypoxia using 6-11- and 21-28-day-old piglets. NK-1 receptor localization and densities were determined by quantitative autoradiography using mono-iodinated Bolton-Hunter substance P ([(125)I]BHSP). Slide-mounted brainstem sections, incubated in [(125)I]BHSP and then exposed to film, have shown [(125)I]BHSP binding throughout many brainstem nuclei and tracts, including the ambigual/periambigual (nAmb), dorsal motor vagal (dmnv), gigantocellular (nGC), hypoglossal (nHyp), medial parabrachial (nPBM), lateral reticular (nRL), raphe magnus (nRMg), raphe obscurus (nROb) and solitary tract (nTS) nuclei. NK-1 receptor densities decreased with age. As compared to normoxia, NK-1 receptor densities increased significantly after the six-daily hypoxia protocol in nAmb, dmnv, nHyp, nRL, nRMg, nROb, and nTS of both the young and older age groups. This increase may represent receptor upregulation as an adaptation to repeated hypoxia.

  3. Functional role of human NK cell receptor 2B4 (CD244) isoforms.

    PubMed

    Mathew, Stephen O; Rao, Krithi K; Kim, Jong R; Bambard, Nowland D; Mathew, Porunelloor A

    2009-06-01

    2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM/CD150), is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Human NK cells express two isoforms of 2B4, h2B4-A and h2B4-B that differ in a small portion of the extracellular domain. In the present investigation, we have studied the functions of h2B4-A and h2B4-B. Our study demonstrated that these two isoforms differ in their binding affinity for CD48, which results in differential cytotoxic activity as well as intracellular calcium release by NK cells upon target cell recognition. Analysis of the predicted 3-D structure of the two isoforms showed conformational differences that could account for their differences in binding affinity to CD48. h2B4-A was able to mediate natural cytotoxicity against CD48-expressing K562 target cells and induce intracellular calcium release, whereas h2B4-B showed no effects. NK-92MI, U937, THP-1, KU812, primary monocytes, basophils and NK cells showed expression of both h2B4-A and h2B4-B whereas YT and IL-2-activated NK cells did not show any h2B4-B expression. Stimulation of NK cells through 2B4 resulted in decreased mRNA levels of both h2B4-A and h2B4-B indicating that down-regulation of 2B4 isoforms may be an important factor in controlling NK cell activation during immune responses.

  4. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    PubMed Central

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  5. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    PubMed

    Chen, Panpan; Douglas, Steven D; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  6. Effect of casopitant, a novel NK-1 receptor antagonist, on the pharmacokinetics and pharmacodynamics of steady-state warfarin.

    PubMed

    Kirby, Lyndon C; Johnson, Brendan M; Adams, Laurel M; Eberwein, Derek J; Zhang, Ke; Murray, Sharon C; Lates, Christian D; Blum, Robert A; Morris, Shannon R

    2010-05-01

    Casopitant, a novel NK-1 receptor antagonist under investigation for the prevention of postoperative and chemotherapy-induced nausea and vomiting, is a weak to moderate inhibitor of CYP3A and a moderate inducer of CYP2C9 in vitro. Furthermore, both CYP enzymes are involved in the metabolism of R- and S-warfarin, respectively. This clinical study was conducted to explore the potential drug-drug interaction between casopitant and warfarin. In total, 97 healthy participants were enrolled and 54 completed the study. Participants received individualized daily dosing of warfarin to an international normalized ratio (INR) of 1.3 to 2.3 over a 14-day period (period 1). Immediately following period 1, participants entered period 2 and were randomized to receive either regimen A (oral casopitant [150 mg day 1, 50 mg days 2 and 3] and warfarin [days 1-10]) or regimen B (oral casopitant 60 mg and warfarin [days 1-14]). INR assessments were performed daily. The steady-state C(max) and AUC of R- and S-warfarin were not altered by regimen A, but R-warfarin AUC was increased 1.31-fold (90% confidence interval [CI]: 1.22, 1.41), and S-warfarin AUC was increased 1.27-fold (90% CI: 1.18, 1.38) on day 14 in regimen B. Steady-state INR values were not affected by either casopitant regimen.

  7. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    PubMed

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  8. Blockade of neurokinin-1 receptors in the ventral respiratory column does not affect breathing but alters neurochemical release

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Substance P (SP) and its receptor, neurokinin-1 (NK1R), have been shown to be excitatory modulators of respiratory frequency and to stabilize breathing regularity. Studies in anesthetized mice suggest that tonic activation of NK1Rs is particularly important when other excitatory inputs to the pre-Bötzinger complex in the ventral respiratory column (VRC) are attenuated. Consistent with these findings, muscarinic receptor blockade in the VRC of intact goats elicits an increase in breathing frequency associated with increases in SP and serotonin concentrations, suggesting an involvement of these substances in neuromodulator compensation. To gain insight on the contribution to breathing of endogenous SP and NK1R activation, and how NK1R modulates the release of other neurochemicals, we individually dialyzed antagonists to NK1R (133, 267, 500 μM Spantide; 3 mM RP67580) throughout the VRC of awake and sleeping goats. We found that NK1R blockade with either Spantide at any dose or RP67580 had no effect on breathing or regularity. Both antagonists significantly (P < 0.001) increased SP, while RP67580 also increased serotonin and glycine and decreased thyrotropin-releasing hormone concentrations in the dialysate. Taken together, these data support the concept of neuromodulator interdependence, and we believe that the loss of excitatory input from NK1Rs was locally compensated by changes in other neurochemicals. PMID:25635003

  9. Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor 'knockout' mice.

    PubMed

    Pillidge, Katharine; Porter, Ashley J; Vasili, Temis; Heal, David J; Stanford, S Clare

    2014-12-01

    Mice with functional ablation of the neurokinin-1 receptor gene (NK1R(-/-)) display behavioural abnormalities which resemble the hyperactivity, inattention and impulsivity seen in Attention Deficit Hyperactivity Disorder (ADHD). Here, we investigated whether the established ADHD treatment, atomoxetine, alleviates these abnormalities when tested in the light/dark exploration box (LDEB) and 5-Choice Serial Reaction-Time Task (5-CSRTT). Separate cohorts of mice were tested in the 5-CSRTT and LDEB after treatment with no injection, vehicle or atomoxetine (5-CSRTT: 0.3, 3 or 10mg/kg; LDEB: 1, 3 or 10mg/kg). Atomoxetine reduced the hyperactivity displayed by NK1R(-/-) mice in the LDEB at a dose (3mg/kg) which did not affect the locomotor activity of wildtypes. Atomoxetine (10mg/kg) also reduced impulsivity in NK1R(-/-) mice, but not wildtypes, in the 5-CSRTT. No dose of drug affected attention in either genotype. This evidence that atomoxetine reduces hyperactive/impulsive behaviours in NK1R(-/-) mice consolidates the validity of using NK1R(-/-) mice in research of the aetiology and treatment of ADHD. Copyright © 2014. Published by Elsevier Inc.

  10. Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation.

    PubMed

    Zhan, Mengmeng; Zheng, Wenjiao; Jiang, Qijun; Zhao, Zuotao; Wang, Zhiyun; Wang, Junling; Zhang, Huiyun; He, Shaoheng

    2017-08-01

    Substance P (SP) was reported to be associated with eczema and acts as a potent skin mast cell secretagogue. However, little is known of its expression in inflammatory cells in eczema and its ability in induction of mast cell accumulation. In the present study, we investigated expression of SP and neurokinin-1 receptor (NK1R) on peripheral blood leukocytes and mast cells from patients with eczema and influence of SP on mast cell accumulation by using flow cytometry analysis, trans-epithelial cell migration assay and mouse peritoneal model. The results showed that plasma SP and IL-17A levels in eczema patients were higher than that in healthy control subject. The percentages of SP+ and NK1R+ expression populations of monocytes, helper T cells, natural killer T cells and basophils in peripheral blood of eczema patients were markedly elevated. It was observed that not only absolute number of mast cells but also SP+ and NK1R+ mast cells are enhanced in the lesion skin of eczema. SP showed a potent chemoattractant action on mast cells as assessed by a mouse peritoneal model and a trans-endothelium cell migration assay. SP-induced mast cell accumulation appears a CD18/CD11a complex, L-selectin and ICAM-1-dependent event which can be blocked by a NK-1R antagonist RP67580. In conclusion, elevated expression of SP in patients with eczema and the ability of SP in induction of mast cell accumulation indicate strongly that SP is a potent proinflammatory mediator, which contributes to the pathogenesis of eczema. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of eczema.

  11. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    PubMed

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  12. NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin are Enhanced by Cytokines

    PubMed Central

    Kondadasula, SriVidya; Skinner, Cassandra C.; Mundy-Bosse, Bethany L.; Luedke, Eric; Jones, Natalie B.; Mani, Aruna; Roda, Julie; Karpa, Volodymyr; Li, Hong; Li, Jilong; Elavazhagan, Saranya; La Perle, Krista M.; Schmitt, Alessandra C.; Lu, Yanhui; Zhang, Xiaoli; Pan, Xueliang; Mao, Hsaioyin; Davis, Melanie; Jarjoura, David; Butchar, Jonathan P.; Poi, Ming; Phelps, Mitch; Tridandapani, Susheela; Byrd, John C.; Caligiuri, Michael A.; Lee, Robert J.; Carson, William E.

    2016-01-01

    Optimally effective antitumor therapies would not only activate immune effector cells, but engage them at the tumor. Folate-conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor–expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR) overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by NK cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P < 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG–coated KB target cells in the presence of the NK cell–activating cytokine IL12, and these coculture supernatants induced significant T cell chemotaxis P < 0.001). F-IgG–coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P = 0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo. Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy. PMID:26865456

  13. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  14. Blockade of neurokinin-1 receptors in the ventral respiratory column does not affect breathing but alters neurochemical release.

    PubMed

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2015-03-15

    Substance P (SP) and its receptor, neurokinin-1 (NK1R), have been shown to be excitatory modulators of respiratory frequency and to stabilize breathing regularity. Studies in anesthetized mice suggest that tonic activation of NK1Rs is particularly important when other excitatory inputs to the pre-Bötzinger complex in the ventral respiratory column (VRC) are attenuated. Consistent with these findings, muscarinic receptor blockade in the VRC of intact goats elicits an increase in breathing frequency associated with increases in SP and serotonin concentrations, suggesting an involvement of these substances in neuromodulator compensation. To gain insight on the contribution to breathing of endogenous SP and NK1R activation, and how NK1R modulates the release of other neurochemicals, we individually dialyzed antagonists to NK1R (133, 267, 500 μM Spantide; 3 mM RP67580) throughout the VRC of awake and sleeping goats. We found that NK1R blockade with either Spantide at any dose or RP67580 had no effect on breathing or regularity. Both antagonists significantly (P < 0.001) increased SP, while RP67580 also increased serotonin and glycine and decreased thyrotropin-releasing hormone concentrations in the dialysate. Taken together, these data support the concept of neuromodulator interdependence, and we believe that the loss of excitatory input from NK1Rs was locally compensated by changes in other neurochemicals. Copyright © 2015 the American Physiological Society.

  15. High-efficiency lysis of cervical cancer by allogeneic NK cells derived from umbilical cord progenitors is independent of HLA status.

    PubMed

    Veluchamy, John P; Heeren, A Marijne; Spanholtz, Jan; van Eendenburg, Jaap D H; Heideman, Daniëlle A M; Kenter, Gemma G; Verheul, Henk M; van der Vliet, Hans J; Jordanova, Ekaterina S; de Gruijl, Tanja D

    2017-01-01

    Down-regulation of HLA in tumor cells, low numbers and dysfunctionality of NK cells are commonly observed in patients with end-stage cervical cancer. Adoptive transfer of high numbers of cytotoxic NK cells might be a promising treatment approach in this setting. Here, we explored the cytotoxic efficacy on ten cervical cancer cell lines of activated allogeneic NK cells from two sources, i.e., peripheral blood (PBNK) with and without cetuximab (CET), a tumor-specific monoclonal antibody directed against EGFR, or derived from umbilical cord blood (UCB-NK). Whereas CET monotherapy was ineffective against the panel of cervical cancer cell lines, irrespective of their EGFR expression levels and despite their RAS wt status, it significantly enhanced the in vitro cytotoxic efficacy of activated PBNK (P = 0.002). Equally superior cytotoxicity over activated PBNK alone was achieved by UCB-NK (P < 0.001). Both PBNK- and UCB-NK-mediated cytotoxic activity was dependent on the NK-activating receptors natural killer group 2, member D receptor (NKG2D) and DNAX accessory molecule-1 (DNAM-1) (P < 0.05) and unrelated to expression levels of the inhibitory receptors HLA-E and/or HLA-G. Most strikingly, whereas the PBNK's cytotoxic activity was inversely correlated with HLA-ABC levels (P = 0.036), PBNK + CET and UCB-NK cytotoxicity were entirely independent of HLA-ABC expression. In conclusion, this study provides a rationale to initiate a clinical trial for cervical cancer with adoptively transferred allogeneic NK cells, employing either UCB-NK or PBNK + CET for EGFR-expressing tumors. Adoptive transfer of UCB-NK might serve as a generally applicable treatment for cervical cancer, enabled by HLA-, histology- and HPV-independent killing mechanisms.

  16. Expression of retinoid-related orphan receptor (ROR)γt on NK22 cells in the peripheral blood and uterine endometrium of women with unexplained recurrent pregnancy loss and unexplained infertility.

    PubMed

    Fuchinoue, Kohei; Fukui, Atsushi; Chiba, Hitomi; Kamoi, Mai; Funamizu, Ayano; Taima, Ayako; Fukuhara, Rie; Mizunuma, Hideki

    2016-11-01

    Recently, NK22 cells, a subset of interleukin (IL)-22-producing natural killer (NK) cells, were identified. We have previously reported the higher percentage of NK22 cells in women suffering recurrent pregnancy loss (RPL). Moreover, we have also reported lower expression of NKp46, a kind of natural cytotoxicity receptor (NCR), on NK cells and the changes of NK cell producing cytokines in women who experience RPL. NK22 cells express NCRs, such as NKp44 or NKp46. Retinoid-related orphan receptor γt (RORγt) is known as a regulator of NK22 cells; however, in NK22 cells of peripheral blood (PB) and the uterine endometrium (UE), the relationship between NCRs and RORγt is unclear. We investigate RORγt expression NK22 cells in the PB and UE of women with unexplained infertility (uI) or unexplained RPL (uRPL). Lymphocytes were extracted from PB and UE, derived from women with uI or uRPL. Expression of RORγt and NCRs in NK cells and NK cell-produced cytokines were analyzed by flow cytometry. CD56 + /NKp46 + /RORγt + cells were positively correlated with CD56 + /IL-22 + cells in both PB and UE. CD56 bright /NKp46 bright /RORγt + cells were significantly higher in uRPL than in uI, and endometrial CD56 bright /NKp46 bright /RORγt + cells were positively correlated with PB. In UE, CD56 bright /RORγt + cells were negatively correlated with CD56 bright /interferon-γ + and CD56 bright /tumor necrosis factor-α + cells of uRPL. RORγt may be associated with NK22 cells in reproduction. Particularly, higher expression of RORγt may be associated with elevated NK22 cells in uRPL. © 2016 Japan Society of Obstetrics and Gynecology.

  17. Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor ‘knockout’ mice

    PubMed Central

    Pillidge, Katharine; Porter, Ashley J.; Vasili, Temis; Heal, David J.; Stanford, S. Clare

    2014-01-01

    Background Mice with functional ablation of the neurokinin-1 receptor gene (NK1R−/−) display behavioural abnormalities which resemble the hyperactivity, inattention and impulsivity seen in Attention Deficit Hyperactivity Disorder (ADHD). Here, we investigated whether the established ADHD treatment, atomoxetine, alleviates these abnormalities when tested in the light/dark exploration box (LDEB) and 5-Choice Serial Reaction-Time Task (5-CSRTT). Methods Separate cohorts of mice were tested in the 5-CSRTT and LDEB after treatment with no injection, vehicle or atomoxetine (5-CSRTT: 0.3, 3 or 10 mg/kg; LDEB: 1, 3 or 10 mg/kg). Results Atomoxetine reduced the hyperactivity displayed by NK1R−/− mice in the LDEB at a dose (3 mg/kg) which did not affect the locomotor activity of wildtypes. Atomoxetine (10 mg/kg) also reduced impulsivity in NK1R−/− mice, but not wildtypes, in the 5-CSRTT. No dose of drug affected attention in either genotype. Conclusions This evidence that atomoxetine reduces hyperactive/impulsive behaviours in NK1R−/− mice consolidates the validity of using NK1R−/− mice in research of the aetiology and treatment of ADHD. PMID:25450119

  18. Antiviral activity of NK 1.1+ natural killer cells in C57BL/6 scid mice infected with murine cytomegalovirus.

    PubMed

    Welsh, R M; O'Donnell, C L; Shultz, L D

    1994-01-01

    The activation, proliferation, and antiviral effects of natural killer (NK) cells were examined in a newly developed stock of mice, C57BL/6JSz mice homozygous for the severe combined immunodeficiency (scid) mutation. These mice lack functional T and B cells and express the NK 1.1 alloantigen. Such NK 1.1 expression facilitates the analysis of NK cells and their depletion in vivo with a monoclonal anti-NK 1.1 antibody. These mice, therefore, provide an excellent model to examine unambiguously the interactions between viral infections and NK cells in a system devoid of adaptive immune response mechanisms. Here we show that murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV) infections resulted in profound levels of NK cell activation. NK cells also proliferated greatly in response to LCMV but generally to a lesser degree in response to MCMV. Depletion of the NK cell activity in vivo caused substantial increases in MCMV synthesis and MCMV-induced pathology. These results further support the concept that NK cells are major regulators of MCMV pathogenesis.

  19. Specific neurokinin receptors mediate plasma extravasation in the rat knee joint.

    PubMed Central

    Lam, F. Y.; Ferrell, W. R.

    1991-01-01

    1 Plasma extravasation in the rat knee joint was induced by intra-articular injection of neurokinins and specific neurokinin receptor agonists. 2 Pronounced plasma extravasation was produced by substance P (SP, 4-185 microM) and to a lesser extent by neurokinin-B (NKB, 83-413 microM), whereas neurokinin-A (NKA, 88-440 microM) and calcitonin gene-related peptide (CGRP, 26-130 microM) had no significant effect. 3 The specific neurokinin1 receptor agonist [Sar9, Met(O2)11]-substance P (NK1 agonist) in doses of 0.4-70 microM appeared to be more potent than SP in eliciting plasma extravasation. The neurokinin2 receptor agonist [Nle10]-neurokinin A4-10 (NK2 agonist) was not effective at 70 microM but produced a small and significant effect at 330 microM, whereas the neurokinin3 receptor agonist [MePhe7]-neurokinin B (NK3 agonist) was without effect at 40 microM or 400 microM. 4 Injections of SP or NKA into the synovial cavity of the rat knee were equally effective in producing marked plasma extravasation in remote sites such as the forelimb and hindlimb paws. 5 Co-administration experiments showed that the effects of SP were synergistic with NKA or the NK1 receptor agonist, but not with CGRP or the NK2 receptor agonist. 6 The rank order of potency was NK1 agonist greater than or equal to SP greater than NKB greater than NK2 agonist suggesting that NK1 receptors mediate plasma extravasation in the rat knee joint. PMID:1715229

  20. Low gene expression levels of activating receptors of natural killer cells (NKG2E and CD94) in patients with fulminant type 1 diabetes.

    PubMed

    Nakata, Shinsuke; Imagawa, Akihisa; Miyata, Yugo; Yoshikawa, Atsushi; Kozawa, Junji; Okita, Kohei; Funahashi, Tohru; Nakamura, Seiji; Matsubara, Kenichi; Iwahashi, Hiromi; Shimomura, Iichiro

    2013-01-01

    Fulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes. We determined the genes that were differentially expressed in fulminant type 1 diabetes compared with type 1A diabetes and healthy control, using gene expression microarray in peripheral blood cells. Using volcano plot analysis, we found reduced expression of killer cell lectin-like receptor subfamily C, member 3 (KLRC3) which encodes NKG2E, a natural killer (NK) cell activating receptor, in fulminant type 1 diabetes, compared with healthy controls. This difference was confirmed by real-time RT-PCR among NK-enriched cells. The expression of KLRD1 (CD94), which forms heterodimer with NKG2E (KLRC3), was also reduced in NK-enriched cells in fulminant type 1 diabetes. Furthermore, flow cytometry showed significantly lower proportion of NK cells among peripheral blood mononuclear cells (PBMCs) in fulminant type 1 diabetes than in healthy controls. In patients with fulminant type 1 diabetes, the relative proportion of NK cells correlated significantly with the time period between onset of fever to the appearance of hyperglycemic-related symptoms. We conclude the presence of reduced NK activating receptor gene expression and low proportion of NK cells in fulminant type 1 diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction.

    PubMed

    Muntasell, Aura; Vilches, Carlos; Angulo, Ana; López-Botet, Miguel

    2013-05-01

    As discussed in this review, human cytomegalovirus (HCMV) infection in healthy individuals is associated with a variable and persistent increase of NK cells expressing the CD94/NKG2C activating receptor. The expansion of NKG2C(+) NK cells reported in other infectious diseases is systematically associated with HCMV co-infection. The functionally mature NKG2C(bright) NK-cell subset expanding in HCMV(+) individuals displays inhibitory Ig-like receptors (KIR and LILRB1) specific for self HLA class I, and low levels of NKp46 and NKp30 activating receptors. Such reconfiguration of the NK-cell compartment appears particularly marked in immunocompromised patients and in children with symptomatic congenital infection, thus suggesting that its magnitude may be inversely related with the efficiency of the T-cell-mediated response. This effect of HCMV infection is reminiscent of the pattern of response of murine Ly49H(+) NK cells against murine CMV (MCMV), and it has been hypothesized that a cognate interaction of the CD94/NKG2C receptor with HCMV-infected cells may drive the expansion of the corresponding NK-cell subset. Yet, the precise role of NKG2C(+) cells in the control of HCMV infection, the molecular mechanisms underlying the NK-cell compartment redistribution, as well as its putative influence in the response to other pathogens and tumors remain open issues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Baculovirus directly activates murine NK cells via TLR9.

    PubMed

    Moriyama, T; Suzuki, T; Chang, M O; Kitajima, M; Takaku, H

    2017-04-01

    The importance of natural killer (NK) cells in innate immune responses against tumors or viral infections enhances the appeal of NK cell-based immunotherapeutic approaches. We have recently reported that baculovirus (BV)-infected dendritic cells (DCs; BV-DCs) induce antitumor immunity against established tumors in mice. These antitumor effects were CD8 + T-cell and NK cell dependent; however, they were found to be CD4 + T-cell independent. In this study, we investigated the involvement of Toll-like receptor 9 (TLR9) in the process of BV recognition by NK cells. We found that BV directly stimulated NK cells, induced the expression of the activation marker CD69 and promoted interferon-gamma (IFN-γ) production and cytotoxicity. Moreover, TLR9 knockout in mice (tlr9-/- NK cells) inhibited NK cell responses to BV, indicating that TLR9 may have a relevant role in the BV-induced upregulation of NK cell functions. Our data demonstrated for the first time that NK cells directly recognize BV via TLR9, which provides opportunities for the use of this technique as an effective tool for BV-based immunotherapies against malignancies.

  3. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C∗12:02/C∗14:03.

    PubMed

    Lin, Zhansong; Kuroki, Kimiko; Kuse, Nozomi; Sun, Xiaoming; Akahoshi, Tomohiro; Qi, Ying; Chikata, Takayuki; Naruto, Takuya; Koyanagi, Madoka; Murakoshi, Hayato; Gatanaga, Hiroyuki; Oka, Shinichi; Carrington, Mary; Maenaka, Katsumi; Takiguchi, Masafumi

    2016-11-22

    Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03, that impact suppression of HIV-1 replication. KIR2DL2 + NK cells suppressed viral replication in HLA-C ∗ 14:03 + or HLA-C ∗ 12:02 + cells to a significantly greater extent than did KIR2DL2 - NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C ∗ 14:03 or HLA-C ∗ 12:02 influenced KIR2DL2 + NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABAB receptors, but not α2 adrenergic receptors

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G.

    2010-01-01

    GABAB, μ-opioid, and adrenergic α2 receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABAB receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABAB agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. PMID:20726886

  5. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ying; Liu, Jin; Liu, Yang

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed thatmore » TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.« less

  6. Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells.

    PubMed

    Morandi, Fabio; Ferretti, Elisa; Castriconi, Roberta; Dondero, Alessandra; Petretto, Andrea; Bottino, Cristina; Pistoia, Vito

    2011-11-24

    Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.

  7. Ava[L-Pro9,N-MeLeu10] substance P(7-11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal.

    PubMed

    Nieuwmeyer, Florentine; Ye, Jing; Huizinga, Jan D

    2006-04-01

    Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.

  8. Tricking the balance: NK cells in anti-cancer immunity.

    PubMed

    Pahl, Jens; Cerwenka, Adelheid

    2017-01-01

    Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism.

    PubMed

    Zaiatz-Bittencourt, Vanessa; Finlay, David K; Gardiner, Clair M

    2018-06-15

    Cytokines stimulate rapid metabolic changes in human NK cells, including increases in both glycolysis and oxidative phosphorylation pathways. However, how these are subsequently regulated is not known. In this study, we demonstrate that TGF-β can inhibit many of these metabolic changes, including oxidative phosphorylation, glycolytic capacity, and respiratory capacity. TGF-β also inhibited cytokine-induced expression of the transferrin nutrient receptor CD71. In contrast to a recent report on murine NK cells, TGF-β-mediated suppression of these metabolic responses did not involve the inhibition of the metabolic regulator mTORC1. Inhibition of the canonical TGF-β signaling pathway was able to restore almost all metabolic and functional responses that were inhibited by TGF-β. These data suggest that pharmacological inhibition of TGF-β could provide a metabolic advantage to NK cells that is likely to result in improved functional responses. This has important implications for NK cell-based cancer immunotherapies. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    PubMed Central

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2016-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013–2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies. PMID:27141397

  11. CD94 is essential for NK cell-mediated resistance to a lethal viral disease

    PubMed Central

    Fang, Min; Orr, Mark T.; Spee, Pieter; Egebjerg, Thomas; Lanier, Lewis L.; Sigal, Luis J.

    2011-01-01

    Summary It is well established that natural killer (NK) cells confer resistance to many viral diseases, but only in a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1b are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus. PMID:21439856

  12. Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?

    PubMed Central

    Souza-Fonseca-Guimaraes, Fernando; Adib-Conquy, Minou; Cavaillon, Jean-Marc

    2012-01-01

    Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances. PMID:22105606

  13. The correlation between NK cell and liver function in patients with primary hepatocellular carcinoma.

    PubMed

    Sha, Wei Hong; Zeng, Xiao Hui; Min, Lu

    2014-05-01

    This study aimed to detect the expression of natural killer (NK) cell receptor natural killer group 2D (NKG2D) in the peripheral blood of patients with primary hepatocellular carcinoma and to discuss the correlation between NK cell cytotoxicity and liver function. The number of NK cells and the expression of NK cell receptor NKG2D in peripheral blood were determined by flow cytometry in patients with primary hepatocellular carcinoma, hepatitis B cirrhosis, chronic hepatitis B, and healthy controls. When compared with patients in the healthy and the chronic hepatitis B groups, the primary hepatocellular carcinoma group showed significant decreases in all parameters, including the cytotoxicity of NK cells on K562 cells, expression rate of NKG2D in NK cells, number of NKG2D(+) NK cells, expression level of NKG2D, and number of NK cells (p<0.05). The activity of NK cells showed a positive correlation, whereas the Child-Pugh scores in the primary hepatocellular carcinoma and the hepatitis B cirrhosis groups showed a negative correlation with all parameters detected above. The decrease of NK cell activity in patients with primary hepatocellular carcinoma is closely related to their lower expression of NKG2D. Liver function affects the expression of NKG2D and the activity of NK cells.

  14. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia

    PubMed Central

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A.F.; Drexler, Hans G.

    2017-01-01

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells. PMID:28977998

  15. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    PubMed

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  16. IL-12-dependent inducible expression of the CD94/NKG2A inhibitory receptor regulates CD94/NKG2C+ NK cell function.

    PubMed

    Sáez-Borderías, Andrea; Romo, Neus; Magri, Giuliana; Gumá, Mónica; Angulo, Ana; López-Botet, Miguel

    2009-01-15

    The inhibitory CD94/NKG2A and activating CD94/NKG2C killer lectin-like receptors specific for HLA-E have been reported to be selectively expressed by discrete NK and T cell subsets. In the present study, minor proportions of NK and T cells coexpressing both CD94/NKG2A and CD94/NKG2C were found in fresh peripheral blood from adult blood donors. Moreover, CD94/NKG2A surface expression was transiently detected upon in vitro stimulation of CD94/NKG2C+ NK cells in the presence of irradiated allogeneic PBMC or rIL-12. A similar effect was observed upon coculture of NKG2C+ NK clones with human CMV-infected autologous dendritic cell cultures, and it was prevented by an anti-IL-12 mAb. NKG2A inhibited the cytolytic activity of NKG2C+ NK clones upon engagement either by a specific mAb or upon interaction with a transfectant of the HLA class I-deficient 721.221 cell line expressing HLA-E. These data indicate that beyond its constitutive expression by an NK cell subset, NKG2A may be also transiently displayed by CD94/NKG2C+ NK cells under the influence of IL-12, providing a potential negative regulatory feedback mechanism.

  17. Type 1 Interferons and NK Cells Limit Murine Cytomegalovirus Escape from the Lymph Node Subcapsular Sinus

    PubMed Central

    Bruce, Kimberley; Lawler, Clara; Cardin, Rhonda D.

    2016-01-01

    Cytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted. Subcapsular sinus macrophages (SSM) captured murine CMV (MCMV) from the afferent lymph and poorly supported its replication. Blocking the type I interferon (IFN-I) receptor (IFNAR) increased MCMV infection of SSM and of the fibroblastic reticular cells (FRC) lining the subcapsular sinus, and accelerated viral spread to the spleen. Little splenic virus derived from SSM, arguing that they mainly induce an anti-viral state in the otherwise susceptible FRC. NK cells also limited infection, killing infected FRC and causing tissue damage. They acted independently of IFN-I, as IFNAR blockade increased NK cell recruitment, and NK cell depletion increased infection in IFNAR-blocked mice. Thus SSM restricted MCMV infection primarily though IFN-I, with NK cells providing a second line of defence. The capacity of innate immunity to restrict MCMV escape from the subcapsular sinus suggested that enhancing its recruitment might improve infection control. PMID:27926941

  18. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons

    PubMed Central

    Taylor, Bradley K.; Fu, Weisi; Kuphal, Karen E.; Stiller, Carl-Olav; Winter, Michelle K.; Chen, Wenling; Corder, Gregory F.; Urban, Janice H.; McCarson, Kenneth E.; Marvizon, Juan Carlos

    2014-01-01

    Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu31, Pro34]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu31, Pro34]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu31, Pro34]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [35S]GTPγS binding simulated by [Leu31, Pro34]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception. PMID:24184981

  19. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells.

    PubMed

    Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin

    2016-11-08

    Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the

  20. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12

    PubMed Central

    Janelsins, Brian M.; Sumpter, Tina L.; Tkacheva, Olga A.; Rojas-Canales, Darling M.; Erdos, Geza; Mathers, Alicia R.; Shufesky, William J.; Storkus, Walter J.; Falo, Louis D.; Morelli, Adrian E.; Larregina, Adriana T.

    2013-01-01

    Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses. PMID:23365459

  1. Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor antagonists and the role of endogenous mediators.

    PubMed Central

    Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S

    1995-01-01

    1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689

  2. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  3. Cognate HLA absence in trans diminishes human NK cell education

    PubMed Central

    Landtwing, Vanessa; Raykova, Ana; Pezzino, Gaetana; Béziat, Vivien; Graf, Claudine; Moretta, Alessandro; Capaul, Riccarda; Zbinden, Andrea; Malmberg, Karl-Johan; Chijioke, Obinna; Münz, Christian

    2016-01-01

    NK cells are innate lymphocytes with protective functions against viral infections and tumor formation. Human NK cells carry inhibitory killer cell Ig-like receptors (KIRs), which recognize distinct HLAs. NK cells with KIRs for self-HLA molecules acquire superior cytotoxicity against HLA– tumor cells during education for improved missing-self recognition. Here, we reconstituted mice with human hematopoietic cells from donors with homozygous KIR ligands or with a mix of hematopoietic cells from these homozygous donors, allowing assessment of the resulting KIR repertoire and NK cell education. We found that co-reconstitution with 2 KIR ligand–mismatched compartments did not alter the frequency of KIR-expressing NK cells. However, NK cell education was diminished in mice reconstituted with parallel HLA compartments due to a lack of cognate HLA molecules on leukocytes for the corresponding KIRs. This change in NK cell education in mixed human donor–reconstituted mice improved NK cell–mediated immune control of EBV infection, indicating that mixed hematopoietic cell populations could be exploited to improve NK cell reactivity against leukotropic pathogens. Taken together, these findings indicate that leukocytes lacking cognate HLA ligands can disarm KIR+ NK cells in a manner that may decrease HLA– tumor cell recognition but allows for improved NK cell–mediated immune control of a human γ-herpesvirus. PMID:27571408

  4. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model

    PubMed Central

    2014-01-01

    Background We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Methods Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). Results A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. Conclusions The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of

  5. In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status.

    PubMed

    Turin, Ilaria; Delfanti, Sara; Ferulli, Federica; Brugnatelli, Silvia; Tanzi, Matteo; Maestri, Marcello; Cobianchi, Lorenzo; Lisini, Daniela; Luinetti, Ombretta; Paulli, Marco; Perotti, Cesare; Todisco, Elisabetta; Pedrazzoli, Paolo; Montagna, Daniela

    2018-05-01

    Treatment of advanced metastatic colorectal cancer (mCRC) patients is associated with a poor prognosis and significant morbidity. Moreover, targeted therapies such as anti-epidermal growth factor receptor (EGFR) have no effect in metastatic patients with tumors harboring a mutation in the RAS gene. The failure of conventional treatment to improve outcomes in mCRC patients has prompted the development of adoptive immunotherapy approaches including natural killer (NK)-based therapies. In this study, after confirmation that patients' NK cells were not impaired in their cytotoxic activity, evaluated against long-term tumor cell lines, we evaluated their interactions with autologous mCRC cells. Molecular and phenotypical evaluation of mCRC cells, expanded in vitro from liver metastasis, showed that they expressed high levels of polio virus receptor and Nectin-2, whereas UL16-binding proteins were less expressed in all tumor samples evaluated. Two different patterns of MICA/B and HLA class I expression on the membrane of mCRC were documented; approximately half of mCRC patients expressed high levels of these molecules on the membrane surface, whereas, in the remaining, very low levels were documented. Resting NK cells were unable to display sizeable levels of cytotoxic activity against mCRC cells, whereas their cytotoxic activity was enhanced after overnight or 5-day incubation with IL-2 or IL-15. The susceptibility of NK-mediated mCRC lysis was further significantly enhanced after coating with cetuximab, irrespective of their RAS mutation and HLA class I expression. These data open perspectives for combined NK-based immunotherapy with anti-epidermal growth factor receptor antibodies in a cohort of mCRC patients with a poor prognosis refractory to conventional therapies.

  6. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  7. Resident Peritoneal NK cells

    PubMed Central

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred intravenously into RAGγcKO mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells, are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, while the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue resident NK cells but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells. PMID:22079985

  8. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity.

    PubMed

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR

  9. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    PubMed Central

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S.

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR

  10. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells

    PubMed Central

    Leong, Jeffrey W.; Chase, Julie M.; Romee, Rizwan; Schneider, Stephanie E.; Sullivan, Ryan P.; Cooper, Megan A.; Fehniger, Todd A.

    2014-01-01

    NK cells are effector lymphocytes that are under clinical investigation for the adoptive immunotherapy of hematologic malignancies, especially acute myeloid leukemia. Recent work in mice has identified innate memory-like properties of NK cells. Human NK cells also exhibit memory-like properties, and cytokine-induced memory-like (CIML) NK cells are generated via brief pre-activation with IL-12, IL-15, and IL-18, which later exhibit enhanced functionality upon restimulation. However, investigation of the optimal cytokine receptors and signals for maintenance of enhanced function and homeostasis following pre-activation remains unclear. Here, we show that IL-12, IL-15, and IL-18 pre-activation induces a rapid and prolonged expression of CD25, resulting in a functional high affinity IL-2 receptor (IL-2Rαβγ) that confers responsiveness to picomolar concentrations of IL-2. The expression of CD25 correlated with STAT5 phosphorylation in response to picomolar concentrations of IL-2, indicating the presence of a signal-competent IL-2Rαβγ. Furthermore, picomolar concentrations of IL-2 acted synergistically with IL-12 to co-stimulate IFN-γ production by pre-activated NK cells, an effect that was CD25-dependent. Picomolar concentrations of IL-2 also enhanced NK cell proliferation and cytotoxicity via the IL-2Rαβγ. Further, following adoptive transfer into immunodeficient NOD-SCID-γc−/− mice, human cytokine pre-activated NK cells expand preferentially in response to exogenous IL-2. Collectively, these data demonstrate that human CIML NK cells respond to IL-2 via IL-2Rαβγ with enhanced survival and functionality, and provide additional rationale for immunotherapeutic strategies that include brief cytokine pre-activation prior to adoptive NK cell transfer, followed by low dose IL-2 therapy. PMID:24434782

  11. Involvement of NK cells against tumors and parasites.

    PubMed

    Papazahariadou, M; Athanasiadis, G I; Papadopoulos, E; Symeonidou, I; Hatzistilianou, M; Castellani, M L; Bhattacharya, K; Shanmugham, L N; Conti, P; Frydas, S

    2007-01-01

    Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.

  12. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    PubMed

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors.

    PubMed

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G

    2010-09-01

    GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.

  14. Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages.

    PubMed

    Jiang, Wei; Li, Daojing; Han, Ranran; Zhang, Chao; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-07-25

    The nonneural cholinergic system of immune cells is pivotal for the maintenance of immunological homeostasis. Here we demonstrate the expression of choline acetyltransferase (ChAT) and cholinergic enzymes in murine natural killer (NK) cells. The capacity for acetylcholine synthesis by NK cells increased markedly under inflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), in which ChAT expression escalated along with the maturation of NK cells. ChAT + and ChAT - NK cells displayed distinctive features in terms of cytotoxicity and chemokine/cytokine production. Transfer of ChAT + NK cells into the cerebral ventricles of CX3CR1 -/- mice reduced brain and spinal cord damage after EAE induction, and decreased the numbers of CNS-infiltrating CCR2 + Ly6C hi monocytes. ChAT + NK cells killed CCR2 + Ly6C hi monocytes directly via the disruption of tolerance and inhibited the production of proinflammatory cytokines. Interestingly, ChAT + NK cells and CCR2 + Ly6C hi monocytes formed immune synapses; moreover, the impact of ChAT + NK cells was mediated by α7-nicotinic acetylcholine receptors. Finally, the NK cell cholinergic system up-regulated in response to autoimmune activation in multiple sclerosis, perhaps reflecting the severity of disease. Therefore, this study extends our understanding of the nonneural cholinergic system and the protective immune effect of acetylcholine-producing NK cells in autoimmune diseases.

  15. Neurokinin subtype receptors mediating substance P contraction in immature rabbit airways.

    PubMed

    Kazem, E; John, C; Tanaka, D T

    1996-01-01

    Two-week-old rabbit tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) segments were placed in organ baths, and isometric contractions to substance P (SP) were obtained. In the presence of phosphoramidon (PHOS), a neutral endopeptidase inhibitor, BSM segments were significantly more reactive and sensitive to SP than TSM segments. Neither neostigmine (NEO) nor atropine (ATR) eliminated these regional differences. Airway contractile responses to: 1) Senktide (NK-3 agonist); 2) neurokinin A (NKA, a NK-2 agonist); and 3) Septide (a highly selective NK-1 agonist) were separately obtained. In the presence of PHOS and NEO, Senktide was virtually inactive in both BSM and TSM. In the presence of PHOS, NEO, and ATR, NKA was equipotent in all airway segments; in contrast, the Septide response was significantly more reactive in BSM than in TSM segments. After inhibition of NK-1 activity with GR 82334, a competitive NK-1 receptor antagonist, the regional differences in SP reactivity were greatly diminished. This latter indication of a NK-1 contribution was confirmed using Septide-mediated inactivation of NK-1 receptors whereby the regional differences in airway sensitivity to SP were eliminated. These findings indicate that both endogenous neutral endopeptidase activity as well as NK-1 and NK-2 receptor influences may modulate the contractile responses to SP in immature rabbit airways.

  16. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Bezouška, Karel; Yuen, Chun-Ting; O'Brien, Jacqui; Childs, Robert A.; Chai, Wengang; Lawson, Alexander M.; Drbal, Karel; Fišerová, Anna; Posíšil, Miloslav; Feizi, Ten

    1994-11-01

    A diversity of high-affinity Oligosaccharide ligands are identified for NKR-P1, a membrane protein on natural killer (NK) cells which contains an extracellular Ca2+-dependent lectin domain. Interactions of such oligosaccharides on the target cell surface with NKR-P1 on the killer cell surface are crucial both for target cell recognition and for delivery of stimulatory or inhibitory signals linked to the NK cytolytic machinery. NK-resistant tumour cells are rendered susceptible by preincubation with liposomes expressing NKR-P1 ligands, suggesting that purging of tumour or virally infected cells in vivo may be a therapeutic possibility.

  17. Role of tachykinins in ozone-induced acute lung injury in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepper, J.S.; Costa, D.L.; Fitzgerald, S.

    To examine the hypothesis that the acute reversible changes caused by ozone (O3) exposure are mediated by tachykinin release, guinea pigs were depleted of tachykinins by use of repeated capsaicin (CAP) injections before O3 exposure in an attempt to prevent O3-induced functional changes. Unexpectedly, CAP pretreatment caused divergent results in the functional responses to O3. Ventilatory measurements obtained from CAP-pretreated O3-exposed (CAP-O3) animals were exacerbated rather than diminished compared with the effects of O3 alone. Similarly, lavage fluid protein accumulation was enhanced in the CAP-O3 group compared with the O3-exposed group. In better agreement with our initial hypothesis, the CAP-O3more » group was less responsive than the O3-exposed animals to histamine aerosol challenge. Additionally, Evans blue dye accumulation, a hallmark of tachykinin release, was increased in O3-exposed animals and was partially blocked in the CAP-O3 group. These data suggest that tachykinin-containing sensory fibers are unlikely to mediate the acute effects of O3 exposure on tidal breathing and lavage fluid protein accumulation but may play a role in causing post-O3 airway hyperreactivity and protein extravasation into the trachea.« less

  18. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  19. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models.

    PubMed

    Teodoro, Fernanda C; Tronco Júnior, Marcos F; Zampronio, Aleksander R; Martini, Alessandra C; Rae, Giles A; Chichorro, Juliana G

    2013-06-01

    There is accumulating evidence that substance P released from peripheral sensory neurons participates in inflammatory and neuropathic pain. In this study it was investigated the ability of substance P to induce orofacial nociception and thermal and mechanical hyperalgesia, as well as the role of NK1 receptors on models of orofacial inflammatory and neuropathic pain. Substance P injected into the upper lip at 1, 10 and 100 μg/50 μL failed to induce nociceptive behavior. Also, substance P (0.1-10 μg/50 μL) injected into the upper lip did not evoke orofacial cold hyperalgesia and when injected at 1 μg/50 μL did not induce mechanical hyperalgesia. However, substance P at this latter dose induced orofacial heat hyperalgesia, which was reduced by the pre-treatment of rats with a non-peptide NK1 receptor antagonist (SR140333B, 3mg/kg). Systemic treatment with SR140333B (3 mg/kg) also reduced carrageenan-induced heat hyperalgesia, but did not exert any influence on carrageenan-induced cold hyperalgesia. Blockade of NK1 receptors with SR140333B also reduced by about 50% both phases of the formalin response evaluated in the orofacial region. Moreover, heat, but not cold or mechanical, hyperalgesia induced by constriction of the infraorbital nerve, a model of trigeminal neuropathic pain, was abolished by pretreatment with SR140333B. Considering that substance P was peripherally injected (i.e. upper lip) and the NK1 antagonist used lacks the ability to cross the blood-brain-barrier, our results demonstrate that the peripheral SP/NK1 system participates in the heat hyperalgesia associated with inflammation or nerve injury and in the persistent pain evoked by formalin in the orofacial region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. PTEN Is a Negative Regulator of NK Cell Cytolytic Function

    PubMed Central

    Briercheck, Edward L.; Trotta, Rossana; Chen, Li; Hartlage, Alex S.; Cole, Jordan P.; Cole, Tyler D.; Mao, Charlene; Banerjee, Pinaki P.; Hsu, Hsiang-Ting; Mace, Emily M.; Ciarlariello, David; Mundy-Bosse, Bethany L.; Garcia-Cao, Isabel; Scoville, Steven D.; Yu, Lianbo; Pilarski, Robert; Carson, William E.; Leone, Gustavo; Pandolfi, Pier Paolo; Yu, Jianhua; Orange, Jordan S.; Caligiuri, Michael A.

    2015-01-01

    Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood, the more mature CD56dim NK cell efficiently kills malignant targets at rest, whereas the less mature CD56bright NK cells cannot. In this study, we show that resting CD56bright NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56dim NK cells. Consistent with this, forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity, and loss of PTEN in CD56bright NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell–activating and inhibitory receptor expression yet, as in humans, did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell’s ability to organize immunological synapse components including decreases in actin accumulation, polarization of the microtubule organizing center, and the convergence of cytolytic granules. In summary, our data suggest that PTEN normally works to limit the NK cell’s PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56bright NK cell to the cytolytic CD56dim NK cells. PMID:25595786

  1. Comparison of cardiovascular and bronchoconstrictor effects of substance P, substance K and other tachykinins.

    PubMed

    Hua, X; Lundberg, J M; Theodorsson-Norheim, E; Brodin, E

    1984-12-01

    The effects of substance P (SP), substance K (SK), physalaemin, eledoisin, kassinin, neuromedin K and bombesin on blood pressure, heart rate, respiratory insufflation pressure and plasma extravasation were studied in the guinea-pig. All tachykinins except neuromedin K caused a fall in blood pressure with rather similar potency. The hypotensive response after physalaemin was comparatively more long-lasting. SK and eledoisin (2.5 nmol X kg-1 i.v.) caused an initial bradycardia which then changed into tachycardia. The other tachykinins induced a slowly developing tachycardia. Neuromedin K (up to 40 nmol X kg-1) did not influence heart rate. SK, kassinin and eledoisin were more potent than SP and physalaemin in increasing respiratory insufflation pressure. The effect of SK had a particularly long duration. Neuromedin K only induced a weak increase in insufflation pressure at a very high dose. All tachykinins except neuromedin K induced an increase in vascular permeability to plasma proteins in many visceral organs, as indicated by Evans blue extravasation. The trachea and ureter were the most sensitive organs with regard to this effect. Physalaemin and eledoisin were generally more potent in increasing vascular permeability in various organs than SP and SK. The maximal permeability-increasing effect of SK was smaller than that of SP, although the potency was similar. Bombesin increased insufflation pressure with no clearcut effects on vascular permeability. It is concluded that in the same species, i.e. guinea-pig, several tachykinins have rather similar hypotensive action, while the vascular permeability increase to plasma proteins is especially pronounced after physalaemin and eledoisin. SK, kassinin and eledoisin have prominent bronchoconstrictor effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. C-terminal substance P fragments elicit histamine release from a murine mast cell line.

    PubMed

    Krumins, S A; Broomfield, C A

    1993-01-01

    Incubation of mouse mast cells with C-terminal substance P fragments in the micromolar range caused a release of histamine. Maximum release was observed with the tetrapeptide SP(8-11), followed by the tripeptide SP(9-11). SP(6-11) and SP(5-11) were nearly equipotent, while SP(4-11) caused only a slight histamine release. The substance P parent molecule and the N-terminal substance P fragments SP(1-4), SP(1-6) and SP(1-7) evoked no release of histamine. In confirmation of our previous findings, incubation with neurokinin A caused a release comparable to that of SP(8-11). Whereas neurokinin A-induced release was partially preventable by pretreating the cells with the NK2 receptor-selective antagonist cyclo(Gln-Trp-Phe-(R)Gly[ANC-2]Leu-Met), SP(8-11)-induced release was completely abolished by such treatment. The results provide the first evidence for the involvement of NK2 tachykinin receptors in the release of histamine by C-terminal substance P fragments.

  3. Kinome Analysis of Receptor-Induced Phosphorylation in Human Natural Killer Cells

    PubMed Central

    König, Sebastian; Nimtz, Manfred; Scheiter, Maxi; Ljunggren, Hans-Gustaf; Bryceson, Yenan T.; Jänsch, Lothar

    2012-01-01

    Background Natural killer (NK) cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244) and DNAM-1 (CD226), act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome) are involved in NK cell activation. Results A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2), FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. Conclusions The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses. PMID:22238634

  4. Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells.

    PubMed

    Ping, Fengfeng; Shang, Jing; Zhou, Jia; Song, Jing; Zhang, Luyong

    2012-12-01

    Skin pigmentation plays a number of valuable roles and its regulation is a complex process that is controlled by different factors. Substance P (SP) regulates many biological functions, including neurogenic inflammation, pain, and stress. However, to date, the regulatory role of SP in the control of melanogenesis has not been elucidated. The present study was designed to investigate the effects of SP on melanogenesis and to elucidate its underlying mechanism(s). After treatment for 48 h in mouse B16-F10 melanoma cells, SP (1 and 10nM) significantly down-regulated tyrosinase activity and melanin content. Importantly, western blot analysis revealed the presence of neurokinin-1 receptor (NK-1 R) in B16-F10 cells and the activation of it after SP treatment. It was also found that preincubation with NK-1 receptor antagonist Spantide I could partially reversed SP-induced down-regulations of tyrosinase activity, melanin content and the expression of tyrosinase and tyrosinase-related protein 1. Furthermore, SP could remarkably inhibit the expressions of microphtalmia-associated transcription factor (MITF) and p-p38 MAPK and stimulated p-p70 S6K1. These effects could also be partially reversed by the pretreatment with Spantide I. These results collectively suggested that SP inhibited melanogenesis in B16-F10 cells, which might be attributed to the fact that SP induces the activation of NK-1 receptor, stimulates the phosphorylation of p70 S6K1 and inhibits that of p38 MAPK, decreases the tyrosinase and tyrosinase-related protein 1 expression through MITF, finally resulting in the suppression of melanogenesis. These observations in vitro indicated that the regulation of the SP/NK-1 receptor system might be a useful novel management for skin pigmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Formaldehyde exposure impairs the function and differentiation of NK cells.

    PubMed

    Kim, Eun-Mi; Lee, Hwa-Youn; Lee, Eun-Hee; Lee, Ki-Mo; Park, Min; Ji, Kon-Young; Jang, Ji-Hun; Jeong, Yun-Hwa; Lee, Kwang-Ho; Yoon, Il-Joo; Kim, Su-Man; Jeong, Moon-Jin; Kim, Kwang Dong; Kang, Hyung-Sik

    2013-11-25

    We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.

    PubMed

    de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W

    2001-08-01

    Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.

  7. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.11.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  8. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers.

    PubMed

    Adelson, D; Lao, L; Zhang, G; Kim, W; Marvizón, J C G

    2009-06-30

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.

  9. A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation and increases peritoneal fibrinolytic activity.

    PubMed

    Reed, Karen L; Fruin, A Brent; Gower, Adam C; Stucchi, Arthur F; Leeman, Susan E; Becker, James M

    2004-06-15

    Fibrous adhesions remain a major sequela of abdominal surgery. The proinflammatory peptide substance P (SP), known to participate in inflammatory events, may play a key role in adhesion formation. This hypothesis was tested by using an antagonist, CJ-12,255 (Pfizer), that blocks the binding of SP to the neurokinin 1 receptor (NK-1R). Adhesion formation was surgically induced in the peritoneum of rats receiving daily doses of the NK-1R antagonist (NK-1RA; 5.0 or 10.0 mg/kg per day) or saline. On postoperative day 7, both the low and high doses of NK-1RA significantly (P < 0.05) reduced adhesion formation by 45% and 53%, respectively, compared with controls. Subsequently, the effect of NK-1RA administration on peritoneal fibrinolytic activity was investigated to determine a potential mechanism for SP action in the peritoneum. Samples were collected from nonoperated controls and from animals 24 h postsurgery that were administered either NK-1RA or saline. Fibrinolytic activity in peritoneal fluid was assayed by zymography, and expression of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1, both regulators of fibrinolytic activity, was assessed in peritoneal tissue and fluid by RT-PCR and bioassay, respectively. NK-1RA administration led to a marked (P < 0.05) increase in tPA mRNA levels in peritoneal tissue compared with nonoperated and saline-administered animals. Likewise, NK-1RA administration significantly (P < 0.05) increased tPA in the peritoneal fluid. These data suggest that activation of the NK-1R promotes peritoneal adhesion formation by limiting fibrinolytic activity in the postoperative peritoneum, thus enabling fibrinous adhesions to persist.

  10. Activation of mouse liver natural killer cells and NK1.1(+) T cells by bacterial superantigen-primed Kupffer cells.

    PubMed

    Dobashi, H; Seki, S; Habu, Y; Ohkawa, T; Takeshita, S; Hiraide, H; Sekine, I

    1999-08-01

    Although bacterial superantigens have been well characterized as potent stimulators of T cells, their role in natural killer (NK)-type cells remains largely unknown. In the present study, we examined the effect of bacterial superantigens on mouse liver NK cells and NK1.1 Ag(+) (NK1(+)) T cells. C57BL/6 mice were intravenously injected with staphylococcal enterotoxin B (SEB) or streptococcal pyrogenic exotoxin A (SPE-A), and mononuclear cells (MNC) of various organs were obtained from mice 4 hours after being injected with superantigen. MNC were cultured for 48 hours, and interferon gamma (IFN-gamma) levels of supernatants were measured. The antitumor cytotoxicities of the liver and spleen MNC were also evaluated 24 hours after the mice were injected with superantigen. Liver MNC produced more IFN-gamma than did splenocytes, and peripheral blood and lung MNC did not produce any detectable IFN-gamma. In addition, liver MNC acquired a potent antitumor cytotoxicity by the SEB injection, and both NK cells and NK1(+)T cells but not cluster of differentiation (CD)8(+) T cells were responsible for the cytotoxicity as demonstrated by either in vivo or in vitro cell depletion experiments, and the NK-type cells were partly responsible for the increased serum IFN-gamma. Activation of liver NK-type cells was also supported by the fact that liver NK cells proportionally increased and NK1(+) T cells augmented their CD11a expressions after SEB injection. The pretreatment of mice with anti-IFN-gamma Ab and/or with anti-interleukin-12 (IL-12) Ab diminished the SEB-induced cytotoxicity of liver MNC. Furthermore, the in vivo depletion of Kupffer cells decreased the SEB-induced cytotoxicity of liver MNC. Consistent with these results, liver MNC stimulated with superantigens in the presence of Kupffer cells in vitro produced a greater amount of IFN-gamma than did the liver MNC without Kupffer cells or splenocytes. Our results suggest that bacterial superantigen-primed Kupffer cells

  11. Clinical Grade Purification and Expansion of NK Cell Products for an Optimized Manufacturing Protocol

    PubMed Central

    Koehl, Ulrike; Brehm, Claudia; Huenecke, Sabine; Zimmermann, Stefanie-Yvonne; Kloess, Stephan; Bremm, Melanie; Ullrich, Evelyn; Soerensen, Jan; Quaiser, Andrea; Erben, Stephanie; Wunram, Claudia; Gardlowski, Tanja; Auth, Eileen; Tonn, Torsten; Seidl, Christian; Meyer-Monard, Sandrine; Stern, Martin; Passweg, Jakob; Klingebiel, Thomas; Bader, Peter; Schwabe, Dirk; Esser, Ruth

    2013-01-01

    Allogeneic natural killer (NK) cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity, and T-cell depletion during good manufacturing practice (GMP)-grade NK cell selection. Forty NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T-cell depletion, either the depletion 2.1 program in single or double procedure (D2.11depl, n = 18; D2.12depl, n = 13) or the faster depletion 3.1 (D3.1, n = 9) was used on the CliniMACS instrument. Seventeen purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59 × 108 CD56+CD3− cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.11depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p < 0.01) and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.11depl/2depl with regard to recovery of CD56+CD3− NK cells (68% vs. 41%/38%). Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T-cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized. PMID:23730623

  12. Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and mu-opioid receptors.

    PubMed

    Davies, B L; Brundage, C M; Harris, M B; Taylor, B E

    2009-07-01

    Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and mu-opioid receptor (NK1R, muOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and muOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of muOR; high-intensity labeling of muOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (muOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and muOR colocalization together with a metamorphosis-related increase in muOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.

  13. Ly49H Engagement Compensates for the Absence of Type I Interferon Signaling in Stimulating NK Cell Proliferation during MCMV Infection

    PubMed Central

    Geurs, Theresa L.; Zhao, Yun M.; Hill, Elaise B.; French, Anthony R.

    2009-01-01

    NK cells vigorously proliferate during viral infections, resulting in an expanded pool of innate lymphocytes that are able to participate in early host defense. The relative contributions of cytokines and activation receptors in stimulating NK cell proliferation during viral infections are not well characterized. In this study, we demonstrated that signaling through the NK cell activation receptor Ly49H was able to compensate for the absence of cytokine stimulation in the preferential phase of viral-induced proliferation during MCMV infection. In the absence of type I interferon stimulation, NK cell proliferation was strongly biased toward cells expressing the Ly49H receptor, even at early time points when minimal preferential Ly49H-mediated proliferation was observed in wild-type mice. In the absence of effective Ly49H signaling or following infection with virus that did not express the ligand for Ly49H, no difference was observed in the proliferation of subsets of NK cells that either express or lack expression of Ly49H, although the overall proliferation of NK cells in IFNαβR−/− mice was substantially reduced. These results highlight the contribution of NK cell activation receptors in stimulating proliferation and subsequent expansion of NK cells that are able to recognize virally infected cells. PMID:19828630

  14. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase

    PubMed Central

    Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun

    2014-01-01

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287

  15. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity.

    PubMed

    Wang, Yanyan; Xu, Han; Zheng, Xiaodong; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2007-10-01

    Human umbilical cord blood (CB) has recently been used as a source of stem cells in transplantation. NK cells derived from CB are the key effector cells involved in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL). It was reported that the activity of CB NK cells was lower than that of adult peripheral blood (PB) NK cells. In this study, we analyzed the expression of some NK cell receptors and cytotoxicity-related molecules in CB and PB NK cells. The expressions of activating NK receptors, CD16, NKG2D and NKp46, did not show significant difference between CB and PB NK cells. But the expression of inhibitory receptor NKG2A/CD94 was significantly higher on CB NK cells. As to the effector function molecules, granzyme B was expressed significantly lower in CB NK cells, but the expressions of intracellular perforin, IFN-gamma, TNF-alpha and cell surface FasL and TRAIL did not show difference between CB and PB NK cells. The results indicated that the high expression of NKG2A/CD94 and low expression of granzyme B may be related with the reduced activity of CB NK cells.

  16. Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury.

    PubMed

    Bang, Renate; Sass, Gabriele; Kiemer, Alexandra K; Vollmar, Angelika M; Neuhuber, Winfried L; Tiegs, Gisa

    2003-04-01

    Previously, we have shown that primary afferent sensory neurons are necessary for disease activity in T cell-mediated immune hepatitis in mice. In the present study, we analyzed the possible role of substance P (SP), an important proinflammatory neuropeptide of these nerve fibers, in an in vivo mouse model of liver inflammation. Liver injury was induced by bacterial lipopolysaccharide (LPS) in D-galactosamine (GalN)-sensitized mice. Depletion of primary afferent nerve fibers by neonatal capsaicin treatment down-regulated circulating levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) and protected mice from GalN/LPS-induced liver injury. Likewise, pretreatment of mice with antagonists of the SP-specific neurokinin-1 receptor (NK-1R), i.e., (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine (CP-96,345) and (2S,3S)3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060), dose dependently protected mice from GalN/LPS-induced liver injury. The presence of the NK-1R in the murine liver was demonstrated by reverse transcription-polymerase chain reaction, sequence analysis, and immunocytochemistry. NK-1R blockade reduced inflammatory liver damage, i.e., edema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis. To get further insight into the mechanism by which receptor blockade attenuated GalN/LPS-induced liver damage, we analyzed plasma levels and intrahepatic expression of TNFalpha, IFNgamma, interleukin (IL)-6, and IL-10. NK-1R blockade clearly inhibited GalN/LPS-induced production of TNFalpha and IFNgamma, whereas synthesis of the hepatoprotective cytokines IL-6 and IL-10 was increased. NK-1 receptor antagonists might be potent drugs for treatment of inflammatory liver disease, most likely by inhibiting SP effects.

  17. Expansions of NK-like αβT cells with chronologic aging: Novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells

    PubMed Central

    Vallejo, Abbe N.; Mueller, Robert G.; Hamel, David L.; Way, Amanda; Dvergsten, Jeffrey A.; Griffin, Patricia; Newman, Anne B.

    2010-01-01

    As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR+ αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR+ αβT cells could lead to new avenues for age-specific intervention to improve protective immunity. PMID:20932941

  18. Tyrosine Kinase Btk Is Required for NK Cell Activation

    PubMed Central

    Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao

    2012-01-01

    Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk−/− NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk−/− mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk−/− mice after the adoptive transfer of Btk+/+ NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response. PMID:22589540

  19. Tyrosine kinase Btk is required for NK cell activation.

    PubMed

    Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao

    2012-07-06

    Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk(-/-) NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk(-/-) mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk(-/-) mice after the adoptive transfer of Btk(+/+) NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response.

  20. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors.

    PubMed

    Fauriat, Cyril; Ivarsson, Martin A; Ljunggren, Hans-Gustaf; Malmberg, Karl-Johan; Michaëlsson, Jakob

    2010-02-11

    Expression of inhibitory killer cell immunoglobulin-like receptors (KIRs) specific for self-major histocompatibility complex (MHC) class I molecules provides an educational signal that generates functional natural killer (NK) cells. However, the effects of activating KIRs specific for self-MHC class I on NK-cell education remain elusive. Here, we provide evidence that the activating receptor KIR2DS1 tunes down the responsiveness of freshly isolated human NK cells to target cell stimulation in donors homozygous for human leukocyte antigen (HLA)-C2, the ligand of KIR2DS1. The tuning was apparent in KIR2DS1(+) NK cells lacking expression of inhibitory KIRs and CD94/NKG2A, as well as in KIR2DS1(+) NK cells coexpressing the inhibitory MHC class I-specific receptors CD94/NKG2A and KIR2DL3, but not KIR2DL1. However, the tuning of responsiveness was restricted to target cell recognition because KIR2DS1(+) NK cells responded well to stimulation with exogenous cytokines. Our results provide the first example of human NK-cell education by an activating KIR and suggest that the education of NK cells via activating KIRs is a mechanism to secure tolerance that complements education via inhibitory KIRs.

  1. Enzymatic inactivation of tachykinin neurotransmitters in the isolated spinal cord of the newborn rat.

    PubMed

    Yanagisawa, M; Yoshioka, K; Kurihara, T; Saito, K; Seno, N; Suzuki, H; Hosoki, R; Otsuka, M

    1992-12-01

    A mixture of peptidase inhibitors increased the magnitude of the saphenous nerve-evoked slow depolarization of a lumbar ventral root and prolonged the similarly evoked inhibition of monosynaptic reflex (MSR) in the isolated spinal cord of the newborn rat in the presence of naloxone. The saphenous nerve-evoked MSR inhibition was curtailed by a tachykinin antagonist, GR71251, and after the treatment with GR71251, the peptidase inhibitor mixture no more prolonged the MSR inhibition. The present results suggest that enzymatic degradation plays a role in the termination of action of tachykinins released from primary afferents in the newborn rat spinal cord. The results provide a further support for the notion that tachykinins serve as neurotransmitters in the spinal cord of the newborn rat.

  2. Varicella Zoster Virus Induces Nuclear Translocation of the Neurokinin-1 Receptor, Promoting Lamellipodia Formation and Viral Spread in Spinal Astrocytes.

    PubMed

    Bubak, Andrew N; Como, Christina N; Blackmon, Anna M; Frietze, Seth; Mescher, Teresa; Jones, Dallas; Cohrs, Randall J; Paucek, Petr; Baird, Nicholas L; Nagel, Maria A

    2018-05-19

    Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes and viral spread in the presence or absence of NK-1R antagonists, aprepitant and rolapitant. VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.

  3. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increases with the firing frequency of C-fibers

    PubMed Central

    Adelson, David; Lao, Lijun; Zhang, Guohua; Kim, Woojae; Marvizón, Juan Carlos G.

    2009-01-01

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1–10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Aδ-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli. PMID:19336248

  4. Characterization of a neurokinin B receptor site in rat brain using a highly selective radioligand.

    PubMed

    Laufer, R; Gilon, C; Chorev, M; Selinger, Z

    1986-08-05

    We have recently characterized a tachykinin receptor subtype (SP-N) whose preferred ligand is the mammalian neuropeptide, neurokinin B (Laufer, R., Wormser, U., Friedman, Z. Y., Gilon, C., Chorev, M., and Selinger, Z. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7444-7448). To investigate this novel tachykinin receptor, we have now prepared a radiolabeled peptide, N alpha-[( 125I]desamino-3-iodotyrosyl)-[Asp5,6, N-methyl-Phe8]substance P (5-11) heptapeptide (125I-BH-NH-Senktide), which selectively interacts with the SP-N receptor subtype. The binding of 125I-BH-NH-Senktide to rat cerebral cortex membranes was studied under conditions that minimized nonspecific binding. Unlike other tachykinin receptor probes, this radioligand is not degraded during the binding experiment. Binding of 125I-BH-NH-Senktide is reversible, saturable, and of high affinity (KD = 0.9 nM). The radioligand labels a single class of binding site (122 fmol binding sites/mg of protein), as indicated by a linear Scatchard plot and a Hill coefficient close to unity (nH = 1.05). The pharmacological specificity of this binding site corresponds to that of the neuronal SP-N receptor in guinea pig ileum myenteric plexus, which was determined by a functional bioassay. Among various rat brain regions, the highest binding was observed in the cerebral cortex, olfactory bulb, hypothalamus, and hippocampus. These results suggest the existence and specific distribution of a neurokinin B receptor site of the SP-N type in rat brain. 125I-BH-NH-Senktide is the first selective and potent probe for this receptor and is thus an important tool for further studies of its distribution, regulation, and functional role.

  5. Tachykininergic slow depolarization of motoneurones evoked by descending fibres in the neonatal rat spinal cord.

    PubMed Central

    Kurihara, T; Yoshioka, K; Otsuka, M

    1995-01-01

    1. In the isolated spinal cord of the neonatal rat, repetitive electrical stimulation of the upper cervical region elicited a prolonged depolarization of lumbar motoneurones (L3-5) lasting 1-2 min, which was recorded extracellularly from ventral roots, or intracellularly. 2. This depolarizing response was markedly depressed by the excitatory amino acid receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (D-APV, 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM). The remaining response was further depressed by a 5-hydroxytryptamine (5-HT) receptor antagonist, ketanserin (3 microM). 3. In the presence of these antagonists, a small part of the depolarizing response of slow time course remained, and this response was partially blocked by the tachykinin NK1 receptor antagonists GR71251 (0.3-5 microM) and RP67580 (0.3-1 microM). In contrast, RP68651 (0.3-1 microM), the inactive enantiomer of RP67580, had no effect on the depolarizing response. 4. The slow depolarizing response in the presence of D-APV, CNQX and ketanserin was markedly potentiated by a peptidase inhibitor, thiorphan (1 microM). 5. This descending fibre-evoked slow depolarization became smaller after prolonged treatment (5-7 h) with 5,7-dihydroxytryptamine (10 microM), a neurotoxin for 5-HT neurones. Under such conditions, the effects of thiorphan and GR71251 on the slow depolarization were virtually absent. 6. Under the action of D-APV, CNQX and ketanserin, applications of tachykinins, substance P and neurokinin A produced depolarizing responses of lumbar motoneurones, and the responses were depressed by GR71251 and potentiated by thiorphan. 7. These results suggest that tachykinins contained in serotonergic fibres serve as neurotransmitters mediating the descending fibre-evoked slow excitatory postsynaptic potentials in motoneurones. PMID:7562617

  6. Tachykininergic slow depolarization of motoneurones evoked by descending fibres in the neonatal rat spinal cord.

    PubMed

    Kurihara, T; Yoshioka, K; Otsuka, M

    1995-06-15

    1. In the isolated spinal cord of the neonatal rat, repetitive electrical stimulation of the upper cervical region elicited a prolonged depolarization of lumbar motoneurones (L3-5) lasting 1-2 min, which was recorded extracellularly from ventral roots, or intracellularly. 2. This depolarizing response was markedly depressed by the excitatory amino acid receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (D-APV, 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM). The remaining response was further depressed by a 5-hydroxytryptamine (5-HT) receptor antagonist, ketanserin (3 microM). 3. In the presence of these antagonists, a small part of the depolarizing response of slow time course remained, and this response was partially blocked by the tachykinin NK1 receptor antagonists GR71251 (0.3-5 microM) and RP67580 (0.3-1 microM). In contrast, RP68651 (0.3-1 microM), the inactive enantiomer of RP67580, had no effect on the depolarizing response. 4. The slow depolarizing response in the presence of D-APV, CNQX and ketanserin was markedly potentiated by a peptidase inhibitor, thiorphan (1 microM). 5. This descending fibre-evoked slow depolarization became smaller after prolonged treatment (5-7 h) with 5,7-dihydroxytryptamine (10 microM), a neurotoxin for 5-HT neurones. Under such conditions, the effects of thiorphan and GR71251 on the slow depolarization were virtually absent. 6. Under the action of D-APV, CNQX and ketanserin, applications of tachykinins, substance P and neurokinin A produced depolarizing responses of lumbar motoneurones, and the responses were depressed by GR71251 and potentiated by thiorphan. 7. These results suggest that tachykinins contained in serotonergic fibres serve as neurotransmitters mediating the descending fibre-evoked slow excitatory postsynaptic potentials in motoneurones.

  7. CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse.

    PubMed

    Masilamani, Madhan; Nguyen, Connie; Kabat, Juraj; Borrego, Francisco; Coligan, John E

    2006-09-15

    An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.

  8. The Activating Human NK Cell Receptor KIR2DS2 Recognizes a β2-Microglobulin-Independent Ligand on Cancer Cells.

    PubMed

    Thiruchelvam-Kyle, Lavanya; Hoelsbrekken, Sigurd E; Saether, Per C; Bjørnsen, Elisabeth Gyllensten; Pende, Daniela; Fossum, Sigbjørn; Daws, Michael R; Dissen, Erik

    2017-04-01

    The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β 2 -microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β 2 -microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β 2 -microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β 2 -microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  10. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells.

    PubMed

    Silva-Santos, Bruno; Strid, Jessica

    2018-01-01

    Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the "lymphoid stress-surveillance" theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1 + T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.

  11. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    PubMed

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  12. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-09-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than

  13. Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P.

    PubMed

    Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L

    2008-03-03

    Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.

  14. Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase.

    PubMed

    Wang, Qingshan; Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2014-09-10

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. Copyright © 2014 the authors 0270-6474/14/3412490-14$15.00/0.

  15. Tachykinin 1 (TAC1) gene SNPs and haplotypes with autism: a case-control study.

    PubMed

    Marui, Tetsuya; Funatogawa, Ikuko; Koishi, Shinko; Yamamoto, Kenji; Matsumoto, Hideo; Hashimoto, Ohiko; Nanba, Eiji; Nishida, Hisami; Sugiyama, Toshiro; Kasai, Kiyoto; Watanabe, Keiichiro; Kano, Yukiko; Kato, Nobumasa; Sasaki, Tsukasa

    2007-09-01

    Autism (MIM 209850) is a severe neurodevelopmental disorder characterized by disturbances in social interaction and communication, by repetitive body movements and restricted interests, and by atypical language development. Several twin and family studies have shown strong evidence for genetic factors in the etiology of autism. Glutamate is a major excitatory neurotransmitter in the human brain. Glutamate systems are involved in the pathophysiology of autism. There are many similarities between the symptoms evoked by glutamate antagonist treatment and symptoms of autism found in several human and animal studies. To elucidate the genetic background of autism, we analyzed the relationship between three single nucleotide polymorphisms (SNPs) of the Tachykinin 1 gene (TAC1) and autism, because TAC1 is located in the candidate region for autism and produces substance P and neurokinins. These products modulate glutamatergic excitatory synaptic transmission and are also involved in inflammation. Many different inflammation-related mechanisms could be involved in the autistic brain. Therefore, TAC1 may have some functions associated with the presumable pathophysiology of autism. We compared the allele and haplotype frequencies between autistic patients (n=170) and normal controls (n=214) in the Japanese population, but no significant difference was observed. Thus, the TAC1 locus is not likely to play a major role in the development of autism.

  16. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    PubMed

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  17. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally

    PubMed Central

    Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry

    2014-01-01

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750

  18. Development of IL-22-producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue.

    PubMed

    Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R; Miller, Jeffery S; Verneris, Michael R

    2011-04-14

    Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)-producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56(+)CD117(high)CD94(-) phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22-producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials.

  19. Peptidase modulation of the pulmonary effects of tachykinins.

    PubMed

    Martins, M A; Shore, S A; Drazen, J M

    1991-01-01

    The physiological effects of the tachykinin peptides substance P (SP) and neurokinin A (NKA) are limited by their microenvironmental degradation. We used the isolated tracheally superfused guinea pig lung to examine the importance of various degradative enzymes in limiting the physiological effects of exogenously administered and endogenously released tachykinins. When SP and NKA are administered via the airway epithelium, neutral endopeptidase (NEP; EC 3.4.24.11) is the major degradative enzyme as indicated by the effects of NEP inhibitors alone compared to the effects of a NEP inhibitor along with a cocktail of other peptidase inhibitors. The effects of enzyme inhibitors on physiological responses is mirrored in the amounts of peptide recovered from lung perfusates as determined using an enzyme-linked immunosorbent assay. We found similar effects when SP and NKA were released endogenously by the acute infusion of capsaicin. These data indicate that NEP is the predominant degradative enzyme modulating the effects of SP and NKA administered via the airways.

  20. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    PubMed

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.