Recent Progress in Technologies for Tactile Sensors
Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-01-01
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human–machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems. PMID:29565835
Recent Progress in Technologies for Tactile Sensors.
Chi, Cheng; Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-03-22
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human-machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems.
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review
Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou
2017-01-01
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080
An overview of tactile sensing
NASA Technical Reports Server (NTRS)
Agrawal, Rajeev; Jain, Ramesh
1986-01-01
Existing or proposed tactile sensors are reviewed. General considerations involved in tactile sensing and various performance criteria are discussed. Typical specifications to be expected from the sensors are also described. A representative set of present day tactile sensors is studied. Finally, some of the proposed recognition systems using tactile sensing are described.
Comparison of measurement methods for capacitive tactile sensors and their implementation
NASA Astrophysics Data System (ADS)
Tarapata, Grzegorz; Sienkiewicz, Rafał
2015-09-01
This paper presents a review of ideas and implementations of measurement methods utilized for capacity measurements in tactile sensors. The paper describes technical method, charge amplification method, generation and as well integration method. Three selected methods were implemented in dedicated measurement system and utilised for capacitance measurements of ourselves made tactile sensors. The tactile sensors tested in this work were fully fabricated with the inkjet printing technology. The tests result were presented and summarised. The charge amplification method (CDC) was selected as the best method for the measurement of the tactile sensors.
NASA Astrophysics Data System (ADS)
Zheng, Wendong; Wang, Bowen; Liu, Huaping; Li, Yunkai; Zhao, Ran; Weng, Ling; Zhang, Changgeng
2018-05-01
A novel magnetostrictive tactile sensor has been designed according to the transduction mechanism of cilia and Villari effect of iron-gallium alloy. The tactile sensor consists of a Galfenol beam, a pair of permanent magnets, a Hall sensor and a signal processing system. Compared with the conventional tactile sensor, our proposed tactile sensor can not only detect the contact-force, but also sense stiffness of an object. The performance and measurement range of tactile sensor have theoretically been analyzed and experimentally investigated. The results have revealed that the sensibility of tactile sensor for sensing force is up to 22.81mV/N at applied bias magnetic field of 2.56kA/m. Moreover, the sensor can effectively discriminate objects with different stiffness. The sensor is characterized by high sensitivity, good linearity, and quick response. It has the potential of being miniaturized and integrated into the finger of a robotic hand to realize force sensing and object recognition in real-time.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Planar and finger-shaped optical tactile sensors for robotic applications
NASA Technical Reports Server (NTRS)
Begej, Stefan
1988-01-01
Progress is described regarding the development of optical tactile sensors specifically designed for application to dexterous robotics. These sensors operate on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and produce a grey-scale tactile image that represents the normal (vertical) forces of contact. The first tactile sensor discussed is a compact, 32 x 32 planar sensor array intended for mounting on a parallel-jaw gripper. Optical fibers were employed to convey the tactile image to a CCD camera and microprocessor-based image analysis system. The second sensor had the shape and size of a human fingertip and was designed for a dexterous robotic hand. It contained 256 sensing sites (taxels) distributed in a dual-density pattern that included a tactile fovea near the tip measuring 13 x 13 mm and containing 169 taxels. The design and construction details of these tactile sensors are presented, in addition to photographs of tactile imprints.
Real-time edge tracking using a tactile sensor
NASA Technical Reports Server (NTRS)
Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.
1989-01-01
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.
Force/torque and tactile sensors for sensor-based manipulator control
NASA Technical Reports Server (NTRS)
Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying
1989-01-01
The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.
Artificial tactile sensing in minimally invasive surgery - a new technical approach.
Schostek, Sebastian; Ho, Chi-Nghia; Kalanovic, Daniel; Schurr, Marc O
2006-01-01
The loss of tactile sensation is a commonly known drawback of minimally invasive surgery (MIS). Since the advent of MIS, research activities in providing tactile information to the surgeon are still ongoing, in order to improve patient safety and to extend the indications for MIS. We have designed a tactile sensor system comprising a tactile laparoscopic grasper for surgical palpation. For this purpose, we developed a novel tactile sensor technology which allows the manufacturing of an integrated sensor array within an acceptable price range. The array was integrated into the jaws of a 10mm laparoscopic grasper. The tactile data are transferred wirelessly via Bluetooth and are presented visually to the surgeon. The goal was to be able to obtain information about the shape and consistency of tissue structures by gently compressing the tissue between the jaws of the tactile instrument and thus to be able to recognize and assess anatomical or pathological structures, even if they are hidden in the tissue. With a prototype of the tactile sensor system we have conducted bench-tests as well as in-vitro and in-vivo experiments. The system proved feasibility in an experimental environment, it was easy to use, and the novel tactile sensor array was applicable for both palpation and grasping manoeuvres with forces of up to 60N. The tactile data turned out to be a useful supplement to the minimal amount of haptic feedback that is provided by current endoscopic instruments and the endoscopic image under certain conditions.
Kampmann, Peter; Kirchner, Frank
2014-01-01
With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158
NASA Astrophysics Data System (ADS)
Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook
2017-10-01
In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.
Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots
NASA Astrophysics Data System (ADS)
Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi
We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.
Hashim, Iza Husna Mohamad; Kumamoto, Shogo; Takemura, Kenjiro; Maeno, Takashi; Okuda, Shin; Mori, Yukio
2017-11-11
Tactile sensation is one type of valuable feedback in evaluating a product. Conventionally, sensory evaluation is used to get direct subjective responses from the consumers, in order to improve the product's quality. However, this method is a time-consuming and costly process. Therefore, this paper proposes a novel tactile evaluation system that can give tactile feedback from a sensor's output. The main concept of this system is hierarchically layering the tactile sensation, which is inspired by the flow of human perception. The tactile sensation is classified from low-order of tactile sensation (LTS) to high-order of tactile sensation (HTS), and also to preference. Here, LTS will be correlated with physical measures. Furthermore, the physical measures that are used to correlate with LTS are selected based on four main aspects of haptic information (roughness, compliance, coldness, and slipperiness), which are perceived through human tactile sensors. By using statistical analysis, the correlation between each hierarchy was obtained, and the preference was derived in terms of physical measures. A verification test was conducted by using unknown samples to determine the reliability of the system. The results showed that the system developed was capable of estimating preference with an accuracy of approximately 80%.
Development of a biomimetic roughness sensor for tactile information with an elastomer
NASA Astrophysics Data System (ADS)
Choi, Jae-Young; Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon
2016-04-01
Human uses various sensational information for identifying an object. When contacting an unidentified object with no vision, tactile sensation provides a variety of information to perceive. Tactile sensation plays an important role to recognize a shape of surfaces from touching. In robotic fields, tactile sensation is especially meaningful. Robots can perform more accurate job using comprehensive tactile information. And in case of using sensors made by soft material like silicone, sensors can be used in various situations. So we are developing a tactile sensor with soft materials. As the conventional robot operates in a controlled environment, it is a good model to make robots more available at any circumstance that sensory systems of living things. For example, there are lots of mechanoreceptors that each of them has different roles detecting simulation in side of human skin tissue. By mimicking the mechanoreceptor, a sensory system can be realized more closely to human being. It is known that human obtains roughness information through scanning the surface with fingertips. During that times, subcutaneous mechanoreceptors detect vibration. In the same way, while a robot is scanning a surface of object, a roughness sensor developed detects vibrations generated between contacting two surfaces. In this research, a roughness sensor made by an elastomer was developed and experiment for perception of objects was conducted. We describe means to compare the roughness of objects with a newly developed sensor.
High-Accuracy Readout Electronics for Piezoresistive Tactile Sensors
Vidal-Verdú, Fernando
2017-01-01
The typical layout in a piezoresistive tactile sensor arranges individual sensors to form an array with M rows and N columns. While this layout reduces the wiring involved, it does not allow the values of the sensor resistors to be measured individually due to the appearance of crosstalk caused by the nonidealities of the array reading circuits. In this paper, two reading methods that minimize errors resulting from this phenomenon are assessed by designing an electronic system for array reading, and the results are compared to those obtained using the traditional method, obviating the nonidealities of the reading circuit. The different models were compared by testing the system with an array of discrete resistors. The system was later connected to a tactile sensor with 8 × 7 taxels. PMID:29104229
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain
Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando
2009-01-01
Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146
Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio
2016-01-01
Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545
GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force
Yuan, Wenzhen; Dong, Siyuan; Adelson, Edward H.
2017-01-01
Tactile sensing is an important perception mode for robots, but the existing tactile technologies have multiple limitations. What kind of tactile information robots need, and how to use the information, remain open questions. We believe a soft sensor surface and high-resolution sensing of geometry should be important components of a competent tactile sensor. In this paper, we discuss the development of a vision-based optical tactile sensor, GelSight. Unlike the traditional tactile sensors which measure contact force, GelSight basically measures geometry, with very high spatial resolution. The sensor has a contact surface of soft elastomer, and it directly measures its deformation, both vertical and lateral, which corresponds to the exact object shape and the tension on the contact surface. The contact force, and slip can be inferred from the sensor’s deformation as well. Particularly, we focus on the hardware and software that support GelSight’s application on robot hands. This paper reviews the development of GelSight, with the emphasis in the sensing principle and sensor design. We introduce the design of the sensor’s optical system, the algorithm for shape, force and slip measurement, and the hardware designs and fabrication of different sensor versions. We also show the experimental evaluation on the GelSight’s performance on geometry and force measurement. With the high-resolution measurement of shape and contact force, the sensor has successfully assisted multiple robotic tasks, including material perception or recognition and in-hand localization for robot manipulation. PMID:29186053
NASA Astrophysics Data System (ADS)
Ahmadi, Roozbeh; Kalantari, Masoud; Packirisamy, Muthukumaran; Dargahi, Javad
2010-06-01
Currently, Minimally Invasive Surgery (MIS) performs through keyhole incisions using commercially available robotic surgery systems. One of the most famous examples of these robotic surgery systems is the da Vinci surgical system. In the current robotic surgery systems like the da Vinci, surgeons are faced with problems such as lack of tactile feedback during the surgery. Therefore, providing a real-time tactile feedback from interaction between surgical instruments and tissue can help the surgeons to perform MIS more reliably. The present paper proposes an optical tactile sensor to measure the contact force between the bio-tissue and the surgical instrument. A model is proposed for simulating the interaction between a flexible membrane and bio-tissue based on the finite element methods. The tissue is considered as a hyperelastic material with the material properties similar to the heart tissue. The flexible membrane is assumed as a thin layer of silicon which can be microfabricated using the technology of Micro Electro Mechanical Systems (MEMS). The simulation results are used to optimize the geometric design parameters of a proposed MEMS tactile sensor for use in robotic surgical systems to perform MIS.
NASA Technical Reports Server (NTRS)
Creus, Carolina
1991-01-01
Active (dynamic) tactile sensing was explored using a commercially available tactile array sensor. This task requires the redesign of the sensor interface and a full understanding of the old sensor hardware implementation. There were different stages to this research; the first stage involved the reverse engineering of the old tactile sensor. The second stage had to do with the exploration of the characteristics and behavior of the tactile sensor pad. The next stage dealt with the redesign of the sensor interface using the knowledge gained from the previous two stages. Finally, in the last stage, software to control the tactile sensor was developed to aid in the data acquisition process.
Displaying Sensed Tactile Cues with a Fingertip Haptic Device.
Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J
2015-01-01
Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device's motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user's fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0 percent of the BioTac's full 12-bit scale. The second experiment evaluated human subjects' experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.
Development of multichannel soft tactile sensors having fingerprint structure.
Tsutsui, H; Murashima, Y; Honma, N; Kobayashi, K
2014-01-01
It is possible to accurately recognize the shape of an object or to grip it by setting soft tactile sensors on a robot's hands. We studied a multichannel soft tactile sensor as an artificial hand and evaluated the pressure's response performance from several directions and the slipping and sliding responses. The tactile sensor consisted of multiple pneumatic sensors and a soft cap with a fingerprint structure that was made of silicone gum and was separated from multiple spaces. Evaluation tests showed that the multiple soft tactile sensors estimate both an object's contact force and its contact location. Our tactile sensor also measured the object's roughness by the slide on surface texture.
Studies to design and develop improved remote manipulator systems
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.
3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing
NASA Astrophysics Data System (ADS)
Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi
2018-05-01
Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.
3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing.
Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi
2018-05-04
Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10 -6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.
An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V
2018-04-01
Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic, prosthetic, and industrial applications.
Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors.
Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter
2016-08-24
Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.
Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors
Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter
2016-01-01
Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design. PMID:27563908
Fingertip-shaped optical tactile sensor for robotic applications
NASA Technical Reports Server (NTRS)
Begej, Stefan
1988-01-01
Progress is described regarding the development of a high-density, fiber-optic, fingertip-shaped tactile sensor specifically designed for application to dexterous robotics. The sensor operates on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and generates a grey-scale tactile image that represents the normal forces of contact. The sensor contains 256 taxels (sensing sites) distributed in a dual-density pattern that includes a tactile fovea near the tip which measures 13 mm x 13 mm and contains 169 taxels. The details regarding the design and construction of this tactile sensor are presented, in addition to photographs of tactile imprints.
3D capacitive tactile sensor using DRIE micromachining
NASA Astrophysics Data System (ADS)
Chuang, Chiehtang; Chen, Rongshun
2005-07-01
This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.
Assaf, Tareq; Roke, Calum; Rossiter, Jonathan; Pipe, Tony; Melhuish, Chris
2014-02-07
Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects. The softness of the optical sensor's contact surface also allows safer interactions with objects. High-level tactile features such as edges are extrapolated from the sensor's output and the information is used to generate a tactile image. The work presented in this paper aims to investigate and evaluate this artificial fingertip for 2D shape reconstruction. The sensor was mounted on a robot arm to allow autonomous exploration of different objects. The sensor and a number of human participants were then tested for their abilities to track the raised perimeters of different planar objects and compared. By observing the technique and accuracy of the human subjects, simple but effective parameters were determined in order to evaluate the artificial system's performance. The results prove the capability of the sensor in such active exploration tasks, with a comparable performance to the human subjects despite it using tactile data alone whereas the human participants were also able to use proprioceptive cues.
Three Realizations and Comparison of Hardware for Piezoresistive Tactile Sensors
Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Navas-González, Rafael
2011-01-01
Tactile sensors are basically arrays of force sensors that are intended to emulate the skin in applications such as assistive robotics. Local electronics are usually implemented to reduce errors and interference caused by long wires. Realizations based on standard microcontrollers, Programmable Systems on Chip (PSoCs) and Field Programmable Gate Arrays (FPGAs) have been proposed by the authors for the case of piezoresistive tactile sensors. The solution employing FPGAs is especially relevant since their performance is closer to that of Application Specific Integrated Circuits (ASICs) than that of the other devices. This paper presents an implementation of such an idea for a specific sensor. For the purpose of comparison, the circuitry based on the other devices is also made for the same sensor. This paper discusses the implementation issues, provides details regarding the design of the hardware based on the three devices and compares them. PMID:22163797
Slip detection with accelerometer and tactile sensors in a robotic hand model
NASA Astrophysics Data System (ADS)
Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.
2015-11-01
Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.
Microfabricated Tactile Sensors for Biomedical Applications: A Review
Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio
2014-01-01
During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described. PMID:25587432
Microfabricated tactile sensors for biomedical applications: a review.
Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio
2014-12-01
During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described.
The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies
Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F.
2018-01-01
Abstract Tactile sensing is an essential component in human–robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing. PMID:29297773
The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies.
Ward-Cherrier, Benjamin; Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F
2018-04-01
Tactile sensing is an essential component in human-robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing.
Nakatani, Masashi; Fukuda, Toru; Arakawa, Naomi; Kawasoe, Tomoyuki; Omata, Sadao
2013-02-01
Few attempts have been made to distinguish the softness of different skin layers, though specific measurement of the superficial layer would be useful for evaluating the emollient effect of cosmetics and for diagnosis of skin diseases. We developed a sensor probe consisting of a piezoelectric tactile sensor and a load cell. To evaluate it, we firstly measured silicone rubber samples with different softness. Then, it was applied to human forearm skin before and after tape-stripping. A VapoMeter and skin-surface hygrometer were used to confirm removal of the stratum corneum. A Cutometer was used to obtain conventional softness data for comparison. Both the piezoelectric tactile sensor and the load cell could measure the softness of silicone rubber samples, but the piezoelectric tactile sensor was more sensitive than the load cell when the reaction force of the measured sample was under 100 mN in response to a 2-mm indentation. For human skin in vivo, transepidermal water loss and skin conductance were significantly changed after tape-stripping, confirming removal of the stratum corneum. The piezoelectric tactile sensor detected a significant change after tape-stripping, whereas the load cell did not. Thus, the piezoelectric tactile sensor can detect changes of mechanical properties at the skin surface. The load cell data were in agreement with Cutometer measurements, which showed no change in representative skin elasticity parameters after tape-stripping. These results indicate that our sensor can simultaneously measure the mechanical properties of the superficial skin layer and whole skin. © 2012 John Wiley & Sons A/S.
Computational Intelligence Techniques for Tactile Sensing Systems
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-01-01
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646
Computational intelligence techniques for tactile sensing systems.
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-06-19
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.
A flexible tactile sensitive sheet using a hetero-core fiber optic sensor
NASA Astrophysics Data System (ADS)
Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.
2014-05-01
In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.
Fused Filament Fabrication of Prosthetic Components for Trans-Humeral Upper Limb Prosthetics
NASA Astrophysics Data System (ADS)
Lathers, Steven M.
Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthetic designed has: a one-step surgical process, large cavities for bone tissue ingrowth, uses a material that has an elastic modulus less than skeletal bone, and can be fabricated on one system. FFF osseointegration screw is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. The current prosthetic design requires two invasive surgeries for implantation and are made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and overtime can cause loosening of the prosthetic. The tactile sensor is a thermoplastic piezo-resistive sensor for daily activities for a prosthetic's feedback system. The tactile sensor is manufactured from a low elastic modulus composite comprising of a compressible thermoplastic elastomer and conductive carbon. Carbon is in graphite form and added in high filler ratios. The printed sensors were compared to sensors that were fabricated in a gravity mold to highlight the difference in FFF sensors to molded sensors. The 3D printed tactile sensor has a thickness and feel similar to human skin, has a simple fabrication technique, can detect forces needed for daily activities, and can be manufactured in to user specific geometries. Lastly, a biomimicking skeletal muscle actuator for prosthetics was developed. The actuator developed is manufactured with Fuse Filament Fabrication using a shape memory polymer composite that has non-linear contractile and passive forces, contractile forces and strains comparable to mammalian skeletal muscle, reaction time under one second, low operating temperature, and has a low mass, volume, and material costs. The actuator improves upon current prosthetic actuators that provide rigid, linear force with high weight, cost, and noise.
Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses
Osborn, Luke; Kaliki, Rahul; Soares, Alcimar; Thakor, Nitish
2016-01-01
Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses. PMID:27777640
Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.
2014-01-01
The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774
Haptic Edge Detection Through Shear
NASA Astrophysics Data System (ADS)
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Haptic Edge Detection Through Shear
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-01-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331
Haptic Edge Detection Through Shear.
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-24
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Review of Recent Inkjet-Printed Capacitive Tactile Sensors
Salim, Ahmed
2017-01-01
Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research. PMID:29125584
A Pneumatic Tactile Sensor for Co-Operative Robots
He, Rui; Yu, Jianjun; Zuo, Guoyu
2017-01-01
Tactile sensors of comprehensive functions are urgently needed for the advanced robot to co-exist and co-operate with human beings. Pneumatic tactile sensors based on air bladder possess some noticeable advantages for human-robot interaction application. In this paper, we construct a pneumatic tactile sensor and apply it on the fingertip of robot hand to realize the sensing of force, vibration and slippage via the change of the pressure of the air bladder, and we utilize the sensor to perceive the object’s features such as softness and roughness. The pneumatic tactile sensor has good linearity, repeatability and low hysteresis and both its size and sensing range can be customized by using different material as well as different thicknesses of the air bladder. It is also simple and cheap to fabricate. Therefore, the pneumatic tactile sensor is suitable for the application of co-operative robots and can be widely utilized to improve the performance of service robots. We can apply it to the fingertip of the robot to endow the robotic hand with the ability to co-operate with humans and handle the fragile objects because of the inherent compliance of the air bladder. PMID:29125565
Compliant tactile sensor for generating a signal related to an applied force
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2012-01-01
Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
Advanced haptic sensor for measuring human skin conditions
NASA Astrophysics Data System (ADS)
Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami
2009-12-01
This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.
Advanced haptic sensor for measuring human skin conditions
NASA Astrophysics Data System (ADS)
Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami
2010-01-01
This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.
Research on pressure tactile sensing technology based on fiber Bragg grating array
NASA Astrophysics Data System (ADS)
Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin
2015-09-01
A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array
Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara
2009-01-01
A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304
NASA Astrophysics Data System (ADS)
Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun
2018-04-01
This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2008-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Resonant vibrating sensors for tactile tissue differentiation
NASA Astrophysics Data System (ADS)
Hemsel, T.; Stroop, R.; Oliva Uribe, D.; Wallaschek, J.
2007-12-01
Surgical resection of brain tumours is a difficult task. To enhance surgery results, a tactile sensor is wanted that gives better resolution and sensitivity than the human tactile sense. The characteristics of resonant vibrating piezoelectric elements change with varying load. This allows for calculation of mechanical load parameters by measuring electrical quantities. Different setups of piezoelectric sensors have been used to investigate soft materials. Finally, a piezoelectric bimorph sensor gave good results for distinguishing tissue mimicking gel-phantoms with different gelatine concentrations.
Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.
Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck
2014-10-24
When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.
Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo
2016-01-01
For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373
Scalable fabric tactile sensor arrays for soft bodies
NASA Astrophysics Data System (ADS)
Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.
2018-06-01
Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.
Sensing Senses: Tactile Feedback for the Prevention of Decubitus Ulcers
Verbunt, Marcel
2009-01-01
Decubitus ulcers, also known as pressure sores, is a major problem in health care, in particular for patients with spinal cord injuries. These patients cannot feel the discomfort that would urge healthy people to change their posture. We describe a system that uses a sensor mat to detect problematic postures and provides tactile feedback to the user. The results of our preliminary study with healthy subjects show that the tactile feedback is a viable option to spoken feedback. We envision the system being used for rehabilitation games, but also for everyday Decubitus ulcers prevention. PMID:19949852
Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation †
Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio
2017-01-01
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted. PMID:28287448
Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation.
Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio
2017-03-10
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted.
Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review
Wang, Xiaomei; Sun, Fazhe; Yin, Guangchao; Wang, Yuting; Liu, Bo
2018-01-01
The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sensors. Polymer nanomaterials, representing the most promising materials, especially polyvinylidene fluoride (PVDF), PVDF co-polymer and their nanocomposites with ultra-sensitivity, high deformability, outstanding chemical resistance, high thermal stability and low permittivity, can meet the flexibility requirements for dynamic tactile sensing in wearable electronics. Electrospinning has been recognized as an excellent straightforward and versatile technique for preparing nanofiber materials. This review will present a brief overview of the recent advances in PVDF nanofibers by electrospinning for flexible tactile sensor applications. PVDF, PVDF co-polymers and their nanocomposites have been successfully formed as ultrafine nanofibers, even as randomly oriented PVDF nanofibers by electrospinning. These nanofibers used as the functional layers in flexible tactile sensors have been reviewed briefly in this paper. The β-phase content, which is the strongest polar moment contributing to piezoelectric properties among all the crystalline phases of PVDF, can be improved by adjusting the technical parameters in electrospun PVDF process. The piezoelectric properties and the sensibility for the pressure sensor are improved greatly when the PVDF fibers become more oriented. The tactile performance of PVDF composite nanofibers can be further promoted by doping with nanofillers and nanoclay. Electrospun P(VDF-TrFE) nanofiber mats used for the 3D pressure sensor achieved excellent sensitivity, even at 0.1 Pa. The most significant enhancement is that the aligned electrospun core-shell P(VDF-TrFE) nanofibers exhibited almost 40 times higher sensitivity than that of pressure sensor based on thin-film PVDF. PMID:29364175
Microstructured graphene arrays for highly sensitive flexible tactile sensors.
Zhu, Bowen; Niu, Zhiqiang; Wang, Hong; Leow, Wan Ru; Wang, Hua; Li, Yuangang; Zheng, Liyan; Wei, Jun; Huo, Fengwei; Chen, Xiaodong
2014-09-24
A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-01-01
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262
Flexible PZT thin film tactile sensor for biomedical monitoring.
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-04-25
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.
Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun
2015-09-01
The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.
Improved tactile resonance sensor for robotic assisted surgery
NASA Astrophysics Data System (ADS)
Oliva Uribe, David; Schoukens, Johan; Stroop, Ralf
2018-01-01
This paper presents an improved tactile sensor using a piezoelectric bimorph able to differentiate soft materials with similar mechanical characteristics. The final aim is to develop intelligent surgical tools for brain tumour resection using integrated sensors in order to improve tissue tumour delineation and tissue differentiation. The bimorph sensor is driven using a random phase multisine and the properties of contact between the sensor's tip and a certain load are evaluated by means of the evaluation of the nonparametric FRF. An analysis of the nonlinear contributions is presented to show that the use of a linear model is feasible for the measurement conditions. A series of gelatine phantoms were tested. The tactile sensor is able to identify minimal differences in the consistency of the measured samples considering viscoelastic behaviour. A variance analysis was performed to evaluate the reliability of the sensors and to identify possible error sources due to inconsistencies in the preparation method of the phantoms. The results of the variance analysis are discussed showing that ability of the proposed tactile sensor to perform high quality measurements.
Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.
Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish
2016-08-01
The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-01-01
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775
A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-03-11
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.
Performance of a novel micro force vector sensor and outlook into its biomedical applications
NASA Astrophysics Data System (ADS)
Meiss, Thorsten; Rossner, Tim; Minamisava Faria, Carlos; Völlmeke, Stefan; Opitz, Thomas; Werthschützky, Roland
2011-05-01
For the HapCath system, which provides haptic feedback of the forces acting on a guide wire's tip during vascular catheterization, very small piezoresistive force sensors of 200•200•640μm3 have been developed. This paper focuses on the characterization of the measurement performance and on possible new applications. Besides the determination of the dynamic measurement performance, special focus is put onto the results of the 3- component force vector calibration. This article addresses special advantageous characteristics of the sensor, but also the limits of applicability will be addressed. As for the special characteristics of the sensor, the second part of the article demonstrates new applications which can be opened up with the novel force sensor, like automatic navigation of medical or biological instruments without impacting surrounding tissue, surface roughness evaluation in biomedical systems, needle insertion with tactile or higher level feedback, or even building tactile hairs for artificial organisms.
A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats
NASA Astrophysics Data System (ADS)
Beygi, M.; Mutlu, S.; Güçlü, B.
2016-08-01
In this study, we present the design, microfabrication and characterization of a tactile sensor system which can be used for sensory neuroprostheses in rats. The sensor system consists of an array of 2 × 7 cells, each of which has a series combination of four strain gauges. Each group of four strain gauges is placed around a square membrane with a size of 2.5 × 2.5 mm2. Unlike most common tactile sensors based on silicon substrates, we used 3D-printed polylactic acid as a substrate, because it is not brittle, and under local extremes, it would prevent the catastrophic failure of all cells. The strain gauges were fabricated by depositing and patterning a 50 nm thick aluminum (Al) film on a polyimide sheet with a thickness of 0.125 mm. Polydimethylsiloxane (PDMS) elastomer was bonded on the top surface of the PI membrane. The PDMS layer was prepared in two different thicknesses, 1.2 and 1.7 mm, to investigate its effect on the static response of the sensor. The sensitivity and the maximum allowable force, corresponding to the maximum deformation of 0.9 mm at the center of each cell, changed based on the thickness of the PDMS layer. Sensor cells operated linearly up to 3 N with an average sensitivity of 200 mΩ N-1 (0.7 Ω mm-1) for 1.2 mm thick PDMS. These values changed to 4 N and 70 mΩ N-1 (0.3 Ω mm-1), respectively, for 1.7 mm thick PDMS. The nonlinearity was less than 3%. The cells had low cross-talk (~5 mΩ N-1 and 0.02 Ω mm-1) relative to the average sensitivity. Additionally, the dynamic response of the sensor was characterized at several frequencies by using a vibrotactile stimulation system previously designed for psychophysics experiments. The sensor was also tested inside the rat conditioning chamber to demonstrate the relevant signals in a tactile neuroprosthesis.
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo R.
2011-01-01
Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.
Suzuki, Satoshi; Watanabe, Yohei; Yazawa, Takashi; Ishigame, Teruhide; Sassa, Motoki; Monma, Tomoyuki; Takawa, Tadashi; Kumamoto, Kensuke; Nakamura, Izumi; Ohoki, Shinji; Hatakeyama, Yuichi; Sakuma, Hiroshi; Ono, Toshiyuki; Omata, Sadao; Takenoshita, Seiichi
2014-01-01
We examined whether conventional ultrasonography (US) and computed tomography (CT) were useful to evaluate liver hardness and hepatic fibrosis by comparing the results with those obtained by a tactile sensor using rats with liver fibrosis. We used 44 Wistar rats in which liver fibrosis was induced by intraperitoneal administration of thioacetamide. The CT and US values of each liver were measured before laparotomy. After laparotomy, a tactile sensor was used to measure liver hardness. We prepared Azan stained sections of each excised liver specimen and calculated the degree of liver fibrosis (HFI: hepatic fibrosis index) by computed color image analysis. The stiffness values and HFI showed a positive correlation (r=0.690, p<0.001), as did the tactile values and HFI (r=0.709, p<0.001).In addition, the stiffness and tactile values correlated positively with each other (r=0.814, p<0.001). There was no correlation between the CT values and HFI, as well as no correlation between the US values and HFI. We confirmed that it was difficult to evaluate liver hardness and HFI by CT or US examination, and considered that, at present, a tactile sensor is useful method for evaluating HFI.
Studies of human dynamic space orientation using techniques of control theory
NASA Technical Reports Server (NTRS)
Young, L. R.
1974-01-01
Studies of human orientation and manual control in high order systems are summarized. Data cover techniques for measuring and altering orientation perception, role of non-visual motion sensors, particularly the vestibular and tactile sensors, use of motion cues in closed loop control of simple stable and unstable systems, and advanced computer controlled display systems.
NASA Astrophysics Data System (ADS)
Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz
2014-05-01
In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.
Patanè, Luca; Hellbach, Sven; Krause, André F.; Arena, Paolo; Dürr, Volker
2012-01-01
Insects carry a pair of antennae on their head: multimodal sensory organs that serve a wide range of sensory-guided behaviors. During locomotion, antennae are involved in near-range orientation, for example in detecting, localizing, probing, and negotiating obstacles. Here we present a bionic, active tactile sensing system inspired by insect antennae. It comprises an actuated elastic rod equipped with a terminal acceleration sensor. The measurement principle is based on the analysis of damped harmonic oscillations registered upon contact with an object. The dominant frequency of the oscillation is extracted to determine the distance of the contact point along the probe and basal angular encoders allow tactile localization in a polar coordinate system. Finally, the damping behavior of the registered signal is exploited to determine the most likely material. The tactile sensor is tested in four approaches with increasing neural plausibility: first, we show that peak extraction from the Fourier spectrum is sufficient for tactile localization with position errors below 1%. Also, the damping property of the extracted frequency is used for material classification. Second, we show that the Fourier spectrum can be analysed by an Artificial Neural Network (ANN) which can be trained to decode contact distance and to classify contact materials. Thirdly, we show how efficiency can be improved by band-pass filtering the Fourier spectrum by application of non-negative matrix factorization. This reduces the input dimension by 95% while reducing classification performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with gradually differing resonance properties, such that their spike rate is a function of the input frequency. We show that this network can be applied to detect tactile contact events of a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can be suppressed by state-dependent modulation of the input signals. PMID:23055967
Use of tactile feedback to control exploratory movements to characterize object compliance.
Su, Zhe; Fishel, Jeremy A; Yamamoto, Tomonori; Loeb, Gerald E
2012-01-01
Humans have been shown to be good at using active touch to perceive subtle differences in compliance. They tend to use highly stereotypical exploratory strategies, such as applying normal force to a surface. We developed similar exploratory and perceptual algorithms for a mechatronic robotic system (Barrett arm/hand system) equipped with liquid-filled, biomimetic tactile sensors (BioTac(®) from SynTouch LLC). The distribution of force on the fingertip was measured by the electrical resistance of the conductive liquid trapped between the elastomeric skin and a cluster of four electrodes on the flat fingertip surface of the rigid core of the BioTac. These signals provided closed-loop control of exploratory movements, while the distribution of skin deformations, measured by more lateral electrodes and by the hydraulic pressure, were used to estimate material properties of objects. With this control algorithm, the robot plus tactile sensor was able to discriminate the relative compliance of various rubber samples.
A flexible dual mode tactile and proximity sensor using carbon microcoils
NASA Astrophysics Data System (ADS)
Han, Hyo Seung; Park, Junwoo; Nguyen, Tien Dat; Kim, Uikyum; Jeong, Soon Cheol; Kang, Doo In; Choi, Hyouk Ryeol
2016-04-01
This paper proposes a flexible dual mode tactile and proximity sensor using Carbon Microcoils (CMCs). The sensor consists of a Flexible Printed Circuit Board (FPCB) electrode layer and a dielectric layer of CMCs composite. In order to avoid damage from frequent contacts, the sensor has all electrodes on the same plane and a polymer covering is placed on the top of the sensor. CMCs can be modeled as complex LCR circuit and the sensitivity of the sensor highly depends on the CMC content. Proper CMC content is experimentally investigated and applied to make the CMCs composite for the dielectric layer. The CMC sensor measures the capacitance for tactile stimulus and inductance for proximity stimulus. A prototype with a size of 30 × 30 × 0.6 𝑚𝑚3, is manufactured and its feasibility is experimentally validated.
A Prototype Tactile Sensor Array.
1982-09-15
Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Compact Tactile Sensors for Robot Fingers
NASA Technical Reports Server (NTRS)
Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa
2004-01-01
Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.
Durable Tactile Glove for Human or Robot Hand
NASA Technical Reports Server (NTRS)
Butzer, Melissa; Diftler, Myron A.; Huber, Eric
2010-01-01
A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.
Learning tactile skills through curious exploration
Pape, Leo; Oddo, Calogero M.; Controzzi, Marco; Cipriani, Christian; Förster, Alexander; Carrozza, Maria C.; Schmidhuber, Jürgen
2012-01-01
We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots. PMID:22837748
NASA Technical Reports Server (NTRS)
Langevin, Maurice L. (Inventor); Moynihan, Philip I. (Inventor)
2000-01-01
An optical-to-tactile translator provides an aid for the visually impaired by translating a near-field scene to a tactile signal corresponding to said near-field scene. An optical sensor using a plurality of active pixel sensors (APS) converts the optical image within the near-field scene to a digital signal. The digital signal is then processed by a microprocessor and a simple shape signal is generated based on the digital signal. The shape signal is then communicated to a tactile transmitter where the shape signal is converted into a tactile signal using a series of contacts. The shape signal may be an outline of the significant shapes determined in the near-field scene, or the shape signal may comprise a simple symbolic representation of common items encountered repeatedly. The user is thus made aware of the unseen near-field scene, including potential obstacles and dangers, through a series of tactile contacts. In a preferred embodiment, a range determining device such as those commonly found on auto-focusing cameras is included to limit the distance that the optical sensor interprets the near-field scene.
2014-01-01
Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900
Khasnobish, Anwesha; Pal, Monalisa; Sardar, Dwaipayan; Tibarewala, D N; Konar, Amit
2016-08-01
This work is a preliminary study towards developing an alternative communication channel for conveying shape information to aid in recognition of items when tactile perception is hindered. Tactile data, acquired during object exploration by sensor fitted robot arm, are processed to recognize four basic geometric shapes. Patterns representing each shape, classified from tactile data, are generated using micro-controller-driven vibration motors which vibrotactually stimulate users to convey the particular shape information. These motors are attached on the subject's arm and their psychological (verbal) responses are recorded to assess the competence of the system to convey shape information to the user in form of vibrotactile stimulations. Object shapes are classified from tactile data with an average accuracy of 95.21 %. Three successive sessions of shape recognition from vibrotactile pattern depicted learning of the stimulus from subjects' psychological response which increased from 75 to 95 %. This observation substantiates the learning of vibrotactile stimulation in user over the sessions which in turn increase the system efficacy. The tactile sensing module and vibrotactile pattern generating module are integrated to complete the system whose operation is analysed in real-time. Thus, the work demonstrates a successful implementation of the complete schema of artificial tactile sensing system for object-shape recognition through vibrotactile stimulations.
Fast and precise large area metrology of micropattern detectors using laser distance sensors
NASA Astrophysics Data System (ADS)
Müller, R.; Biebel, O.; Hertenberger, R.; Lösel, P.; Schaile, O.
2016-07-01
Novel developments in micropattern detector technology require fast and precise methods to measure large area topologies in the order of a few square meters. Standard tactile coordinate measurement systems have resolutions better 10 μm, but suffer from relatively long measuring time of several hours for one cycle. Sensitive structures may be damaged when touched by the tactile sensor. We present a method using laser distance sensors. Such a device is able to scan surfaces fast without touching them. The presented device has the capability to measure semitransparent surfaces. The vertical translator to mount the sensor is able to move in sub-mm steps. Using this we are able to measure the position and height of copper on FR4 with an accuracy better than 10 μm. We report on the performance of the sensor scanning non-transparent as well as semi-transparent surfaces. This includes studies to minimize the measurement time without a loss in resolution. Our method to calibrate the measurement system will also be shown. This calibration is needed to reach a resolution better than 10 μm.
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
Sánchez-Durán, José A; Hidalgo-López, José A; Castellanos-Ramos, Julián; Oballe-Peinado, Óscar; Vidal-Verdú, Fernando
2015-08-19
Tactile sensors suffer from many types of interference and errors like crosstalk, non-linearity, drift or hysteresis, therefore calibration should be carried out to compensate for these deviations. However, this procedure is difficult in sensors mounted on artificial hands for robots or prosthetics for instance, where the sensor usually bends to cover a curved surface. Moreover, the calibration procedure should be repeated often because the correction parameters are easily altered by time and surrounding conditions. Furthermore, this intensive and complex calibration could be less determinant, or at least simpler. This is because manipulation algorithms do not commonly use the whole data set from the tactile image, but only a few parameters such as the moments of the tactile image. These parameters could be changed less by common errors and interferences, or at least their variations could be in the order of those caused by accepted limitations, like reduced spatial resolution. This paper shows results from experiments to support this idea. The experiments are carried out with a high performance commercial sensor as well as with a low-cost error-prone sensor built with a common procedure in robotics.
Compliant tactile sensor that delivers a force vector
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2010-01-01
Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.
NASA Astrophysics Data System (ADS)
Bartolozzi, Chiara; Natale, Lorenzo; Nori, Francesco; Metta, Giorgio
2016-09-01
Tactile sensors provide robots with the ability to interact with humans and the environment with great accuracy, yet technical challenges remain for electronic-skin systems to reach human-level performance.
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-01-01
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-05-17
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.
Biotactile Sensors: Self-Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016).
Hu, Kesong; Xiong, Rui; Guo, Hengyu; Ma, Ruilong; Zhang, Shuaidi; Wang, Zhong Lin; Tsukruk, Vladimir V
2016-05-01
On page 3549, V. V. Tsukruk and co-workers develop self-powered ultrathin flexible films for bio-tactile detection. Graphene oxide materials are engineered for robust self-powered tactile sensing applications harnessing their electrochemical reactivity. The simple quadruple electronic skin sensor can recognize nine spatial bio-tactile positions with high sensitivity and selectivity-an approach that can be expanded towards large-area flexible skin arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin
2015-03-24
A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.
Contact Sensing from Force Measurements
1990-10-01
themselves. Their approach has been reconsidered bv Tsujimura and Yabuta [1C)8,8]. OkadA 1100(l prQent#,A a suspension-cell based tactile sensor, very...with an intrinsic tactile sensor. and the reconstruction of their surface profile has been described by Brock and Chiu [1985], and later by Tsujimura and
A slow-adapting microfluidic-based tactile sensor
NASA Astrophysics Data System (ADS)
Tseng, W.-Y.; Fisher, J. S.; Prieto, J. L.; Rinaldi, K.; Alapati, G.; Lee, A. P.
2009-08-01
We present a microfluidic-based tactile sensor mimicking the human slow-adapting mechanoreceptor such as Merkel's disc. The sensor is composed of a polyimide (PI)/polydimethylsiloxane (PDMS) multilayer structure. The device uses a hemispherical reservoir filled with electrolyte solution in the PDMS layer, a microchannel in the PI layer and a pair of sensing electrodes below the microchannel as the force transducer. The tactile signal is detected as the impedance change resulting predominantly from the resistance variance due to the electrodes coverage by the 1M NaCl solution and is measured across the electrode pair. The sensor response is linear and the working range is shown to be in the range of 0-1.8 N. The characterization results also demonstrate the sensing of various levels of forces and its long-term signal stability.
Design Optimisation of a Magnetic Field Based Soft Tactile Sensor
Raske, Nicholas; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Culmer, Peter; Hewson, Robert
2017-01-01
This paper investigates the design optimisation of a magnetic field based soft tactile sensor, comprised of a magnet and Hall effect module separated by an elastomer. The aim was to minimise sensitivity of the output force with respect to the input magnetic field; this was achieved by varying the geometry and material properties. Finite element simulations determined the magnetic field and structural behaviour under load. Genetic programming produced phenomenological expressions describing these responses. Optimisation studies constrained by a measurable force and stable loading conditions were conducted; these produced Pareto sets of designs from which the optimal sensor characteristics were selected. The optimisation demonstrated a compromise between sensitivity and the measurable force, a fabricated version of the optimised sensor validated the improvements made using this methodology. The approach presented can be applied in general for optimising soft tactile sensor designs over a range of applications and sensing modes. PMID:29099787
Piezoelectric Polymer Tactile Sensor Arrays for Robotics.
1987-12-01
response to slow and fast stimuli (Dario and others, 1984:2). The touch receptors relate tactile information through a variety of tactile sensory...flexure. The only occurrence when an evaporated electrode broke (and became intermit - tently open circuited) was during the measurement of the PPTSA *4
Wang, Xiandi; Zhang, Hanlu; Dong, Lin; Han, Xun; Du, Weiming; Zhai, Junyi; Pan, Caofeng; Wang, Zhong Lin
2016-04-20
A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galfenol tactile sensor array and visual mapping system
NASA Astrophysics Data System (ADS)
Hale, Kathleen; Flatau, Alison
2006-03-01
The smart material, Galfenol, is being explored for its uses as a magnetostrictive material. This project seeks to determine if Galfenol can be used as a tactile sensor in a 2-D grid array, magnetic circuit system. When used within a magnetic circuit, Galfenol indicates induced stress and force as a change in flux, due to a change in permeability of the material. The change in flux is detected by Giant MagnetoResistive (GMR) Sensors, which produce a voltage change proportional to the field change. By using Galfenol in an array, this research attempts to create a sensory area. Galfenol is an alloy made of Iron and Gallium. Fe 100-xGa x, where 15 <= x <= 28, creates a material with useful mechanical and transduction attributes (Clark et al. and Kellogg). Galfenol is also distinguished by the crystalline structure of the material. Two types currently exist: single crystal and polycrystalline. Single crystal has higher transduction coefficients than polycrystalline, but is more costly. Polycrystalline Galfenol is currently available as either production or research grade. The designations are related to the sample growth rate with the slower rate being the research grade. The slower growth rate more closely resembles the single crystal Galfenol properties. Galfenol 17.5-18% research grade is used for this experiment, provided by Etrema Products Inc. The magnetic circuit and sensor array is first built at the macro scale so that the design can be verified. After the macro scale is proven, further development will move the system to the nano-level. Recent advances in nanofabrication have enabled Galfenol to be grown as nanowires. Using the nanowires, research will seek to create high resolution tactile sensors with spatial resolutions similar to human finger tips, but with greater force ranges and sensitivity capabilities (Flatau & Stadler). Possible uses of such systems include robotics and prosthetics.
Tactile device utilizing a single magnetorheological sponge: experimental investigation
NASA Astrophysics Data System (ADS)
Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok
2015-04-01
In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.
High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure
NASA Astrophysics Data System (ADS)
Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu
We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.
A Magnetoresistive Tactile Sensor for Harsh Environment Applications
Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen
2016-01-01
A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113
Pahlavan, Pedram; Najarian, Siamak; Afshari, Elnaz; Moini, Majid
2013-01-01
Artificial palpation is one of the most valuable achievements of artificial tactile sensing approach that can be used in various fields of medicine and more specifically in surgery. These techniques cause different surgical maneuvers to be done more precisely and noninvasively. In this study, considering the present problems and limitations of cross-clamping an artery during laparoscopic vascular surgeries, a new tactile sensory system will be introduced.Having imitated surgeon's palpation during open vascular surgeries and modeled it conceptually, the optimal amount of the total angular displacement of each robot joint in order to cross-clamping an artery without damaging to the artery surrounding tissues will be calculated. The elastic governing equation of contact occurred between the tactile sensor placed on the first link of the robot and the surrounding tissues around the artery were developed. A finite element model is coupled with genetic algorithm optimization method so that the normal stress and displacements in contact surface of the robot and artery's surrounding tissues would be minimized. Thus, reliability and accuracy of artificial tactile sensing method in artery cross-clamping will be demonstrated. Finally, the functional principles of the new tactile system capable of cross-clamping an artery during laparoscopic surgeries will be presented.
A multifunctional PVDF-based tactile sensor for minimally invasive surgery
NASA Astrophysics Data System (ADS)
Sokhanvar, S.; Packirisamy, M.; Dargahi, J.
2007-08-01
In this paper a multifunctional tactile sensor system using PVDF (polyvinylidene fluoride), is proposed, designed, analyzed, tested and validated. The working principle of the sensor is in such a way that it can be used in combination with almost any end-effectors. However, the sensor is particularly designed to be integrated with minimally invasive surgery (MIS) tools. In addition, the structural and transduction materials are selected to be compatible with micro-electro-mechanical systems (MEMS) technology, so that miniaturization would be possible. The corrugated shape of the sensor ensures the safe tissue grasping and compatibility with the traditional tooth-like end effectors of MIS tools. A unit of this sensor comprised of a base, a flexible beam and three PVDF sensing elements. Two PVDF sensing elements sandwiched at the end supports work in thickness mode to measure the magnitude and position of applied load. The third PVDF sensing element is attached to the beam and it works in the extensional mode to measure the softness of the contact object. The proposed sensor is modeled both analytically and numerically and a series of simulations are performed in order to estimate the characteristics of the sensor in measuring the magnitude and position of a point load, distributed load, and also the softness of the contact object. Furthermore, in order to validate the theoretical results, the prototyped sensor was tested and the results are compared. The results are very promising and proving the capability of the sensor for haptic sensing.
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
3D Printed Stretchable Tactile Sensors.
Guo, Shuang-Zhuang; Qiu, Kaiyan; Meng, Fanben; Park, Sung Hyun; McAlpine, Michael C
2017-07-01
The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human-machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Luo, Minghua; Shimizu, Etsuro; Zhang, Feifei; Ito, Masanori
This paper describes a six-axis force/tactile sensor for robot fingers. A mathematical model of this sensor is proposed. By this model, the grasping force and its moments, and touching position of robot finger for holding an object can be calculated. A new sensor is fabricated based on this model, where the elastic sensing unit of the sensor is made of a brazen plate. A new compensating method for decreasing error is proposed. Furthermore, the performance of this sensor is examined. The test results present approximate relationship between theoretical input and output of the sensor. It is obvious that the performance of the new sensor is better than the sensor with no compensation.
1993-12-01
sensor response. That is, the tactile sensor’s response to a temperature change could be interpreted as the sensor’s response solely to an externally...is a vector quantity. A force acting on a surface can be interpreted in terms of a normal and a tangential component. Often, these components are...polarization [12]: 3-16 h K" + (3.34) Similarly, the stress in a material due to an applied strain and polarization is [12]: T = cS- hTP (3.35) The electric
Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J
2018-02-26
The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.
NASA Astrophysics Data System (ADS)
Ghanbari Mardasi, Amir; Ghanbari, Mahmood; Salmani Tehrani, Mehdi
2014-09-01
Although recently Minimal Invasive Robotic Surgery (MIRS) has been more addressed because of its wide range of benefits, however there are still some limitations in this regard. In order to address the shortcomings of MIRS systems, various types of tactile sensors with different sensing principles have been presented in the last few years. In the present paper a MEMS-based optical sensor, which has been recently proposed by researchers, is investigated using numerical simulation. By this type of sensors real time quantification of both dynamic and statics contact forces between the tissue and surgical instrument would be possible. The presented sensor has one moving part and works based on the intensity modulation principle of optical fibers. It is electrically-passive, MRI-compatible and it is possible to be fabricated using available standard micro fabrication techniques. The behavior of the sensor has been simulated using COMSOL MULTIPHYSICS 3.5 software. Stress analysis is conducted on the sensor to assess the deflection of the moving part of the sensor due to applied force. The optical simulation is then conducted to estimate the power loss due to the moving part deflection. Using FEM modeling, the relation between force and deflection is derived which is necessary for the calibration of the sensor.
NASA Astrophysics Data System (ADS)
Bandari, Naghmeh M.; Ahmadi, Roozbeh; Hooshiar, Amir; Dargahi, Javad; Packirisamy, Muthukumaran
2017-07-01
To compensate for the lack of touch during minimally invasive and robotic surgeries, tactile sensors are integrated with surgical instruments. Surgical tools with tactile sensors have been used mainly for distinguishing among different tissues and detecting malignant tissues or tumors. Studies have revealed that malignant tissue is most likely stiffer than normal. This would lead to the formation of a sharp discontinuity in tissue mechanical properties. A hybrid piezoresistive-optical-fiber sensor is proposed. This sensor is investigated for its capabilities in tissue distinction and detection of a sharp discontinuity. The dynamic interaction of the sensor and tissue is studied using finite element method. The tissue is modeled as a two-term Mooney-Rivlin hyperelastic material. For experimental verification, the sensor was microfabricated and tested under the same conditions as of the simulations. The simulation and experimental results are in a fair agreement. The sensor exhibits an acceptable linearity, repeatability, and sensitivity in characterizing the stiffness of different tissue phantoms. Also, it is capable of locating the position of a sharp discontinuity in the tissue. Due to the simplicity of its sensing principle, the proposed hybrid sensor could also be used for industrial applications.
Feasibility study of patient motion monitoring by using tactile array sensors
NASA Astrophysics Data System (ADS)
Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Cho, Min-Seok; Kim, Kyeong-Hyeon; Suh, Tae-Suk; Kim, Siyong
2015-07-01
An ideal alignment method based on the external anatomical surface of the patient should consider the entire region of interest. However, optical-camera-based systems cannot blindly monitor such areas as the patient's back, for example. Furthermore, collecting enough information to correct the associated deformation error is impossible. The study aim is to propose a new patient alignment method using tactile array sensors that can measure the distributed pressure profiles along the contact surface. The TactArray system includes one sensor, a signal-conditioning device (USB drive/interface electronics, power supply, and cables), and a PC. The tactile array sensor was placed between the patient's back and the treatment couch, and the deformations at different location on the patient's back were evaluated. Three healthy male volunteers were enrolled in this study, and pressure profile distributions (PPDs) were obtained with and without immobilization. After the initial pretreatment setup using the laser alignment system, the PPD of the patient's back was acquired. The results were obtained at four different times and included a reference PPD dataset. The contact area and the center-of-pressure value were also acquired based on the PPD data for a more elaborate quantitative data analysis. To evaluate the clinical feasibility of using the proposed alignment method for reducing the deformation error, we implemented a real-time self-correction procedure. Despite the initial alignment, we confirmed that PPD variations existed in both cases of the volunteer studies (with and without the use of the immobilization tool). Additionally, we confirmed that the contact area and the center of pressure varied in both cases, and those variations were observed in all three volunteers. With the proposed alignment method and the real-time selfcorrection procedure, the deformation error was significantly reduced. The proposed alignment method can be used to account for the limitation of the camera-based system and to improve the accuracy of the external surface-based patient setup.
A Large Area Tactile Sensor Patch Based on Commercial Force Sensors
Vidal-Verdú, Fernando; Barquero, Maria Jose; Castellanos-Ramos, Julián; Navas-González, Rafael; Sánchez, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso
2011-01-01
This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus. PMID:22163910
Health Monitoring System for Car Seat
NASA Technical Reports Server (NTRS)
Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)
2004-01-01
A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.
NASA Technical Reports Server (NTRS)
Diftler, Myron
2010-01-01
This slide presentation reviews the development and uses of the second robot designed to work in space. The presentation reviews the motivation for developing Robonaut, the cooperative commercial relationship with General Motors, the evolution design of Robonaut Robonaut 2 improvements over the first robonaut (R1), Robonaut 2's hand dexterity, finger impedance control, tactile system, finger haptics, arm control, strength, neck movement and head sensors, human interaction, and the controller. Also the plans for use on board the International Space Station are reviewed. The patent for the Phalange Tactile Load Cell is included.
NASA Astrophysics Data System (ADS)
D'Agnano, F.; Balletti, C.; Guerra, F.; Vernier, P.
2015-02-01
Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: a high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital Architecture of the University of Venice (IUAV) in 2012. Now Tooteko is now a start up company based in Venice, Italy.
Using a high spatial resolution tactile sensor for intention detection.
Castellini, Claudio; Koiva, Risto
2013-06-01
Intention detection is the interpretation of biological signals with the aim of automatically, reliably and naturally understanding what a human subject desires to do. Although intention detection is not restricted to disabled people, such methods can be crucial in improving a patient's life, e.g., aiding control of a robotic wheelchair or of a self-powered prosthesis. Traditionally, intention detection is done using, e.g., gaze tracking, surface electromyography and electroencephalography. In this paper we present exciting initial results of an experiment aimed at intention detection using a high-spatial-resolution, high-dynamic-range tactile sensor. The tactile image of the ventral side of the forearm of 9 able-bodied participants was recorded during a variable-force task stimulated at the fingertip. Both the forces at the fingertip and at the forearm were synchronously recorded. We show that a standard dimensionality reduction technique (Principal Component Analysis) plus a Support Vector Machine attain almost perfect detection accuracy of the direction and the intensity of the intended force. This paves the way for high spatial resolution tactile sensors to be used as a means for intention detection.
Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin
Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H.; Dahiya, Ravinder
2017-01-01
This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals. PMID:28979183
Design and analysis of tactile optical sensor for endovascular surgery
NASA Astrophysics Data System (ADS)
Qasaimeh, M. A.; Dargahi, J.; Kahrizi, M.; Packirisamy, M.
2007-06-01
In this paper, design and Finite Element analysis of a new tactile optical sensor for the measurement of contact-pressure and tissue compliance in endovascular surgeries are presented. Using Micro-Electro-Mechanical-Systems (MEMS) technology, this sensor can be fabricated and integrated with the medical tools for endovascular surgeries such as Catheter tool. The designed sensor is capable of detecting the magnitude of the applied forces, the pressure distribution on contact objects, and also estimating the compliance of the contact tissue. The designed sensor is made of three layers, the upper layer is fabricated from monocrystalline silicon to form silicon membranes, the middle layer which is the supporting element is fabricated from both silicon and silicone rubber as a soft material and the lower layer is a supporting Plexiglas substrate to connect the designed sensor to the optical fibers. Simulation results show that for the given contact forces, the magnitude and the distribution of contacting tissues pressure along with tissue compliance can be determined. This sensor as proposed is a good candidate for batch micromachining, which is yet another commercial advantage for this design. Because of its less expensive cost, the surgeon can use it as a disposal part of the endovascular tools, requiring no re-sterilization and reducing the cost of surgery.
Remotely deployable aerial inspection using tactile sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, C. N.; Cao, J.; Pierce, S. G.
For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment,more » resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.« less
Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M
2016-01-01
Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.
Multimodal Bio-Inspired Tactile Sensing Module for Surface Characterization †
Alves de Oliveira, Thiago Eustaquio; Cretu, Ana-Maria; Petriu, Emil M.
2017-01-01
Robots are expected to recognize the properties of objects in order to handle them safely and efficiently in a variety of applications, such as health and elder care, manufacturing, or high-risk environments. This paper explores the issue of surface characterization by monitoring the signals acquired by a novel bio-inspired tactile probe in contact with ridged surfaces. The tactile module comprises a nine Degree of Freedom Microelectromechanical Magnetic, Angular Rate, and Gravity system (9-DOF MEMS MARG) and a deep MEMS pressure sensor embedded in a compliant structure that mimics the function and the organization of mechanoreceptors in human skin as well as the hardness of the human skin. When the modules tip slides over a surface, the MARG unit vibrates and the deep pressure sensor captures the overall normal force exerted. The module is evaluated in two experiments. The first experiment compares the frequency content of the data collected in two setups: one when the module is mounted over a linear motion carriage that slides four grating patterns at constant velocities; the second when the module is carried by a robotic finger in contact with the same grating patterns while performing a sliding motion, similar to the exploratory motion employed by humans to detect object roughness. As expected, in the linear setup, the magnitude spectrum of the sensors’ output shows that the module can detect the applied stimuli with frequencies ranging from 3.66 Hz to 11.54 Hz with an overall maximum error of ±0.1 Hz. The second experiment shows how localized features extracted from the data collected by the robotic finger setup over seven synthetic shapes can be used to classify them. The classification method consists on applying multiscale principal components analysis prior to the classification with a multilayer neural network. Achieved accuracies from 85.1% to 98.9% for the various sensor types demonstrate the usefulness of traditional MEMS as tactile sensors embedded into flexible substrates. PMID:28545245
NASA Technical Reports Server (NTRS)
Penskiy, Ivan (Inventor); Charalambides, Alexandros (Inventor); Bergbreiter, Sarah (Inventor)
2018-01-01
At least one tactile sensor includes an insulating layer and a conductive layer formed on the surface of the insulating layer. The conductive layer defines at least one group of flexible projections extending orthogonally from the surface of the insulating layer. The flexible projections include a major projection extending a distance orthogonally from the surface and at least one minor projection that is adjacent to and separate from the major projection wherein the major projection extends a distance orthogonally that is greater than the distance that the minor projection extends orthogonally. Upon a compressive force normal to, or a shear force parallel to, the surface, the major projection and the minor projection flex such that an electrical contact resistance is formed between the major projection and the minor projection. A capacitive tactile sensor is also disclosed that responds to the normal and shear forces.
Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Zhu, Guang
A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductivemore » layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.« less
Friction properties of biological functional materials: PVDF membranes.
Chen, Long; Di, Changan; Chen, Xuguang; Li, Zhengzhi; Luo, Jia
2017-01-02
Touch is produced by sensations that include approaching, sliding, pressing, and temperature. This concept has become a target of research in biotechnology, especially in the field of bionic biology. This study measured sliding and pressing with traditional tactile sensors in order to improve a machine operator's judgment of surface roughness. Based on the theory of acoustic emission, this study combined polyvinylidene fluoride (PVDF) with a sonic transducer to produce tactile sensors that can detect surface roughness. Friction between PVDF films and experimental materials generated tiny acoustic signals that were transferred into electrical signals through a sonic transducer. The characteristics of the acoustic signals for the various materials were then analyzed. The results suggest that this device can effectively distinguish among different objects based on roughness. Tactile sensors designed using this principle and structure function very similarly to the human body in recognizing the surface of an object.
Tactile sensor of hardness recognition based on magnetic anomaly detection
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.
A new method for registration of heterogeneous sensors in a dimensional measurement system
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie
2017-10-01
Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.
Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen
2017-12-01
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible Skins Containing Integrated Sensors and Circuitry
NASA Technical Reports Server (NTRS)
Liu, Chang
2007-01-01
Artificial sensor skins modeled partly in imitation of biological sensor skins are undergoing development. These sensor skins comprise flexible polymer substrates that contain and/or support dense one- and two-dimensional arrays of microscopic sensors and associated microelectronic circuits. They afford multiple tactile sensing modalities for measuring physical phenomena that can include contact forces; hardnesses, temperatures, and thermal conductivities of objects with which they are in contact; and pressures, shear stresses, and flow velocities in fluids. The sensor skins are mechanically robust, and, because of their flexibility, they can be readily attached to curved and possibly moving and flexing surfaces of robots, wind-tunnel models, and other objects that one might seek to equip for tactile sensing. Because of the diversity of actual and potential sensor-skin design criteria and designs and the complexity of the fabrication processes needed to realize the designs, it is not possible to describe the sensor-skin concept in detail within this article.
A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing
Ache, Jan M.; Dürr, Volker
2015-01-01
Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs ‘coding-space’ because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway. PMID:26158851
Design of Tactile Sensor Using Dynamic Wafer Technology Based on VLSI Technique
2001-10-25
Charles Noback, Rober Carola," Human Anatomy and Physiology" third edition, 1995. [5] M.H. Raibert and John E. Tanner, "Design and Implementation of VLSI Tactile Sensing Computer" Robotics Research vol 1, 1983.
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
Vibro-Perception of Optical Bio-Inspired Fiber-Skin.
Li, Tao; Zhang, Sheng; Lu, Guo-Wei; Sunami, Yuta
2018-05-12
In this research, based on the principle of optical interferometry, the Mach-Zehnder and Optical Phase-locked Loop (OPLL) vibro-perception systems of bio-inspired fiber-skin are designed to mimic the tactile perception of human skin. The fiber-skin is made of the optical fiber embedded in the silicone elastomer. The optical fiber is an instinctive and alternative sensor for tactile perception with high sensitivity and reliability, also low cost and susceptibility to the magnetic interference. The silicone elastomer serves as a substrate with high flexibility and biocompatibility, and the optical fiber core serves as the vibro-perception sensor to detect physical motions like tapping and sliding. According to the experimental results, the designed optical fiber-skin demonstrates the ability to detect the physical motions like tapping and sliding in both the Mach-Zehnder and OPLL vibro-perception systems. For direct contact condition, the OPLL vibro-perception system shows better performance compared with the Mach-Zehnder vibro-perception system. However, the Mach-Zehnder vibro-perception system is preferable to the OPLL system in the indirect contact experiment. In summary, the fiber-skin is validated to have light touch character and excellent repeatability, which is highly-suitable for skin-mimic sensing.
NASA Astrophysics Data System (ADS)
Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.
2016-09-01
A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm-1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ˜11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In particular, the stable mechanical bending of the sensor up to 90° opens up unique application opportunities.
Sensory substitution for space gloves and for space robots
NASA Technical Reports Server (NTRS)
Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.
1987-01-01
Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.
Yang, Ya; Zhang, Hulin; Lin, Zong-Hong; Zhou, Yu Sheng; Jing, Qingshen; Su, Yuanjie; Yang, Jin; Chen, Jun; Hu, Chenguo; Wang, Zhong Lin
2013-10-22
We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode that was grounded across a loading resistor. The fabricated TENG delivers an open-circuit voltage up to -1000 V, a short-circuit current density of 8 mA/m(2), and a power density of 500 mW/m(2) on a load of 100 MΩ, which can be used to directly drive tens of green light-emitting diodes. The working mechanism of the TENG is based on the charge transfer between the ITO electrode and ground via modulating the separation distance between the tribo-charged skin patch and PDMS film. Furthermore, the TENG has been used in designing an independently addressed matrix for tracking the location and pressure of human touch. The fabricated matrix has demonstrated its self-powered and high-resolution tactile sensing capabilities by recording the output voltage signals as a mapping figure, where the detection sensitivity of the pressure is about 0.29 ± 0.02 V/kPa and each pixel can have a size of 3 mm × 3 mm. The TENGs may have potential applications in human-machine interfacing, micro/nano-electromechanical systems, and touch pad technology.
Bioinspired active whisker sensor for robotic vibrissal tactile sensing
NASA Astrophysics Data System (ADS)
Ju, Feng; Ling, Shih-Fu
2014-12-01
A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.
Object discrimination using electrotactile feedback.
Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J
2018-04-09
A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5% ± 8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2% ± 10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.
A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction
Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao
2016-01-01
This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan
2015-01-01
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan
2015-08-24
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.
Integrated dynamic and static tactile sensor: focus on static force sensing
NASA Astrophysics Data System (ADS)
Wettels, Nicholas; Pletner, Baruch
2012-04-01
Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.
Integration of Haptics in Agricultural Robotics
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.
2017-08-01
Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping
2016-04-01
To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.
Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi
2012-07-01
Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.
Implementation of Networking-by-Touch to Small Unit, Network-Enabled Operations
2010-09-01
Monitoring – Telemanipulation ............... 54 5. Entertainment and Educational Applications...................... 55 6. Tactile Displays Embedded...military situational awareness systems, text and graphics applications, medical applications, entertainment and educational applications...25] ) Electromechanical transducer Electromagnetic field sensors Computer driver 21 Now, consider another simple scenario: John loves music
Tactile recognition and localization using object models: the case of polyhedra on a plane.
Gaston, P C; Lozano-Perez, T
1984-03-01
This paper discusses how data from multiple tactile sensors may be used to identify and locate one object, from among a set of known objects. We use only local information from sensors: 1) the position of contact points and 2) ranges of surface normals at the contact points. The recognition and localization process is structured as the development and pruning of a tree of consistent hypotheses about pairings between contact points and object surfaces. In this paper, we deal with polyhedral objects constrained to lie on a known plane, i.e., having three degrees of positioning freedom relative to the sensors. We illustrate the performance of the algorithm by simulation.
Nanomeasuring and nanopositioning engineering
NASA Astrophysics Data System (ADS)
Jäger, G.; Hausotte, T.; Manske, E.; Büchner, H.-J.; Mastylo, R.; Dorozhovets, N.; Hofmann, N.
2006-11-01
The paper describes traceable nanometrology based on a nanopositioning machine with integrated nanoprobes. The operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine) having a resolution of 0,1 nm over the positioning and measuring range of 25 mm x 25 mm x 5 mm is explained. An Abbe offset-free design of three miniature plan mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide very small uncertainties of measurement. The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau and manufactured by the SIOS Messtechnik GmbH Ilmenau. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB), Germany. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.
Lee, Wang Wei; Kukreja, Sunil L.; Thakor, Nitish V.
2017-01-01
This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications. PMID:28197065
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi
2017-08-01
Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.
Nanomaterial-Enabled Wearable Sensors for Healthcare.
Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong
2018-01-01
Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pre-shaping of the Fingertip of Robot Hand Covered with Net Structure Proximity Sensor
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Suzuki, Yosuke; Hasegawa, Hiroaki; Ming, Aiguo; Ishikawa, Masatoshi; Shimojo, Makoto
To achieve skillful tasks with multi-fingered robot hands, many researchers have been working on sensor-based control of them. Vision sensors and tactile sensors are indispensable for the tasks, however, the correctness of the information from the vision sensors decreases as a robot hand approaches to a grasping object because of occlusion. This research aims to achieve seamless detection for reliable grasp by use of proximity sensors: correcting the positional error of the hand in vision-based approach, and contacting the fingertip in the posture for effective tactile sensing. In this paper, we propose a method for adjusting the posture of the fingertip to the surface of the object. The method applies “Net-Structure Proximity Sensor” on the fingertip, which can detect the postural error in the roll and pitch axes between the fingertip and the object surface. The experimental result shows that the postural error is corrected in the both axes even if the object dynamically rotates.
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-03-31
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.
NASA Astrophysics Data System (ADS)
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-03-01
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-01-01
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867
A two-ply polymer-based flexible tactile sensor sheet using electric capacitance.
Guo, Shijie; Shiraoka, Takahisa; Inada, Seisho; Mukai, Toshiharu
2014-01-29
Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N) ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.
Development of a dual-axis hybrid-type tactile sensor using PET film
NASA Astrophysics Data System (ADS)
Seonggi, Kim; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2013-04-01
In previous work, a dual-axis hybrid-type tactile sensor using PDMS (Polydimethylsiloxane) with a pair of metal electrodes, (which were deposited directly on the PDMS surface), was proposed. The hybrid sensor can measure the normal force and the shear force from the measurement of the change of capacitance and resistance values from the one pair of electrodes. However, the metal is hard to be deposited on the surface of the PDMS because the PDMS is hydrophobic. The hydrophobic surface can be changed to hydrophilic using O2 Plasma treatment or UV treatment. When O2 plasma treatment or UV treatment is used, there is the problem that the processing of the metal deposition and the wiring completed in a very short period of limited time. Also, the deposited metal on the surface of the PDMS is easy to break because the deposited metal is exposed in the air. In this paper, we propose a dual-axis hybrid-type tactile sensor where the PET (polyethylene terephthalate) film is inserted between the PDMS films. The deposited metal is not removed easily from the PET film because the adhesion is strong. Also, the PDMS surrounding the PET film plays the roles of dielectric elastomer and shielding the deposited metal from the external environment at same time. Experimental results verify the effectiveness of the fabricated dual-axis hybrid-type force sensor.
Magneto-inductive skin sensor for robot collision avoidance: A new development
NASA Technical Reports Server (NTRS)
Chauhan, D. S.; Dehoff, Paul H.
1989-01-01
Safety is a primary concern for robots operating in space. The tri-mode sensor addresses that concern by employing a collision avoidance/management skin around the robot arms. This rf-based skin sensor is at present a dual mode (proximity and tactile). The third mode, pyroelectric, will complement the other two. The proximity mode permits the robot to sense an intruding object, to range the object, and to detect the edges of the object. The tactile mode permits the robot to sense when it has contacted an object, where on the arm it has made contact, and provides a three-dimensional image of the shape of the contact impression. The pyroelectric mode will be added to permit the robot arm to detect the proximity of a hot object and to add sensing redundancy to the two other modes. The rf-modes of the sensing skin are presented. These modes employ a highly efficient magnetic material (amorphous metal) in a sensing technique. This results in a flexible sensor array which uses a primarily inductive configuration to permit both capacitive and magnetoinductive sensing of object; thus optimizing performance in both proximity and tactile modes with the same sensing skin. The fundamental operating principles, design particulars, and theoretical models are provided to aid in the description and understanding of this sensor. Test results are also given.
Neuromorphic circuits impart a sense of touch
NASA Astrophysics Data System (ADS)
Bartolozzi, Chiara
2018-06-01
The sense of touch is the ability to perceive consistency, texture, and shape of objects that we manipulate, and the forces we exchange with them. Touch is a source of information that we effortlessly decode to smoothly and naturally grasp and manipulate objects, maintain our posture while walking, or avoid stumbling into obstacles, allowing us to plan, adapt, and correct actions in an ever-changing external world. As such, artificial devices, such as robots or prostheses, that aim to accomplish similar tasks must possess artificial tactile-sensing systems. On page 998 of this issue, Kim et al. (1) report on a “neuromorphic” tactile sensory system based on organic, flexible, electronic circuits that can measure the force applied on the sensing regions. The encoding of the signal is similar to that used by human nerves that are sensitive to tactile stimuli (mechanoreceptors), so the device outputs can substitute for them and communicate with other nerves (e.g., residual nerve fibers of amputees or motor neurons). The proposed system exploits organic electronics that allow for three-dimensional printing of flexible structures that conform to large curved surfaces, as required for placing sensors on robots (2) and prostheses.
Sampson, David D.; Kennedy, Brendan F.
2017-01-01
High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098
A flexible slip sensor using triboelectric nanogenerator approach
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min
2018-03-01
With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.
Development of microsized slip sensors using dielectric elastomer for incipient slippage
NASA Astrophysics Data System (ADS)
Hwang, Do-Yeon; Kim, Baek-chul; Cho, Han-Jeong; Li, Zhengyuan; Lee, Youngkwan; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2014-04-01
A humanoid robot hand has received significant attention in various fields of study. In terms of dexterous robot hand, slip detecting tactile sensor is essential to grasping objects safely. Moreover, slip sensor is useful in robotics and prosthetics to improve precise control during manipulation tasks. In this paper, sensor based-human biomimetic structure is fabricated. We reported a resistance tactile sensor that enables to detect a slip on the surface of sensor structure. The resistance slip sensor that the novel developed uses acrylonitrile-butadiene rubber (NBR) as a dielectric substrate and carbon particle as an electrode material. The presented sensor device in this paper has fingerprint-like structures that are similar with the role of the human's finger print. It is possible to measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip was successfully detected. In this paper, we will discuss the slip detection properties so four sensor and detection principle.
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-01
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-08
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.
Stretchable silicon nanoribbon electronics for skin prosthesis.
Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Ghaffari, Roozbeh; Cho, Hye Rim; Son, Donghee; Jung, Yei Hwan; Soh, Min; Choi, Changsoon; Jung, Sungmook; Chu, Kon; Jeon, Daejong; Lee, Soon-Tae; Kim, Ji Hoon; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-12-09
Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Description of the equipment employed and results obtained in experiments with tactile feedback and different levels of automatic control. In the experiments described tactile feedback was investigated by incorporating a touch sensing and touch display system into a teleoperator, while the levels of automatic control were investigated by incorporating supervisory control features in the teleoperator control system. In particular, a hand contact system which senses and reproduces to the operator the contact between the end-effector and the object being touched or manipulated is described, as well as a jaw contact system which senses and reproduces to the operator the shape and location of the object held in the remote jaws, and an arm control system consisting of a control station where the operator controls the motion of the arm by transmitting commands, a remote station that accepts the commands and uses them, and a communications link that limits information flow. In addition, an algorithmic language for remote manipulation is described, and the desired features that an automatic arm controller should possess are reviewed.
Active skin as new haptic interface
NASA Astrophysics Data System (ADS)
Vuong, Nguyen Huu Lam; Kwon, Hyeok Yong; Chuc, Nguyen Huu; Kim, Duksang; An, Kuangjun; Phuc, Vuong Hong; Moon, Hyungpil; Koo, Jachoon; Lee, Youngkwan; Nam, Jae-Do; Choi, Hyouk Ryeol
2010-04-01
In this paper, we present a new haptic interface, called "active skin", which is configured with a tactile sensor and a tactile stimulator in single haptic cell, and multiple haptic cells are embedded in a dielectric elastomer. The active skin generates a wide variety of haptic feel in response to the touch by synchronizing the sensor and the stimulator. In this paper, the design of the haptic cell is derived via iterative analysis and design procedures. A fabrication method dedicated to the proposed device is investigated and a controller to drive multiple haptic cells is developed. In addition, several experiments are performed to evaluate the performance of the active skin.
Initial Work Toward a Robotically Assisted EVA Glove
NASA Technical Reports Server (NTRS)
Rogers, J.; Peters, B.; McBryan, E.; Laske, E.
2016-01-01
The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.
Vision Guided Intelligent Robot Design And Experiments
NASA Astrophysics Data System (ADS)
Slutzky, G. D.; Hall, E. L.
1988-02-01
The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.
Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok
2017-01-01
This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363
A magneto-sensitive skin for robots in space
NASA Technical Reports Server (NTRS)
Chauhan, D. S.; Dehoff, P. H.
1991-01-01
The development of a robot arm proximity sensing skin that can sense intruding objects is described. The purpose of the sensor would be to prevent the robot from colliding with objects in space including human beings. Eventually a tri-mode system in envisioned including proximity, tactile, and thermal. To date the primary emphasis was on the proximity sensor which evolved from one based on magneto-inductive principles to the current design which is based on a capacitive-reflector system. The capacitive sensing element, backed by a reflector driven at the same voltage and in phase with the sensor, is used to reflect field lines away from the grounded robot toward the intruding object. This results in an increased sensing range of up to 12 in. with the reflector on compared with only 1 in. with it off. It is believed that this design advances the state-of-the-art in capacitive sensor performance.
Chou, Ting-Shuo; Bucci, Liam D.; Krichmar, Jeffrey L.
2015-01-01
Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface) and unconditioned stimuli (US; a preferred touch pattern) by applying a spiking neural network (SNN) with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR's tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP) to our simulated prefrontal cortex, striatum, and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, insular cortex activities in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR's preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal's behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch. PMID:26257639
Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology
NASA Astrophysics Data System (ADS)
Loh, Kenneth J.; Azhari, Faezeh
2012-07-01
The highly optimized performance of nature's creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.
Fabrication of strain gauge based sensors for tactile skins
NASA Astrophysics Data System (ADS)
Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.
2017-05-01
Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.
Control of Prosthetic Hands via the Peripheral Nervous System
Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana
2016-01-01
This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041
Long-range nanopositioning and nanomeasuring machine for application to micro- and nanotechnology
NASA Astrophysics Data System (ADS)
Jäger, Gerd; Hausotte, Tino; Büchner, Hans-Joachim; Manske, Eberhard; Schmidt, Ingomar; Mastylo, Rostyslav
2006-03-01
The paper describes the operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine). The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universität Ilmenau. The machine was successfully tested and continually improved in the last few years. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). Three plane mirror miniature interferometers are installed into the NPM-machine having a resolution of less than 0,1 nm over the entire positioning and measuring range of 25 mm x 25 mm x 5 mm. An Abbe offset-free design of the three miniature plane mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide extraordinary accuracy with an expanded uncertainty of only 5 - 10 nm. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.
Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985
NASA Technical Reports Server (NTRS)
Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)
1986-01-01
The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.
Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics
Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco
2017-01-01
The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040
Development of a conformable electronic skin based on silver nanowires and PDMS
NASA Astrophysics Data System (ADS)
Wang, Haopeng
2017-06-01
This paper presented the designed and tested a flexible and stretchable pressure sensor array that could be used to cover 3D surface to measure contact pressure. The sensor array is laminated into a thin film with 1 mm in thickness and can easily be stretched without losing its functionality. The fabricated sensor array contained 8×8 sensing elements, each could measure the pressure up to 180 kPa. An improved sandwich structure is used to build the sensor array. The upper and lower layers were PDMS thin films embedded with conductor strips formed by PDMS-based silver nanowires (AgNWs) networks covered with nano-scale thin metal film. The middle layer was formed a porous PDMS film inserted with circular conductive rubber. The sensor array could detect the contact pressure within 30% stretching rate. In this paper, the performance of the pressure sensor array was systematically studied. With the corresponding scanning power-supply circuit and data acquisition system, it is demonstrated that the system can successfully capture the tactile images induced by objects of different shapes. Such sensor system could be applied on complex surfaces in robots or medical devices for contact pressure detection and feedback.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
Tsai, Tsung-Heng; Tsai, Hao-Cheng; Wu, Tien-Keng
2014-10-01
This paper presents a capacitive tactile sensor fabricated in a standard CMOS process. Both of the sensor and readout circuits are integrated on a single chip by a TSMC 0.35 μm CMOS MEMS technology. In order to improve the sensitivity, a T-shaped protrusion is proposed and implemented. This sensor comprises the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few post-processing steps. By a nano-indenter, the measured spring constant of the T-shaped structure is 2.19 kNewton/m. Fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction are utilized to compensate process variations and improve the accuracy of the readout circuits. The measured displacement-to-voltage transductance is 7.15 mV/nm, and the sensitivity is 3.26 mV/μNewton. The overall power dissipation is 132.8 μW.
Delhaye, Benoit P; Schluter, Erik W; Bensmaia, Sliman J
2016-01-01
Efforts are underway to restore sensorimotor function in amputees and tetraplegic patients using anthropomorphic robotic hands. For this approach to be clinically viable, sensory signals from the hand must be relayed back to the patient. To convey tactile feedback necessary for object manipulation, behaviorally relevant information must be extracted in real time from the output of sensors on the prosthesis. In the present study, we recorded the sensor output from a state-of-the-art bionic finger during the presentation of different tactile stimuli, including punctate indentations and scanned textures. Furthermore, the parameters of stimulus delivery (location, speed, direction, indentation depth, and surface texture) were systematically varied. We developed simple decoders to extract behaviorally relevant variables from the sensor output and assessed the degree to which these algorithms could reliably extract these different types of sensory information across different conditions of stimulus delivery. We then compared the performance of the decoders to that of humans in analogous psychophysical experiments. We show that straightforward decoders can extract behaviorally relevant features accurately from the sensor output and most of them outperform humans.
Ponce Wong, Ruben D; Hellman, Randall B; Santos, Veronica J
2014-01-01
Upper-limb amputees rely primarily on visual feedback when using their prostheses to interact with others or objects in their environment. A constant reliance upon visual feedback can be mentally exhausting and does not suffice for many activities when line-of-sight is unavailable. Upper-limb amputees could greatly benefit from the ability to perceive edges, one of the most salient features of 3D shape, through touch alone. We present an approach for estimating edge orientation with respect to an artificial fingertip through haptic exploration using a multimodal tactile sensor on a robot hand. Key parameters from the tactile signals for each of four exploratory procedures were used as inputs to a support vector regression model. Edge orientation angles ranging from -90 to 90 degrees were estimated with an 85-input model having an R (2) of 0.99 and RMS error of 5.08 degrees. Electrode impedance signals provided the most useful inputs by encoding spatially asymmetric skin deformation across the entire fingertip. Interestingly, sensor regions that were not in direct contact with the stimulus provided particularly useful information. Methods described here could pave the way for semi-autonomous capabilities in prosthetic or robotic hands during haptic exploration, especially when visual feedback is unavailable.
Azkar Ul Hasan, Syed; Jung, Youngdo; Kim, Seonggi; Jung, Cho-Long; Oh, Sunjong; Kim, Junhee; Lim, Hyuneui
2016-01-12
High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar⁺ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar⁺ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar⁺ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.
Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development
NASA Astrophysics Data System (ADS)
Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin
2017-09-01
Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.
3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.
Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji
2017-10-25
This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.
NASA Astrophysics Data System (ADS)
Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won
2017-03-01
Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.
3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †
Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji
2017-01-01
This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-01-01
In this work, deionized (DI) water dissociation was used to treat and change the contact angle of the surface of stainless steel substrates followed by the spin coating of P(VDF-TrFE) material for the fabrication of tactile sensors. The contact angle of the stainless steel surface decreased 14° at −30 V treatment; thus, the adhesion strength between the P(VDF-TrFE) thin film and the stainless steel substrate increased by 90%. Although the adhesion strength was increased at negative voltage treatment, it is observed that the crystallinity value of the P(VDF-TrFE) thin film declined to 37% at −60 V. In addition, the remanent polarization value of the P(VDF-TrFE) thin film declined from 5.6 μC/cm2 to 4.61 μC/cm2 for treatment voltages between −5 V and −60 V. A maximum value of approximately 1000 KV/cm of the coercive field value was obtained with the treatment at −15 V. The d33 value was approximately −10.7 pC/N for the substrate treated at 0 V and reached a minimum of −5 pC/N for treatment at −60 V. By using the P(VDF-TrFE) thin-film as the sensing material for tactile sensors, human pulse measurements were obtained from areas including the carotid, brachial, ankle, radial artery, and apical regions. In addition, the tactile sensor is suitable for monitoring the Cun, Guan, and Chi acupoints located at the radial artery region in Traditional Chinese Medicine (TCM). Waveform measurements of the Cun, Guan, and Chi acupoints are crucial because, in TCM, the various waveforms provided information regarding the health conditions of organs. PMID:24177729
Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
Zhao, Xuezeng
2017-01-01
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
Ballardini, Giulia; Carlini, Giorgio; Giannoni, Psiche; Scheidt, Robert A; Nisky, Ilana; Casadio, Maura
2018-01-01
Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR -a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits.
Hair sensor using a photoelectronic principle for sensing airflow and its direction
NASA Astrophysics Data System (ADS)
Huang, Kuang-Yuh; Huang, Chien-Tai
2011-01-01
Many organisms have diverse hair cells to instantaneously perceive the change of surroundings so that they can keep away from threats. These organs can precisely detect the tiny variations of airflow, water flow, sound, or pressure, and also resolve their affecting directions. Through this brilliant inspiration by the insects' cilia, we decided to design and develop a hair sensor for detecting two-dimensional airflow and pressure waves by using photoelectronic principles. The hair sensor inherently consists of an artificial cilium supported by an elastic membrane. A light-emitting diode and a quadrant photodiode are used as the photoelectronic sensor. The airflow or pressure wave directly stimulates the cilium to sway, and this motion contributes to let the projected light beam shift over the quadrant photodiode, whose four photodiodes produce then corresponding output signals. Because of dynamic and high-sensitive properties of the photoelectronic sensor, the hair sensor we developed possesses a high measurement resolution to be able to detect very tiny stimulation and its affecting direction. According to its multifaceted characteristics and simple structure, the hair sensor can be applied in numerous potential application fields, such as intrusion alarm system, noise detection system, as well as a tactile sensor.
Driving Interface Based on Tactile Sensors for Electric Wheelchairs or Trolleys
Trujillo-León, Andrés; Vidal-Verdú, Fernando
2014-01-01
This paper introduces a novel device based on a tactile interface to replace the attendant joystick in electric wheelchairs. It can also be used in other vehicles such as shopping trolleys. Its use allows intuitive driving that requires little or no training, so its usability is high. This is achieved by a tactile sensor located on the handlebar of the chair or trolley and the processing of the information provided by it. When the user interacts with the handle of the chair or trolley, he or she exerts a pressure pattern that depends on the intention to accelerate, brake or turn to the left or right. The electronics within the device then perform the signal conditioning and processing of the information received, identifying the intention of the user on the basis of this pattern using an algorithm, and translating it into control signals for the control module of the wheelchair. These signals are equivalent to those provided by a joystick. This proposal aims to help disabled people and their attendees and prolong the personal autonomy in a context of aging populations. PMID:24518892
Nature as a model for biomimetic sensors
NASA Astrophysics Data System (ADS)
Bleckmann, H.
2012-04-01
Mammals, like humans, rely mainly on acoustic, visual and olfactory information. In addition, most also use tactile and thermal cues for object identification and spatial orientation. Most non-mammalian animals also possess a visual, acoustic and olfactory system. However, besides these systems they have developed a large variety of highly specialized sensors. For instance, pyrophilous insects use infrared organs for the detection of forest fires while boas, pythons and pit vipers sense the infrared radiation emitted by prey animals. All cartilaginous and bony fishes as well as some amphibians have a mechnaosensory lateral line. It is used for the detection of weak water motions and pressure gradients. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared, mechano- and electrosensory information. It will be shown that the study of these seemingly exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
NASA Astrophysics Data System (ADS)
Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok
2018-06-01
This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.
Touch Sensor Responds to Contact Pressure
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1982-01-01
Optical tactile sensor for mechanical hands senses contact pressure via change in light reflected from an elastic covering. Pressure against a cell cover causes distortion, which changes internal reflection of light. Change is sensed by detector, and output signal informs operator of contact. The greater the pressure and distortion, the greater the change in light reflection.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
NASA Astrophysics Data System (ADS)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-01
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
Tri-axial tactile sensing element
NASA Astrophysics Data System (ADS)
Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.
2013-05-01
A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.
Goethals, Pauwel; Chaobal, Harshu; Reynaerts, Dominiek; Schaner, David
2014-04-01
We present a new device for verifying endotracheal tube (ETT) position that uses specialized sensors intended to distinguish anatomical features of the trachea and esophagus. This device has the potential to increase the safety of resuscitation, surgery, and mechanical ventilation and decrease the morbidity, mortality, and health care costs associated with esophageal intubation and unintended extubation by potentially improving the process and maintenance of endotracheal intubation. The device consists of a tactile sensor connected to the airway occlusion cuff of an ETT. It is intended to detect the presence or absence of tracheal rings immediately upon inflation of the airway occlusion cuff. The initial study detailed here verifies that a prototype device can detect contours similar to tracheal rings in a tracheal model.
Spider-web inspired multi-resolution graphene tactile sensor.
Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin
2018-05-08
Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
High Sensitivity Stress Sensor Based on Hybrid Materials
NASA Technical Reports Server (NTRS)
Cao, Xian-An (Inventor)
2014-01-01
A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.
The WCSAR telerobotics test bed
NASA Technical Reports Server (NTRS)
Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.
1988-01-01
Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.
Inert gas narcosis has no influence on thermo-tactile sensation.
Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B
2012-05-01
Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.
Analysis of Human-Spacesuit Interaction
NASA Technical Reports Server (NTRS)
Thomas, Neha
2015-01-01
Astronauts sustain injuries of various natures such as finger delamination, joint pain, and redness due to their interaction with the space suit. The role of the Anthropometry and Biomechanics Facility is to understand the biomechanics, environmental variables, and ergonomics of the suit. This knowledge is then used to make suggestions for improvement in future iterations of the space suit assembly to prevent injuries while allowing astronauts maneuverability, comfort, and tactility. The projects I was involved in were the Extravehicular Mobility Unit (EMU) space suit stiffness study and the glove feasibility study. The EMU project looked at the forces exerted on the shoulder, arm, and wrist when subjects performed kinematic tasks with and without a pressurized suit. The glove study consisted of testing three conditions - the Series 4000 glove, the Phase VI glove, and the no glove condition. With more than forty channels of sensor data total, it was critical to develop programs that could analyze data with basic descriptive statistics and generate relevant graphs to help understand what happens within the space suit and glove. In my project I created a Graphical User Interface (GUI) in MATLAB that would help me visualize what each sensor was doing within a task. The GUI is capable of displaying overlain plots and can be synchronized with video. This was helpful during the stiffness testing to visualize how the forces on the arm acted while the subject performed tasks such as shoulder adduction/abduction and bicep curls. The main project of focus, however, was the glove comparison study. I wrote MATLAB programs which generated movies of the strain vectors during specific tasks. I also generated graphs that summarized the differences between each glove for the strain, shear and FSR sensors. Preliminary results indicate that the Phase VI glove places less strain and shear on the hand. Future work includes continued data analysis of surveys and sensor data. In the end, the ideal glove is one that provides more tactility for the astronauts but lessens injuries. Often times, a more tactile glove transmits forces better to the hand; thus, achieving a balance of both a tactile and safe glove is the main challenge present.
Characterization of an air jet haptic lump display.
Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M
2011-01-01
During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-06-30
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Khaled, W; Ermert, H; Bruhns, O; Boese, H; Baumann, M; Monkman, G J; Egersdoerfer, S; Meier, A; Klein, D; Freimuth, H
2003-01-01
Mechanical properties of biological tissue represent important diagnostic information and are of histological relevance (hard lesions, "nodes" in organs: tumors; calcifications in vessels: arteriosclerosis). The problem is, that such information is usually obtained by digital palpation only, which is limited with respect to sensitivity. It requires intuitive assessment and does not allow quantitative documentation. A suitable sensor is required for quantitative detection of mechanical tissue properties. On the other hand, there is also some need for a realistic mechanical display of those tissue properties. Suitable actuator arrays with high spatial resolution and real-time capabilities are required operating in a haptic sensor actuator system with different applications. The sensor system uses real time ultrasonic elastography whereas the tactile actuator is based on electrorheological fluids. Due to their small size the actuator array elements have to be manufactured by micro-mechanical production methods. In order to supply the actuator elements with individual high voltages a sophisticated switching and control concept have been designed. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching, space and telecommunication.
Stiffness mapping prostate biopsy samples using a tactile sensor.
Peng, Qiyu; Omata, Sadao; Peehl, Donna M; Constantinou, Chris E
2011-01-01
Previous studies have demonstrated that the stiffness of cancerous cells reflects their pathological stage and progression rates, with increased cancerous cell stiffness associated with increased aggressiveness. Therefore, the elasticity of the cancerous cells has the potential to be used as an indicator of the cancer's aggressiveness. However, the sensitivity and resolution of current palpation and imaging techniques are not sufficient to detect small cancerous tissues. In previous studies, we developed a tactile-based device to map with high resolution the stiffness of a tissue section. The purpose of this study is to evaluate this device using different tissues (BPH, Cancer and PZ) collected from human prostates. The preliminary results show that the tactile device is sensitive enough to tell the differences of the stiffness of different tissues. The results also disclosed the factors (humidity, temperature and tissue degradation) which could dramatically affect the results of stiffness mapping. The tactile technology described in this paper has the potential to help disclose the underlying mechanical mechanisms that lead to increased stiffness in prostate tumors.
Tactile perception of skin and skin cream by friction induced vibrations.
Ding, Shuyang; Bhushan, Bharat
2016-11-01
Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Bio-inspired grasp control in a robotic hand with massive sensorial input.
Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo
2009-02-01
The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.
Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju
2018-01-10
With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.
Characterization of large-area pressure sensitive robot skin
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Baptist, Joshua R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
Sensorized robot skin has considerable promise to enhance robots' tactile perception of surrounding environments. For physical human-robot interaction (pHRI) or autonomous manipulation, a high spatial sensor density is required, typically driven by the skin location on the robot. In our previous study, a 4x4 flexible array of strain sensors were printed and packaged onto Kapton sheets and silicone encapsulants. In this paper, we are extending the surface area of the patch to larger arrays with up to 128 tactel elements. To address scalability, sensitivity, and calibration challenges, a novel electronic module, free of the traditional signal conditioning circuitry was created. The electronic design relies on a software-based calibration scheme using high-resolution analog-to-digital converters with internal programmable gain amplifiers. In this paper, we first show the efficacy of the proposed method with a 4x4 skin array using controlled pressure tests, and then perform procedures to evaluate each sensor's characteristics such as dynamic force-to-strain property, repeatability, and signal-to-noise-ratio. In order to handle larger sensor surfaces, an automated force-controlled test cycle was carried out. Results demonstrate that our approach leads to reliable and efficient methods for extracting tactile models for use in future interaction with collaborative robots.
ERIC Educational Resources Information Center
Isaacson, Mickey
2012-01-01
The primary purpose of this study was to determine whether Blissymbolics have the potential for being developed into a tactile symbol communication system. Tactile techniques are used by many individuals with augmentative and alternative communication (AAC) needs. Tactile processing is optimized by the use of minimalistic stimuli, i.e., stimuli…
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
Soh, Harold; Demiris, Yiannis
2014-01-01
Human beings not only possess the remarkable ability to distinguish objects through tactile feedback but are further able to improve upon recognition competence through experience. In this work, we explore tactile-based object recognition with learners capable of incremental learning. Using the sparse online infinite Echo-State Gaussian process (OIESGP), we propose and compare two novel discriminative and generative tactile learners that produce probability distributions over objects during object grasping/palpation. To enable iterative improvement, our online methods incorporate training samples as they become available. We also describe incremental unsupervised learning mechanisms, based on novelty scores and extreme value theory, when teacher labels are not available. We present experimental results for both supervised and unsupervised learning tasks using the iCub humanoid, with tactile sensors on its five-fingered anthropomorphic hand, and 10 different object classes. Our classifiers perform comparably to state-of-the-art methods (C4.5 and SVM classifiers) and findings indicate that tactile signals are highly relevant for making accurate object classifications. We also show that accurate "early" classifications are possible using only 20-30 percent of the grasp sequence. For unsupervised learning, our methods generate high quality clusterings relative to the widely-used sequential k-means and self-organising map (SOM), and we present analyses into the differences between the approaches.
Zbyszewski, Dinusha; Challacombe, Benjamin; Li, Jichun; Seneviratne, Lakmal; Althoefer, Kaspar; Dasgupta, Prokar; Murphy, Declan
2010-07-01
We describe a comparative study between an enhanced air-cushion tactile sensor and a wheeled indentation probe. These laparoscopic tools are designed to rapidly locate soft-tissue abnormalities during minimally invasive surgery (MIS). The air-cushion tactile sensor consists of an optically based sensor with a 7.8 mm sphere "floating" on a cushion of air at the tip of a shaft. The wheeled indentation probe is a 10 mm wide and 5 mm in diameter wheel mounted to a force/torque sensor. A continuous rolling indentation technique is used to pass the sensors over the soft-tissue surfaces. The variations in stiffness of the viscoelastic materials that are detected during the rolling indentations are illustrated by stiffness maps that can be used for tissue diagnosis. The probes were tested by having to detect four embedded nodules in a silicone phantom. Each probe was attached to a robotic manipulator and rolled over the silicone phantom in parallel paths. The readings of each probe collected during the process of rolling indentation were used to achieve the final results. The results show that both sensors reliably detected the areas of variable stiffness by accurately identifying the location of each nodule. These are illustrated in the form of two three-dimensional spatiomechanical maps. These probes have the potential to be used in MIS because they could provide surgeons with information on the mechanical properties of soft tissue, consequently enhancing the reduction in haptic feedback.
Summary of Tactile User Interfaces Techniques and Systems
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
2005-01-01
Mental workload can be de.ned as the ratio of demand to allocated resources. Multiple-resource theory stresses the importance of distribution of tasks and information across various human sensory channels to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display, historic and more recent systems that incorporate tactile display for information presentation, advantages and disadvantages of targeting the tactile channel, and future directions in tactile display research.
Summary of Tactile User Interfaces Techniques and Systems
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
2004-01-01
Mental workload can be defined as the ratio of demand to allocated resources. Multiple- resource theory stresses the importance of distribution of tasks and information across various sensory channels of the human to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display; historic and more recent systems that incorporate tactile display for information presentation; advantages and disadvantages of targeting the tactile channel; and future directions in tactile display research.
Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo
2013-12-01
How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.
Visual-perceptual mismatch in robotic surgery.
Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S
2017-08-01
The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p < 0.001). Additionally, it was observed that addition of tactile feedback helps reduce the negative effects of visual-perceptual mismatch in some cases. Grip force data recorded from grasper-mounted sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.
A platform-based foot pressure/shear sensor
NASA Astrophysics Data System (ADS)
Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih
2012-04-01
The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.
2017-02-23
elements linked back-to- back for force and displacement detection, respectively. Experimental results indicate the sensor registers 2.1 and 5.3 mN force...feedback from the fat and muscle tissues of pig, respectively, when pressed to the tissues with the same 100 μm displacement . This difference of ∼2.5...back-to-back for force and displacement detection, respectively. Experimental results indicate the sensor registers 2.1 and 5.3 mN force feedback from
Tactile Recognition and Localization Using Object Models: The Case of Polyhedra on a Plane.
1983-03-01
poor force resolution, but high spatial resolution. We feel that the viability of this recognition approach has important implications on the design of...of the touched object: 1. Surface point - On the basis of sensor readings, some points on the sensor can be identified as being in contact with...the sensor’s shape and location in space are known, one can determine the position of some point on the touched object, to within some uncertainty
An arm wearable haptic interface for impact sensing on unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul
2017-04-01
In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.
A vibro-haptic human-machine interface for structural health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenas, David; Plont, Crystal; Brown, Christina
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
A vibro-haptic human-machine interface for structural health monitoring
Mascarenas, David; Plont, Crystal; Brown, Christina; ...
2014-11-01
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
ERIC Educational Resources Information Center
Guclu, Burak; Oztek, Cigdem
2007-01-01
Tactile perception depends on the contributions of four psychophysical tactile channels mediated by four corresponding receptor systems. The sensitivity of the tactile channels is determined by detection thresholds that vary as a function of the stimulus frequency. It has been widely reported that tactile thresholds increase (i.e., sensitivity…
Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.
2014-01-01
Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153
Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.
2004-01-01
Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.
A droplet-based passive force sensor for remote tactile sensing applications
NASA Astrophysics Data System (ADS)
Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian
2018-01-01
A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.
NASA Astrophysics Data System (ADS)
Chen, Ying; Yu, Miao; Bruck, Hugh A.; Smela, Elisabeth
2018-06-01
To allow robots to interact with humans via touch, new sensing concepts are needed that can detect a wide range of potential interactions and cover the body of a robot. In this paper, a skin-inspired multi-layer tactile sensing architecture is presented and characterized. The structure consists of stretchable piezoresistive strain-sensing layers over foam layers of different stiffness, allowing for both sufficient sensitivity and pressure range for human contacts. Strip-shaped sensors were used in this architecture to produce a deformation response proportional to pressure. The roles of the foam layers were elucidated by changing their stiffness and thickness, allowing the development of a geometric model to account for indenter interactions with the structure. The advantage of this architecture over other approaches is the ability to easily tune performance by adjusting the stiffness or thickness of the foams to tailor the response for different applications. Since viscoelastic materials were used, the temporal effects were also investigated.
The Vestibular System and Human Dynamic Space Orientation
NASA Technical Reports Server (NTRS)
Meiry, J. L.
1966-01-01
The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.
The Impacts of Industrial Robots
1981-11-01
plastics, ’and strain gauges are used to measure very small forces at a number of points on the robot’s "end effector. Except for the simplest on-off...devices, tactile sensors are not yet found on commercially available robots. Forces are sensed by using strain gauges or piezoelectric sensors to...tools: deburring, drilling , grinding,milling,routing machines ii. plastic materialsformirg and injection machines iii. metal die casting machines iv
Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology
NASA Astrophysics Data System (ADS)
Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino
2014-06-01
Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.
Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei
2018-02-28
Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.
Psychophysical evaluation of a variable friction tactile interface
NASA Astrophysics Data System (ADS)
Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.
2009-02-01
This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.
Flexible Tactile Sensing Based on Piezoresistive Composites: A Review
Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio
2014-01-01
The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126
The Cognitive and Neural Correlates of Tactile Memory
ERIC Educational Resources Information Center
Gallace, Alberto; Spence, Charles
2009-01-01
Tactile memory systems are involved in the storage and retrieval of information about stimuli that impinge on the body surface and objects that people explore haptically. Here, the authors review the behavioral, neuropsychological, neurophysiological, and neuroimaging research on tactile memory. This body of research reveals that tactile memory…
Personal Cabin Pressure Monitor and Warning System
NASA Technical Reports Server (NTRS)
Zysko, Jan A. (Inventor)
2002-01-01
A cabin pressure altitude monitor and warning system provides a warning when a detected cabin pressure altitude has reached a predetermined level. The system is preferably embodied in a portable, pager-sized device that can be carried or worn by an individual. A microprocessor calculates the pressure altitude from signals generated by a calibrated pressure transducer and a temperature sensor that compensates for temperature variations in the signals generated by the pressure transducer. The microprocessor is programmed to generate a warning or alarm if a cabin pressure altitude exceeding a predetermined threshold is detected. Preferably, the microprocessor generates two different types of warning or alarm outputs, a first early warning or alert when a first pressure altitude is exceeded. and a second more serious alarm condition when either a second. higher pressure altitude is exceeded, or when the first pressure altitude has been exceeded for a predetermined period of time. Multiple types of alarm condition indicators are preferably provided, including visual, audible and tactile. The system is also preferably designed to detect gas concentrations and other ambient conditions, and thus incorporates other sensors, such as oxygen, relative humidity, carbon dioxide, carbon monoxide and ammonia sensors, to provide a more complete characterization and monitoring of the local environment.
Personal Cabin Pressure Monitor and Warning System
NASA Astrophysics Data System (ADS)
Zysko, Jan A.
2002-09-01
A cabin pressure altitude monitor and warning system provides a warning when a detected cabin pressure altitude has reached a predetermined level. The system is preferably embodied in a portable, pager-sized device that can be carried or worn by an individual. A microprocessor calculates the pressure altitude from signals generated by a calibrated pressure transducer and a temperature sensor that compensates for temperature variations in the signals generated by the pressure transducer. The microprocessor is programmed to generate a warning or alarm if a cabin pressure altitude exceeding a predetermined threshold is detected. Preferably, the microprocessor generates two different types of warning or alarm outputs, a first early warning or alert when a first pressure altitude is exceeded. and a second more serious alarm condition when either a second. higher pressure altitude is exceeded, or when the first pressure altitude has been exceeded for a predetermined period of time. Multiple types of alarm condition indicators are preferably provided, including visual, audible and tactile. The system is also preferably designed to detect gas concentrations and other ambient conditions, and thus incorporates other sensors, such as oxygen, relative humidity, carbon dioxide, carbon monoxide and ammonia sensors, to provide a more complete characterization and monitoring of the local environment.
Kakar, Ashish; Kakar, Kanupriya
2013-05-01
To compare relief from dentin hypersensitivity (DH) after use of dentifrices formulated with potassium nitrate or fluoride. For the study, DH evaluations were conducted with the Jay Sensitivity Sensor Probe (Jay Probe), a novel tactile hypersensitivity instrument, in conjunction with three other DH methods, i.e. Yeaple probe (tactile), air blast, and the Visual Analog Scale (VAS). Adults (n = 100) who presented two teeth with DH and met study criteria were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient setting. DH evaluations at baseline were conducted by the tactile, air blast, and VAS methods. Subjects were randomly assigned a dentifrice formulated with 5% potassium nitrate and 1,000 ppm fluoride (as sodium monofluorophosphate) (Colgate Sensitive toothpaste; Test) or a commercially available fluoride dentifrice with 1,000 ppm fluoride as sodium monofluorophosphate (Colgate Cibaca toothpaste; Negative control). Subjects were recalled for DH evaluations after 4 and 8 weeks of product use. 85 subjects completed the entire study with evaluable results. Both treatments resulted in significant reductions in DH from baseline to all recall visits. In comparison to the Negative control, subjects in the Test group demonstrated significantly greater reductions for all DH evaluations at both 4 and 8 weeks (P < 0.05). Average tactile DH scores at week 8 for the Test and Negative control groups were 36.25 and 15.24 with the Yeaple probe and 35 and 12.43 with the Jay probe. Correspondingly, subjects in the Test group demonstrated significantly greater reductions in air blast and VAS responses for DH than those in the Negative control group (P < 0.05).
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
Tactile Sensors for Palm-Size Crawling Robots
2014-05-01
lamination and laser cutting . For the sensor array discussed in this report, the hairs have an average normal sensitivity of approximately 0.8 grams/hair, but...Adhesive (M) Hair Mounting Layer. For visualization purposes, layers I and M are shown with laser - cut features that are actually formed after...The levers are then partially freed from the structure via laser - cutting . The levers are left partly connected at this point so that the hairs (L) can
2014-06-01
transmitted from a controller mechanism that contains inertial measurement unit ( IMU ) sensors to sense rotation and acceleration of movement. Earlier...assets, and standard hand signal commands can be presented to human team members via a variety of modalities. IMU sensor technologies placed on the body...obstacle event (e.g., climbing, crawling, combat roll , running) and between obstacles (i.e., walking). The following analyses are for each task
Tactile friction of topical formulations.
Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L
2016-02-01
The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors
Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.
2015-01-01
This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279
Topograph for inspection of engine cylinder walls.
Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J
1999-12-20
The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.
Displacement sensors using soft magnetostrictive alloys
NASA Astrophysics Data System (ADS)
Hristoforou, E.; Reilly, R. E.
1994-09-01
We report results on the response of a family of displacement sensors, which are based on the magentostrictive delay line (MDL) technique, using current conductors orthogonal to the MDL. Such sensing technique is based on the change of the magnetic circuit at the acoustic stress point of origin due to the displacement of a soft magnetic material above it. Integrated arrays of sensors can be obtained due to the acoustic delay line technique and they can be used as tactile arrays, digitizers or devices for medical applications (gait analysis etc.), while absence of hysteresis and low cost of manufacturing make them competent in this sector of sensor market.
Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.
Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo
2016-06-28
Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.
NASA Astrophysics Data System (ADS)
Bit Lee, Han; Kim, Young Won; Yoon, Jonghun; Lee, Nak Kyu; Park, Suk-Hee
2017-04-01
We developed a skin-conformal flexible sensor in which three-dimensional (3D) free-form elastomeric sheets were harmoniously integrated with a piezoelectric nanofiber mat. The elastomeric sheets were produced by polydimethylsiloxane (PDMS) molding via using a 3D printed mold assembly, which was adaptively designed from 3D scanned skin surface geometry. The mold assembly, fabricated using a multi-material 3D printer, was composed of a pair of upper/lower mold parts and an interconnecting hinge, with material properties are characterized by different flexibilities. As a result of appropriate deformabilites of the upper mold part and hinge, the skin-conformal PDMS structures were successfully sandwich molded and demolded with good repeatability. An electrospun poly(vinylidene fluoride trifluoroethylene) nanofiber mat was prepared as the piezoelectric active layer and integrated with the 3D elastomeric parts. We confirmed that the highly responsive sensing performances of the 3D integrated sensor were identical to those of a flat sensor in terms of sensitivity and the linearity of the input-output relationship. The close 3D conformal skin contact of the flexible sensor enabled discernable perception of various scales of physical stimuli, such as tactile force and even minute skin deformation caused by the tester’s pulse. Collectively from the 3D scanning design to the practical application, our achievements can potentially meet the needs of tailored human interfaces in the field of wearable devices and human-like robots.
Relative hardness measurement of soft objects by a new fiber optic sensor
NASA Astrophysics Data System (ADS)
Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran
2010-06-01
The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses
Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.
2014-01-01
SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Gas Sensors Based on Coated and Doped Carbon Nanotubes; Tactile Robotic Topographical Mapping Without Force or Contact Sensors; Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids; Progress in Development of Improved Ion-Channel Biosensors; Simulating Operation of a Complex Sensor Network; Using Transponders on the Moon to Increase Accuracy of GPS; Controller for Driving a Piezoelectric Actuator at Resonance; Coaxial Electric Heaters; Dual-Input AND Gate From Single-Channel Thin-Film FET; High-Density, High-Bandwidth, Multilevel Holographic Memory; Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters; Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass; Photochemically Synthesized Polyimides; Optimized Carbonate and Ester-Based Li-Ion Electrolytes; Compact 6-DOF Stage for Optical Adjustments; Ultrasonic/Sonic Impacting Penetrators; Miniature, Lightweight, One-Time-Opening Valve; Supplier Management System; Improved CLARAty Functional-Layer/Decision-Layer Interface; JAVA Stereo Display Toolkit; Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool; PyPele Rewritten To Use MPI; Data Assimilation Cycling for Weather Analysis; Hydrocyclone/Filter for Concentrating Biomarkers from Soil; Activating STAT3 Alpha for Promoting Healing of Neurons; and Probing a Spray Using Frequency-Analyzed Light Scattering.
Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.
Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun
2014-06-13
In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.
Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind
Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun
2014-01-01
In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind. PMID:24932864
Development of compact slip detection sensor using dielectric elastomer
NASA Astrophysics Data System (ADS)
Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon
2015-04-01
In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)
2002-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates
NASA Technical Reports Server (NTRS)
Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)
1999-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)
1999-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
Optimal estimator model for human spatial orientation
NASA Technical Reports Server (NTRS)
Borah, J.; Young, L. R.; Curry, R. E.
1979-01-01
A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.
Nano opto-mechanical systems (NOMS) as a proposal for tactile displays
NASA Astrophysics Data System (ADS)
Campo, E. M.; Roig, J.; Roeder, B.; Wenn, D.; Mamojka, B.; Omastova, M.; Terentjev, E. M.; Esteve, J.
2011-10-01
For over a decade, special emphasis has been placed in the convergence of different fields of science and technology, in an effort to serve human needs by way of enhancing human capabilities. The convergence of the Nano-Bio-Info-Cogni (NBIC) quartet will provide unique solutions to specific needs. This is the case of, Nano-opto mechanical Systems (NOMS), presented as a solution to tactile perception, both for the visually-impaired and for the general public. NOMS, based on photoactive polymer actuators and devices, is a much sought-after technology. In this scheme, light sources promote mechanical actuation producing a variety of nano-opto mechanical systems such as nano-grippers. In this paper, we will provide a series of specifications that the NOMS team is targeting towards the development of a tactile display using optically-activated smart materials. Indeed, tactile displays remain mainly mechanical, compromising reload speeds and resolution which inhibit 3D tactile representation of web interfaces. We will also discuss how advantageous NOMS tactile displays could be for the general public. Tactile processing based on stimulation delivered through the NOMS tablet, will be tested using neuropsychology methods, in particular event-related brain potentials. Additionally, the NOMS tablet will be instrumental to the development of basic neuroscience research.
Massage Changes Babies' Body, Brain and Behavior
NASA Astrophysics Data System (ADS)
Ishikawa, Chihiro; Shiga, Takashi
Tactile stimulation is an important factor in mother-infant interactions. Many studies on both human and animals have shown that tactile stimulation during the neonatal period has various beneficial effects in the subsequent growth of the body and brain. In particular, massage is often applied to preterm human babies as “touch care”, because tactile stimulation together with kinesthetic stimulation increases body weight, which is accompanied by behavioral development and the changes of endocrine and neural conditions. Among them, the elevation of insulin-like growth factor-1, catecholamine, and vagus nerve activity may underlie the body weight gain. Apart from the body weight gain, tactile stimulation has various effects on the nervous system and endocrine system. For example, it has been reported that tactile stimulation on human and animal babies activates parasympathetic nervous systems, while suppresses the hypothalamic-pituitary-adrenalcortical (HPA) axis, which may be related to the reduction of emotionality, anxiety-like behavior, and pain sensitivity. In addition, animal experiments have shown that tactile stimulation improves learning and memory. Facilitation of the neuronal activity and the morphological changes including the hippocampal synapse may underlie the improvement of the learning and memory. In conclusion, it has been strongly suggested that tactile stimulation in early life has beneficial effects on body, brain structure and function, which are maintained throughout life.
A bioinspired flexible organic artificial afferent nerve
NASA Astrophysics Data System (ADS)
Kim, Yeongin; Chortos, Alex; Xu, Wentao; Liu, Yuxin; Oh, Jin Young; Son, Donghee; Kang, Jiheong; Foudeh, Amir M.; Zhu, Chenxin; Lee, Yeongjun; Niu, Simiao; Liu, Jia; Pfattner, Raphael; Bao, Zhenan; Lee, Tae-Woo
2018-06-01
The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.
Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.
Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G
2012-03-02
We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.
Displacement sensors using soft magnetostrictive alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hristoforou, E.; Reilly, R.E.
1994-09-01
The authors report results on the response of a family of displacement sensors, which are based on the magnetostrictive delay line (MDL) technique, using current conductor orthogonal to the MDL. Such sensing technique is based on the change of the magnetic circuit and the acoustic stress point of origin due to the displacement of a soft magnetic material above it. Integrated arrays of sensors can be obtained due to the acoustic delay line technique and they can be used as tactile arrays, digitizers or devices for medical application (gait analysis etc.), while absence of hysteresis and low cost of manufacturingmore » make them competent in this sector of sensor market.« less
Prototype tactile feedback system for examination by skin touch.
Lee, O; Lee, K; Oh, C; Kim, K; Kim, M
2014-08-01
Diagnosis of conditions such as psoriasis and atopic dermatitis, in the case of induration, involves palpating the infected area via hands and then selecting a ratings score. However, the score is determined based on the tester's experience and standards, making it subjective. To provide tactile feedback on the skin, we developed a prototype tactile feedback system to simulate skin wrinkles with PHANToM OMNI. To provide the user with tactile feedback on skin wrinkles, a visual and haptic Augmented Reality system was developed. First, a pair of stereo skin images obtained by a stereo camera generates a disparity map of skin wrinkles. Second, the generated disparity map is sent to an implemented tactile rendering algorithm that computes a reaction force according to the user's interaction with the skin image. We first obtained a stereo image of skin wrinkles from the in vivo stereo imaging system, which has a baseline of 50.8 μm, and obtained the disparity map with a graph cuts algorithm. The left image is displayed on the monitor to enable the user to recognize the location visually. The disparity map of the skin wrinkle image sends skin wrinkle information as a tactile response to the user through a haptic device. We successfully developed a tactile feedback system for virtual skin wrinkle simulation by means of a commercialized haptic device that provides the user with a single point of contact to feel the surface roughness of a virtual skin sample. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Tech Briefs, October 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Laser Truss Sensor for Segmented Telescope Phasing; Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions; Optical Sensors for Monitoring Gamma and Neutron Radiation; Compliant Tactile Sensors; Cytometer on a Chip; Measuring Input Thresholds on an Existing Board; Scanning and Defocusing Properties of Microstrip Reflectarray Antennas; Cable Tester Box; Programmable Oscillator; Fault-Tolerant, Radiation-Hard DSP; Sub-Shot Noise Power Source for Microelectronics; Asynchronous Message Service Reference Implementation; Zero-Copy Objects System; Delay and Disruption Tolerant Networking MACHETE Model; Contact Graph Routing; Parallel Eclipse Project Checkout; Technique for Configuring an Actively Cooled Thermal Shield in a Flight System; Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes; Li-Ion Cells Employing Electrolytes with Methyl Propionate and Ethyl Butyrate Co-Solvents; Improved Devices for Collecting Sweat for Chemical Analysis; Tissue Photolithography; Method for Impeding Degradation of Porous Silicon Structures; External Cooling Coupled to Reduced Extremity Pressure Device; A Zero-Gravity Cup for Drinking Beverages in Microgravity; Co-Flow Hollow Cathode Technology; Programmable Aperture with MEMS Microshutter Arrays; Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas; Adaptive System Modeling for Spacecraft Simulation; Lidar-Based Navigation Algorithm for Safe Lunar Landing; Tracking Object Existence From an Autonomous Patrol Vehicle; Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications; and Architecture for a 1-GHz Digital RADAR.
Hegde, Shashikanth; Rao, B H Sripathi; Kakar, Ravish Chander; Kakar, Ashish
2013-05-01
To evaluate the clinical relief from dentin hypersensitivity among subjects provided with a dentifrice formulated with 8% arginine, calcium carbonate and 1,000 ppm fluoride [sodium monofluorophosphate (MFP)] in comparison to those issued a commercially available dentifrice containing 1,000 ppm fluoride [as sodium monofluorophosphate (MFP)]. Clinical evaluations for hypersensitivity were performed with a novel tactile hypersensitivity measuring instrument--the Jay Sensitivity Sensor (Jay) Probe--in conjunction with evaporative triggers by air blast (Schiff scale) and Visual Analog Scores (VAS). Qualified adults from the Mangalore, India area who presented two teeth with dentin hypersensitivity were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient clinical setting. At baseline, dentin hypersensitivity was evaluated by the Jay Probe (tactile), air blast and VAS methods. Subjects were randomly issued a study dentifrice and instructed to brush their teeth for 1 minute twice daily with the provided dentifrice. Clinical evaluations for hypersensitivity were repeated after 2, 4 and 8 weeks of product use. 86 subjects (35 males and 51 females) complied with the study protocol and completed the entire study. At each recall visit, both treatment groups demonstrated significant reductions in dentin hypersensitivity from their corresponding baselines (P < 0.05). Subjects assigned the 8% arginine, calcium carbonate and 1,000 ppm fluoride dentifrice demonstrated statistically significant reductions in responses to tactile stimuli, air blast, and VAS responses in comparison to those using the dentifrice containing 1,000 ppm fluoride after 2, 4, and 8 weeks, respectively.
Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor
NASA Astrophysics Data System (ADS)
Ponce Wong, Ruben D.; Hellman, Randall B.; Santos, Veronica J.
2014-06-01
Haptic perception remains a grand challenge for artificial hands. Dexterous manipulators could be enhanced by "haptic intelligence" that enables identification of objects and their features via touch alone. Haptic perception of local shape would be useful when vision is obstructed or when proprioceptive feedback is inadequate, as observed in this study. In this work, a robot hand outfitted with a deformable, bladder-type, multimodal tactile sensor was used to replay four human-inspired haptic "exploratory procedures" on fingertip-sized geometric features. The geometric features varied by type (bump, pit), curvature (planar, conical, spherical), and footprint dimension (1.25 - 20 mm). Tactile signals generated by active fingertip motions were used to extract key parameters for use as inputs to supervised learning models. A support vector classifier estimated order of curvature while support vector regression models estimated footprint dimension once curvature had been estimated. A distal-proximal stroke (along the long axis of the finger) enabled estimation of order of curvature with an accuracy of 97%. Best-performing, curvature-specific, support vector regression models yielded R2 values of at least 0.95. While a radial-ulnar stroke (along the short axis of the finger) was most helpful for estimating feature type and size for planar features, a rolling motion was most helpful for conical and spherical features. The ability to haptically perceive local shape could be used to advance robot autonomy and provide haptic feedback to human teleoperators of devices ranging from bomb defusal robots to neuroprostheses.
Optical versus tactile geometry measurement: alternatives or counterparts
NASA Astrophysics Data System (ADS)
Lehmann, Peter
2003-05-01
This contribution deals with measuring strategies and methods for the determination of several geometrical features, covering the surface micro-topography and the form of mechanical objects. The measuring principles used in optical surface metrology include optical focusing profilers, confocal point measuring and areal measuring sensors as well as interferometrical principles such as white light interferometry and speckle techniques. In comparison with stylus instruments optical techniques provide certain advantages such as a fast data acquisition, in-process applicability or contactless measurement. However, the frequency response characteristics of optical and tactile measurement differ significantly. In addition, optical sensors are commonly more influenced by critical geometrical conditions and optical properties of an object. For precise form measurement mechanical instruments dominate till now. One reason for this may be, that commonly the complete 360 degrees geometry of the measuring object has to be analyzed. Another point is that optical principles such as form measuring interferometry fail in cases of complex object geometry or rougher object surfaces. Other methods, e.g. fringe projection or digital holography, till now do not meet the accuracy demands of precision engineered workpieces. Hence, a combination of mechanical concepts and optical sensors represents an interesting potential for current and future measuring tasks, which require high accuracy and maximum flexibility.
A Demonstrator Intelligent Scheduler For Sensor-Based Robots
NASA Astrophysics Data System (ADS)
Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.
1987-10-01
The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.
Recording forces exerted on the bowel wall during colonoscopy: in vitro evaluation.
Dogramadzi, S; Virk, G S; Bell, G D; Rowland, R S; Hancock, J
2005-12-01
A novel system for distributed force measurement between the bowel wall and the shaft of a colonoscope is presented. The system, based on the piezoresistive method, involves the integration of soft miniature transducers to a colonoscope to enable a wide range of forces to be sensed. The attached sensing sheath does not restrict the propulsion of the colonoscope nor notably alter its flexibility. The addition of the sensor sheath increases the colonoscope diameter by 15-20% depending on the type of the colonoscope (adult or paediatric). The transducer's accuracy is +/-20 grammes if it is not subjected to extensive static forces. Under large static force conditions the errors may increase to +/-50 grammes. The tactile force measuring sensors have provided preliminary results from experiments on a model of the large bowel. The force measurements confirm the predictions on the location and magnitude of the forces and that most of the forces are exerted whilst the instrument is looping. Copyright 2005 John Wiley & Sons, Ltd.
Tactile display landing safety and precision improvements for the Space Shuttle
NASA Astrophysics Data System (ADS)
Olson, John M.
A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.
Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals.
Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; DeBerry, Jennifer J; Gu, Jianguo G
2016-09-13
The evolution of sensory systems has let mammals develop complicated tactile end organs to enable sophisticated sensory tasks, including social interaction, environmental exploration, and tactile discrimination. The Merkel disc, a main type of tactile end organ consisting of Merkel cells (MCs) and Aβ-afferent endings, are highly abundant in fingertips, touch domes, and whisker hair follicles of mammals. The Merkel disc has high tactile acuity for an object's physical features, such as texture, shape, and edges. Mechanisms underlying the tactile function of Merkel discs are obscured as to how MCs transmit tactile signals to Aβ-afferent endings leading to tactile sensations. Using mouse whisker hair follicles, we show herein that tactile stimuli are transduced by MCs into excitatory signals that trigger vesicular serotonin release from MCs. We identify that both ionotropic and metabotropic 5-hydroxytryptamine (5-HT) receptors are expressed on whisker Aβ-afferent endings and that their activation by serotonin released from MCs initiates Aβ-afferent impulses. Moreover, we demonstrate that these ionotropic and metabotropic 5-HT receptors have a synergistic effect that is critical to both electrophysiological and behavioral tactile responses. These findings elucidate that the Merkel disc is a unique serotonergic synapse located in the epidermis and plays a key role in tactile transmission. The epidermal serotonergic synapse may have important clinical implications in sensory dysfunctions, such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes, inflammatory diseases, and undergo chemotherapy. It may also have implications in the exaggerated tactile sensations induced by recreational drugs that act on serotoninergic synapses.
NASA Tech Briefs, October 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Relative-Motion Sensors and Actuators for Two Optical Tables; Improved Position Sensor for Feedback Control of Levitation; Compact Tactile Sensors for Robot Fingers; Improved Ion-Channel Biosensors; Suspended-Patch Antenna With Inverted, EM-Coupled Feed; System Would Predictively Preempt Traffic Lights for Emergency Vehicles; Optical Position Encoders for High or Low Temperatures; Inter-Valence-Subband/Conduction-Band-Transport IR Detectors; Additional Drive Circuitry for Piezoelectric Screw Motors; Software for Use with Optoelectronic Measuring Tool; Coordinating Shared Activities; Software Reduces Radio-Interference Effects in Radar Data; Using Iron to Treat Chlorohydrocarbon-Contaminated Soil; Thermally Insulating, Kinematic Tensioned-Fiber Suspension; Back Actuators for Segmented Mirrors and Other Applications; Mechanism for Self-Reacted Friction Stir Welding; Lightweight Exoskeletons with Controllable Actuators; Miniature Robotic Submarine for Exploring Harsh Environments; Electron-Spin Filters Based on the Rashba Effect; Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers; Tunable Optical True-Time Delay Devices Would Exploit EIT; Fast Query-Optimized Kernel-Machine Classification; Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT; An Architecture for Controlling Multiple Robots; Progress in Fabrication of Rocket Combustion Chambers by VPS; CHEM-Based Self-Deploying Spacecraft Radar Antennas; Scalable Multiprocessor for High-Speed Computing in Space; and Simple Systems for Detecting Spacecraft Meteoroid Punctures.
Sensitivity improvements of a resonance-based tactile sensor.
Murayama, Yoshinobu; Lindahl, Olof A
2017-02-01
Resonance-based contact-impedance measurement refers to the application of resonance sensors based on the measurement of the changes in the resonance curve of an ultrasonic resonator in contact with a surface. The advantage of the resonance sensor is that it is very sensitive to small changes in the contact impedance. A sensitive micro tactile sensor (MTS) was developed, which measured the elasticity of soft living tissues at the single-cell level. In the present paper, we studied the method of improving the touch and stiffness sensitivity of the MTS. First, the dependence of touch sensitivity in relation to the resonator length was studied by calculating the sensitivity coefficient at each length ranging from 9 to 40 mm. The highest touch sensitivity was obtained with a 30-mm-long glass needle driven at a resonance frequency of 100 kHz. Next, the numerical calculation of contact impedance showed that the highest stiffness sensitivity was achieved when the driving frequency was 100 kHz and the contact-tip diameter of the MTS was 10 μm. The theoretical model was then confirmed experimentally using a phase-locked-loop-based digital feedback oscillation circuit. It was found that the developed MTS, whose resonant frequency was 97.030 kHz, performed with the highest sensitivity of 53.2 × 10 6 Hz/N at the driving frequency of 97.986 kHz, i.e. the highest sensitivity was achieved at 956 Hz above the resonant frequency.
Lee, James S.; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik
2015-01-01
We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 103-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20–120°C. PMID:25601479
Lee, James S; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik
2015-01-20
We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 10(3)-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20-120 °C.
Mechanisms underlying a thalamocortical transformation during active tactile sensation
Gutnisky, Diego Adrian; Yu, Jianing; Hires, Samuel Andrew; To, Minh-Son; Svoboda, Karel
2017-01-01
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit. PMID:28591219
Tactile Feedback Display with Spatial and Temporal Resolutions
Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-01-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications. PMID:23982053
Tactile feedback display with spatial and temporal resolutions.
Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-01-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.
Tactile Feedback Display with Spatial and Temporal Resolutions
NASA Astrophysics Data System (ADS)
Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli
2013-08-01
We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.
Sensing through friction: the biomechanics of texture perception in rodents and primates
NASA Astrophysics Data System (ADS)
Debrégeas, Georges; Boubenec, Yves
2015-10-01
Rodents and primates possess an exquisite tactile sensitivity, which allows them to extract a wealth of information about their immediate environment. They can distinguish subtle differences in surface roughness through tactile exploration in a much more precise way than they can do visually. In both sensory systems, tactile information is contained in the sequence of deformation of the tactile organ--the facial hair for rodents (the whiskers), the digital skin for primates -- elicited by active rubbing on the probed surface (Figure 8.1). These deformations, registered by mechanosensitive neurons located in inner tissues, are processed by the central nervous system to produce a sensory representation of the surface...
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-10-13
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
The role of tactile feedback in grip force during laparoscopic training tasks.
Wottawa, Christopher R; Cohen, Jeremiah R; Fan, Richard E; Bisley, James W; Culjat, Martin O; Grundfest, Warren S; Dutson, Erik P
2013-04-01
Laparoscopic minimally invasive surgery has revolutionized surgical care by reducing trauma to the patient, thereby decreasing the need for medication and shortening recovery times. During open procedures, surgeons can directly feel tissue characteristics. However, in laparoscopic surgery, tactile feedback during grip is attenuated and limited to the resistance felt in the tool handle. Excessive grip force during laparoscopic surgery can lead to tissue damage. Providing additional supplementary tactile feedback may allow subjects to have better control of grip force and identification of tissue characteristics, potentially decreasing the learning curve associated with complex minimally invasive techniques. A tactile feedback system has been developed and integrated into a modified laparoscopic grasper that allows forces applied at the grasper tips to be felt by the surgeon's hands. In this study, 15 subjects (11 novices, 4 experts) were asked to perform single-handed peg transfers using these laparoscopic graspers in three trials (feedback OFF, ON, OFF). Peak and average grip forces (newtons) during each grip event were measured and compared using a Wilcoxon ranked test in which each subject served as his or her own control. After activating the tactile feedback system, the novice subject population showed significant decreases in grip force (p < 0.003). When the system was deactivated for the third trial, there were significant increases in grip force (p < 0.003). Expert subjects showed no significant improvements with the addition of tactile feedback (p > 0.05 in all cases). Supplementary tactile feedback helped novice subjects reduce grip force during the laparoscopic training task but did not offer improvements for the four expert subjects. This indicates that tactile feedback may be beneficial for laparoscopic training but has limited long-term use in the nonrobotic setting.
1983-01-01
DCUMNTATON AGEREAD INSTRUCTIONS ______ REPORT___DOCUMENTATION _____PAGE_ BEFORE COMPLETKNG FORM 1REPORT NUMBER ILGOVT ACCESSION No. 3 . RECIPIENT’S...Herbert E. Cohen) control 0900 - Endgame Performance Study of a Special Class of Interceptors by Dr. Jonathan Korn ALPHATECH, Inc. 3 New England Executive...tactile/force feedback sensor applications. 3 L i7 TYPICAL GRIPPER FACE (NOT IN GRIPPER B3OLTS 00 BASE SLIP Nm mSENSORS "o 0 TORQUE, GRIP 0 fie d e
NASA Astrophysics Data System (ADS)
Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie
2015-07-01
Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.
Auld, Megan L; Johnston, Leanne M; Russo, Remo N; Moseley, G Lorimer
2017-10-01
This replicated randomized controlled crossover case series investigated the effect of mirror-based tactile and motor training on tactile registration and perception in children with unilateral cerebral palsy (UCP). Six children with UCP (6-18 years; median 10 years, five male, three-left hemiplegia, four-manual ability classification system (MACS) I, one MACS II and one MACS III) participated. They attended two 90-minute sessions - one of mirror-based training and one of standard practice, bimanual therapy - in alternated order. Tactile registration (Semmes Weinstein Monofilaments) and perception (double simultaneous or single-point localization) were assessed before and after each session. Change was estimated using reliable change index (RCI). Tactile perception improved in four participants (RCI > 1.75), with mirror-based training, but was unchanged with bimanual therapy (RCI < 1.0 for all participants). Neither intervention affected tactile registration. Mirror-based training demonstrates potential to improve tactile perception in children with UCP. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.
Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin
2017-11-01
Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Telepresence for touch and proprioception in teleoperator systems
NASA Technical Reports Server (NTRS)
Hagner, David G.; Webster, John G.
1988-01-01
The control and operation of mechanical manipulators by a human and the use of sensory tactile and force feedback is reviewed. The terms telepresence, teleproprioception, and teletouch are defined and relevant technologies that have or could have been applied to teleoperation are discussed. An ideal method of tactile sensory feedback for teleoperators that is based upon reproduction of the object's contour is discussed, and its practicality considered. Previously developed components that could be used to build a system incorporating sensory tactile and force feedback are presented.
Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
Grice, Phillip M; Killpack, Marc D; Jain, Advait; Vaish, Sarvagya; Hawke, Jeffrey; Kemp, Charles C
2013-06-01
Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.g., a wheelchair or bed). Using geometric simulations, we first show that an assistive robot can achieve a much larger percentage of end-effector poses near the care-receiver's body if its arm is allowed to make contact. Second, we present a novel system with a custom controller and whole-arm tactile sensor array that enables a Willow Garage PR2 to regulate contact forces across its entire arm while moving its end effector to a commanded pose. We then describe tests with two people with motor impairments, one of whom used the system to grasp and pull a blanket over himself and to grab a cloth and wipe his face, all while in bed at his home. Finally, we describe a study with eight able-bodied users in which they used the system to place objects near their bodies. On average, users perceived the system to be safe and comfortable, even though substantial contact occurred between the robot's arm and the user's body.
The Tactile Vision Substitution System: Applications in Education and Employment
ERIC Educational Resources Information Center
Scadden, Lawrence A.
1974-01-01
The Tactile Vision Substitution System converts the visual image from a narrow-angle television camera to a tactual image on a 5-inch square, 100-point display of vibrators placed against the abdomen of the blind person. (Author)
Object Recognition and Localization: The Role of Tactile Sensors
Aggarwal, Achint; Kirchner, Frank
2014-01-01
Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi
We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4{sup ′}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5more » cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = −0.2 V and V{sub G} = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.« less
Hair-based sensors for micro-autonomous systems
NASA Astrophysics Data System (ADS)
Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil
2012-06-01
We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.
The use of a tactile interface to convey position and motion perceptions
NASA Technical Reports Server (NTRS)
Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
1994-01-01
Under normal terrestrial conditions, perception of position and motion is determined by central nervous system integration of concordant and redundant information from multiple sensory channels (somatosensory, vestibular, visual), which collectively yield vertical perceptions. In the acceleration environment experienced by the pilots, the somatosensory and vestibular sensors frequently present false information concerning the direction of gravity. When presented with conflicting sensory information, it is normal for pilots to experience episodes of disorientation. We have developed a tactile interface that obtains vertical roll and pitch information from a gyro-stabilized attitude indicator and maps this information in a one-to-one correspondence onto the torso of the body using a matrix of vibrotactors. This enables the pilot to continuously maintain an awareness of aircraft attitude without reference to visual cues, utilizing a sensory channel that normally operates at the subconscious level. Although initially developed to improve pilot spatial awareness, this device has obvious applications to 1) simulation and training, 2) nonvisual tracking of targets, which can reduce the need for pilots to make head movements in the high-G environment of aerial combat, and 3) orientation in environments with minimal somatosensory cues (e.g., underwater) or gravitational cues (e.g., space).
Lund, Shelley K; Troha, Jeanette M
2008-04-01
This study used a single-subject multiple baseline across participants design to evaluate the effectiveness of a modified picture exchange communication system (PECS) teaching protocol with tactile symbols. Three students (two male, one female) aged 12-17 years who had autism and were blind participated in the study. The instructional program involved three phases. First, each participant learned to exchange a tactile symbol with his/her communication partner to request a preferred item/activity. Second, the distance between the communication partner and the participant was increased. Third, the participants were required to discriminate between two dissimilar tactile symbols. One out of three participants completed all phases of the instructional program. Although the other two participants did not complete the program, they demonstrated improvement from baseline responding rates. This study provided preliminary results that using tactile symbols with strategies from PECS may be an effective method to teach requesting to youth who are blind and have autism.
Making your skin crawl: The role of tactile sensitivity in disease avoidance.
Hunt, David Francis; Cannell, Grace; Davenhill, Nicholas A; Horsford, Stephanie A; Fleischman, Diana S; Park, Justin H
2017-07-01
Mounting evidence indicates that animals, including humans, have evolved a behavioral disease-avoidance system designed to facilitate the detection and avoidance of sources of pathogens, and that this system interacts with physiological defenses. The skin acts as an important anatomical barrier, yet little research has investigated the role of tactile sensitivity in disease avoidance. Increased tactile sensitivity in the presence of potential sources of pathogens may facilitate prophylactic behaviors such as self-grooming. Across multiple studies, we tested the hypothesis that the induction of disgust-the key emotion underlying disease avoidance-may lead to greater tactile sensitivity compared to control conditions. A nonsignificant trend was found in a pilot study, which was replicated (and found to be significant) in Studies 1 and 2. To our knowledge, these results are the first to demonstrate disgust-induced changes in tactile sensitivity, and they contribute to the growing literature on the integrated evolved defenses against infectious disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi
2018-07-15
Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.
Doxon, Andrew J; Johnson, David E; Tan, Hong Z; Provancher, William R
2013-01-01
Many of the devices used in haptics research are over-engineered for the task and are designed with capabilities that go far beyond human perception levels. Designing devices that more closely match the limits of human perception will make them smaller, less expensive, and more useful. However, many device-centric perception thresholds have yet to be evaluated. To this end, three experiments were conducted, using one degree-of-freedom contact location feedback device in combination with a kinesthetic display, to provide a more explicit set of specifications for similar tactile-kinesthetic haptic devices. The first of these experiments evaluated the ability of humans to repeatedly localize tactile cues across the fingerpad. Subjects could localize cues to within 1.3 mm and showed bias toward the center of the fingerpad. The second experiment evaluated the minimum perceptible difference of backlash at the tactile element. Subjects were able to discriminate device backlash in excess of 0.46 mm on low-curvature models and 0.93 mm on high-curvature models. The last experiment evaluated the minimum perceptible difference of system delay between user action and device reaction. Subjects were able to discriminate delays in excess of 61 ms. The results from these studies can serve as the maximum (i.e., most demanding) device specifications for most tactile-kinesthetic haptic systems.
Robonaut Mobile Autonomy: Initial Experiments
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Goza, S. M.; Tyree, K. S.; Huber, E. L.
2006-01-01
A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.
Slime mould processors, logic gates and sensors.
Adamatzky, A
2015-07-28
A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.
Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik
2017-04-04
Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.
Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons
Oddo, Calogero M.; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M. D.; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik
2017-01-01
Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models. PMID:28374841
Shortening of the process chain by tactile inline measurement
NASA Astrophysics Data System (ADS)
Doering, Lutz; Thronicke, Nicole; Löbner, Christian; Frank, Thomas; Reich, Steffen; Völlmeke, Stefan; Steinke, Arndt
2013-05-01
This article describes the application of a microelectromechanical system (MEMS) with a beam-shaped cantilever and an integrated piezo-resistive measuring bridge. This device is used for a quick inline control of building panels, which consist of different materials (e.g. metals, polymers and elastomers). The micro sensing device distinguishes itself by a comparatively very low probing force (<100 μN), a high natural frequency (<2.7 kHz) and a very small mass (≈ 0.1 mg). Measuring speeds up to approx. 10 mm/s can be realized. In addition, this sensor comes with a typical resolution in vertical displacement of 2 nm (due to noise floor Δf = 1,6 kHz).
Riso, R R
1999-01-01
A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.
Sensing textile seam-line for wearable multimodal physiological monitoring.
McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A
2016-08-01
This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.
Kim, K; Lee, S
2015-05-01
Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Method and apparatus for loss of control inhibitor systems
NASA Technical Reports Server (NTRS)
A'Harrah, Ralph C. (Inventor)
2007-01-01
Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.
Bayesian exploration for intelligent identification of textures.
Fishel, Jeremy A; Loeb, Gerald E
2012-01-01
In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems.
Bayesian Exploration for Intelligent Identification of Textures
Fishel, Jeremy A.; Loeb, Gerald E.
2012-01-01
In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems. PMID:22783186
Prescott, Tony J.; Diamond, Mathew E.; Wing, Alan M.
2011-01-01
Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch—antennae, whiskers and fingertips—but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world. PMID:21969680
Synthetic and Bio-Artificial Tactile Sensing: A Review
Lucarotti, Chiara; Oddo, Calogero Maria; Vitiello, Nicola; Carrozza, Maria Chiara
2013-01-01
This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed. PMID:23348032
Fiber optic plantar pressure/shear sensor
NASA Astrophysics Data System (ADS)
Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih
2011-04-01
A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.
A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.
Wang, Weizhong; Zhao, Yulong; Qin, Yafei
2012-01-01
An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.
NASA Astrophysics Data System (ADS)
Lin, Kevin L.; Jain, Kanti
2009-02-01
Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.
A continued role for signaling functions in the early evolution of feathers.
Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J
2017-03-01
Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Liquid-Embedded Elastomer Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Park, Yong-Lae; Paik, Jamie; Wood, Robert
2012-02-01
Hyperelastic sensors are fabricated by embedding a silicone rubber film with microchannels of conductive liquid. In the case of soft tactile sensors, pressing the surface of the elastomer will deform the cross-section of underlying channels and change their electrical resistance. Soft pressure sensors may be employed in a variety of applications. For example, a network of pressure sensors can serve as artificial skin by yielding detailed information about contact pressures. This concept was demonstrated in a hyperelastic keypad, where perpendicular conductive channels form a quasi-planar network within an elastomeric matrix that registers the location, intensity and duration of applied pressure. In a second demonstration, soft curvature sensors were used for joint angle proprioception. Because the sensors are soft and stretchable, they conform to the host without interfering with the natural mechanics of motion. This marked the first use of liquid-embedded elastomer electronics to monitor human or robotic motion. Finally, liquid-embedded elastomers may be implemented as conductors in applications that call for flexible or stretchable circuitry, such as robotic origami.
Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas
2008-01-01
PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.
Hellman, Randall B.; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I.; Santos, Veronica J.
2015-01-01
Many upper limb amputees experience an incessant, post-amputation “phantom limb pain” and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech “rubber hand” illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the “BairClaw” presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger–object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden. PMID:25745391
Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J
2015-01-01
Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.
2015-12-01
David Myers1 Timothy Gowen2 Angus Rupert3 Ben Lawson3 Justin Dailey3,4 1Chesapeake Technology International 2Naval Aviation Center for... Angus Rupert of the USAARL. The algorithm is described in “Configuration Parameters for the Tactile Situation Awareness System (TSAS)” dated July 2010
He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun
2018-04-18
Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.
2013-01-01
incapacitating simulator sickness, current use of medications that alter sleep/ wake cycles, current acute illness, and significant sleep deprivation...tactile cueing using pager motors were not successful in the aviation environment due to ambient noise and vibration obscuring the tactile stimulus (see...continuous wakefulness ). Each day, each participant performed four, 10-minute stabilized hovering A B 6 maneuvers (at 70 feet above ground level
Microprocessor controlled transdermal drug delivery.
Subramony, J Anand; Sharma, Ashutosh; Phipps, J B
2006-07-06
Transdermal drug delivery via iontophoresis is reviewed with special focus on the delivery of lidocaine for local anesthesia and fentanyl for patient controlled acute therapy such as postoperative pain. The role of the microprocessor controller in achieving dosimetry, alternating/reverse polarity, pre-programmed, and sensor-based delivery is highlighted. Unique features such as the use of tactile signaling, telemetry control, and pulsatile waveforms in iontophoretic drug delivery are described briefly.
Mobile Autonomous Humanoid Assistant
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.
2004-01-01
A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.
Devecioğlu, İsmail; Güçlü, Burak
2015-03-15
Rat skin is innervated by mechanoreceptive fibers similar to those in other mammals. Tactile experiments with behaving rats mostly focus on the vibrissal system which does not exist in humans. The aim of this study was to design and implement a novel vibrotactile system to stimulate the glabrous skin of behaving rats during operant conditioning. A computer-controlled vibrotactile system was developed for various tasks in which the volar surface of unrestrained rats' fore- and hindpaws was stimulated in an operant chamber. The operant chamber was built from off-the-shelf components. A highly accurate electrodynamic shaker with a novel multi-probe design was used for generating mechanical displacements. Twenty-five rats were trained for four sequential tasks: (A) middle-lever (trial start signal) press, (B) side-lever press with an associated visual cue, (C) similar to (B) with the addition of an auditory/tactile stimulus, (D) auditory/tactile detection (yes/no) task. Out of 9 rats which could complete the tactile version of this training schedule, 5 had over 70% accuracy in the tactile version of the detection task. Unlike actuators for stimulating whiskers, this system does not require a particular head/body alignment and can be used with freely behaving animals. The vibrotactile system was found to be effective for conditioning freely behaving rats based on stimuli applied on the glabrous skin. However, detection accuracies were lower compared to those in tasks involving whisker stimulation reported previously, probably due to differences in cortical processing. Copyright © 2015 Elsevier B.V. All rights reserved.
The story of laser brazing technology
NASA Astrophysics Data System (ADS)
Hoffmann, Peter; Dierken, Roland
2012-03-01
This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy Kumar; Mandal, Dipankar
2017-03-01
A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.
Touch to see: neuropsychological evidence of a sensory mirror system for touch.
Bolognini, Nadia; Olgiati, Elena; Xaiz, Annalisa; Posteraro, Lucio; Ferraro, Francesco; Maravita, Angelo
2012-09-01
The observation of touch can be grounded in the activation of brain areas underpinning direct tactile experience, namely the somatosensory cortices. What is the behavioral impact of such a mirror sensory activity on visual perception? To address this issue, we investigated the causal interplay between observed and felt touch in right brain-damaged patients, as a function of their underlying damaged visual and/or tactile modalities. Patients and healthy controls underwent a detection task, comprising visual stimuli depicting touches or without a tactile component. Touch and No-touch stimuli were presented in egocentric or allocentric perspectives. Seeing touches, regardless of the viewing perspective, differently affects visual perception depending on which sensory modality is damaged: In patients with a selective visual deficit, but without any tactile defect, the sight of touch improves the visual impairment; this effect is associated with a lesion to the supramarginal gyrus. In patients with a tactile deficit, but intact visual perception, the sight of touch disrupts visual processing, inducing a visual extinction-like phenomenon. This disruptive effect is associated with the damage of the postcentral gyrus. Hence, a damage to the somatosensory system can lead to a dysfunctional visual processing, and an intact somatosensory processing can aid visual perception.
Sklar, A E; Sarter, N B
1999-12-01
Observed breakdowns in human-machine communication can be explained, in part, by the nature of current automation feedback, which relies heavily on focal visual attention. Such feedback is not well suited for capturing attention in case of unexpected changes and events or for supporting the parallel processing of large amounts of data in complex domains. As suggested by multiple-resource theory, one possible solution to this problem is to distribute information across various sensory modalities. A simulator study was conducted to compare the effectiveness of visual, tactile, and redundant visual and tactile cues for indicating unexpected changes in the status of an automated cockpit system. Both tactile conditions resulted in higher detection rates for, and faster response times to, uncommanded mode transitions. Tactile feedback did not interfere with, nor was its effectiveness affected by, the performance of concurrent visual tasks. The observed improvement in task-sharing performance indicates that the introduction of tactile feedback is a promising avenue toward better supporting human-machine communication in event-driven, information-rich domains.
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-Section Sensing and Vibrotactile Perception for Walking Guide of Visually Impaired Person.
Jeong, Gu-Young; Yu, Kee-Ho
2016-07-12
Electronic Travel Aids (ETAs) improve the mobility of visually-impaired persons, but it is not easy to develop an ETA satisfying all the factors needed for reliable object detection, effective notification, and actual usability. In this study, the authors developed an easy-to-use ETA having the function of reliable object detection and its successful feedback to the user by tactile stimulation. Seven ultrasonic sensors facing in different directions detect obstacles in the walking path, while vibrators in the tactile display stimulate the hand according to the distribution of obstacles. The detection of ground drop-offs activates the electromagnetic brakes linked to the rear wheels. To verify the feasibility of the developed ETA in the outdoor environment, walking tests by blind participants were performed, and the evaluation of safety to ground drop-offs was carried out. From the experiment, the feasibility of the developed ETA was shown to be sufficient if the sensor ranges for hanging obstacle detection is improved and learning time is provided for the ETA. Finally, the light-weight and low cost ETA designed and assembled based on the evaluation of the developed ETA is introduced to show the improvement of portability and usability, and is compared with the previously developed ETAs.
Multi-Section Sensing and Vibrotactile Perception for Walking Guide of Visually Impaired Person
Jeong, Gu-Young; Yu, Kee-Ho
2016-01-01
Electronic Travel Aids (ETAs) improve the mobility of visually-impaired persons, but it is not easy to develop an ETA satisfying all the factors needed for reliable object detection, effective notification, and actual usability. In this study, the authors developed an easy-to-use ETA having the function of reliable object detection and its successful feedback to the user by tactile stimulation. Seven ultrasonic sensors facing in different directions detect obstacles in the walking path, while vibrators in the tactile display stimulate the hand according to the distribution of obstacles. The detection of ground drop-offs activates the electromagnetic brakes linked to the rear wheels. To verify the feasibility of the developed ETA in the outdoor environment, walking tests by blind participants were performed, and the evaluation of safety to ground drop-offs was carried out. From the experiment, the feasibility of the developed ETA was shown to be sufficient if the sensor ranges for hanging obstacle detection is improved and learning time is provided for the ETA. Finally, the light-weight and low cost ETA designed and assembled based on the evaluation of the developed ETA is introduced to show the improvement of portability and usability, and is compared with the previously developed ETAs. PMID:27420060
Towards explaining spatial touch perception: Weighted integration of multiple location codes
Badde, Stephanie; Heed, Tobias
2016-01-01
ABSTRACT Touch is bound to the skin – that is, to the boundaries of the body. Yet, the activity of neurons in primary somatosensory cortex just mirrors the spatial distribution of the sensors across the skin. To determine the location of a tactile stimulus on the body, the body's spatial layout must be considered. Moreover, to relate touch to the external world, body posture has to be evaluated. In this review, we argue that posture is incorporated, by default, for any tactile stimulus. However, the relevance of the external location and, thus, its expression in behaviour, depends on various sensory and cognitive factors. Together, these factors imply that an external representation of touch dominates over the skin-based, anatomical when our focus is on the world rather than on our own body. We conclude that touch localization is a reconstructive process that is adjusted to the context while maintaining all available spatial information. PMID:27327353
Tapered whiskers are required for active tactile sensation.
Hires, Samuel Andrew; Pammer, Lorenz; Svoboda, Karel; Golomb, David
2013-11-19
Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.
Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.
Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting
2018-04-01
Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Market study: Tactile paging system
NASA Technical Reports Server (NTRS)
1977-01-01
A market survey was conducted regarding the commercialization potential and key market factors relevant to a tactile paging system for deaf-blind people. The purpose of the tactile paging system is to communicate to the deaf-blind people in an institutional environment. The system consists of a main console and individual satellite wrist units. The console emits three signals by telemetry to the wrist com (receiving unit) which will measure approximately 2 x 4 x 3/4 inches and will be fastened to the wrist by a strap. The three vibration signals are fire alarm, time period indication, and a third signal which will alert the wearer of the wrist com to the fact that the pin on the top of the wrist is emitting a morse coded message. The Morse code message can be felt and recognized with the finger.
Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
Okamura, Allison M.
2009-01-01
Purpose of Review Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal. It is hypothesized that the lack of haptic (force and tactile) feedback presented to the surgeon is a limiting factor. This review explains the technical challenges of creating haptic feedback for robot-assisted surgery and provides recent results that evaluate the effectiveness of haptic feedback in mock surgical tasks. Recent Findings Haptic feedback systems for RMIS are still under development and evaluation. Most provide only force feedback, with limited fidelity. The major challenge at this time is sensing forces applied to the patient. A few tactile feedback systems for RMIS have been created, but their practicality for clinical implementation needs to be shown. It is particularly difficult to sense and display spatially distributed tactile information. The cost-benefit ratio for haptic feedback in RMIS has not been established. Summary The designs of existing commercial RMIS systems are not conducive for force feedback, and creative solutions are needed to create compelling tactile feedback systems. Surgeons, engineers, and neuroscientists should work together to develop effective solutions for haptic feedback in RMIS. PMID:19057225
Andersen, Lau M.
2018-01-01
An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject. PMID:29403349
Andersen, Lau M
2018-01-01
An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject.
Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; ...
2014-03-26
Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. In this paper, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts providemore » precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of “epidermal” electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. Finally, the results have the potential to address important unmet needs in chronic wound management.« less
Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R Chad; Bonifas, Andrew P; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A; Huang, Yonggang; West, Dennis P; Paller, Amy S; Alam, Murad; Yeo, Woon-Hong; Rogers, John A
2014-10-01
Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Availability of vision and tactile gating: vision enhances tactile sensitivity.
Colino, Francisco L; Lee, Ji-Hang; Binsted, Gordon
2017-01-01
A multitude of events bombard our sensory systems at every moment of our lives. Thus, it is important for the sensory and motor cortices to gate unimportant events. Tactile suppression is a well-known phenomenon defined as a reduced ability to detect tactile events on the skin before and during movement. Previous experiments (Buckingham et al. in Exp Brain Res 201(3):411-419, 2010; Colino et al. in Physiol Rep 2(3):e00267, 2014) found detection rates decrease just prior to and during finger abduction and decrease according to the proximity of the moving effector. However, what effect does vision have on tactile gating? There is ample evidence (see Serino and Haggard in Neurosci Biobehav Rev 34:224-236, 2010) observing increased tactile acuity when participants see their limbs. The present study examined how tactile detection changes in response to visual condition (vision/no vision). Ten human participants used their right hand to reach and grasp a cylinder. Tactors were attached to the index finger and the forearm of both the right and left arm and vibrated at various epochs relative to a "go" tone. Results replicate previous findings from our laboratory (Colino et al. in Physiol Rep 2(3):e00267, 2014). Also, tactile acuity decreased when participants did not have vision. These results indicate that the vision affects the somatosensation via inputs from parietal areas (Konen and Haggard in Cereb Cortex 24(2):501-507, 2014) but does so in a reach-to-grasp context.
Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired.
Rastogi, Ravi; Pawluk, T V Dianne; Ketchum, Jessica
2013-07-01
One possibility of providing access to visual graphics for those who are visually impaired is to present them tactually: unfortunately, details easily available to vision need to be magnified to be accessible through touch. For this, we propose an "intuitive" zooming algorithm to solve potential problems with directly applying visual zooming techniques to haptic displays that sense the current location of a user on a virtual diagram with a position sensor and, then, provide the appropriate local information either through force or tactile feedback. Our technique works by determining and then traversing the levels of an object tree hierarchy of a diagram. In this manner, the zoom steps adjust to the content to be viewed, avoid clipping and do not zoom when no object is present. The algorithm was tested using a small, "mouse-like" display with tactile feedback on pictures representing houses in a community and boats on a lake. We asked the users to answer questions related to details in the pictures. Comparing our technique to linear and logarithmic step zooming, we found a significant increase in the correctness of the responses (odds ratios of 2.64:1 and 2.31:1, respectively) and usability (differences of 36% and 19%, respectively) using our "intuitive" zooming technique.
Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah
2014-10-18
Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli
Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.
2007-01-01
The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760
Dynamics of fingertip contact during the onset of tangential slip
Delhaye, Benoit; Lefèvre, Philippe; Thonnard, Jean-Louis
2014-01-01
Through highly precise perceptual and sensorimotor activities, the human tactile system continuously acquires information about the environment. Mechanical interactions between the skin at the point of contact and a touched surface serve as the source of this tactile information. Using a dedicated custom robotic platform, we imaged skin deformation at the contact area between the finger and a flat surface during the onset of tangential sliding movements in four different directions (proximal, distal, radial and ulnar) and with varying normal force and tangential speeds. This simple tactile event evidenced complex mechanics. We observed a reduction of the contact area while increasing the tangential force and proposed to explain this phenomenon by nonlinear stiffening of the skin. The deformation's shape and amplitude were highly dependent on stimulation direction. We conclude that the complex, but highly patterned and reproducible, deformations measured in this study are a potential source of information for the central nervous system and that further mechanical measurement are needed to better understand tactile perceptual and motor performances. PMID:25253033
Head-controlled assistive telerobot with extended physiological proprioception capability
NASA Astrophysics Data System (ADS)
Salganicoff, Marcos; Rahman, Tariq; Mahoney, Ricardo; Pino, D.; Jayachandran, Vijay; Kumar, Vijay; Chen, Shoupu; Harwin, William S.
1995-12-01
People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.
3D interferometric shape measurement technique using coherent fiber bundles
NASA Astrophysics Data System (ADS)
Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen
2017-06-01
In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.
1998-01-01
consisted of a videomicroscopy system and a tactile stimulator system. By using this setup, real-time images from the contact region as wvell as the... Videomicroscopy system . 4.3.2 Tactile stimulator svsteln . 4.3.3 Real-time imaging setup. 4.3.4 Active and passive touch experiments. 4.3.5...contact process is an important step. In this study, therefore, a videomicroscopy system was built’to visualize the contact re- gion of the fingerpad
Kaufmann, Tobias; Holz, Elisa M; Kübler, Andrea
2013-01-01
This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the study.
NASA Technical Reports Server (NTRS)
1994-01-01
This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.
1991-12-01
gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130
Tactile Data Entry for Extravehicular Activity
NASA Technical Reports Server (NTRS)
Adams, Richard J.; Olowin, Aaron B.; Hannaford, Blake; Sands, O Scott
2012-01-01
In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves.
Attention affects visual perceptual processing near the hand.
Cosman, Joshua D; Vecera, Shaun P
2010-09-01
Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.
Magalhães, Fernando Henrique; Kohn, André Fabio
2011-08-01
Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e., additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g., applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g., canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display
Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok
2008-01-01
This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor. PMID:18317520
Haptic stylus and empirical studies on braille, button, and texture display.
Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok
2008-01-01
This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor.
The phase of prestimulus alpha oscillations affects tactile perception.
Ai, Lei; Ro, Tony
2014-03-01
Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.
Lin, C H; Cheng, P H; Shen, S T
2014-01-01
Blinds and severe visual impairments can utilize tactile sticks to assist their walking. However, they cannot fully understand the dangling objects in front of their walking routes. This research proposed a mobile real-time dangling objects sensing (RDOS) prototype, which is located on the cap to sense any front barrier. This device utilized cheap ultrasonic sensor to act as another complement eye for blinds to understand the front dangling objects. Meanwhile, the RDOS device can dynamically adjust the sensor's front angle that is depended on the user's body height and promote the sensing accuracy. Meanwhile, two major required algorithms, height-angle measurement and ultrasonic sensor alignment, are proposed with this prototype. The research team also integrated the RDOS device prototype with mobile Android devices by communicating with Bluetooth to record the walking route.
Summary of workshop on the application of VLSI for robotic sensing
NASA Technical Reports Server (NTRS)
Brooks, T.; Wilcox, B.
1984-01-01
It was one of the objectives of the considered workshop to identify near, mid, and far-term applications of VLSI for robotic sensing and sensor data preprocessing. The workshop was also to indicate areas in which VLSI technology can provide immediate and future payoffs. A third objective is related to the promotion of dialog and collaborative efforts between research communities, industry, and government. The workshop was held on March 24-25, 1983. Conclusions and recommendations are discussed. Attention is given to the need for a pixel correction chip, an image sensor with 10,000 dynamic range, VLSI enhanced architectures, the need for a high-density serpentine memory, an LSI-tactile sensing program, an analog-signal preprocessor chip, a smart strain gage, a protective proximity envelope, a VLSI-proximity sensor program, a robot-net chip, and aspects of silicon micromechanics.
Probing with and into fingerprints.
Dahiya, Ravinder S; Gori, Monica
2010-07-01
A recent report by Scheibert et al. highlights the role of fingerprints in enhancing tactile sensitivity. By scanning a surface with a biometric force sensor they demonstrate the dominance of the frequencies that fall within the optimal sensitivity range of Pacinian afferents. The sensor, in this study, has a soft cover patterned with parallel ridges-mimicking the fingerprints. However, the skin structure is quite complex. Elasticity of the skin varies with depth and the ridge like pattern is comprised of not just papillary ridges or fingerprints. Besides fingerprints there exist intermediate ridges, positioned exactly under the papillary ridges, and limiting ridges at dermis-epidermis junction. These structures are usually considered as single unit. If so, it is important to revisit and see if the role of fingerprints remains the same, should the sensor cover have both fingerprints and intermediate ridges.
Yoshino, Atsuo; Okamoto, Yasumasa; Doi, Mitsuru; Okada, Go; Takamura, Masahiro; Ichikawa, Naho; Yamawaki, Shigeto
2017-01-01
Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS). However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder. PMID:29163243
Audio-tactile integration and the influence of musical training.
Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo
2014-01-01
Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.
Mechanics of finger-tip electronics
NASA Astrophysics Data System (ADS)
Su, Yewang; Li, Rui; Cheng, Huanyu; Ying, Ming; Bonifas, Andrew P.; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang
2013-10-01
Tactile sensors and electrotactile stimulators can provide important links between humans and virtual environments, through the sensation of touch. Soft materials, such as low modulus silicones, are attractive as platforms and support matrices for arrays sensors and actuators that laminate directly onto the fingertips. Analytic models for the mechanics of three dimensional, form-fitting finger cuffs based on such designs are presented here, along with quantitative validation using the finite element method. The results indicate that the maximum strains in the silicone and the embedded devices are inversely proportional to the square root of radius of curvature of the cuff. These and other findings can be useful in formulating designs for these and related classes of body-worn, three dimensional devices.
Is More Better? - Night Vision Enhancement System's Pedestrian Warning Modes and Older Drivers.
Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas
2010-01-01
Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers' workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers.
ERIC Educational Resources Information Center
Lund, Shelley K.; Troha, Jeanette M.
2008-01-01
This study used a single-subject multiple baseline across participants design to evaluate the effectiveness of a modified picture exchange communication system (PECS) teaching protocol with tactile symbols. Three students (two male, one female) aged 12-17 years who had autism and were blind participated in the study. The instructional program…
Tactile Instrument for Aviation
2000-07-30
response times using 8 tactor locations was repeated with a dual memory /tracking task or an air combat simulation to evaluate the effectiveness of the...Global Positioning/Inertial Navigation System technologies into a single system for evaluation in an UH-60 Helicopter. A 10-event test operation was... evaluation of the following technology areas need to be pursued: • Integration of tactile instruments with helmet mounted displays and 3D audio displays
2014-01-01
Advancement, specifically Mr. Ed McDaniel and Mr. Dan Seifert, who managed and pushed forward the Small Business Innovative Research (SBIR) process ...achievements. TSAS is a garment containing vibrotactile stimulators (called tactors) partially covering the torso. The garment provides aircraft flight...awareness. Working in conjunction with two SBIR companies, the recent CWP TSAS effort advanced the state of tactile cueing and delivered TSAS garments
Tactile communication using a CO(2) flux stimulation for blind or deafblind people.
da Cunha, Jose Carlos; Bordignon, Luiz Alberto; Nohama, Percy
2010-01-01
This paper describes a tactile stimulation system for producing nonvisual image patterns to blind or deafblind people. The stimulator yields a CO(2) pulsatile flux directed to the user's skin throughout a needle that is coupled to a 2-D tactile plotter. The fluxtactile plotter operates with two step motor mounted on a wood structure, controlled by a program developed to produce alphanumerical characters and geometric figures of different size and speed, which will be used to investigate the psychophysical properties of this kind of tactile communication. CO(2) is provided by a cylinder that delivers a stable flux, which is converted to a pulsatile mode through a high frequency solenoid valve that can chop it up to 1 kHz. Also, system temperature is controlled by a Peltier based device. Tests on the prototype indicate that the system is a valuable tool to investigate the psychophysical properties of the skin in response to stimulation by CO(2) jet, allowing a quantitative and qualitative analysis as a function of stimulation parameters. With the system developed, it was possible to plot the geometric figures proposed: triangles, rectangles and octagons, in different sizes and speeds, and verify the control of the frequency of CO(2) jet stimuli.
Barber, Daniel J; Reinerman-Jones, Lauren E; Matthews, Gerald
2015-05-01
Two experiments were performed to investigate the feasibility for robot-to-human communication of a tactile language using a lexicon of standardized tactons (tactile icons) within a sentence. Improvements in autonomous systems technology and a growing demand within military operations are spurring interest in communication via vibrotactile displays. Tactile communication may become an important element of human-robot interaction (HRI), but it requires the development of messaging capabilities approaching the communication power of the speech and visual signals used in the military. In Experiment 1 (N = 38), we trained participants to identify sets of directional, dynamic, and static tactons and tested performance and workload following training. In Experiment 2 (N = 76), we introduced an extended training procedure and tested participants' ability to correctly identify two-tacton phrases. We also investigated the impact of multitasking on performance and workload. Individual difference factors were assessed. Experiment 1 showed that participants found dynamic and static tactons difficult to learn, but the enhanced training procedure in Experiment 2 produced competency in performance for all tacton categories. Participants in the latter study also performed well on two-tacton phrases and when multitasking. However, some deficits in performance and elevation of workload were observed. Spatial ability predicted some aspects of performance in both studies. Participants may be trained to identify both single tactons and tacton phrases, demonstrating the feasibility of developing a tactile language for HRI. Tactile communication may be incorporated into multi-modal communication systems for HRI. It also has potential for human-human communication in challenging environments. © 2014, Human Factors and Ergonomics Society.
Active laser radar (lidar) for measurement of corresponding height and reflectance images
NASA Astrophysics Data System (ADS)
Froehlich, Christoph; Mettenleiter, M.; Haertl, F.
1997-08-01
For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments and industrial environments are presented. The paper concludes by summarizing results achieved in industrial environments and gives a short outlook to future work.
Algorithmic formulation of control problems in manipulation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1975-01-01
The basic characteristics of manipulator control algorithms are discussed. The state of the art in the development of manipulator control algorithms is briefly reviewed. Different end-point control techniques are described together with control algorithms which operate on external sensor (imaging, proximity, tactile, and torque/force) signals in realtime. Manipulator control development at JPL is briefly described and illustrated with several figures. The JPL work pays special attention to the front or operator input end of the control algorithms.
NASA Technical Reports Server (NTRS)
Vranish, John M.
1991-01-01
A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.
2008-08-01
objects and “ feel ” the forces applied on the object by the other individual or object. Feedback including active touch or proprioceptive signals (e.g...observer will notice that certain touches will feel “bright” or “cold.” In fact, the “experimenter/observer” has just activated his/her tactile cold...2008). More than a feeling : bringing touch into astronauts’ spatial orientation. Microgravity Science and Technology. (In press). [11] Vos, W.K
A Haptic Glove as a Tactile-Vision Sensory Substitution for Wayfinding.
ERIC Educational Resources Information Center
Zelek, John S.; Bromley, Sam; Asmar, Daniel; Thompson, David
2003-01-01
A device that relays navigational information using a portable tactile glove and a wearable computer and camera system was tested with nine adults with visual impairments. Paths traversed by subjects negotiating an obstacle course were not qualitatively different from paths produced with existing wayfinding devices and hitting probabilities were…
Image processing for a tactile/vision substitution system using digital CNN.
Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng
2006-01-01
In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.
Somatosensory discrimination deficits following pediatric cerebral malaria.
Dugbartey, A T; Spellacy, F J; Dugbartey, M T
1998-09-01
Pathologic studies of central nervous system damage in human falciparum malaria indicate primary localization in the cerebral white matter. We report a sensory-perceptual investigation of 20 Ghanaian children with a recent history of cerebral malaria who were age-, gender-, and education-matched with 20 healthy control subjects. Somatosensory examinations failed to show any evidence of hemianesthesia, pseudohemianesthesia, or extinction to double simultaneous tactile stimulation. While unilateral upper limb testing revealed intact unimanual tactile roughness discrimination, bimanual tactile discrimination, however, was significantly impaired in the cerebral malaria group. A strong negative correlation (r = -0.72) between coma duration and the bimanual tactile roughness discrimination test was also found. An inefficiency in the integrity of callosal fibers appear to account for our findings, although alternative subcortical mechanisms known to be involved in information transfer across the cerebral hemispheres may be compromised as well.
Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.
Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J
2017-12-01
Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.
Braille in the Sighted: Teaching Tactile Reading to Sighted Adults.
Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Hańczur, Paweł; Szwed, Marcin
2016-01-01
Blind people are known to have superior perceptual abilities in their remaining senses. Several studies suggest that these enhancements are dependent on the specific experience of blind individuals, who use those remaining senses more than sighted subjects. In line with this view, sighted subjects, when trained, are able to significantly progress in relatively simple tactile tasks. However, the case of complex tactile tasks is less obvious, as some studies suggest that visual deprivation itself could confer large advantages in learning them. It remains unclear to what extent those complex skills, such as braille reading, can be learnt by sighted subjects. Here we enrolled twenty-nine sighted adults, mostly braille teachers and educators, in a 9-month braille reading course. At the beginning of the course, all subjects were naive in tactile braille reading. After the course, almost all were able to read whole braille words at a mean speed of 6 words-per-minute. Subjects with low tactile acuity did not differ significantly in braille reading speed from the rest of the group, indicating that low tactile acuity is not a limiting factor for learning braille, at least at this early stage of learning. Our study shows that most sighted adults can learn whole-word braille reading, given the right method and a considerable amount of motivation. The adult sensorimotor system can thus adapt, to some level, to very complex tactile tasks without visual deprivation. The pace of learning in our group was comparable to congenitally and early blind children learning braille in primary school, which suggests that the blind's mastery of complex tactile tasks can, to a large extent, be explained by experience-dependent mechanisms.
Braille in the Sighted: Teaching Tactile Reading to Sighted Adults
Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Hańczur, Paweł; Szwed, Marcin
2016-01-01
Blind people are known to have superior perceptual abilities in their remaining senses. Several studies suggest that these enhancements are dependent on the specific experience of blind individuals, who use those remaining senses more than sighted subjects. In line with this view, sighted subjects, when trained, are able to significantly progress in relatively simple tactile tasks. However, the case of complex tactile tasks is less obvious, as some studies suggest that visual deprivation itself could confer large advantages in learning them. It remains unclear to what extent those complex skills, such as braille reading, can be learnt by sighted subjects. Here we enrolled twenty-nine sighted adults, mostly braille teachers and educators, in a 9-month braille reading course. At the beginning of the course, all subjects were naive in tactile braille reading. After the course, almost all were able to read whole braille words at a mean speed of 6 words-per-minute. Subjects with low tactile acuity did not differ significantly in braille reading speed from the rest of the group, indicating that low tactile acuity is not a limiting factor for learning braille, at least at this early stage of learning. Our study shows that most sighted adults can learn whole-word braille reading, given the right method and a considerable amount of motivation. The adult sensorimotor system can thus adapt, to some level, to very complex tactile tasks without visual deprivation. The pace of learning in our group was comparable to congenitally and early blind children learning braille in primary school, which suggests that the blind’s mastery of complex tactile tasks can, to a large extent, be explained by experience-dependent mechanisms. PMID:27187496
Method and device for producing a tactile display using an electrorheological fluid
NASA Technical Reports Server (NTRS)
Garner, H. Douglas (Inventor)
1996-01-01
A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.
Tactile display device using an electrorheological fluid
NASA Technical Reports Server (NTRS)
Garner, H. Douglas (Inventor)
1994-01-01
A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.
Transmission of olfactory information for tele-medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1995-01-01
While the inclusion of visual, aural, and tactile senses into virtual reality systems is widespread, the sense of smell has been largely ignored. We have developed a chemical vapor sensing system for the automated identification of chemical vapors (smells). Our prototype chemical vapor sensing system is composed of an array of tin-oxide vapor sensors coupled to an artificial neural net-work. The artificial neural network is used in the recognition of different smells and is constructed as a standard multilayer feed-forward network trained with the backpropagation algorithm. When a chemical sensor array is combined with an automated pattern identifier, it ismore » often referred to as an electronic or artificial nose. Applications of electronic noses include monitoring food and beverage odors, automated flavor control, analyzing fuel mixtures, and quantifying individual components in gas mixtures. Our prototype electronic nose has been used to identify odors from common household chemicals. An electronic nose will potentially be a key component in an olfactory input to a telepresent virtual reality system. The identified odor would be electronically transmitted from the electronic nose at one site to an odor generation system at another site. This combination would function as a mechanism for transmitting olfactory information for telepresence. This would have direct applicability in the area of telemedicine since the sense of smell is an important sense to the physician and surgeon. In this paper, our chemical sensing system (electronic nose) is presented along with a proposed method for regenerating the transmitted olfactory information.« less
Sensing and Tactile Artificial Muscles from Reactive Materials
Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V.; Smit, Mascha Afra; Otero, Toribio Fernández
2010-01-01
Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires. PMID:22319265
General visual robot controller networks via artificial evolution
NASA Astrophysics Data System (ADS)
Cliff, David; Harvey, Inman; Husbands, Philip
1993-08-01
We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.
Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain.
Moseley, G Lorimer; Zalucki, Nadia M; Wiech, Katja
2008-07-31
Chronic pain is often associated with reduced tactile acuity. A relationship exists between pain intensity, tactile acuity and cortical reorganisation. When pain resolves, tactile function improves and cortical organisation normalises. Tactile acuity can be improved in healthy controls when tactile stimulation is associated with a behavioural objective. We hypothesised that, in patients with chronic limb pain and decreased tactile acuity, discriminating between tactile stimuli would decrease pain and increase tactile acuity, but tactile stimulation alone would not. Thirteen patients with complex regional pain syndrome (CRPS) of one limb underwent a waiting period and then approximately 2 weeks of tactile stimulation under two conditions: stimulation alone or discrimination between stimuli according to their diameter and location. There was no change in pain (100 mm VAS) or two-point discrimination (TPD) during a no-treatment waiting period, nor during the stimulation phase (p > 0.32 for both). Pain and TPD were lower after the discrimination phase [mean (95% CI) effect size for pain VAS = 27 mm (14-40 mm) and for TPD = 5.7 mm (2.9-8. ), p < 0.015 for both]. These gains were maintained at three-month follow-up. We conclude that tactile stimulation can decrease pain and increase tactile acuity when patients are required to discriminate between the type and location of tactile stimuli.
Functionalization of Tactile Sensation for Robot Based on Haptograph and Modal Decomposition
NASA Astrophysics Data System (ADS)
Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi
In the real world, robots should be able to recognize the environment in order to be of help to humans. A video camera and a laser range finder are devices that can help robots recognize the environment. However, these devices cannot obtain tactile information from environments. Future human-assisting-robots should have the ability to recognize haptic signals, and a disturbance observer can possibly be used to provide the robot with this ability. In this study, a disturbance observer is employed in a mobile robot to functionalize the tactile sensation. This paper proposes a method that involves the use of haptograph and modal decomposition for the haptic recognition of road environments. The haptograph presents a graphic view of the tactile information. It is possible to classify road conditions intuitively. The robot controller is designed by considering the decoupled modal coordinate system, which consists of translational and rotational modes. Modal decomposition is performed by using a quarry matrix. Once the robot is provided with the ability to recognize tactile sensations, its usefulness to humans will increase.
Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface
NASA Astrophysics Data System (ADS)
Rowe, Gabriel I.; Mamishev, Alexander V.
2004-07-01
Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.
NASA Astrophysics Data System (ADS)
Lee, Minho; Cho, Nahm-Gyoo
2013-09-01
A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.
Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao
2018-05-09
Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.
Tanaka, T; Kojima, S; Takeda, H; Ino, S; Ifukube, T
2001-12-15
The maintenance of postural balance depends on effective and efficient feedback from various sensory inputs. The importance of auditory inputs in this respect is not, as yet, fully understood. The purpose of this study was to analyse how the moving auditory stimuli could affect the standing balance in healthy adults of different ages. The participants of the study were 12 healthy volunteers, who were divided into two age categories: the young group (mean = 21.9 years) and the elderly group (mean = 68.9 years). The instrument used for evaluation of standing balance was a force plate for measuring body sway parameters. The toe pressure was measured using the F-scan Tactile Sensor System. The moving auditory stimulus produced a white-noise sound and binaural cue using the Beachtron Affordable 3D Audio system. The moving auditory stimulus conditions were employed by having the sound come from the right to left or vice versa at the height of the participant's ears. Participants were asked to stand on the force plate in the Romberg position for 20 s with either eyes opened or eyes closed for analysing the effect of visual input. Simultaneously, all participants tried to remain in the standing position with and without auditory stimulation that the participants heard from the headphone. In addition, the variables of body sway were measured under four conditions for analysing the effect of decreased tactile sensation of toes and feet soles: standing on the normal surface (NS) or soft surface (SS) with and without auditory stimulation. The participants were asked to stand in a total of eight conditions. The results showed that the lateral body sway of the elderly group was more influenced than that of the young group by the lateral moving auditory stimulation. The analysis of toe pressure indicated that all participants used their left feet more than their right feet to maintain balance. Moreover, the elderly had the tendency to be stabilized mainly by use of their heels. The young group were mainly stabilized by the toes of their feet. The results suggest that the elderly may need a more appropriate stimulus of tactile and auditory sense as a feedback system than the young for maintaining and control of their standing postures.
Tactile Signing with One-Handed Perception
ERIC Educational Resources Information Center
Mesch, Johanna
2013-01-01
Tactile signing among persons with deaf-blindness is not homogenous; rather, like other forms of language, it exhibits variation, especially in turn taking. Early analyses of tactile Swedish Sign Language, tactile Norwegian Sign Language, and tactile French Sign Language focused on tactile communication with four hands, in which partially blind or…
Fast and accurate edge orientation processing during object manipulation
Flanagan, J Randall; Johansson, Roland S
2018-01-01
Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804
Yu, Yang; Niederleithinger, Ernst; Li, Jianchun; Wiggenhauser, Herbert
2017-01-01
This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. PMID:29258274
Tactile Sensory Supplementation of Gravitational References to Optimize Sensorimotor Recovery
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Bloomberg, J. J.; Wood, S. J.
2007-01-01
Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y- Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. This investigation has explored the effects of Tongue Elecrotactile Feedback (TEF) for control of posture and movement as a sensorimotor countermeasure, specifically addressing the optimal location of movement sensors.
A real-time compliance mapping system using standard endoscopic surgical forceps.
Fakhry, Morkos; Bello, Fernando; Hanna, George B
2009-04-01
In endoscopic surgery, the use of long surgical instruments through access ports diminishes tactile feedback and degrades the surgeon's ability to identify hidden tissue abnormalities. To overcome this constraint, we developed a real-time compliance mapping system that is composed of: 1) a standard surgical instrument with a high-precision sensor configuration design; 2) real-time objective interpretation of the output signals for tissue identification; and 3) a novel human-computer interaction technique using interactive voice and handle force monitoring techniques to suit operating theater working environment. The system was calibrated and used in clinical practice in four routine endoscopic human procedures. In a laboratory-based experiment to compare the tissue discriminatory power of the system with that of surgeons' hands, the system's tissue discriminatory power was three times more sensitive and 10% less specific. The data acquisition precision was tested using principal component analysis (R(2)X = 0.975, Q2 [cumulative (cum)] = 0.808 ) and partial least square discriminate analysis (R(2)X = 0.903, R(2)Y = 0.729, Q2 (cum) = 0.572).
Technology for an intelligent, free-flying robot for crew and equipment retrieval in space
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.
1990-01-01
Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.
Pasluosta, Cristian; Kiele, Patrick; Stieglitz, Thomas
2018-04-01
The somatosensory system contributes substantially to the integration of multiple sensor modalities into perception. Tactile sensations, proprioception and even temperature perception are integrated to perceive embodiment of our limbs. Damage of somatosensory networks can severely affect the execution of daily life activities. Peripheral injuries are optimally corrected via direct interfacing of the peripheral nerves. Recent advances in implantable devices, stimulation paradigms, and biomimetic sensors enabled the restoration of natural sensations after amputation of the limb. The refinement of stimulation patterns to deliver natural feedback that can be interpreted intuitively such to prescind from long-learning sessions is crucial to function restoration. For this review, we collected state-of-the-art knowledge on the evolution of stimulation paradigms from single fiber stimulation to the eliciting of multisensory sensations. Data from the literature are structured into six sections: (a) physiology of the somatosensory system; (b) stimulation of single fibers; (c) restoral of multisensory percepts; (d) closure of the control loop in hand prostheses; (e) sensory restoration and the sense of embodiment, and (f) methodologies to assess stimulation outcomes. Full functional recovery demands further research on multisensory integration and brain plasticity, which will bring new paradigms for intuitive sensory feedback in the next generation of limb prostheses. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Zelic, Gregory; Mottet, Denis; Lagarde, Julien
2012-01-01
Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception. PMID:22384211
An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception
Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel
2017-01-01
Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936
ERIC Educational Resources Information Center
Williams, Michael D.; Ray, Christopher T.; Griffith, Jennifer; De l'Aune, William
2011-01-01
The promise of novel technological strategies and solutions to assist persons with visual impairments (that is, those who are blind or have low vision) is frequently discussed and held to be widely beneficial in countless applications and daily activities. One such approach involving a tactile-vision sensory substitution modality as a mechanism to…
Is More Better? — Night Vision Enhancement System’s Pedestrian Warning Modes and Older Drivers
Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas
2010-01-01
Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers’ workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers. PMID:21050616
Ding, Li; Han, Long-zhu; Yang, Chun-xin; Yang, Feng; Yuan, Xiu-gan
2005-02-01
To observe the effects of active heating system for spacesuit gloves on extravehicular working performance. After analyzing the factors with gloves influence on the working performance, the effects of active heating system for gloves were studied experimentally with aspects to fatigue, hand strength, dexterity and tactile sensing. 1) Heating-system had not influence to grip; 2) Heating-system had 17% influence to fatigue except specific person; 3) Nut assembly and nipping pin showed that heating-system had little influence to dexterity; 4) Apperceiving shape of object and two-point distance showed heating-system had little influence to tactility. The active heating method is rational and has little influence on working performance.
Tactile agnosia. Underlying impairment and implications for normal tactile object recognition.
Reed, C L; Caselli, R J; Farah, M J
1996-06-01
In a series of experimental investigations of a subject with a unilateral impairment of tactile object recognition without impaired tactile sensation, several issues were addressed. First, is tactile agnosia secondary to a general impairment of spatial cognition? On tests of spatial ability, including those directed at the same spatial integration process assumed to be taxed by tactile object recognition, the subject performed well, implying a more specific impairment of high level, modality specific tactile perception. Secondly, within the realm of high level tactile perception, is there a distinction between the ability to derive shape ('what') and spatial ('where') information? Our testing showed an impairment confined to shape perception. Thirdly, what aspects of shape perception are impaired in tactile agnosia? Our results indicate that despite accurate encoding of metric length and normal manual exploration strategies, the ability tactually to perceive objects with the impaired hand, deteriorated as the complexity of shape increased. In addition, asymmetrical performance was not found for other body surfaces (e.g. her feet). Our results suggest that tactile shape perception can be disrupted independent of general spatial ability, tactile spatial ability, manual shape exploration, or even the precise perception of metric length in the tactile modality.
Yang, Jiajia; Ogasa, Takashi; Ohta, Yasuyuki; Abe, Koji; Wu, Jinglong
2010-01-01
There is a need to differentiate between patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from normal-aged controls (NC) in the field of clinical drug discovery. In this study, we developed a tactile angle discrimination system and examined whether the ability to discriminate tactile angle differed between patients with MCI and AD and the NC group. Thirty-seven subjects were divided into three groups: NC individuals (n=14); MCI patients (n=10); and probable AD patients (n=13). All subjects were asked to differentiate the relative sizes of the reference angle (60°) and one of eight comparison angles by passive touch. The accuracy of angle discrimination was measured and the discrimination threshold was calculated. We discovered that there were significant differences in the angle discrimination thresholds of AD patients compared to the NC group. Interestingly, we also found that ability to discriminate tactile angle of MCI patients were significantly lower than that of the NC group. This is the first study to report that patients with MCI and AD have substantial performance deficits in tactile angle discrimination compared to the NC individuals. This finding may provide a monitor and therapeutic approach in AD diagnosis and treatment.
Rizza, Aurora; Terekhov, Alexander V; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O'Regan, J Kevin
2018-01-01
Tactile speech aids, though extensively studied in the 1980's and 1990's, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level.
Rizza, Aurora; Terekhov, Alexander V.; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O’Regan, J. Kevin
2018-01-01
Tactile speech aids, though extensively studied in the 1980’s and 1990’s, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level. PMID:29875719
Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di
2015-08-01
In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
VERDEX: A virtual environment demonstrator for remote driving applications
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.
Semi-automatic aircraft control system
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor)
1978-01-01
A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.
Tactile Robotic Topographical Mapping Without Force or Contact Sensors
NASA Technical Reports Server (NTRS)
Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian
2008-01-01
A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.
An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation
Cho, Chunhee; Park, JeeWoong
2018-01-01
At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle. PMID:29662008
An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation.
Cho, Chunhee; Park, JeeWoong
2018-04-14
At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle.
Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound.
Hoshi, T; Takahashi, M; Iwamoto, T; Shinoda, H
2010-01-01
This paper describes a tactile display which provides unrestricted tactile feedback in air without any mechanical contact. It controls ultrasound and produces a stress field in a 3D space. The principle is based on a nonlinear phenomenon of ultrasound: Acoustic radiation pressure. The fabricated prototype consists of 324 airborne ultrasound transducers, and the phase and intensity of each transducer are controlled individually to generate a focal point. The DC output force at the focal point is 16 mN and the diameter of the focal point is 20 mm. The prototype produces vibrations up to 1 kHz. An interaction system including the prototype is also introduced, which enables users to see and touch virtual objects.
NASA Astrophysics Data System (ADS)
Paganotti, A.; Reis, C.; Voelzke, M. R.
2017-12-01
This work deals with the use of tactile materials as a pedagogical tool for the teaching of Astronomy, and this material was used in a didactic activity with 44 students of the public elementary school in Minas Gerais. A visually impaired student and another hearing impaired participated, being these the focus of the research. With the tactile visual material elaborated, the objective was to develop themes such as phases of the Moon, eclipses and Solar System. Two questionnaires were applied and revealed an improvement in the concepts related to Astronomy and in the socialization of disabled students with the group after the didactic activity.
Auditory peripersonal space in humans.
Farnè, Alessandro; Làdavas, Elisabetta
2002-10-01
In the present study we report neuropsychological evidence of the existence of an auditory peripersonal space representation around the head in humans and its characteristics. In a group of right brain-damaged patients with tactile extinction, we found that a sound delivered near the ipsilesional side of the head (20 cm) strongly extinguished a tactile stimulus delivered to the contralesional side of the head (cross-modal auditory-tactile extinction). By contrast, when an auditory stimulus was presented far from the head (70 cm), cross-modal extinction was dramatically reduced. This spatially specific cross-modal extinction was most consistently found (i.e., both in the front and back spaces) when a complex sound was presented, like a white noise burst. Pure tones produced spatially specific cross-modal extinction when presented in the back space, but not in the front space. In addition, the most severe cross-modal extinction emerged when sounds came from behind the head, thus showing that the back space is more sensitive than the front space to the sensory interaction of auditory-tactile inputs. Finally, when cross-modal effects were investigated by reversing the spatial arrangement of cross-modal stimuli (i.e., touch on the right and sound on the left), we found that an ipsilesional tactile stimulus, although inducing a small amount of cross-modal tactile-auditory extinction, did not produce any spatial-specific effect. Therefore, the selective aspects of cross-modal interaction found near the head cannot be explained by a competition between a damaged left spatial representation and an intact right spatial representation. Thus, consistent with neurophysiological evidence from monkeys, our findings strongly support the existence, in humans, of an integrated cross-modal system coding auditory and tactile stimuli near the body, that is, in the peripersonal space.
Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J
2016-02-01
Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.
A CAI System for Visually Impaired Children to Improve Abilities of Orientation and Mobility
NASA Astrophysics Data System (ADS)
Yoneda, Takahiro; Kudo, Hiroaki; Minagawa, Hiroki; Ohnishi, Noboru; Matsubara, Shizuya
Some visually impaired children have difficulty in simple locomotion, and need orientation and mobility training. We developed a computer assisted instruction system which assists this training. A user realizes a task given by a tactile map and synthesized speech. The user walks around a room according to the task. The system gives the gap of walk path from its target path via both auditory and tactile feedback after the end of a task. Then the user can understand how well the user walked. We describe the detail of the proposed system and task, and the experimental result with three visually impaired children.
The 3-D vision system integrated dexterous hand
NASA Technical Reports Server (NTRS)
Luo, Ren C.; Han, Youn-Sik
1989-01-01
Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.
Technical integration of hippocampus, Basal Ganglia and physical models for spatial navigation.
Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony
2009-01-01
Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings.
Miniature Six-Axis Load Sensor for Robotic Fingertip
NASA Technical Reports Server (NTRS)
Diftler, Myron A.; Martin, Toby B.; Valvo, Michael C.; Rodriguez, Dagoberto; Chu, Mars W.
2009-01-01
A miniature load sensor has been developed as a prototype of tactile sensors that could fit within fingertips of anthropomorphic robot hands. The sensor includes a force-and-torque transducer in the form of a spring instrumented with at least six semiconductor strain gauges. The strain-gauge wires are secured to one side of an interface circuit board mounted at the base of the spring. This board protects the strain-gauge wires from damage that could otherwise occur as a result of finger motions. On the opposite side of the interface board, cables routed along the neutral axis of the finger route the strain-gauge output voltages to an analog-to-digital converter (A/D) board. The A/D board is mounted as close as possible to the strain gauges to minimize electromagnetic noise and other interference effects. The outputs of the A/D board are fed to a controller, wherein, by means of a predetermined calibration matrix, the digitized strain-gauge output voltages are converted to three vector components of force and three of torque exerted by or on the fingertip.
NASA Astrophysics Data System (ADS)
Huang, Bin; Wang, Xiaomeng; Li, Chengwei; Yi, Jiajing; Lu, Rongsheng; Tao, Jiayue
2016-09-01
This paper describes the design, working principle, as well as calibration of an air-floating six-axis force measurement platform, where the floating plate and nozzles were connected without contact, preventing inter-dimensional coupling and increasing precision significantly. The measurement repeatability error of the force size in the platform is less than 0.2% full scale (FS), which is significantly better than the precision of 1% FS in the six-axis force sensors on the current market. We overcame the difficulties of weight loading device in high-precision calibration by proposing a self-calibration method based on the floating plate gravity and met the calibration precision requirement of 0.02% FS. This study has general implications for the development and calibration of high-precision multi-axis force sensors. In particular, the air-floating six-axis force measurement platform could be applied to the calibration of some special sensors such as flexible tactile sensors and may be used as a micro-nano mechanical assembly platform for real-time assembly force testing.
Re-examining overlap between tactile and visual motion responses within hMT+ and STS
Jiang, Fang; Beauchamp, Michael S.; Fine, Ione
2015-01-01
Here we examine overlap between tactile and visual motion BOLD responses within the human MT+ complex. Although several studies have reported tactile responses overlapping with hMT+, many used group average analyses, leaving it unclear whether these responses were restricted to sub-regions of hMT+. Moreover, previous studies either employed a tactile task or passive stimulation, leaving it unclear whether or not tactile responses in hMT+ are simply the consequence of visual imagery. Here we carried out a replication of one of the classic papers finding tactile responses in hMT+ (Hagen et al. 2002). We mapped MT and MST in individual subjects using visual field localizers. We then examined responses to tactile motion on the arm, either presented passively or in the presence of a visual task performed at fixation designed to minimize visualization of the concurrent tactile stimulation. To our surprise, without a visual task, we found only weak tactile motion responses in MT (6% of voxels showing tactile responses) and MST (2% of voxels). With an unrelated visual task designed to withdraw attention from the tactile modality, responses in MST reduced to almost nothing (<1% regions). Consistent with previous results, we did observe tactile responses in STS regions superior and anterior to hMT+. Despite the lack of individual overlap, group averaged responses produced strong spurious overlap between tactile and visual motion responses within hMT+ that resembled those observed in previous studies. The weak nature of tactile responses in hMT+ (and their abolition by withdrawal of attention) suggests that hMT+ may not serve as a supramodal motion processing module. PMID:26123373
Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultra-wide Sensing Range.
Doshi, Sagar M; Thostenson, Erik T
2018-06-26
A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (< 10 kPa), in the body weight range (~ 500 kPa), and very high pressures (~40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on non-conductive fibers. In this work, non-woven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.
Linkage between Free Exploratory Movements and Subjective Tactile Ratings.
Yokosaka, Takumi; Kuroki, Scinob; Watanabe, Junji; Nishida, Shinya
2017-01-01
We actively move our hands and eyes when exploring the external world and gaining information about object's attributes. Previous studies showing that how we touch might be related to how we felt led us to consider whether we could decode observers' subjective tactile experiences only by analyzing their exploratory movements without explicitly asking how they perceived. However, in those studies, explicit judgment tasks were performed about specific tactile attributes that were prearranged by experimenters. Here, we systematically investigated whether exploratory movements can explain tactile ratings even when participants do not need to judge any tactile attributes. While measuring both hand and eye movements, we asked participants to touch materials freely without judging any specific tactile attributes (free-touch task) or to evaluate one of four tactile attributes (roughness, hardness, slipperiness, and temperature). We found that tactile ratings in the judgment tasks correlated with exploratory movements even in the free-touch task and that eye movements as well as hand movements correlated with tactile ratings. These results might open up the possibility of decoding tactile experiences by exploratory movements.
Virtual surface characteristics of a tactile display using magneto-rheological fluids.
Lee, Chul-Hee; Jang, Min-Gyu
2011-01-01
Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C
2018-03-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B.; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M.; Saltzman, Daniel A.; Konety, Badrinath R.
2017-01-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured. PMID:29608202
Thinking about touch facilitates tactile but not auditory processing.
Anema, Helen A; de Haan, Alyanne M; Gebuis, Titia; Dijkerman, H Chris
2012-05-01
Mental imagery is considered to be important for normal conscious experience. It is most frequently investigated in the visual, auditory and motor domain (imagination of movement), while the studies on tactile imagery (imagination of touch) are scarce. The current study investigated the effect of tactile and auditory imagery on the left/right discriminations of tactile and auditory stimuli. In line with our hypothesis, we observed that after tactile imagery, tactile stimuli were responded to faster as compared to auditory stimuli and vice versa. On average, tactile stimuli were responded to faster as compared to auditory stimuli, and stimuli in the imagery condition were on average responded to slower as compared to baseline performance (left/right discrimination without imagery assignment). The former is probably due to the spatial and somatotopic proximity of the fingers receiving the taps and the thumbs performing the response (button press), the latter to a dual task cost. Together, these results provide the first evidence of a behavioural effect of a tactile imagery assignment on the perception of real tactile stimuli.
Development of a tactile display with 5 mm resolution using an array of magnetorheological fluid
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroki; Miki, Norihisa
2017-06-01
In this study, we demonstrate the design and evaluation of a stiffness tactile display using a magnetorheological (MR) fluid. The tactile display is based on the change in mechanical properties under an external magnetic field. In the tactile display, the MR fluid is encapsulated in chambers of 3 mm diameter and arranged at intervals of 2 mm. Magnetic fields were spatially applied to the tactile display using neodymium magnets of 3.5 mm diameter. The design and spatial magnetic field application enable the tactile display to present stiff dots of 5 mm resolution. We confirmed that the tactile display can present a spatial stiff dot and its pattern on the surface by compression experiments. Sensory evaluation revealed that the users were able to perceive the approximate position of the stiff dots. From the experiments, the tactile display has potential as a palpation tactile display and requires improvement to present various types of tissues.
The effect of chronic low back pain on tactile suppression during back movements.
Van Damme, Stefaan; Van Hulle, Lore; Danneels, Lieven; Spence, Charles; Crombez, Geert
2014-10-01
The aim of the present study was to examine whether tactile suppression, the phenomenon whereby tactile perception is suppressed during movement, would occur in the context of back movements. Of particular interest, it was investigated if tactile suppression in the back would be attenuated in those suffering from chronic low back pain. Individuals with chronic low back pain (N = 30) and a matched control group (N = 24) detected tactile stimuli on three possible locations (back, arm, chest) while performing a back or arm movement, or no movement. We hypothesized that the movements would induce tactile suppression, and that this effect would be largest for low-intense stimuli on the moving body part. We further hypothesized that, during back movements, tactile suppression on the back would be less pronounced in the chronic low back pain group than in the control group. The results showed the expected general tactile suppression effects. The hypothesis of back-specific attenuation of tactile suppression in the chronic low back pain group was not supported. However, back-specific tactile suppression in the chronic low back pain group was less pronounced in those who performed the back movements more slowly. Copyright © 2014 Elsevier B.V. All rights reserved.
Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays
NASA Astrophysics Data System (ADS)
Xie, Xin; Zaitsev, Yuri; Velásquez-García, Luis Fernando; Teller, Seth J.; Livermore, Carol
2014-12-01
The design, fabrication, and characterization of a new type of tactile display for people with blindness or low vision is reported. Each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads. When the tactile elements are formed into a 2D array, information can be conveyed to the user by varying the pattern of vibrations in space and time. Analytical models and finite element analysis were used to design individual tactile elements, which were implemented with PZT actuators and both SU-8 and 3D-printed scissor amplifiers. The measured displacements of these 3 mm × 10 mm, MEMS-enabled tactile elements exceed 10 µm, in agreement with models, with measured forces exceeding 45 mN. The performance of the MEMS-enabled tactile elements is compared with the performance of larger, fully-macroscale tactile elements to demonstrate the scale dependence of the devices. The creation of a 28-element prototype is also reported, and the qualitative user experience with the individual tactile elements and displays is described.
Jarvis, M F; Wessale, J L; Zhu, C Z; Lynch, J J; Dayton, B D; Calzadilla, S V; Padley, R J; Opgenorth, T J; Kowaluk, E A
2000-01-24
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (=8.0 g). Systemic (i.p.) administration of ABT-627 (1 and 10 mg/kg) was found to produce a dose-dependent increase in tactile allodynia thresholds. A significant antinociceptive effect (40-50% increase in tactile allodynia thresholds, P<0.05) was observed at the dose of 10 mg/kg, i.p., within 0.5-2-h post-dosing. The antinociceptive effects of ABT-627 (10 mg kg(-1) day(-1), p.o.) were maintained following chronic administration of the antagonist in drinking water for 7 days. In comparison, morphine administered acutely at a dose of 8 mg/kg, i.p., produced a significant 90% increase in streptozotocin-induced tactile allodynia thresholds. The endothelin ET(B) receptor-selective antagonist, 2R-(4-propoxyphenyl)-4S-(1, 3-benzodioxol-5-yl)-1-(N-(2, 6-diethylphenyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxy lic acid (A-192621; 20 mg/kg, i.p.), did not significantly alter tactile allodynia thresholds in streptozotocin-treated rats. Although combined i.p. administration of ABT-627 and A-192621 produced a significant, acute increase in tactile allodynia thresholds, this effect was significantly less than that produced by ABT-627 alone. These results indicate that the selective blockade of endothelin ET(A) receptors results in an attenuation of tactile allodynia in the streptozotocin-treated rat.
Lynch, J J; Jarvis, M F; Kowaluk, E A
1999-01-08
The present study was conducted to characterize the development of tactile allodynia in the streptozotocin-induced rat model of diabetes, and to evaluate the antinociceptive effects of systemically administered morphine and the adenosine kinase inhibitor, 5'-deoxy-5-iodotubercidin (5'd-5IT) in this model. Rats were injected with 75 mg/kg streptozotocin (i.p.), and blood glucose levels were determined 3-4 weeks later. Diabetic (blood glucose levels > or = 250 mg/dl) and vehicle-injected rats were examined weekly for the development of tactile allodynia by measuring the threshold for hind paw withdrawal using von Frey hairs. Withdrawal thresholds were reduced to 6.8+/-0.6 g (mean+/-S.E.M.) in approximately one-third of streptozotocin-treated rats 7 weeks after streptozotocin treatment as compared to control thresholds (13.2+/-0.1 g), and this allodynia persisted for at least an additional 7 weeks. In additional experiments, morphine sulfate (5-21 micromol/kg, i.p.) produced dose-dependent antinociceptive effects on tactile allodynia for up to 2 h post-dosing. The adenosine kinase inhibitor, 5'd-5IT (2.5 and 5 micromol/kg, i.p.) also dose-dependently attenuated tactile allodynia. Pretreatment with the opioid receptor antagonist, naloxone (27 micromol/kg, i.p.) or the non-selective adenosine receptor antagonist, theophylline (111 micromol/kg, i.p.) significantly diminished the anti-allodynic effects of morphine and 5'd-5IT, respectively. The present study demonstrates that the potent and selective adenosine kinase inhibitor, 5'd-5IT, is equally effective as morphine in blocking tactile allodynia in this model.
Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles
2015-01-01
Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. PMID:26631145
Dempsey-Jones, Harriet; Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles; Makin, Tamar R
2016-03-01
Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. Copyright © 2016 the American Physiological Society.
Hamity, Marta V; White, Stephanie R; Walder, Roxanne Y; Schmidt, Mark S; Brenner, Charles; Hammond, Donna L
2017-05-01
Injury to sensory afferents may contribute to the peripheral neuropathies that develop after administration of chemotherapeutic agents. Manipulations that increase levels of nicotinamide adenine dinucleotide (NAD) can protect against neuronal injury. This study examined whether nicotinamide riboside (NR), a third form of vitamin B3 and precursor of NAD, diminishes tactile hypersensitivity and place escape-avoidance behaviors in a rodent model of paclitaxel-induced peripheral neuropathy. Female Sprague-Dawley rats received 3 intravenous injections of 6.6 mg/kg paclitaxel over 5 days. Daily oral administration of 200 mg/kg NR beginning 7 days before paclitaxel treatment and continuing for another 24 days prevented the development of tactile hypersensitivity and blunted place escape-avoidance behaviors. These effects were sustained after a 2-week washout period. This dose of NR increased blood levels of NAD by 50%, did not interfere with the myelosuppressive effects of paclitaxel, and did not produce adverse locomotor effects. Treatment with 200 mg/kg NR for 3 weeks after paclitaxel reversed the well-established tactile hypersensitivity in a subset of rats and blunted escape-avoidance behaviors. Pretreatment with 100 mg/kg oral acetyl-L-carnitine (ALCAR) did not prevent paclitaxel-induced tactile hypersensitivity or blunt escape-avoidance behaviors. ALCAR by itself produced tactile hypersensitivity. These findings suggest that agents that increase NAD, a critical cofactor for mitochondrial oxidative phosphorylation systems and cellular redox systems involved with fuel utilization and energy metabolism, represent a novel therapeutic approach for relief of chemotherapy-induced peripheral neuropathies. Because NR is a vitamin B3 precursor of NAD and a nutritional supplement, clinical tests of this hypothesis may be accelerated.
Tactile modulation of hippocampal place fields.
Gener, Thomas; Perez-Mendez, Lorena; Sanchez-Vives, Maria V
2013-12-01
Neural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied. Tactile information gathered by the whiskers has a prominent representation in the rat cerebral cortex. However, the influence of whisker-detected tactile cues on place fields remains an open question. Here we studied place fields in an enriched tactile environment where the remaining sensory cues were occluded. First, place cells were recorded before and after blockade of tactile transmission by means of lidocaine applied on the whisker pad. Following tactile deprivation, the majority of place cells decreased their firing rate and their place fields expanded. We next rotated the tactile cues and 90% of place fields rotated with them. Our results demonstrate that tactile information is integrated into place cells at least in a tactile-enriched arena and when other sensory cues are not available. Copyright © 2013 Wiley Periodicals, Inc.
Serrano-Marugán, Isabel; Herrera, Begoña; Romero, Sara; Nogales, Ramón; Poch-Broto, Joaquín; Quintero, Javier; Ortiz, Tomás
2014-02-24
Tactile stimulation is key for the posterior brain re-organization activity and attention processes, however the impact of tactile stimulation on attention deficit disorder (ADD) in blind children remains unexplored. We carried out a study with children having or not ADD (four per group). The subjects have been exposed during six months to tactile stimulation protocol consisting in two daily sessions (morning and afternoon sessions) of 30 minutes each. We have measured the ability to detect an infrequent tactile stimulus, reaction time, latency of P300, sources of brain activity, and ADD clinical symptoms, before and after tactile training. Passive tactile stimulation significantly improves ADD clinical symptoms, particularly attention, behavior and self-control of involuntary movements and tics. In addition, tactile stimulation changes the pattern of brain activity in ADD blind children inducing activity in frontal and occipital areas, which could be associated to a compensation of the attention deficit. Passive tactile stimulation training may improve ADD clinical symptoms and can reorganize the pattern of brain activity in blind ADD children.
A Corticothalamic Circuit for Refining Tactile Encoding.
Pauzin, François Philippe; Krieger, Patrik
2018-05-01
A fundamental task for the brain is to determine which aspects of the continuous flow of information is the most relevant in a given behavioral situation. The information flow is regulated via dynamic interactions between feedforward and feedback pathways. One such pathway is via corticothalamic feedback. Layer 6 (L6) corticothalamic (CT) cells make both cortical and thalamic connections and, therefore, are key modulators of activity in both areas. The functional properties of L6 CT cells in sensory processing were investigated in the mouse whisker system. Optogenetic activation of L6 CT neurons decreased spontaneous spiking, with the net effect that a whisker-evoked response was more accurately detected (larger evoked-to-spontaneous spiking ratio) but at the expense of reducing the response probability. In addition, L6 CT activation decreases sensory adaptation in both the thalamus and cortex. L6 CT activity can thus tune the tactile system, depending on the behaviorally relevant tactile input. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Huet, Lucie A; Rudnicki, John W; Hartmann, Mitra J Z
2017-06-01
Almost all mammals use their mystacial vibrissae (whiskers) as important tactile sensors. There are no sensors along the length of a whisker: all sensing is performed by mechanoreceptors at the whisker base. To use artificial whiskers as a sensing tool in robotics, it is essential to be able to determine the three-dimensional (3D) location at which a whisker has made contact with an object. With the assumption of quasistatic, frictionless, single-point contact, previous work demonstrated that the 3D contact point can be uniquely determined if all six components of force and moment are measured at the whisker base, but these measurements require a six-axis load cell. Here, we perform simulations to investigate the extent to which each of the 20 possible "triplet" combinations of the six mechanical signals at the whisker base uniquely determine 3D contact point location. We perform this analysis for four different whisker profiles (shapes): tapered with and without intrinsic curvature, and cylindrical with and without intrinsic curvature. We show that whisker profile has a strong influence on the particular triplet(s) of signals that uniquely map to the 3D contact point. The triplet of bending moment, bending moment direction, and axial force produces unique mappings for tapered whiskers. Four different mappings are unique for a cylindrical whisker without intrinsic curvature, but only when large deflections are excluded. These results inform the neuroscience of vibrissotactile sensing and represent an important step toward the development of artificial whiskers for robotic applications.
Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya
2013-05-01
To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.
Exploring Tactile Perceptual Dimensions Using Materials Associated with Sensory Vocabulary.
Sakamoto, Maki; Watanabe, Junji
2017-01-01
Considering tactile sensation when designing products is important because the decision to purchase often depends on how products feel. Numerous psychophysical studies have attempted to identify important factors that describe tactile perceptions. However, the numbers and types of major tactile dimensions reported in previous studies have varied because of differences in materials used across experiments. To obtain a more complete picture of perceptual space with regard to touch, our study focuses on using vocabulary that expresses tactile sensations as a guiding principle for collecting material samples because these types of words are expected to cover all the basic categories within tactile perceptual space. We collected 120 materials based on a variety of Japanese sound-symbolic words for tactile sensations, and used the materials to examine tactile perceptual dimensions and their associations with affective evaluations. Analysis revealed six major dimensions: "Affective evaluation and Friction," "Compliance," "Surface," "Volume," "Temperature," and "Naturalness." These dimensions include four factors that previous studies have regarded as fundamental, as well as two new factors: "Volume" and "Naturalness." Additionally, we showed that "Affective evaluation" is more closely related to the "Friction" component (slipperiness and dryness) than to other tactile perceptual features. Our study demonstrates that using vocabulary could be an effective method for selecting material samples to explore tactile perceptual space.
Chai, Guohong; Zhang, Dingguo; Zhu, Xiangyang
2017-05-01
Cutaneous electrical stimulation can provide tactile feedback for upper-limb amputees through somatotopic feedback (SF) or non-somatotopic feedback (NF). The SF delivers electrotactile stimulus to projection finger maps (PFMs) on the stumps of amputees, which outperforms NF that transfers stimulus to other human intact skin areas in general. However, the SF areas on stumps are very limited and often occupied by electromyography (EMG) sensors in application of myoelectric prosthesis. This work aims at improving NF performance on human upper arms through user training with electrotactile stimulation. The experiments were conducted over seven consecutive days on nine able-bodied subjects and two forearm amputees. The performance measures of NF/SF included the correct identification rates (CIR s ), the response time and the NASA-TLX questionnaire. The between-day CIR s on NF sites increased logarithmically with a mean course of 3-day rapid-improving phase and plateaued in the relative-steady phase. The response time and NASA-TLX scores could also rapidly reduce to the comparable levels of the SF areas during the same mean period of 3-day rapid-improving phase, respectively. These results indicated that the performance of NF could be highly improved to the equivalent level as that of SF through 3-day electrotactile training, which we named as "3-day effect". It provides important insights that intact skin areas without phantom sensations can effectively replace SF sites to transfer tactile feedback after continuous user training, which validates effectiveness of non-invasive interfaces of tactile feedback for upper-limb amputees in practice.
NASA Technical Reports Server (NTRS)
Baer, J. A.
1976-01-01
A tactile paging system for deaf-blind people has been brought from the concept stage to the development of a first model. The model consists of a central station that transmits coded information via radio link to an on-body (i.e., worn on the wrist) receiving unit, the output from which is a coded vibrotactile signal. The model is a combination of commercially available equipment, customized electronic circuits, and electromechanical transducers. The paging system facilitates communication to deaf-blind clients in an institutional environment as an aid in their training and other activities. Several subunits of the system were individually developed, tested, and integrated into an operating system ready for experimentation and evaluation. The operation and characteristics of the system are described and photographs are shown.
Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization
Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun
2015-01-01
The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306
Tactile roughness perception in the presence of olfactory and trigeminal stimulants
Koijck, Lara A.; Van Erp, Jan B.F.
2015-01-01
Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA), we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol). We expected that—compared to a No-odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon) and unpleasant (Indole) odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness) than when presented with Ethanol or Indole (odors that can be associated with roughness). Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for future research. PMID:26020010
Visual and tactile interfaces for bi-directional human robot communication
NASA Astrophysics Data System (ADS)
Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin
2013-05-01
Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.
The role of whiskers in compensation of visual deficit in a mouse model of retinal degeneration.
Voller, Jaroslav; Potužáková, Barbora; Šimeček, Vojtěch; Vožeh, František
2014-01-13
Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of the C3H strain suffer from RD1 retinal degeneration that leads to visual impairment at weaning age. We examined a role of whiskers in compensation of the visual deficit. In order to differentiate the contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. Three-month-old mice were used. We examined motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and CNS excitability to an acoustic stimulus for assessment of compensatory changes in auditory system (audiogenic epilepsy). In the sighted mice, the only effect was a decline in their rotarod test performance after acute whisker removal. In the blind animals, chronic tactile deprivation caused changes in their gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the whiskers are essential for the compensation as it emerged from more marked change of gait and the worsening of the motor performance after the acute whisker removal. Both chronic and acute tactile deprivation induced anxiety-like behaviour. Only a combination of blindness and chronic tactile deprivation led to an increased sense of hearing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality
Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.
2014-01-01
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397
Tactile Sensitivity in Asperger Syndrome
ERIC Educational Resources Information Center
Blakemore, Sarah-Jayne; Tavassoli, Teresa; Calo, Susana; Thomas, Richard M.; Catmur, Caroline; Frith, Uta; Haggard, Patrick
2006-01-01
People with autism and Asperger syndrome are anecdotally said to be hypersensitive to touch. In two experiments, we measured tactile thresholds and suprathreshold tactile sensitivity in a group of adults with Asperger syndrome. In the first experiment, tactile perceptual thresholds were measured. Two frequencies of vibrotactile stimulation were…
Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface
Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.
2016-01-01
Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor. PMID:26840321
Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface.
Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A
2016-02-01
Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.
Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.
Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard
2018-01-01
The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.
Active confocal imaging for visual prostheses
Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli
2014-01-01
There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710
The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis
Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.
2016-01-01
Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted. PMID:27448580
Zempoalteca, Rene; Porras, Mercedes G; Moreno-Pérez, Suelem; Ramirez-Funez, Gabriela; Aguirre-Benítez, Elsa L; González Del Pliego, Margarita; Mariscal-Tovar, Silvia; Mendoza-Garrido, Maria E; Hoffman, Kurt Leroy; Jiménez-Estrada, Ismael; Melo, Angel I
2018-04-01
Early adverse experiences disrupt brain development and behavior, but little is known about how such experiences impact on the development of the peripheral nervous system. Recently, we found alterations in the electrophysiological and histological characteristics of the sensory sural (SU) nerve in maternally deprived, artificially reared (AR) adult male rats, as compared with maternally reared (MR) control rats. In the present study, our aim was to characterize the ontogeny of these alterations. Thus, male pups of four postnatal days (PND) were (1) AR group, (2) AR and received daily tactile stimulation to the body and anogenital region (AR-Tactile group); or (3) reared by their mother (MR group). At PND 7, 14, or 21, electrophysiological properties and histological characteristics of the SU nerves were assessed. At PND 7, the electrophysiological properties and most histological parameters of the SU nerve did not differ among MR, AR, and AR-Tactile groups. By contrast, at PND 14 and/or 21, the SU nerve of AR rats showed a lower CAP amplitude and area, and a significant reduction in myelin area and myelin thickness, which were accompanied by a reduction in axon area (day 21 only) compared to the nerves of MR rats. Tactile stimulation (AR-Tactile group) partially prevented most of these alterations. These results suggest that sensory cues from the mother and/or littermates during the first 7-14 PND are relevant for the proper development and function of the adult SU nerve. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 351-362, 2018. © 2017 Wiley Periodicals, Inc.
Haptic augmented skin surface generation toward telepalpation from a mobile skin image.
Kim, K
2018-05-01
Very little is known about the methods of integrating palpation techniques to existing mobile teleskin imaging that delivers low quality tactile information (roughness) for telepalpation. However, no study has been reported yet regarding telehaptic palpation using mobile phone images for teledermatology or teleconsultations of skincare. This study is therefore aimed at introducing a new algorithm accurately reconstructing a haptic augmented skin surface for telehaptic palpation using a low-cost clip-on microscope simply attached to a mobile phone. Multiple algorithms such as gradient-based image enhancement, roughness-adaptive tactile mask generation, roughness-enhanced 3D tactile map building, and visual and haptic rendering with a three-degrees-of-freedom (DOF) haptic device were developed and integrated as one system. Evaluation experiments have been conducted to test the performance of 3D roughness reconstruction with/without the tactile mask. The results confirm that reconstructed haptic roughness with the tactile mask is superior to the reconstructed haptic roughness without the tactile mask. Additional experiments demonstrate that the proposed algorithm is robust against varying lighting conditions and blurring. In last, a user study has been designed to see the effect of the haptic modality to the existing visual only interface and the results attest that the haptic skin palpation can significantly improve the skin exam performance. Mobile image-based telehaptic palpation technology was proposed, and an initial version was developed. The developed technology was tested with several skin images and the experimental results showed the superiority of the proposed scheme in terms of the performance of haptic augmentation of real skin images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Auditory-tactile echo-reverberating stuttering speech corrector
NASA Astrophysics Data System (ADS)
Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan
1997-02-01
The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-01-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-03-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.
Enhanced tactile encoding and memory recognition in congenital blindness.
D'Angiulli, Amedeo; Waraich, Paul
2002-06-01
Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.
Blind Braille readers mislocate tactile stimuli.
Sterr, Annette; Green, Lisa; Elbert, Thomas
2003-05-01
In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.
Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy
Alves-Pinto, Ana; Aschmann, Simon; Lützow, Ines; Lampe, Renée
2015-01-01
Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings. PMID:26124965
Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy.
Blumenstein, Tobias; Alves-Pinto, Ana; Turova, Varvara; Aschmann, Simon; Lützow, Ines; Lampe, Renée
2015-01-01
Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings.
Oddo, Calogero Maria; Beccai, Lucia; Wessberg, Johan; Wasling, Helena Backlund; Mattioli, Fabio; Carrozza, Maria Chiara
2011-01-01
The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.
ERIC Educational Resources Information Center
Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb
2017-01-01
The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…
Contextual cueing of tactile search is coded in an anatomical reference frame.
Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas
2018-04-01
This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.
2011-04-01
Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.
Electroactive polymers for sensing
2016-01-01
Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846
Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction
Cruz Zurian, Heber; Atefi, Seyed Reza; Seoane Martinez, Fernando; Lukowicz, Paul
2017-01-01
In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments’ contribution. The best performing feature-classifier combination can recognize the gestures with a 93.3% accuracy from a known group of participants, and 89.1% from strangers. PMID:29120389
Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction.
Zhou, Bo; Altamirano, Carlos Andres Velez; Zurian, Heber Cruz; Atefi, Seyed Reza; Billing, Erik; Martinez, Fernando Seoane; Lukowicz, Paul
2017-11-09
In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments' contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.
Kerkhoff, Georg; Hildebrandt, Helmut; Reinhart, Stefan; Kardinal, Mareike; Dimova, Violeta; Utz, Kathrin S
2011-01-01
Sensory extinction is frequent and often persistent after brain damage. Previous studies have shown the transient influence of sensory stimulation on tactile extinction. In the present two case studies we investigated whether subliminal galvanic vestibular stimulation (GVS) modulates tactile extinction. GVS induces polarity-specific changes in cerebral excitability in the vestibular cortices and adjacent cortical areas in the temporo-parietal cortex via polarization of the vestibular nerves. Two patients (DL, CJ) with left-sided tactile extinction due to chronic (5 vs. 6 (1/2) years lesion age) right-hemisphere lesions (right fronto-parietal in DL, right frontal and discrete parietal in CJ) were examined. Both showed normal tactile sensitivity to light touch and yielded 90-100% correct identifications in unilateral tactile stimulations for both hands. In Baseline investigations without GVS and Sham-GVS both showed stable left-sided tactile extinction rates of 40-55% (DL) and 49-72% (CJ). In contrast, one session of right-cathodal GVS (intensity: 0.6 mA, duration: 20 min) permanently improved tactile identification of identical stimuli, while a second session with left-cathodal GVS significantly reduced left-sided extinction rates for different stimuli in DL. Patient CJ's left-sided tactile extinction was significantly improved by left-cathodal GVS (0.5 mA, 20 min) for different stimuli, while right-cathodal GVS induced a significant reduction for identical materials. In contrast, Sham-stimulation was ineffective. Improvements remained stable for at least 1 year (DL) resp. 3 weeks (CJ). Control experiments ruled out improvements in tactile extinction merely by retesting. In conclusion, chronic tactile extinction may be permanently improved by GVS in a polarity-specific way. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R. Chad; Bonifas, Andrew P.; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A.; Huang, Yonggang; West, Dennis P.; Paller, Amy S.; Alam, Murad
2014-01-01
Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here we report a skin-like electronics platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of ‘epidermal’ electronics system in a realistic, clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. PMID:24668927
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-01-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Astrophysics Data System (ADS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-02-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.