Sample records for tafel extrapolation method

  1. Evaluation of Electrochemical Methods for Electrolyte Characterization

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.

  2. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  3. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockris, J.O.; Devanathan, M.A.V.

    The galvanostatic double charging method was applied to determine the coverage of Ni cathodes with adsorbed atomic H in 2 N NaOH solutions. Anodic current densities were varied from 0.05 to 1.8 amp/sq cm. The plateau indicating absence of readsorption was between 0.6 and 1.8 amp/sq cm, for a constant cathodic c.d. of 1/10,000 amp/sq cm. The variation of the adsorbed H over cathodic c.d.'s ranging from 10 to the -6th power to 1/10 at a constant anodic c.d. of 1 amp/sq cm were calculated and the coverage calculated. The mechanism of the H evolution reaction was elucidated. The ratemore » determining step is discharge from a water molecules followed by rapid Tafel recombination. The rate constants for these processes and the rate constant for the ionisation, calculated with the extrapolated value of coverage for the reversible H electrode, were determined. A modification of the Tafel equation which takes into account both coverage and ionisation is in harmony with the results. A new method for the determination of coverage suitable for corrodible metals is described which involves the measurement of the rate of permeation of H by electrochemical techniques which enhances the sensitivity of the method. (Author)« less

  5. Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajitno, Djoko Hadi

    The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO{sub 2}. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO{sub 2} nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO{sub 2} nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relativelymore » unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy.« less

  6. High Temperature Corrosion and Characterization Studies in Flux Cored Arc Welded 2.25Cr-1Mo Power Plant Steel

    NASA Astrophysics Data System (ADS)

    Kumaresh Babu, S. P.; Natarajan, S.

    2010-07-01

    Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.

  7. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  8. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  9. Corrosion of Titanium Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increasedmore » with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.« less

  10. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    PubMed

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  11. Tweede Serie Ergonomietests Lichtgewicht Bommenpakken (Second Series of Ergonomic Tests on Lightweight Bomb Disposal Suits)

    DTIC Science & Technology

    2007-12-01

    warmtebelastingtests vast te stellen en (sit-and-reach, stand-and-reach. abductie referentiewaarden te bepalen door het van de arnen, anteflexie van de armen ...volgende, bewegingbeperkingtests: sit-and-reach, stand-and-reach. abductie van de armen , anteflexie van de armen en beperking van zicht. Bij de sit-and...gebogen op de rand van een tafel en houdt de armen zo ver mogeijk gestrekt naar voren op tafel. Daarbij wordt de afstand vanaf de rand van de tafel tot

  12. Electrochemical screening of organic and inorganic inhibitors for the corrosion of ASTM A-470 steel in concentrated sodium hydroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moccari, A.; MacDonald, D.D.

    The corrosion of ASTM A-470 turbine disk steel in concentrated sodium hydroxide solution (10 mol/kg) containing sodium silicate, sodium dihydrogen phosphate, sodium chromate, aniline and some of its derivatives, tannic acid, L-(-)-phenylalanine (aminopropionic acid) and octadecylamine as potential inhibitors has been studied using the potentiodynamic, AC impedance, and Tafel extrapolation techniques. All tests were performed at 115 + or - 2 C. The anodic and cathodic polarization data show that aniline and its derivatives, L-(-)-phenylalanine, NaH/sub 2/PO/sub 4/, Na/sub 2/SiO/sub 3/, and Na/sub 2/CrO/sub 4/ inhibit the anodic process, whereas tannic acid inhibits the cathodic reaction. Octadecylamine was found tomore » inhibit both the anodic and cathodic processes. The mechanisms of inhibition for some of these compounds have been inferred from the wide band width frequency dispersions of the interfacial impedance.« less

  13. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD).

    PubMed

    Mhaede, Mansour; Pastorek, Filip; Hadzima, Branislav

    2014-06-01

    Magnesium alloys are promising materials for biomedical applications because of many outstanding properties like biodegradation, bioactivity and their specific density and Young's modulus are closer to bone than the commonly used metallic implant materials. Unfortunately their fatigue properties and low corrosion resistance negatively influenced their application possibilities in the field of biomedicine. These problems could be diminished through appropriate surface treatments. This study evaluates the influence of a surface pre-treatment by shot peening and shot peening+coating on the corrosion properties of magnesium alloy AZ31. The dicalcium phosphate dihydrate coating (DCPD) was electrochemically deposited in a solution containing 0.1M Ca(NO3)2, 0.06M NH4H2PO4 and 10mL/L of H2O2. The effect of shot peening on the surface properties of magnesium alloy was evaluated by microhardness and surface roughness measurements. The influence of the shot peening and dicalcium phosphate dihydrate layer on the electrochemical characteristics of AZ31 magnesium alloy was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy in 0.9% NaCl solution at a temperature of 22±1°C. The obtained results were analyzed by the Tafel-extrapolation method and equivalent circuit method. The results showed that the application of shot peening process followed by DCPD coating improves the properties of the AZ31 surface from corrosion and mechanical point of view. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion.

    PubMed

    Azcarate, Iban; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2016-12-28

    The starting point of this study of through-space substituent effects on the catalysis of the electrochemical CO 2 -to-CO conversion by iron(0) tetraphenylporphyrins is the linear free energy correlation between through-structure electronic effects and the iron(I/0) standard potential that we established separately. The introduction of four positively charged trimethylanilinium groups at the para positions of the tetraphenylporphyrin (TPP) phenyls results in an important positive deviation from the correlation and a parallel improvement of the catalytic Tafel plot. The assignment of this catalysis boosting effect to the Coulombic interaction of these positive charges with the negative charge borne by the initial Fe 0 -CO 2 adduct is confirmed by the negative deviation observed when the four positive charges are replaced by four negative charges borne by sulfonate groups also installed in the para positions of the TPP phenyls. The climax of this strategy of catalysis boosting by means of Coulombic stabilization of the initial Fe 0 -CO 2 adduct is reached when four positively charged trimethylanilinium groups are introduced at the ortho positions of the TPP phenyls. The addition of a large concentration of a weak acid-phenol-helps by cleaving one of the C-O bonds of CO 2 . The efficiency of the resulting catalyst is unprecedented, as can be judged by the catalytic Tafel plot benchmarking with all presently available catalysts of the electrochemical CO 2 -to-CO conversion. The maximal turnover frequency (TOF) is as high as 10 6 s -1 and is reached at an overpotential of only 220 mV; the extrapolated TOF at zero overpotential is larger than 300 s -1 . This catalyst leads to a highly selective formation of CO (practically 100%) in spite of the presence of a high concentration of phenol, which could have favored H 2 evolution. It is also very stable, showing no significant alteration after more than 80 h of electrolysis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  16. A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Xiang, Pengzhi; Huang, Yao

    2018-01-01

    A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.

  17. Determination of Tafel Constants in Nonlinear Polarization Curves.

    DTIC Science & Technology

    1987-12-01

    resulted in difficulty in determining the Tafel constants from such plots. A FORTRAN based program involving numerical differentiation techniques was...MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 1987 Auho:Th as Edr L~oughlin Approved by: J erkins hesis Advisor...Inthony J.f Healey, Chai man, Departm o Mhnical E gineering ’ Gordon E. Schacher Dean of Science and Engineering 21 ABSTRACT The presence of non-linear

  18. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  19. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  20. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    NASA Astrophysics Data System (ADS)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  1. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    NASA Astrophysics Data System (ADS)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  2. Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.

    2013-08-01

    In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.

  3. Application Electrochemical Impedance Spectroscopy Methods to Evaluation Corrosion Behavior of Stainless steels 304 in Nanofluids Media

    NASA Astrophysics Data System (ADS)

    Hadi Prajitno, Djoko; Umar, Efrizon; Gustaman Syarif, Dani

    2017-01-01

    Corrosion is a common problem in many engineering metals and alloys. Electrochemical methods are commonly instrument to use as tool to study the corrosion behavior of the metals and alloy. This method was examined interaction between a surface of the metals and alloys in corrosive media. The present paper, the effects of nano particle ZrO2 as an additive to aqua de mineralized on the corrosion behavior of stainless steel were investigated. Electrochemical impedance spectroscopy (EIS) testing was performed in both de mineralized water and demineralized water contain nano particle 0,01% ZrO2 as Nano fluid. Surface morphology examination of the specimens showed that microstructure of stainless steel 304 alloys relatively unchanged after corrosion and EIS testing. According to the corrosion potential examination of the stainless steel 304 in nanofluid media, it showed that stainless steel 304 actively corroded in nanofluida media. The value of anodic Tafel slope stainless steel 304 in nanofluid higher compare with in demineralized water. Tafel polarization examination show that corrosion rate of stainless steel 304 in nanofluid higher compare with corrosin rate in demineralized media.EIS technique show that impedance of stainless steel 304 in nanofluid lower compare with in demineralized media, resulting in an increase in the corrosion rates of these stainless steel 304 specimens in nano fluids

  4. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  5. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    NASA Astrophysics Data System (ADS)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  6. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves

    PubMed Central

    Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.

    2012-01-01

    An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962

  7. Extrapolating bound state data of anions into the metastable domain

    NASA Astrophysics Data System (ADS)

    Feuerbacher, Sven; Sommerfeld, Thomas; Cederbaum, Lorenz S.

    2004-10-01

    Computing energies of electronically metastable resonance states is still a great challenge. Both scattering techniques and quantum chemistry based L2 methods are very time consuming. Here we investigate two more economical extrapolation methods. Extrapolating bound states energies into the metastable region using increased nuclear charges has been suggested almost 20 years ago. We critically evaluate this attractive technique employing our complex absorbing potential/Green's function method that allows us to follow a bound state into the continuum. Using the 2Πg resonance of N2- and the 2Πu resonance of CO2- as examples, we found that the extrapolation works suprisingly well. The second extrapolation method involves increasing of bond lengths until the sought resonance becomes stable. The keystone is to extrapolate the attachment energy and not the total energy of the system. This method has the great advantage that the whole potential energy curve is obtained with quite good accuracy by the extrapolation. Limitations of the two techniques are discussed.

  8. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.B.; Aydogan, B.

    In the development of new radiopharmaceuticals, animal studies are typically performed to get a first approximation of the expected radiation dose in humans. This study evaluates the performance of some commonly used data extrapolation techniques to predict residence times in humans using data collected from animals. Residence times were calculated using animal and human data, and distributions of ratios of the animal results to human results were constructed for each extrapolation method. Four methods using animal data to predict human residence times were examined: (1) using no extrapolation, (2) using relative organ mass extrapolation, (3) using physiological time extrapolation, andmore » (4) using a combination of the mass and time methods. The residence time ratios were found to be log normally distributed for the nonextrapolated and extrapolated data sets. The use of relative organ mass extrapolation yielded no statistically significant change in the geometric mean or variance of the residence time ratios as compared to using no extrapolation. Physiologic time extrapolation yielded a statistically significant improvement (p < 0.01, paired t test) in the geometric mean of the residence time ratio from 0.5 to 0.8. Combining mass and time methods did not significantly improve the results of using time extrapolation alone. 63 refs., 4 figs., 3 tabs.« less

  9. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    NASA Astrophysics Data System (ADS)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  10. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method.

    PubMed

    Polidori, David; Rowley, Clarence

    2014-07-22

    The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.

  11. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    NASA Astrophysics Data System (ADS)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  12. Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.

    PubMed

    Sakaino, Hidetomo

    2016-09-01

    Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost.

  13. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  14. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    NASA Astrophysics Data System (ADS)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  15. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method

    PubMed Central

    2014-01-01

    Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018

  16. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.

    2013-01-01

    profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.

  17. An analysis of shock coalescence including three-dimensional effects with application to sonic boom extrapolation. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    A method for analyzing shock coalescence which includes three dimensional effects was developed. The method is based on an extension of the axisymmetric solution, with asymmetric effects introduced through an additional set of governing equations, derived by taking the second circumferential derivative of the standard shock equations in the plane of symmetry. The coalescence method is consistent with and has been combined with a nonlinear sonic boom extrapolation program which is based on the method of characteristics. The extrapolation program, is able to extrapolate pressure signatures which include embedded shocks from an initial data line in the plane of symmetry at approximately one body length from the axis of the aircraft to the ground. The axisymmetric shock coalescence solution, the asymmetric shock coalescence solution, the method of incorporating these solutions into the extrapolation program, and the methods used to determine spatial derivatives needed in the coalescence solution are described. Results of the method are shown for a body of revolution at a small, positive angle of attack.

  18. Corrosion resistance of steel materials in LiCl-KCl melts

    NASA Astrophysics Data System (ADS)

    Wang, Le; Li, Bing; Shen, Miao; Li, Shi-yan; Yu, Jian-guo

    2012-10-01

    The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450°C by Tafel curves and electrochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behaviors among the three materials, including the most positive corrosion potential and the smallest corrosion current from the Tafel curves and the largest electron transfer resistance from the Nyquist plots. The results are in good agreement with the weight losses in the static corrosion experiments for 45 h. This may be attributed to the better corrosion resistance of Mo and Ni existing as alloy elements in 316LSS, which exhibit the lower corrosion current densities and more positive corrosion potentials than 316LSS in the same melts.

  19. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    NASA Astrophysics Data System (ADS)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  20. The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Scheiman, David A.; Jenkins, Phillip P.; Reinke, William; Blankenship, Kurt; Demers, James

    2007-01-01

    The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.

  1. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within experimental error with all data, except with the most recent value of C, which lies 10% lower.

  2. Correlation energy extrapolation by many-body expansion

    DOE PAGES

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; ...

    2017-01-09

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  3. Correlation energy extrapolation by many-body expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  4. In situ LTE exposure of the general public: Characterization and extrapolation.

    PubMed

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2012-09-01

    In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.

  5. Extrapolation-Based References Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in Parkinson's Disease Dementia.

    PubMed

    Nilsson, Markus; Szczepankiewicz, Filip; van Westen, Danielle; Hansson, Oskar

    2015-01-01

    Conventional motion and eddy-current correction, where each diffusion-weighted volume is registered to a non diffusion-weighted reference, suffers from poor accuracy for high b-value data. An alternative approach is to extrapolate reference volumes from low b-value data. We aim to compare the performance of conventional and extrapolation-based correction of diffusional kurtosis imaging (DKI) data, and to demonstrate the impact of the correction approach on group comparison studies. DKI was performed in patients with Parkinson's disease dementia (PDD), and healthy age-matched controls, using b-values of up to 2750 s/mm2. The accuracy of conventional and extrapolation-based correction methods was investigated. Parameters from DTI and DKI were compared between patients and controls in the cingulum and the anterior thalamic projection tract. Conventional correction resulted in systematic registration errors for high b-value data. The extrapolation-based methods did not exhibit such errors, yielding more accurate tractography and up to 50% lower standard deviation in DKI metrics. Statistically significant differences were found between patients and controls when using the extrapolation-based motion correction that were not detected when using the conventional method. We recommend that conventional motion and eddy-current correction should be abandoned for high b-value data in favour of more accurate methods using extrapolation-based references.

  6. Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction.

    PubMed

    Yuan, Jiangtan; Wu, Jingjie; Hardy, Will J; Loya, Philip; Lou, Minhan; Yang, Yingchao; Najmaei, Sina; Jiang, Menglei; Qin, Fan; Keyshar, Kunttal; Ji, Heng; Gao, Weilu; Bao, Jiming; Kono, Junichiro; Natelson, Douglas; Ajayan, Pulickel M; Lou, Jun

    2015-10-07

    A facile chemical vapor deposition method to prepare single-crystalline VS2 nanosheets for the hydrogen evolution reaction is reported. The electrocatalytic hydrogen evolution reaction (HER) activities of VS2 show an extremely low overpotential of -68 mV at 10 mA cm(-2), small Tafel slopes of ≈34 mV decade(-1), as well as high stability, demonstrating its potential as a candidate non-noble-metal catalyst for the HER. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    NASA Astrophysics Data System (ADS)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  8. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    PubMed

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  9. NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.

    PubMed

    Hinrichs, R N; McLean, S P

    1995-10-01

    This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.

  10. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  11. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    DTIC Science & Technology

    2016-04-01

    incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching

  12. Extrapolation of sonic boom pressure signatures by the waveform parameter method

    NASA Technical Reports Server (NTRS)

    Thomas, C. L.

    1972-01-01

    The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.

  13. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    NASA Astrophysics Data System (ADS)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  14. High-order Newton-penalty algorithms

    NASA Astrophysics Data System (ADS)

    Dussault, Jean-Pierre

    2005-10-01

    Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.

  15. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Calculation methods study on hot spot stress of new girder structure detail

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing

    2017-10-01

    To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.

  17. In vivo fascicle length measurements via B-mode ultrasound imaging with single vs dual transducer arrangements.

    PubMed

    Brennan, Scott F; Cresswell, Andrew G; Farris, Dominic J; Lichtwark, Glen A

    2017-11-07

    Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force-length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microstructure, Phase Occurrence, and Corrosion Behavior of As-Solidified and As-Annealed Al-Pd Alloys

    NASA Astrophysics Data System (ADS)

    Ďuriška, Libor; Palcut, Marián; Špoták, Martin; Černičková, Ivona; Gondek, Ján; Priputen, Pavol; Čička, Roman; Janičkovič, Dušan; Janovec, Jozef

    2018-02-01

    In the present work, we studied the microstructure, phase constitution, and corrosion performance of Al88Pd12, Al77Pd23, Al72Pd28, and Al67Pd33 alloys (metal concentrations are given in at.%). The alloys were prepared by repeated arc melting of Al and Pd granules in argon atmosphere. The as-solidified samples were further annealed at 700 °C for 500 h. The microstructure and phase constitution of the as-solidified and as-annealed alloys were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The alloys were found to consist of (Al), ɛ n ( Al3Pd), and δ (Al3Pd2) in various fractions. The corrosion testing of the alloys was performed in aqueous NaCl (0.6 M) using a standard 3-electrode cell monitored by potentiostat. The corrosion current densities and corrosion potentials were determined by Tafel extrapolation. The corrosion potentials of the alloys were found between - 763 and - 841 mV versus Ag/AgCl. An active alloy dissolution has been observed, and it has been found that (Al) was excavated, whereas Al in ɛ n was de-alloyed. The effects of bulk chemical composition, phase occurrence and microstructure on the corrosion behavior are evaluated. The local nobilities of ɛ n and δ are discussed. Finally, the conclusions about the alloy's corrosion resistance in saline solutions are provided.

  19. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  20. Extrapolation of Functions of Many Variables by Means of Metric Analysis

    NASA Astrophysics Data System (ADS)

    Kryanev, Alexandr; Ivanov, Victor; Romanova, Anastasiya; Sevastianov, Leonid; Udumyan, David

    2018-02-01

    The paper considers a problem of extrapolating functions of several variables. It is assumed that the values of the function of m variables at a finite number of points in some domain D of the m-dimensional space are given. It is required to restore the value of the function at points outside the domain D. The paper proposes a fundamentally new method for functions of several variables extrapolation. In the presented paper, the method of extrapolating a function of many variables developed by us uses the interpolation scheme of metric analysis. To solve the extrapolation problem, a scheme based on metric analysis methods is proposed. This scheme consists of two stages. In the first stage, using the metric analysis, the function is interpolated to the points of the domain D belonging to the segment of the straight line connecting the center of the domain D with the point M, in which it is necessary to restore the value of the function. In the second stage, based on the auto regression model and metric analysis, the function values are predicted along the above straight-line segment beyond the domain D up to the point M. The presented numerical example demonstrates the efficiency of the method under consideration.

  1. Power maps and wavefront for progressive addition lenses in eyeglass frames.

    PubMed

    Mejía, Yobani; Mora, David A; Díaz, Daniel E

    2014-10-01

    To evaluate a method for measuring the cylinder, sphere, and wavefront of progressive addition lenses (PALs) in eyeglass frames. We examine the contour maps of cylinder, sphere, and wavefront of a PAL assembled in an eyeglass frame using an optical system based on a Hartmann test. To reduce the data noise, particularly in the border of the eyeglass frame, we implement a method based on the Fourier analysis to extrapolate spots outside the eyeglass frame. The spots are extrapolated up to a circular pupil that circumscribes the eyeglass frame and compared with data obtained from a circular uncut PAL. By using the Fourier analysis to extrapolate spots outside the eyeglass frame, we can remove the edge artifacts of the PAL within its frame and implement the modal method to fit wavefront data with Zernike polynomials within a circular aperture that circumscribes the frame. The extrapolated modal maps from framed PALs accurately reflect maps obtained from uncut PALs and provide smoothed maps for the cylinder and sphere inside the eyeglass frame. The proposed method for extrapolating spots outside the eyeglass frame removes edge artifacts of the contour maps (wavefront, cylinder, and sphere), which may be useful to facilitate measurements such as the length and width of the progressive corridor for a PAL in its frame. The method can be applied to any shape of eyeglass frame.

  2. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Sakurai, Takashi

    1990-01-01

    This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

  3. A Comparison of Methods for Computing the Residual Resistivity Ratio of High-Purity Niobium

    PubMed Central

    Splett, J. D.; Vecchia, D. F.; Goodrich, L. F.

    2011-01-01

    We compare methods for estimating the residual resistivity ratio (RRR) of high-purity niobium and investigate the effects of using different functional models. RRR is typically defined as the ratio of the electrical resistances measured at 273 K (the ice point) and 4.2 K (the boiling point of helium at standard atmospheric pressure). However, pure niobium is superconducting below about 9.3 K, so the low-temperature resistance is defined as the normal-state (i.e., non-superconducting state) resistance extrapolated to 4.2 K and zero magnetic field. Thus, the estimated value of RRR depends significantly on the model used for extrapolation. We examine three models for extrapolation based on temperature versus resistance, two models for extrapolation based on magnetic field versus resistance, and a new model based on the Kohler relationship that can be applied to combined temperature and field data. We also investigate the possibility of re-defining RRR so that the quantity is not dependent on extrapolation. PMID:26989580

  4. Mice, myths, and men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, R.J.M.

    The author discusses some examples of how different experimental animal systems have helped to answer questions about the effects of radiation, in particular, carcinogenesis, and to indicate how the new experimental model systems promise an even more exciting future. Entwined in these themes will be observations about susceptibility and extrapolation across species. The hope of developing acceptable methods of extrapolation of estimates of the risk of radiogenic cancer increases as molecular biology reveals the trail of remarkable similarities in the genetic control of many functions common to many species. A major concern about even attempting to extrapolate estimates of risksmore » of radiation-induced cancer across species has been that the mechanisms of carcinogenesis were so different among different species that it would negate the validity of extrapolation. The more that has become known about the genes involved in cancer, especially those related to the initial events in carcinogenesis, the more have the reasons for considering methods of extrapolation across species increased.« less

  5. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  6. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

    DOE PAGES

    Pant, Lalit M.; Weber, Adam Z.

    2017-04-14

    A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

  7. Kinetics of nickel electrodeposition from low electrolyte concentration and at a narrow interelectrode gap

    NASA Astrophysics Data System (ADS)

    Widayatno, Tri

    2015-12-01

    Electrodeposition of nickel onto copper in a system of low Ni2+ concentration and at a narrow interelectrode gap has been carried out. This electrochemical system was required for maskless pattern transfer through electroplating (Enface technique). Kinetics of Electrochemical reaction of Nickel is relatively slow, where such electrochemical system has never been used in this technology. Study on the kinetics of the electrochemical reaction of nickel in such system is essential due to the fact that the quality of an electrodeposited nickel is affected by kinetics. Analytical and graphical methods were utilised to determine kinetic parameters. The kinetic model was approximated by Butler-Volmer and j-η equation. Kinetic parameters such as exchange current density (j0) and charge transfer coefficient (α) were also graphically determined using the plot of η vs. log|j| known as Tafel plot. The polarisation data for an unstirred 0.19 M nickel sulfamate solution at 0.5 mV/s scan rate and RDE system was used. The results indicate that both methods are fairly accurate. For the analytical, the Tafel slope, the exchange current density, and charge transfer coefficient were found to be 149 mV/dec, 1.60 × 10-4 mA/cm2, and 0.39 respectively, whilst for the graphical method were 159 mV/dec, 3.16 × 10-4 mA/cm2, and 0.37. The kinetics parameters in this current study were also compared to those in literature. Significant differences were observed which might be due to the effect of composition and concentration of the electrolytes, operating temperature, and pH leading to the different reaction mechanism. However, the results obtained in this work are in the range of acceptable values. These kinetic parameters will then be used in further study of nickel deposition by modelling and simulation

  8. A nowcasting technique based on application of the particle filter blending algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai

    2017-10-01

    To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.

  9. Surface dose measurements with commonly used detectors: a consistent thickness correction method.

    PubMed

    Reynolds, Tatsiana A; Higgins, Patrick

    2015-09-08

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not recommended for these types of measurements.

  10. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    PubMed

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  11. The Extrapolation of Families of Curves by Recurrence Relations, with Application to Creep-Rupture Data

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Manson, S. S.

    1960-01-01

    A method using finite-difference recurrence relations is presented for direct extrapolation of families of curves. The method is illustrated by applications to creep-rupture data for several materials and it is shown that good results can be obtained without the necessity for any of the usual parameter concepts.

  12. Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.

    2014-12-14

    A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less

  13. New method of extrapolation of the resistance of a model planing boat to full size

    NASA Technical Reports Server (NTRS)

    Sottorf, W

    1942-01-01

    The previously employed method of extrapolating the total resistance to full size with lambda(exp 3) (model scale) and thereby foregoing a separate appraisal of the frictional resistance, was permissible for large models and floats of normal size. But faced with the ever increasing size of aircraft a reexamination of the problem of extrapolation to full size is called for. A method is described by means of which, on the basis of an analysis of tests on planing surfaces, the variation of the wetted surface over the take-off range is analytically obtained. The friction coefficients are read from Prandtl's curve for turbulent boundary layer with laminar approach. With these two values a correction for friction is obtainable.

  14. A regularization method for extrapolation of solar potential magnetic fields

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  15. Multilayer graphene as an effective corrosion protection coating for copper

    NASA Astrophysics Data System (ADS)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  16. Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.

    PubMed

    Wesley, Sunil Bala; Maurya, Devendra Prasad; Goyal, Hari Sharan; Negi, Sangeeta

    2013-12-01

    In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance.

  17. Interpolation Method Needed for Numerical Uncertainty

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.

    2014-01-01

    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.

  18. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  19. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: Application to H2O, N2H+, NO2+, and C2H2

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.

    2010-12-01

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.

  20. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  2. Conic state extrapolation. [computer program for space shuttle navigation and guidance requirements

    NASA Technical Reports Server (NTRS)

    Shepperd, S. W.; Robertson, W. M.

    1973-01-01

    The Conic State Extrapolation Routine provides the capability to conically extrapolate any spacecraft inertial state vector either backwards or forwards as a function of time or as a function of transfer angle. It is merely the coded form of two versions of the solution of the two-body differential equations of motion of the spacecraft center of mass. Because of its relatively fast computation speed and moderate accuracy, it serves as a preliminary navigation tool and as a method of obtaining quick solutions for targeting and guidance functions. More accurate (but slower) results are provided by the Precision State Extrapolation Routine.

  3. Linear prediction data extrapolation superresolution radar imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoda; Ye, Zhenru; Wu, Xiaoqing

    1993-05-01

    Range resolution and cross-range resolution of range-doppler imaging radars are related to the effective bandwidth of transmitted signal and the angle through which the object rotates relatively to the radar line of sight (RLOS) during the coherent processing time, respectively. In this paper, linear prediction data extrapolation discrete Fourier transform (LPDEDFT) superresolution imaging method is investigated for the purpose of surpassing the limitation imposed by the conventional FFT range-doppler processing and improving the resolution capability of range-doppler imaging radar. The LPDEDFT superresolution imaging method, which is conceptually simple, consists of extrapolating observed data beyond the observation windows by means of linear prediction, and then performing the conventional IDFT of the extrapolated data. The live data of a metalized scale model B-52 aircraft mounted on a rotating platform in a microwave anechoic chamber and a flying Boeing-727 aircraft were processed. It is concluded that, compared to the conventional Fourier method, either higher resolution for the same effective bandwidth of transmitted signals and total rotation angle of the object or equal-quality images from smaller bandwidth and total angle may be obtained by LPDEDFT.

  4. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    NASA Astrophysics Data System (ADS)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  5. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  6. Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers.

    PubMed

    Cox, Kieran D; Black, Morgan J; Filip, Natalia; Miller, Matthew R; Mohns, Kayla; Mortimor, James; Freitas, Thaise R; Greiter Loerzer, Raquel; Gerwing, Travis G; Juanes, Francis; Dudas, Sarah E

    2017-12-01

    Diversity estimates play a key role in ecological assessments. Species richness and abundance are commonly used to generate complex diversity indices that are dependent on the quality of these estimates. As such, there is a long-standing interest in the development of monitoring techniques, their ability to adequately assess species diversity, and the implications for generated indices. To determine the ability of substratum community assessment methods to capture species diversity, we evaluated four methods: photo quadrat, point intercept, random subsampling, and full quadrat assessments. Species density, abundance, richness, Shannon diversity, and Simpson diversity were then calculated for each method. We then conducted a method validation at a subset of locations to serve as an indication for how well each method captured the totality of the diversity present. Density, richness, Shannon diversity, and Simpson diversity estimates varied between methods, despite assessments occurring at the same locations, with photo quadrats detecting the lowest estimates and full quadrat assessments the highest. Abundance estimates were consistent among methods. Sample-based rarefaction and extrapolation curves indicated that differences between Hill numbers (richness, Shannon diversity, and Simpson diversity) were significant in the majority of cases, and coverage-based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. Method validation highlighted the inability of the tested methods to capture the totality of the diversity present, while further supporting the notion of extrapolating abundances. Our results highlight the need for consistency across research methods, the advantages of utilizing multiple diversity indices, and potential concerns and considerations when comparing data from multiple sources.

  7. Properties of infrared extrapolations in a harmonic oscillator basis

    DOE PAGES

    Coon, Sidney A.; Kruse, Michael K. G.

    2016-02-22

    Here, the success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful,more » not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r 2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.« less

  8. Surface dose measurements with commonly used detectors: a consistent thickness correction method

    PubMed Central

    Higgins, Patrick

    2015-01-01

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30‐360) with other parallel plate chambers RMI‐449 (Attix), Capintec PS‐033, PTW 30‐329 (Markus) and Memorial. Measurements of surface dose for 6 MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (−0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid‐state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three‐detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth‐dose curves and is not recommended for these types of measurements. PACS number: 87.56.‐v PMID:26699319

  9. Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Groves, Curtis; Ilie, Marcel; Schallhorn, Paul

    2014-01-01

    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature

  10. Robust approaches to quantification of margin and uncertainty for sparse data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Lauren; Schroeder, Benjamin B.; Rumsey, Kelin

    Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of themore » risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.« less

  11. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  12. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  13. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.

    PubMed

    Chen, Leanne D; Nørskov, Jens K; Luntz, Alan C

    2015-01-02

    The Al-air battery possesses high theoretical specific energy (4140 W h/kg) and is therefore an attractive candidate for vehicle propulsion. However, the experimentally observed open-circuit potential is much lower than what bulk thermodynamics predicts, and this potential loss is typically attributed to corrosion. Similarly, large Tafel slopes associated with the battery are assumed to be due to film formation. We present a detailed thermodynamic study of the Al-air battery using density functional theory. The results suggest that the maximum open-circuit potential of the Al anode is only -1.87 V versus the standard hydrogen electrode at pH 14.6 instead of the traditionally assumed -2.34 V and that large Tafel slopes are inherent in the electrochemistry. These deviations from the bulk thermodynamics are intrinsic to the electrochemical surface processes that define Al anodic dissolution. This has contributions from both asymmetry in multielectron transfers and, more importantly, a large chemical stabilization inherent to the formation of bulk Al(OH)3 from surface intermediates. These are fundamental limitations that cannot be improved even if corrosion and film effects are completely suppressed.

  14. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Tao; Liu, Pan; Liao, Zhongquan; Liu, Shaohua; Zhuang, Xiaodong; Chen, Mingwei; Zschech, Ehrenfried; Feng, Xinliang

    2017-05-01

    Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm-2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.

  15. Curcumin Derivatives as Green Corrosion Inhibitors for α-Brass in Nitric Acid Solution

    NASA Astrophysics Data System (ADS)

    Fouda, A. S.; Elattar, K. M.

    2012-11-01

    1,7- Bis-(4-hydroxy-3-methoxy-phenyl)-hepta-1,6-diene-4-arylazo-3,5-dione I-V have been investigated as corrosion inhibitors for α-brass in 2 M nitric acid solution using weight-loss and galvanostatic polarization techniques. The efficiency of the inhibitors increases with the increase in the inhibitor concentration but decreases with a rise in temperature. The conjoint effect of the curcumin derivatives and KSCN has also been studied. The apparent activation energy ( E a*) and other thermodynamic parameters for the corrosion process have also been calculated. The galvanostatic polarization data indicated that the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The slopes of the cathodic and anodic Tafel lines ( b c and b a) are maintained approximately equal for various inhibitor concentrations. However, the value of the Tafel slopes increases together as inhibitor concentration increases. The adsorption of these compounds on α-brass surface has been found to obey the Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  16. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-07-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }}s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }}s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  17. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  18. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-03-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }} s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }} s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  19. Corrosion Behavior of Pure Copper Surrounded by Hank's Physiological Electrolyte at 310 K (37 °C) as a Potential Biomaterial for Contraception: An Analogy Drawn Between Micro- and Nano-grained Copper

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid; Vafaeian, Saeed; Ansari, Ghazaleh

    2017-08-01

    This work aims to evaluate the corrosion behavior of pure copper from the microstructural viewpoint for a biomedical application, namely intrauterine devices. For this purpose, Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques were used to evaluate the corrosion behavior of annealed pure copper (with the average grain size of 45 ± 1 µm) and nano-grained microstructure in physiological electrolyte of Hank at 310 K (37 °C). Pure copper in nanoscale grain size, typically an average of 90 ± 5 nm, was successfully made by eight-cycle accumulative roll bonding process at room temperature. On the basis of Tafel polarization results, it was revealed that nano-grained sample had lower corrosion current density and more noble corrosion potential for prolonged exposure in Hank's physiological solution at 310 K (37 °C). In addition, the EIS results showed that the nano-grained sample had more corrosion resistance compared to the coarse-grained one for long-time immersion.

  20. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Veterinary Drugs

    EPA Science Inventory

    Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...

  1. Loss tolerant speech decoder for telecommunications

    NASA Technical Reports Server (NTRS)

    Prieto, Jr., Jaime L. (Inventor)

    1999-01-01

    A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.

  2. Studying the Transfer of Magnetic Helicity in Solar Active Regions with the Connectivity-based Helicity Flux Density Method

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Pariat, É.; Valori, G.; Jing, J.; Démoulin, P.

    2018-01-01

    In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We address these concerns by applying this method to the isolated and internally complex AR 11158 with different magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.

  3. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  4. Determination of the Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60Co gamma beams.

    PubMed

    Laitano, R F; Toni, M P; Pimpinella, M; Bovi, M

    2002-07-21

    The factor Kwall to correct for photon attenuation and scatter in the wall of ionization chambers for 60Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of Kwall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the Kwall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The Kwall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type.

  5. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Qi, Fei; Wang, Xinqiang; Zhang, Wanli; Li, Yanrong; Li, Xuesong

    2017-06-01

    Clean hydrogen split from water by hydrogen evolution reaction (HER) is significant for sustainability, environmental emissions, and energy security. So far, it is still a big challenge to develop highly efficient noble metal-free electrocatalysts with comparable HER efficiency to platinum-based catalysts, which are mainly hindered by the intrinsic electrocatalytic property and particularly the reasonable nanostructure design of the electrocatalyst. Here we report a newly-designed three-dimensional hierarchical MoSe2 nanoarchitecture (3D-MoSe2) with outstanding HER performance. The 3D-MoSe2 is grown by chemical vapor deposition method with using perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt as a seeding promoter. The as-grown 3D-MoSe2 nanoarchitecture is highly crystalline and constructed with curly few-layered vertical nanosheets onto the horizontal layer, which has much larger (~12 times) electrochemically active area and much smaller (only 2%) charge transfer resistance compared to conventional horizontal MoSe2 layer. With these advantages, the Tafel slope of 3D-MoSe2 can be as small as 47.3 mV/dev, which is the smallest record ever reported for pure MoSe2, even for pure two-dimensional transition metal dichalcogenides (2D-TMDs) catalysts. Furthermore, when 3D-MoSe2 is grown on the multiwall carbon nanotube film, its Tafel slope can be further reduced down to 32.5 mV/dec, which is close to the theoretical limit (29 mV/dec) of HER, and comparable to platinum-based electrocatalysts, making it promising as a highly efficient electrocatalyst for hydrogen evolution.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  7. Correlation Of 2-Chlorobiphenyl Dechlorination By Fe/Pd With Iron Corrosion At Different pH

    EPA Science Inventory

    The rate of 2-chlorobiphenyl dechlorination by palladized iron (Fe/Pd) decreased with increasing pH until pH > 12.5. Iron corrosion potential (Ec) and current (jc), obtained from polarization curves of a rotating disk electrode of iron, followed the Tafel e...

  8. A Method for Extrapolation of Atmospheric Soundings

    DTIC Science & Technology

    2014-05-01

    14 3.1.2 WRF Inter-Comparisons...8 Figure 5. Profiles comparing the 00 UTC 14 January 2013 GJT radiosonde to 1-km WRF data from 23 UTC extended from...comparing 1-km WRF data and 3-km WRF data extended from the “old surface” to the radiosonde surface using the standard extrapolation and extended

  9. Charge transfer kinetics at the solid-solid interface in porous electrodes

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Bazant, Martin Z.

    2014-04-01

    Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.

  10. Evidence for using Monte Carlo calculated wall attenuation and scatter correction factors for three styles of graphite-walled ion chamber.

    PubMed

    McCaffrey, J P; Mainegra-Hing, E; Kawrakow, I; Shortt, K R; Rogers, D W O

    2004-06-21

    The basic equation for establishing a 60Co air-kerma standard based on a cavity ionization chamber includes a wall correction term that corrects for the attenuation and scatter of photons in the chamber wall. For over a decade, the validity of the wall correction terms determined by extrapolation methods (K(w)K(cep)) has been strongly challenged by Monte Carlo (MC) calculation methods (K(wall)). Using the linear extrapolation method with experimental data, K(w)K(cep) was determined in this study for three different styles of primary-standard-grade graphite ionization chamber: cylindrical, spherical and plane-parallel. For measurements taken with the same 60Co source, the air-kerma rates for these three chambers, determined using extrapolated K(w)K(cep) values, differed by up to 2%. The MC code 'EGSnrc' was used to calculate the values of K(wall) for these three chambers. Use of the calculated K(wall) values gave air-kerma rates that agreed within 0.3%. The accuracy of this code was affirmed by its reliability in modelling the complex structure of the response curve obtained by rotation of the non-rotationally symmetric plane-parallel chamber. These results demonstrate that the linear extrapolation technique leads to errors in the determination of air-kerma.

  11. Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach

    NASA Astrophysics Data System (ADS)

    Sokol, Zbyněk; Mejsnar, Jan; Pop, Lukáš; Bližňák, Vojtěch

    2017-09-01

    A new method for the probabilistic nowcasting of instantaneous rain rates (ENS) based on the ensemble technique and extrapolation along Lagrangian trajectories of current radar reflectivity is presented. Assuming inaccurate forecasts of the trajectories, an ensemble of precipitation forecasts is calculated and used to estimate the probability that rain rates will exceed a given threshold in a given grid point. Although the extrapolation neglects the growth and decay of precipitation, their impact on the probability forecast is taken into account by the calibration of forecasts using the reliability component of the Brier score (BS). ENS forecasts the probability that the rain rates will exceed thresholds of 0.1, 1.0 and 3.0 mm/h in squares of 3 km by 3 km. The lead times were up to 60 min, and the forecast accuracy was measured by the BS. The ENS forecasts were compared with two other methods: combined method (COM) and neighbourhood method (NEI). NEI considered the extrapolated values in the square neighbourhood of 5 by 5 grid points of the point of interest as ensemble members, and the COM ensemble was comprised of united ensemble members of ENS and NEI. The results showed that the calibration technique significantly improves bias of the probability forecasts by including additional uncertainties that correspond to neglected processes during the extrapolation. In addition, the calibration can also be used for finding the limits of maximum lead times for which the forecasting method is useful. We found that ENS is useful for lead times up to 60 min for thresholds of 0.1 and 1 mm/h and approximately 30 to 40 min for a threshold of 3 mm/h. We also found that a reasonable size of the ensemble is 100 members, which provided better scores than ensembles with 10, 25 and 50 members. In terms of the BS, the best results were obtained by ENS and COM, which are comparable. However, ENS is better calibrated and thus preferable.

  12. Extra- and intracellular volume monitoring by impedance during haemodialysis using Cole-Cole extrapolation.

    PubMed

    Jaffrin, M Y; Maasrani, M; Le Gourrier, A; Boudailliez, B

    1997-05-01

    A method is presented for monitoring the relative variation of extracellular and intracellular fluid volumes using a multifrequency impedance meter and the Cole-Cole extrapolation technique. It is found that this extrapolation is necessary to obtain reliable data for the resistance of the intracellular fluid. The extracellular and intracellular resistances can be approached using frequencies of, respectively, 5 kHz and 1000 kHz, but the use of 100 kHz leads to unacceptable errors. In the conventional treatment the overall relative variation of intracellular resistance is found to be relatively small.

  13. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.

  14. Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation.

    PubMed

    Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc

    2013-06-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.

  15. Free-standing ternary NiWP film for efficient water oxidation reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng; Zhou, Kuo; Ma, Lili; Liang, Yanqin; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Li, Zhaoyang

    2018-03-01

    High-efficient catalysts for oxygen evolution reaction (OER) is of great concern in improving energy efficiency for water splitting. Here we report a high-performance OER electrocatalyst of nickel-tungsten-phosphorus (NiWP) film prepared by template method. This free-standing ternary electrocatalyst exhibits a remarkable electrocatalytic activity of OER in alkaline medium due to the synergetic effect among these elements and the good electrical conductivity. The reported NiWP composite catalyst has an overpotential of as low as 0.4 V (vs. RHE) at 30 mA cm-2, better than that of the commercial RuO2 catalyst. Moreover, a small charge transfer resistance of 4.06 Ω and a Tafel slope of 68 mV dec-1 demonstrate the outstanding catalytic activity.

  16. EXTRAPOLATION METHOD FOR MAXIMAL AND 24-H AVERAGE LTE TDD EXPOSURE ESTIMATION.

    PubMed

    Franci, D; Grillo, E; Pavoncello, S; Coltellacci, S; Buccella, C; Aureli, T

    2018-01-01

    The Long-Term Evolution (LTE) system represents the evolution of the Universal Mobile Telecommunication System technology. This technology introduces two duplex modes: Frequency Division Duplex and Time Division Duplex (TDD). Despite having experienced a limited expansion in the European countries since the debut of the LTE technology, a renewed commercial interest for LTE TDD technology has recently been shown. Therefore, the development of extrapolation procedures optimised for TDD systems becomes crucial, especially for the regulatory authorities. This article presents an extrapolation method aimed to assess the exposure to LTE TDD sources, based on the detection of the Cell-Specific Reference Signal power level. The method introduces a βTDD parameter intended to quantify the fraction of the LTE TDD frame duration reserved for downlink transmission. The method has been validated by experimental measurements performed on signals generated by both a vector signal generator and a test Base Transceiver Station installed at Linkem S.p.A facility in Rome. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    NASA Astrophysics Data System (ADS)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  18. Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis.

    PubMed

    McKendry, Ian G; Thenuwara, Akila C; Shumlas, Samantha L; Peng, Haowei; Aulin, Yaroslav V; Chinnam, Parameswara Rao; Borguet, Eric; Strongin, Daniel R; Zdilla, Michael J

    2018-01-16

    The effect on the electrocatalytic oxygen evolution reaction (OER) of cobalt incorporation into the metal oxide sheets of the layered manganese oxide birnessite was investigated. Birnessite and cobalt-doped birnessite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and conductivity measurements. A cobalt:manganese ratio of 1:2 resulted in the most active catalyst for the OER. In particular, the overpotential (η) for the OER was 420 mV, significantly lower than the η = 780 mV associated with birnessite in the absence of Co. Furthermore, the Tafel slope for Co/birnessite was 81 mV/dec, in comparison to a Tafel slope of greater than 200 mV/dec for birnessite. For chemical water oxidation catalysis, an 8-fold turnover number (TON) was achieved (h = 70 mmol of O 2 /mol of metal). Density functional theory (DFT) calculations predict that cobalt modification of birnessite resulted in a raising of the valence band edge and occupation of that edge by holes with enhanced mobility during catalysis. Inclusion of extra cobalt beyond the ideal 1:2 ratio was detrimental to catalysis due to disruption of the layered structure of the birnessite phase.

  19. Evaluation of oxygen reduction activity by the thin-film rotating disk electrode methodology: The effects of potentiodynamic parameters

    DOE PAGES

    Chen, Guangyu; Li, Meng; Kuttiyiel, Kurian A.; ...

    2016-04-11

    Here, an accurate and efficient assessment of activity is critical for the research and development of electrocatalysts for oxygen reduction reaction (ORR). Currently, the methodology combining the thin-film rotating disk electrode (TF-RDE) and potentiodynamic polarization is the most commonly used to pre-evaluate ORR activity, acquire kinetic data (i.e., kinetic current, Tafel slope, etc.), and gain understanding of the ORR mechanism. However, it is often neglected that appropriate potentiodynamic parameters have to be chosen to obtain reliable results. We first evaluate the potentiodynamic and potentiostatic polarization measurements with TF-RDE to examine the ORR activity of Pt nanoelectrocatalyst. Furthermore, our results demonstratemore » that besides depending on the nature of electrocatalyst, the apparent ORR kinetics also strongly depends on the associated potentiodynamic parameters, such as scan rate and scan region, which have a great effect on the coverage of adsorbed OH ad/O ad on Pt surface, thereby affecting the ORR activities of both nanosized and bulk Pt. However, the apparent Tafel slopes remained nearly the same, indicating that the ORR mechanism in all the measurements was not affected by different potentiodynamic parameters.« less

  20. A new method suitable for calculating accurately wetting temperature over a wide range of conditions: Based on the adaptation of continuation algorithm to classical DFT

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2017-11-01

    A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.

  1. Heuristic method of fabricating counter electrodes in dye-sensitized solar cells based on a PEDOT:PSS layer as a catalytic material

    NASA Astrophysics Data System (ADS)

    Edalati, Sh; Houshangi far, A.; Torabi, N.; Baneshi, Z.; Behjat, A.

    2017-02-01

    Poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a fluoride-doped tin oxide glass substrate using a heuristic method to fabricate platinum-free counter electrodes for dye-sensitized solar cells (DSSCs). In this heuristic method a thin layer of PEDOT:PPS is obtained by spin coating the PEDOT:PSS on a Cu substrate and then removing the substrate with FeCl3. The characteristics of the deposited PEDOT:PSS were studied by energy dispersive x-ray analysis and scanning electron microscopy, which revealed the micro-electronic specifications of the cathode. The aforementioned DSSCs exhibited a solar conversion efficiency of 3.90%, which is far higher than that of DSSCs with pure PEDOT:PSS (1.89%). This enhancement is attributed not only to the micro-electronic specifications but also to the HNO3 treatment through our heuristic method. The results of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization plots show the modified cathode has a dual function, including excellent conductivity and electrocatalytic activity for iodine reduction.

  2. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    NASA Astrophysics Data System (ADS)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  3. Numerical methods in acoustics

    NASA Astrophysics Data System (ADS)

    Candel, S. M.

    This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.

  4. An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions.

    PubMed

    Xia, Yan; Berger, Martin; Bauer, Sebastian; Hu, Shiyang; Aichert, Andre; Maier, Andreas

    2017-01-01

    We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method.

  5. An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions

    PubMed Central

    Berger, Martin; Bauer, Sebastian; Hu, Shiyang; Aichert, Andre

    2017-01-01

    We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method. PMID:28808441

  6. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  7. In Vitro-In Vivo Extrapolation of Metabolism- and Transporter-Mediated Drug-Drug Interactions-Overview of Basic Prediction Methods.

    PubMed

    Yoshida, Kenta; Zhao, Ping; Zhang, Lei; Abernethy, Darrell R; Rekić, Dinko; Reynolds, Kellie S; Galetin, Aleksandra; Huang, Shiew-Mei

    2017-09-01

    Evaluation of drug-drug interaction (DDI) risk is vital to establish benefit-risk profiles of investigational new drugs during drug development. In vitro experiments are routinely conducted as an important first step to assess metabolism- and transporter-mediated DDI potential of investigational new drugs. Results from these experiments are interpreted, often with the aid of in vitro-in vivo extrapolation methods, to determine whether and how DDI should be evaluated clinically to provide the basis for proper DDI management strategies, including dosing recommendations, alternative therapies, or contraindications under various DDI scenarios and in different patient population. This article provides an overview of currently available in vitro experimental systems and basic in vitro-in vivo extrapolation methodologies for metabolism- and transporter-mediated DDIs. Published by Elsevier Inc.

  8. Monte Carlo based approach to the LS-NaI 4πβ-γ anticoincidence extrapolation and uncertainty

    PubMed Central

    Fitzgerald, R.

    2016-01-01

    The 4πβ-γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone. PMID:27358944

  9. Acceleration of convergence of vector sequences

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Ford, W. F.; Smith, D. A.

    1983-01-01

    A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

  10. Measurements of the Absorption by Auditorium SEATING—A Model Study

    NASA Astrophysics Data System (ADS)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  11. Application of the Weibull extrapolation to 137Cs geochronology in Tokyo Bay and Ise Bay, Japan.

    PubMed

    Lu, Xueqiang

    2004-01-01

    Considerable doubt surrounds the nature of processes by which 137Cs is deposited in marine sediments, leading to a situation where 137Cs geochronology cannot be always applied suitably. Based on extrapolation with Weibull distribution, the maximum concentration of 137Cs derived from asymptotic values for cumulative specific inventory was used to re-establish 137Cs geochronology, instead of original 137Cs profiles. Corresponding dating results for cores in Tokyo Bay and Ise Bay, Japan, by means of this new method, are in much closer agreement with those calculated from 210Pb method than the previous method.

  12. Patient-bounded extrapolation using low-dose priors for volume-of-interest imaging in C-arm CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Y.; Maier, A.; Berger, M.

    2015-04-15

    Purpose: Three-dimensional (3D) volume-of-interest (VOI) imaging with C-arm systems provides anatomical information in a predefined 3D target region at a considerably low x-ray dose. However, VOI imaging involves laterally truncated projections from which conventional reconstruction algorithms generally yield images with severe truncation artifacts. Heuristic based extrapolation methods, e.g., water cylinder extrapolation, typically rely on techniques that complete the truncated data by means of a continuity assumption and thus appear to be ad-hoc. It is our goal to improve the image quality of VOI imaging by exploiting existing patient-specific prior information in the workflow. Methods: A necessary initial step prior tomore » a 3D acquisition is to isocenter the patient with respect to the target to be scanned. To this end, low-dose fluoroscopic x-ray acquisitions are usually applied from anterior–posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered by repositioning the table. In this work, we present a patient-bounded extrapolation method that makes use of these noncollimated fluoroscopic images to improve image quality in 3D VOI reconstruction. The algorithm first extracts the 2D patient contours from the noncollimated AP and ML fluoroscopic images. These 2D contours are then combined to estimate a volumetric model of the patient. Forward-projecting the shape of the model at the eventually acquired C-arm rotation views gives the patient boundary information in the projection domain. In this manner, we are in the position to substantially improve image quality by enforcing the extrapolated line profiles to end at the known patient boundaries, derived from the 3D shape model estimate. Results: The proposed method was evaluated on eight clinical datasets with different degrees of truncation. The proposed algorithm achieved a relative root mean square error (rRMSE) of about 1.0% with respect to the reference reconstruction on nontruncated data, even in the presence of severe truncation, compared to a rRMSE of 8.0% when applying a state-of-the-art heuristic extrapolation technique. Conclusions: The method we proposed in this paper leads to a major improvement in image quality for 3D C-arm based VOI imaging. It involves no additional radiation when using fluoroscopic images that are acquired during the patient isocentering process. The model estimation can be readily integrated into the existing interventional workflow without additional hardware.« less

  13. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  14. Blending of phased array data

    NASA Astrophysics Data System (ADS)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  15. Application of the backward extrapolation method to pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less

  16. Application of the backward extrapolation method to pulsed neutron sources

    DOE PAGES

    Talamo, Alberto; Gohar, Yousry

    2017-09-23

    We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less

  17. Video error concealment using block matching and frequency selective extrapolation algorithms

    NASA Astrophysics Data System (ADS)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Ran; Dutta, Biswanath; Sahoo, Sanjubala

    Here, we report a facile synthetic protocol to pre-pare mesoporous FeS 2 without the aid of hard template as an electrocatalyst for the hydrogen evolution reaction (HER). The mesoporous FeS 2 materials with high surface area were successfully prepared by a sol-gel method follow-ing a sulfurization treatment in an H 2S atmosphere. A re-markable HER catalytic performance was achieved with a low overpotential of 96 mV at a current density of 10 mA·cm 2 and a Tafel slope of 78 mV per decade under alka-line conditions (pH 13). These theoretical calculations indicate that the excellent catalytic activity of mesoporous FeSmore » 2 is attributed to the exposed (210) facets. The mesoporous FeS 2 material might be a promising alternative to the Pt-based electrocatalysts for water splitting.« less

  19. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  20. Computer program for pulsed thermocouples with corrections for radiation effects

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  1. An electrochemical study of the action of a poly(vinylpyridine) derivative as inhibitor for corrosion of iron in 1M H2SO4

    NASA Astrophysics Data System (ADS)

    Abed, Y.; Arrar, Z.; Hammouti, B.; Aouniti, A.; Kertit, S.; Mansri, A.

    1999-09-01

    The influence of the addition of poly(4-vinylpyridine poly-3-oxide ethylene) (P4VPP3OE) on the corrosion of Armco iron in molar sulphuric acid has been investigated by potentiodynamic and polarisation resistance measurements. The polymer studied reduces the corrosion current densities. The inhibition efficiency (E%) of P4VPP3OE increases wiht its concentration and attains 99% at 3.33 10-5 M. E% obtained from cathodic Tafel plots and polarisation resistance methods were in good agreement. The inhibitor was adsorbed on the iron surface according to the Frumkin adsorption isotherm model. Polarisation measurements show also that the compound acts as a cathodic inhibitor. L'influence de l'addition du Poly(4-vinylpyridine poly-3-oxyde éthylène) nouvellement synthétisé au laboratoire sur la corrosion du fer Armco dans l'acide sulfurique molaire a été étudié par les méthodes potentiodynamique et la résistance de polarisation. La présence du polymère réduit la densité du courant cathodique et augmente la résistance de polarisation. Ce phénomène s'accentue avec la concentration du produit. Les pentes de Tafel obtenues à partir des courbes cathodiques sont parallèles indiquant qu'en absence et en présence de l'inhibiteur, la réduction du proton se fait selon le même mécanisme d'activation pure. L'efficacité d'inhibition augmente avec la concentration et atteint 99 % à 3.3 10-5 M. Les efficacités obtenues par les deux méthodes sont en bon accord. L'inhibiteur s'adsorbe sur la surface métallique selon l'isotherme de Frumkin. Les mesures de polarisation montrent ainsi que le composé agit essentiellement comme inhibiteur cathodique.

  2. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGES

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  3. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    NASA Astrophysics Data System (ADS)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  4. An assessment of two-step linear regression and a multifactor probit analysis as alternatives to acute to chronic ratios in the estimation of chronic response from acute toxicity data to derive water quality guidelines.

    PubMed

    Slaughter, Andrew R; Palmer, Carolyn G; Muller, Wilhelmine J

    2007-04-01

    In aquatic ecotoxicology, acute to chronic ratios (ACRs) are often used to predict chronic responses from available acute data to derive water quality guidelines, despite many problems associated with this method. This paper explores the comparative protectiveness and accuracy of predicted guideline values derived from the ACR, linear regression analysis (LRA), and multifactor probit analysis (MPA) extrapolation methods applied to acute toxicity data for aquatic macroinvertebrates. Although the authors of the LRA and MPA methods advocate the use of extrapolated lethal effects in the 0.01% to 10% lethal concentration (LC0.01-LC10) range to predict safe chronic exposure levels to toxicants, the use of an extrapolated LC50 value divided by a safety factor of 5 was in addition explored here because of higher statistical confidence surrounding the LC50 value. The LRA LC50/5 method was found to compare most favorably with available experimental chronic toxicity data and was therefore most likely to be sufficiently protective, although further validation with the use of additional species is needed. Values derived by the ACR method were the least protective. It is suggested that there is an argument for the replacement of ACRs in developing water quality guidelines by the LRA LC50/5 method.

  5. Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods.

    PubMed

    Sommerfeld, Thomas; Ehara, Masahiro

    2015-01-21

    The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires--at least in principle--that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the (2)Πu resonance of CO2(-), and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO2(-). It is important to emphasize that for both the model and for CO2(-), all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.

  6. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less

  7. Weather Typing-Based Flood Frequency Analysis Verified for Exceptional Historical Events of Past 500 Years Along the Meuse River

    NASA Astrophysics Data System (ADS)

    De Niel, J.; Demarée, G.; Willems, P.

    2017-10-01

    Governments, policy makers, and water managers are pushed by recent socioeconomic developments such as population growth and increased urbanization inclusive of occupation of floodplains to impose very stringent regulations on the design of hydrological structures. These structures need to withstand storms with return periods typically ranging between 1,250 and 10,000 years. Such quantification involves extrapolations of systematically measured instrumental data, possibly complemented by quantitative and/or qualitative historical data and paleoflood data. The accuracy of the extrapolations is, however, highly unclear in practice. In order to evaluate extreme river peak flow extrapolation and accuracy, we studied historical and instrumental data of the past 500 years along the Meuse River. We moreover propose an alternative method for the estimation of the extreme value distribution of river peak flows, based on weather types derived by sea level pressure reconstructions. This approach results in a more accurate estimation of the tail of the distribution, where current methods are underestimating the design levels related to extreme high return periods. The design flood for a 1,250 year return period is estimated at 4,800 m3 s-1 for the proposed method, compared with 3,450 and 3,900 m3 s-1 for a traditional method and a previous study.

  8. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  9. Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping.

    PubMed

    Li, Kai; Rakov, Dmitrii; Zhang, Wei; Xu, Ping

    2017-07-18

    Here we demonstrate the improvement of the intrinsic electrocatalytic hydrogen evolution activity of NiPS 3 by proper cobalt doping. The optimized Ni 0.95 Co 0.05 PS 3 nanosheets display a geometric catalytic current density of -10 mA cm -2 at an overpotential of 71 mV vs. RHE and a Tafel slope of 77 mV dec -1 in 1.0 M KOH.

  10. SU-E-J-145: Geometric Uncertainty in CBCT Extrapolation for Head and Neck Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Kumarasiri, A; Chetvertkov, M

    2014-06-01

    Purpose: One primary limitation of using CBCT images for H'N adaptive radiotherapy (ART) is the limited field of view (FOV) range. We propose a method to extrapolate the CBCT by using a deformed planning CT for the dose of the day calculations. The aim was to estimate the geometric uncertainty of our extrapolation method. Methods: Ten H'N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken, were selected. Furthermore, a small FOV CBCT (CT2short) was synthetically created by cropping CT2 to the size of a CBCT image. Then, an extrapolated CBCT (CBCTextrp) was generated by deformablymore » registering CT1 to CT2short and resampling with a wider FOV (42mm more from the CT2short borders), where CT1 is deformed through translation, rigid, affine, and b-spline transformations in order. The geometric error is measured as the distance map ||DVF|| produced by a deformable registration between CBCTextrp and CT2. Mean errors were calculated as a function of the distance away from the CBCT borders. The quality of all the registrations was visually verified. Results: Results were collected based on the average numbers from 10 patients. The extrapolation error increased linearly as a function of the distance (at a rate of 0.7mm per 1 cm) away from the CBCT borders in the S/I direction. The errors (μ±σ) at the superior and inferior boarders were 0.8 ± 0.5mm and 3.0 ± 1.5mm respectively, and increased to 2.7 ± 2.2mm and 5.9 ± 1.9mm at 4.2cm away. The mean error within CBCT borders was 1.16 ± 0.54mm . The overall errors within 4.2cm error expansion were 2.0 ± 1.2mm (sup) and 4.5 ± 1.6mm (inf). Conclusion: The overall error in inf direction is larger due to more large unpredictable deformations in the chest. The error introduced by extrapolation is plan dependent. The mean error in the expanded region can be large, and must be considered during implementation. This work is supported in part by Varian Medical Systems, Palo Alto, CA.« less

  11. Off disk-center potential field calculations using vector magnetograms

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  12. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    NASA Astrophysics Data System (ADS)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  13. How Accurate Are Infrared Luminosities from Monochromatic Photometric Extrapolation?

    NASA Astrophysics Data System (ADS)

    Lin, Zesen; Fang, Guanwen; Kong, Xu

    2016-12-01

    Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ({L}{IR}) of galaxies. By utilizing multi-wavelength data that covers across 0.35-500 μm in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated {L}{IR} based on three IR spectral energy distribution (SED) templates out to z˜ 3.5. We find that the Chary & Elbaz template provides the best estimate of {L}{IR} in Herschel/Photodetector Array Camera and Spectrometer (PACS) bands, while the Dale & Helou template performs best in Herschel/Spectral and Photometric Imaging Receiver (SPIRE) bands. To estimate {L}{IR}, we suggest that extrapolations from the available longest wavelength PACS band based on the Chary & Elbaz template can be a good estimator. Moreover, if the PACS measurement is unavailable, extrapolations from SPIRE observations but based on the Dale & Helou template can also provide a statistically unbiased estimate for galaxies at z≲ 2. The emission with a rest-frame 10-100 μm range of IR SED can be well described by all three templates, but only the Dale & Helou template shows a nearly unbiased estimate of the emission of the rest-frame submillimeter part.

  14. Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Benbouguerra, Khalissa; Chafaa, Salah; Chafai, Nadjib; Mehri, Mouna; Moumeni, Ouahiba; Hellal, Abdelkader

    2018-04-01

    New α-aminophosphonate (α-APD) and Schiff base (E-NDPIMA) derivatives have been prepared and their structures ware proved by IR, UV-Vis, 1H, 13C and 31P NMR spectroscopy. Their inhibitive capacities on the XC48 carbon steel corrosion in 0.5 mol L-1 H2SO4 solution were explored by weight loss, Tafel polarization, electrochemical impedance spectroscopy (EIS) and atomic force microscope (AFM). Experimental results illustrate that the synthesized compounds are an effectives inhibitors and the adsorption of inhibitors molecules on the carbon steel surface obeys Langmuir adsorption isotherm. In addition, quantum chemical calculations performed with density function theory (DFT) method have been used to correlate the inhibition efficiency established experimentally. Also, the molecular dynamics simulations have been utilized to simulate the interactions between the inhibitors molecules and Fe (100) surface in aqueous solution.

  15. Hollow core-shell structured Ni-Sn@C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction.

    PubMed

    Lang, Leiming; Shi, Yi; Wang, Jiong; Wang, Feng-Bin; Xia, Xing-Hua

    2015-05-06

    Pt-free electrocatalysts with high activity and low cost are highly pursued for hydrogen production by electrochemically splitting water. Ni-based alloy catalysts are potential candidates for the hydrogen evolution reaction (HER) and have been studied extensively. Here, we synthesized novel hollow core-shell structure Ni-Sn@C nanoparticles (NPs) by sol-gel, chemical vapor deposition, and etching processes. The prepared electrocatalysts with porous hollow carbon layers have a high conductivity and large active area, which exhibit good electrocatalytic activity toward HER. The Tafel slope of ∼35 millivolts per decade measured in acidic solution for Ni-Sn@C NPs is the smallest one to date for the Ni-Sn alloy catalysts, and exceeds those of the most non-noble metal catalysts, indicating a possible Volmer-Heyrovsky reaction mechanism. The synthetic method can be extended to prepare other hollow core-shell structure electrocatalysts for low-temperature fuel cells.

  16. Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sakita, Alan M. P.; Noce, Rodrigo Della; Vallés, Elisa; Benedetti, Assis V.

    2018-03-01

    A novel, ultra-fast, and one-step method for obtaining an effective catalyst for oxygen evolution reaction is proposed. The procedure consists in direct electrodeposition, in a free-nitrate bath, of CoFe alloy films covered with layered double hydroxides (LDH), by potentiostatic mode, in continuous or pulsed regime. The catalyst is directly formed on glassy carbon substrates. The best-prepared catalyst material reveals a mixed morphology with granular and dendritic CoFe alloy covered with a sponge of CoFe-LDH containing a Cl interlayer. An overpotential of η10 mA = 286 mV, with a Tafel slope of 48 mV dec-1, is obtained for the OER which displays the enhanced properties of the catalyst. These improved results demonstrate the competitiveness and efficacy of our proposal for the production of OER catalysts.

  17. Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution

    DOE PAGES

    Miao, Ran; Dutta, Biswanath; Sahoo, Sanjubala; ...

    2017-09-05

    Here, we report a facile synthetic protocol to pre-pare mesoporous FeS 2 without the aid of hard template as an electrocatalyst for the hydrogen evolution reaction (HER). The mesoporous FeS 2 materials with high surface area were successfully prepared by a sol-gel method follow-ing a sulfurization treatment in an H 2S atmosphere. A re-markable HER catalytic performance was achieved with a low overpotential of 96 mV at a current density of 10 mA·cm 2 and a Tafel slope of 78 mV per decade under alka-line conditions (pH 13). These theoretical calculations indicate that the excellent catalytic activity of mesoporous FeSmore » 2 is attributed to the exposed (210) facets. The mesoporous FeS 2 material might be a promising alternative to the Pt-based electrocatalysts for water splitting.« less

  18. Uncertainty factors in screening ecological risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, L.D.; Taggart, M.

    2000-06-01

    The hazard quotient (HQ) method is commonly used in screening ecological risk assessments (ERAs) to estimate risk to wildlife at contaminated sites. Many ERAs use uncertainty factors (UFs) in the HQ calculation to incorporate uncertainty associated with predicting wildlife responses to contaminant exposure using laboratory toxicity data. The overall objective was to evaluate the current UF methodology as applied to screening ERAs in California, USA. Specific objectives included characterizing current UF methodology, evaluating the degree of conservatism in UFs as applied, and identifying limitations to the current approach. Twenty-four of 29 evaluated ERAs used the HQ approach: 23 of thesemore » used UFs in the HQ calculation. All 24 made interspecies extrapolations, and 21 compensated for its uncertainty, most using allometric adjustments and some using RFs. Most also incorporated uncertainty for same-species extrapolations. Twenty-one ERAs used UFs extrapolating from lowest observed adverse effect level (LOAEL) to no observed adverse effect level (NOAEL), and 18 used UFs extrapolating from subchronic to chronic exposure. Values and application of all UF types were inconsistent. Maximum cumulative UFs ranged from 10 to 3,000. Results suggest UF methodology is widely used but inconsistently applied and is not uniformly conservative relative to UFs recommended in regulatory guidelines and academic literature. The method is limited by lack of consensus among scientists, regulators, and practitioners about magnitudes, types, and conceptual underpinnings of the UF methodology.« less

  19. Møller-Plesset perturbation energies and distances for HeC(20) extrapolated to the complete basis set limit.

    PubMed

    Varandas, A J C

    2009-02-01

    The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.

  20. The design of L1-norm visco-acoustic wavefield extrapolators

    NASA Astrophysics Data System (ADS)

    Salam, Syed Abdul; Mousa, Wail A.

    2018-04-01

    Explicit depth frequency-space (f - x) prestack imaging is an attractive mechanism for seismic imaging. To date, the main focus of this method was data migration assuming an acoustic medium, but until now very little work assumed visco-acoustic media. Real seismic data usually suffer from attenuation and dispersion effects. To compensate for attenuation in a visco-acoustic medium, new operators are required. We propose using the L1-norm minimization technique to design visco-acoustic f - x extrapolators. To show the accuracy and compensation of the operators, prestack depth migration is performed on the challenging Marmousi model for both acoustic and visco-acoustic datasets. The final migrated images show that the proposed L1-norm extrapolation results in practically stable and improved resolution of the images.

  1. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  2. How to Appropriately Extrapolate Costs and Utilities in Cost-Effectiveness Analysis.

    PubMed

    Bojke, Laura; Manca, Andrea; Asaria, Miqdad; Mahon, Ronan; Ren, Shijie; Palmer, Stephen

    2017-08-01

    Costs and utilities are key inputs into any cost-effectiveness analysis. Their estimates are typically derived from individual patient-level data collected as part of clinical studies the follow-up duration of which is often too short to allow a robust quantification of the likely costs and benefits a technology will yield over the patient's entire lifetime. In the absence of long-term data, some form of temporal extrapolation-to project short-term evidence over a longer time horizon-is required. Temporal extrapolation inevitably involves assumptions regarding the behaviour of the quantities of interest beyond the time horizon supported by the clinical evidence. Unfortunately, the implications for decisions made on the basis of evidence derived following this practice and the degree of uncertainty surrounding the validity of any assumptions made are often not fully appreciated. The issue is compounded by the absence of methodological guidance concerning the extrapolation of non-time-to-event outcomes such as costs and utilities. This paper considers current approaches to predict long-term costs and utilities, highlights some of the challenges with the existing methods, and provides recommendations for future applications. It finds that, typically, economic evaluation models employ a simplistic approach to temporal extrapolation of costs and utilities. For instance, their parameters (e.g. mean) are typically assumed to be homogeneous with respect to both time and patients' characteristics. Furthermore, costs and utilities have often been modelled to follow the dynamics of the associated time-to-event outcomes. However, cost and utility estimates may be more nuanced, and it is important to ensure extrapolation is carried out appropriately for these parameters.

  3. Long-term predictions using natural analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directlymore » in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.« less

  4. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  5. [The effect of C-SiO2 composite films on corrosion resistance of dental Co-Cr alloy].

    PubMed

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm 2 to -5.3006 μA/cm 2 . Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  6. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE PAGES

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin; ...

    2018-02-02

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  7. Mixed-venous oxygen tension by nitrogen rebreathing - A critical, theoretical analysis.

    NASA Technical Reports Server (NTRS)

    Kelman, G. R.

    1972-01-01

    There is dispute about the validity of the nitrogen rebreathing technique for determination of mixed-venous oxygen tension. This theoretical analysis examines the circumstances under which the technique is likely to be applicable. When the plateau method is used the probable error in mixed-venous oxygen tension is plus or minus 2.5 mm Hg at rest, and of the order of plus or minus 1 mm Hg during exercise. Provided, that the rebreathing bag size is reasonably chosen, Denison's (1967) extrapolation technique gives results at least as accurate as those obtained by the plateau method. At rest, however, extrapolation should be to 30 rather than to 20 sec.

  8. Preparing and Study the effects of Composite Coatings in Protection of Oil Pipes from the Risk of Corrosion that resulting from Associated water with Petroleum Products

    NASA Astrophysics Data System (ADS)

    – Sarraf, A. R. Al; Yaseen, M. A.

    2018-05-01

    In order to inhibit the metallic corrosion in the oil pipelines,the protection method with composite coating of unsaturated polyester and reinforced by Caolin at weight percentage (20%) was studied. Where, the work samples were classified into two groups according to internal composite coatings layers for all groups of these samples. The first group is nitrocellulose coating reinforced by nano and micro powder of Mgo, the second group is sodium silicate coating reinforced by nano powder of Mgo. The following weight percentages (0%, 1%, 3% and 5%) were adopted as reinforcement ratios for nano powders, as well as the weight percentages (0%, 3%, 5% and 7%) as reinforcement ratios for micro powders Tribology properties and Electrochemical Corrosion Resistance by Polarization method (Tafel) and Adhesion Strength were studied. The results showed an improvement in the corrosion resistance of protected steel by coatings compare with uncoated steel, as well as improvement in mechanical properties and adhesion strength of composite coatings.

  9. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  10. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    PubMed

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.

  11. Evaluation on the Corrosion of the Three Ni-Cr Alloys with Different Composition

    PubMed Central

    Rao, Srinivasa B.; Chowdhary, Ramesh

    2011-01-01

    Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's t-test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures. PMID:21461232

  12. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    PubMed

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.

  13. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

    NASA Astrophysics Data System (ADS)

    Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid

    2016-02-01

    In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

  14. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  15. Evaluation of Alkylamine Modified Pt Nanoparticles as Oxygen Reduction Reaction Electrocatalyst for Fuel Cells via Electrochemical Impedance Spectroscopy.

    PubMed

    Joshi, Prerna; Okada, Toshihiko; Miyabayashi, Keiko; Miyake, Mikio

    2018-05-15

    Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.

  16. Visualization and Nowcasting for Aviation using online verified ensemble weather radar extrapolation.

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan

    2013-04-01

    Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation-quality-index. Subsequently the probability and quality information of the forecast ensemble is available and flexible blending to numerical prediction model for each subarea is possible. Simultaneously with automatic processing the ensemble nowcasting product is visualized in a new innovative way which combines the intensity, probability and quality information for different subareas in one forecast image.

  17. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k  =  2).

  18. Temperature extrapolation of multicomponent grand canonical free energy landscapes

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-08-01

    We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions that tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.

  19. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Kosek, Wiesław

    2008-02-01

    This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.

  20. Research on camera on orbit radial calibration based on black body and infrared calibration stars

    NASA Astrophysics Data System (ADS)

    Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng

    2018-05-01

    Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.

  1. Mechanistic Studies of Metal-Oxo Cubane Catalysts for Lightweight Solar Fuels Storage

    DTIC Science & Technology

    2013-03-01

    in the Co2+ and Co3+ states has allowed us to undertake detailed studies of the Co2+|Co3+ self-exchange kinetics, which is a critical factor in the...film thickness, indicating this indicates that the kinetic profile of catalyst films is not influenced by barriers to charge and/or mass transport... mass transport limitations through solution. A 60 mV/decade Tafel slope indicates that there exists a one-electron pre- equilibrium, prior to a

  2. A generalized sound extrapolation method for turbulent flows

    NASA Astrophysics Data System (ADS)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  3. Resolution enhancement in digital holography by self-extrapolation of holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2013-03-25

    It is generally believed that the resolution in digital holography is limited by the size of the captured holographic record. Here, we present a method to circumvent this limit by self-extrapolating experimental holograms beyond the area that is actually captured. This is done by first padding the surroundings of the hologram and then conducting an iterative reconstruction procedure. The wavefront beyond the experimentally detected area is thus retrieved and the hologram reconstruction shows enhanced resolution. To demonstrate the power of this concept, we apply it to simulated as well as experimental holograms.

  4. Predicting structural properties of fluids by thermodynamic extrapolation

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  5. Flash-lag effect: complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect.

    PubMed

    Bachmann, Talis; Murd, Carolina; Põder, Endel

    2012-09-01

    One fundamental property of the perceptual and cognitive systems is their capacity for prediction in the dynamic environment; the flash-lag effect has been considered as a particularly suggestive example of this capacity (Nijhawan in nature 370:256-257, 1994, Behav brain sci 31:179-239, 2008). Thus, because of involvement of the mechanisms of extrapolation and visual prediction, the moving object is perceived ahead of the simultaneously flashed static object objectively aligned with the moving one. In the present study we introduce a new method and report experimental results inconsistent with at least some versions of the prediction/extrapolation theory. We show that a stimulus moving in the opposite direction to the reference stimulus by approaching it before the flash does not diminish the flash-lag effect, but rather augments it. In addition, alternative theories (in)capable of explaining this paradoxical result are discussed.

  6. Toxicokinetic Model Development for the Insensitive Munitions Component 3-Nitro-1,2,4-Triazol-5-One.

    PubMed

    Sweeney, Lisa M; Phillips, Elizabeth A; Goodwin, Michelle R; Bannon, Desmond I

    2015-01-01

    3-Nitro-1,2,4-triazol-5-one (NTO) is a component of insensitive munitions that are potential replacements for conventional explosives. Toxicokinetic data can aid in the interpretation of toxicity studies and interspecies extrapolation, but only limited data on the toxicokinetics and metabolism of NTO are available. To supplement these limited data, further in vivo studies of NTO in rats were conducted and blood concentrations were measured, tissue distribution of NTO was estimated using an in silico method, and physiologically based pharmacokinetic models of the disposition of NTO in rats and macaques were developed and extrapolated to humans. The model predictions can be used to extrapolate from designated points of departure identified from rat toxicology studies to provide a scientific basis for estimates of acceptable human exposure levels for NTO. © The Author(s) 2015.

  7. Methods for converging correlation energies within the dielectric matrix formalism

    NASA Astrophysics Data System (ADS)

    Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario

    2018-03-01

    Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.

  8. Scientific study of data analysis

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1990-01-01

    We present a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized and the accuracy and numerical instability are discussed. On the basis of this investigation, we claim that the two methods do resemble each other qualitatively.

  9. The Island Approach.

    ERIC Educational Resources Information Center

    Schroder, Peter C.

    1994-01-01

    Proposes the study of islands to develop a method of integrating sustainable development with sound resource management that can be extrapolated to more complex, highly populated continental coastal areas. (MDH)

  10. Inferring thermodynamic stability relationship of polymorphs from melting data.

    PubMed

    Yu, L

    1995-08-01

    This study investigates the possibility of inferring the thermodynamic stability relationship of polymorphs from their melting data. Thermodynamic formulas are derived for calculating the Gibbs free energy difference (delta G) between two polymorphs and its temperature slope from mainly the temperatures and heats of melting. This information is then used to estimate delta G, thus relative stability, at other temperatures by extrapolation. Both linear and nonlinear extrapolations are considered. Extrapolating delta G to zero gives an estimation of the transition (or virtual transition) temperature, from which the presence of monotropy or enantiotropy is inferred. This procedure is analogous to the use of solubility data measured near the ambient temperature to estimate a transition point at higher temperature. For several systems examined, the two methods are in good agreement. The qualitative rule introduced this way for inferring the presence of monotropy or enantiotropy is approximately the same as The Heat of Fusion Rule introduced previously on a statistical mechanical basis. This method is applied to 96 pairs of polymorphs from the literature. In most cases, the result agrees with the previous determination. The deviation of the calculated transition temperatures from their previous values (n = 18) is 2% on average and 7% at maximum.

  11. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer.

    PubMed

    Le, Guigao; Oulaid, Othmane; Zhang, Junfeng

    2015-03-01

    In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems.

  12. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Binny, Dustin; Meunier, Jean-Luc; Berk, Dimitrios

    2014-07-01

    H2O2 reduction reaction (HPRR) is studied on both graphene (GNF) and nitrogen doped graphene nanoflakes in 0.1 M Na2SO4 solution by rotating disk electrode. The XPS results indicate that N-doped graphene nanoflakes with high nitrogen content, 32 at%N (N-GNF32), are synthesised successfully by an inductively-coupled thermal plasma (ICP) reactor. Pyridinic, pyrrolic and graphitic N species contribute up to 67% of the total nitrogen. Kinetic parameters such as Tafel slope and stoichiometric number suggest that HPRR occurs by the same mechanism on both GNF and N-GNF32. Although nitrogen does not change the mechanism of HPRR, the results indicate that the reaction rate of H2O2 reduction is enhanced on N-GNF32. The exchange current density of H2O2 reduction based on the active surface area of N-GNF32 is (8.3 ± 0.3) × 10-9 A cm-2, which is 6 times higher than the value determined for GNF. The apparent number of electrons involved in the process suggests that H2O2 decomposition competes with H2O2 reduction on both catalysts. Evaluation of the apparent heterogeneous reaction rate constant and the Tafel slope indicate that simultaneous reduction of O2 and H2O2 is negligible on the N-GNF32. On the other hand, the reduction of O2 and H2O2 occurs simultaneously on the GNF surface.

  13. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  14. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  15. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGES

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; ...

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  16. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  17. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  18. Comparison between amperometric and true potentiometric end-point detection in the determination of water by the Karl Fischer method.

    PubMed

    Cedergren, A

    1974-06-01

    A rapid and sensitive method using true potentiometric end-point detection has been developed and compared with the conventional amperometric method for Karl Fischer determination of water. The effect of the sulphur dioxide concentration on the shape of the titration curve is shown. By using kinetic data it was possible to calculate the course of titrations and make comparisons with those found experimentally. The results prove that the main reaction is the slow step, both in the amperometric and the potentiometric method. Results obtained in the standardization of the Karl Fischer reagent showed that the potentiometric method, including titration to a preselected potential, gave a standard deviation of 0.001(1) mg of water per ml, the amperometric method using extrapolation 0.002(4) mg of water per ml and the amperometric titration to a pre-selected diffusion current 0.004(7) mg of water per ml. Theories and results dealing with dilution effects are presented. The time of analysis was 1-1.5 min for the potentiometric and 4-5 min for the amperometric method using extrapolation.

  19. Cocaine Dependence Treatment Data: Methods for Measurement Error Problems With Predictors Derived From Stationary Stochastic Processes

    PubMed Central

    Guan, Yongtao; Li, Yehua; Sinha, Rajita

    2011-01-01

    In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854

  20. Prognosis of the state of health of a person under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Methods of predicting the state of health and human efficiency during space flight are discussed. Diversity of reactions to the same conditions, development of extrapolation methods of prediction, and isolation of informative physiological indexes are among the factors considered.

  1. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2013-12-01

    Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.

  2. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  3. An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small x-ray fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Johnny E., E-mail: johnny.morales@lh.org.

    Purpose: An experimental extrapolation technique is presented, which can be used to determine the relative output factors for very small x-ray fields using the Gafchromic EBT3 film. Methods: Relative output factors were measured for the Brainlab SRS cones ranging in diameters from 4 to 30 mm{sup 2} on a Novalis Trilogy linear accelerator with 6 MV SRS x-rays. The relative output factor was determined from an experimental reducing circular region of interest (ROI) extrapolation technique developed to remove the effects of volume averaging. This was achieved by scanning the EBT3 film measurements with a high scanning resolution of 1200 dpi.more » From the high resolution scans, the size of the circular regions of interest was varied to produce a plot of relative output factors versus area of analysis. The plot was then extrapolated to zero to determine the relative output factor corresponding to zero volume. Results: Results have shown that for a 4 mm field size, the extrapolated relative output factor was measured as a value of 0.651 ± 0.018 as compared to 0.639 ± 0.019 and 0.633 ± 0.021 for 0.5 and 1.0 mm diameter of analysis values, respectively. This showed a change in the relative output factors of 1.8% and 2.8% at these comparative regions of interest sizes. In comparison, the 25 mm cone had negligible differences in the measured output factor between zero extrapolation, 0.5 and 1.0 mm diameter ROIs, respectively. Conclusions: This work shows that for very small fields such as 4.0 mm cone sizes, a measureable difference can be seen in the relative output factor based on the circular ROI and the size of the area of analysis using radiochromic film dosimetry. The authors recommend to scan the Gafchromic EBT3 film at a resolution of 1200 dpi for cone sizes less than 7.5 mm and to utilize an extrapolation technique for the output factor measurements of very small field dosimetry.« less

  4. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  5. Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin

    2013-07-01

    Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.

  6. Phytochemical compounds and anti-corrosion activity of Veronica rosea.

    PubMed

    Ouache, Rachid; Harkat, Hassina; Pale, Patrick; Oulmi, Kafia

    2018-05-16

    The aim of this work is the phytochemical study of the butanolic extract of the aerial parts of Veronica rosea. Four compounds 1-4 have been isolated using different chromatographic methods. The structures of these compounds were determined by NMR spectral analysis and mass spectroscopy. The adsorption and anticorrosion effects of this extract were investigated towards the corrosion of copper in 1 M HNO 3 aqueous by the weight loss technique and potentiodynamic polarization. The results showed that the butanolic extract is a good inhibitor and the inhibition efficiency increases with increasing of concentration of the inhibitor. The adsorption of this extract on the copper specimen surface was spontaneous and obeyed the Langmuir's adsorption isotherm. Large value of adsorption equilibrium Constant (K ads  = 35 L g -1 ) was obtained. The polarization experiments confirmed the data obtained by gravimetric weight-loss. Tafel plot of polarization curves indicates that the extract acts as a mixed type inhibitor.

  7. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Anti-fouling response of gold-carbon nanotubes composite for enhanced ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Anupam Kumar, Manne; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2014-12-01

    We report the synthesis of gold carbon nanotubes composite through a one-pot surfactant free approach and its utility for ethanol electrooxidation reaction (EOR). The method involves the application of laser ablation for nanoparticle synthesis and simultaneous assembly of these on carbon nanotubes. The catalyst has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopic techniques. A systematic study of gold carbon nanotubes modified carbon paste electrode for EOR has been pursued. The kinetic study revealed the excellent stability of the modified electrode even after 200 cycles of EOR and with an Arrhenius energy as low as ∼28 kJ mol-1. Tafel slopes that are the measure of electrode activity have been monitored as a function of temperature of the electrolyte. The results indicate that despite an increase in the reaction rate with temperature, the electrode surface has not been significantly passivated by carbonaceous species produced at high temperatures.

  9. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  10. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  11. MEGA16 - Computer program for analysis and extrapolation of stress-rupture data

    NASA Technical Reports Server (NTRS)

    Ensign, C. R.

    1981-01-01

    The computerized form of the minimum commitment method of interpolating and extrapolating stress versus time to failure data, MEGA16, is described. Examples are given of its many plots and tabular outputs for a typical set of data. The program assumes a specific model equation and then provides a family of predicted isothermals for any set of data with at least 12 stress-rupture results from three different temperatures spread over reasonable stress and time ranges. It is written in FORTRAN 4 using IBM plotting subroutines and its runs on an IBM 370 time sharing system.

  12. The use of extrapolation concepts to augment the Frequency Separation Technique

    NASA Astrophysics Data System (ADS)

    Alexiou, Spiros

    2015-03-01

    The Frequency Separation Technique (FST) is a general method formulated to improve the speed and/or accuracy of lineshape calculations, including strong overlapping collisions, as is the case for ion dynamics. It should be most useful when combined with ultrafast methods, that, however have significant difficulties when the impact regime is approached. These difficulties are addressed by the Frequency Separation Technique, in which the impact limit is correctly recovered. The present work examines the possibility of combining the Frequency Separation Technique with the addition of extrapolation to improve results and minimize errors resulting from the neglect of fast-slow coupling and thus obtain the exact result with a minimum of extra effort. To this end the adequacy of one such ultrafast method, the Frequency Fluctuation Method (FFM) for treating the nonimpact part is examined. It is found that although the FFM is unable to reproduce the nonimpact profile correctly, its coupling with the FST correctly reproduces the total profile.

  13. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  14. Fuel cells and the theory of metals.

    NASA Technical Reports Server (NTRS)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, T

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of {sup 125}I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x{sub 0}. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit tomore » the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x{sub 1}, x{sub 2}) is applied to the difference of charges measured at the two plate separations x{sub 1} and x{sub 2}. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x{sub 1} and x{sub 2}, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.« less

  16. Effective orthorhombic anisotropic models for wavefield extrapolation

    NASA Astrophysics Data System (ADS)

    Ibanez-Jacome, Wilson; Alkhalifah, Tariq; Waheed, Umair bin

    2014-09-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  17. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  18. Statistical modeling for Bayesian extrapolation of adult clinical trial information in pediatric drug evaluation.

    PubMed

    Gamalo-Siebers, Margaret; Savic, Jasmina; Basu, Cynthia; Zhao, Xin; Gopalakrishnan, Mathangi; Gao, Aijun; Song, Guochen; Baygani, Simin; Thompson, Laura; Xia, H Amy; Price, Karen; Tiwari, Ram; Carlin, Bradley P

    2017-07-01

    Children represent a large underserved population of "therapeutic orphans," as an estimated 80% of children are treated off-label. However, pediatric drug development often faces substantial challenges, including economic, logistical, technical, and ethical barriers, among others. Among many efforts trying to remove these barriers, increased recent attention has been paid to extrapolation; that is, the leveraging of available data from adults or older age groups to draw conclusions for the pediatric population. The Bayesian statistical paradigm is natural in this setting, as it permits the combining (or "borrowing") of information across disparate sources, such as the adult and pediatric data. In this paper, authored by the pediatric subteam of the Drug Information Association Bayesian Scientific Working Group and Adaptive Design Working Group, we develop, illustrate, and provide suggestions on Bayesian statistical methods that could be used to design improved pediatric development programs that use all available information in the most efficient manner. A variety of relevant Bayesian approaches are described, several of which are illustrated through 2 case studies: extrapolating adult efficacy data to expand the labeling for Remicade to include pediatric ulcerative colitis and extrapolating adult exposure-response information for antiepileptic drugs to pediatrics. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE PAGES

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    2015-03-01

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  20. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    NASA Technical Reports Server (NTRS)

    Banyukevich, A.; Ziolkovski, K.

    1975-01-01

    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  1. Calculation of Temperature Rise in Calorimetry.

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  2. Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation

    NASA Astrophysics Data System (ADS)

    Bližňák, Vojtěch; Sokol, Zbyněk; Zacharov, Petr

    2017-02-01

    An evaluation of convective cloud forecasts performed with the numerical weather prediction (NWP) model COSMO and extrapolation of cloud fields is presented using observed data derived from the geostationary satellite Meteosat Second Generation (MSG). The present study focuses on the nowcasting range (1-5 h) for five severe convective storms in their developing stage that occurred during the warm season in the years 2012-2013. Radar reflectivity and extrapolated radar reflectivity data were assimilated for at least 6 h depending on the time of occurrence of convection. Synthetic satellite imageries were calculated using radiative transfer model RTTOV v10.2, which was implemented into the COSMO model. NWP model simulations of IR10.8 μm and WV06.2 μm brightness temperatures (BTs) with a horizontal resolution of 2.8 km were interpolated into the satellite projection and objectively verified against observations using Root Mean Square Error (RMSE), correlation coefficient (CORR) and Fractions Skill Score (FSS) values. Naturally, the extrapolation of cloud fields yielded an approximately 25% lower RMSE, 20% higher CORR and 15% higher FSS at the beginning of the second forecasted hour compared to the NWP model forecasts. On the other hand, comparable scores were observed for the third hour, whereas the NWP forecasts outperformed the extrapolation by 10% for RMSE, 15% for CORR and up to 15% for FSS during the fourth forecasted hour and 15% for RMSE, 27% for CORR and up to 15% for FSS during the fifth forecasted hour. The analysis was completed by a verification of the precipitation forecasts yielding approximately 8% higher RMSE, 15% higher CORR and up to 45% higher FSS when the NWP model simulation is used compared to the extrapolation for the first hour. Both the methods yielded unsatisfactory level of precipitation forecast accuracy from the fourth forecasted hour onward.

  3. Statistical Analysis of a Class: Monte Carlo and Multiple Imputation Spreadsheet Methods for Estimation and Extrapolation

    ERIC Educational Resources Information Center

    Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael

    2017-01-01

    The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…

  4. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    PubMed

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Corrosion resistance of API 5L grade B steel with taro leaf (Colocasia esculenta) addition as corrosion inhibitor in HCl 0.1 M

    NASA Astrophysics Data System (ADS)

    Lestari, Yulinda; Priyotomo, Gadang

    2018-05-01

    Taro leaf (Colocasia esculenta) has the potential to be used as a corrosion inhibitor because it has a substance called polyphenol that binds to the hydroxyl group and essential amino acids. Taro leaf extract is taken by maceration method. In this study, the specimen was steel API 5L grade B that would measured the corosivity in 0.1 M HCl solution + taro leaf extract with a specific concentration (in ppm). Tests conducted by FTIR method taro leaves, potentiodynamic polarization (Tafel) and Electrochemical Impedance Spectroscopy (EIS). Based on the results revealed that there is a phenolic group in taro leaves, which has polyphenol content 0.053 % (mg/100 mg). The optimum composition of taro leaf extract is 4000 ppm which generate corrosion rate value of 30.22 mpy and efficiency inhibitor performance of 72.7 %. In this study, the Kads value of taro leaf extract ranged from 0.885 to greater than Kads value of ginger extract in hydrochloric acid solution. The high Kads values indicate a more efficient process of adsorption and better value of inhibition efficiency.

  6. Localized time-lapse elastic waveform inversion using wavefield injection and extrapolation: 2-D parametric studies

    NASA Astrophysics Data System (ADS)

    Yuan, Shihao; Fuji, Nobuaki; Singh, Satish; Borisov, Dmitry

    2017-06-01

    We present a methodology to invert seismic data for a localized area by combining source-side wavefield injection and receiver-side extrapolation method. Despite the high resolving power of seismic full waveform inversion, the computational cost for practical scale elastic or viscoelastic waveform inversion remains a heavy burden. This can be much more severe for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis. Besides, changes of the structure during time-lapse surveys are likely to occur in a small area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2 injection wells. We thus propose an approach that allows to image effectively and quantitatively the localized structure changes far deep from both source and receiver arrays. In our method, we perform both forward and back propagation only inside the target region. First, we look for the equivalent source expression enclosing the region of interest by using the wavefield injection method. Second, we extrapolate wavefield from physical receivers located near the Earth's surface or on the ocean bottom to an array of virtual receivers in the subsurface by using correlation-type representation theorem. In this study, we present various 2-D elastic numerical examples of the proposed method and quantitatively evaluate errors in obtained models, in comparison to those of conventional full-model inversions. The results show that the proposed localized waveform inversion is not only efficient and robust but also accurate even under the existence of errors in both initial models and observed data.

  7. Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Loukitcheva, Maria; Anfinogentov, Sergey

    Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fieldsmore » in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.« less

  8. Acute toxicity value extrapolation with fish and aquatic invertebrates

    USGS Publications Warehouse

    Buckler, Denny R.; Mayer, Foster L.; Ellersieck, Mark R.; Asfaw, Amha

    2005-01-01

    Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled “Ecological Risk Analysis” (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more sensitive to contaminants than fish are.

  9. Signal-Processing Algorithm Development for the ACLAIM Sensor

    NASA Technical Reports Server (NTRS)

    vonLaven, Scott

    1995-01-01

    Methods for further minimizing the risk by making use of previous lidar observations were investigated. EOFs are likely to play an important role in these methods, and a procedure for extracting EOFs from data has been implemented, The new processing methods involving EOFs could range from extrapolation, as discussed, to more complicated statistical procedures for maintaining low unstart risk.

  10. The forecast for RAC extrapolation: mostly cloudy.

    PubMed

    Goldman, Elizabeth; Jacobs, Robert; Scott, Ellen; Scott, Bonnie

    2011-09-01

    The current statutory and regulatory guidance for recovery audit contractor (RAC) extrapolation leaves providers with minimal protection against the process and a limited ability to challenge overpayment demands. Providers not only should understand the statutory and regulatory basis for extrapolation forecast, but also should be able to assess their extrapolation risk and their recourse through regulatory safeguards against contractor error. Providers also should aggressively appeal all incorrect RAC denials to minimize the potential impact of extrapolation.

  11. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong

    2018-04-01

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.

  12. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries.

    PubMed

    Mahfouz, Zaher; Verloock, Leen; Joseph, Wout; Tanghe, Emmeric; Gati, Azeddine; Wiart, Joe; Lautru, David; Hanna, Victor Fouad; Martens, Luc

    2013-12-01

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed downlink packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days.

  13. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less

  14. The correlation of fractal structures in the photospheric and the coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Georgoulis, M.; Isliker, H.; Vlahos, L.; Anastasiadis, A.; Strintzi, D.; Moussas, X.

    2009-10-01

    Context: This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims: We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods: To investigate the connection between the photospheric and coronal complexity, we used a nonlinear force-free extrapolation method that reconstructs the 3d magnetic fields using 2d observed vector magnetograms as boundary conditions. We then located the magnetic discontinuities, which are considered as spatial proxies of reconnection-related instabilities. These discontinuities form well-defined volumes, called here unstable volumes. We calculated the fractal dimensions of these unstable volumes and compared them to the fractal dimensions of the boundary vector magnetograms. Results: Our results show no correlation between the fractal dimensions of the observed 2d photospheric structures and the extrapolated unstable volumes in the corona, when nonlinear force-free extrapolation is used. This result is independent of efforts to (1) bring the photospheric magnetic fields closer to a nonlinear force-free equilibrium and (2) omit the lower part of the modeled magnetic field volume that is almost completely filled by unstable volumes. A significant correlation between the fractal dimensions of the photospheric and coronal magnetic features is only observed at the zero level (lower limit) of approximation of a current-free (potential) magnetic field extrapolation. Conclusions: We conclude that the complicated transition from photospheric non-force-free fields to coronal force-free ones hampers any direct correlation between the fractal dimensions of the 2d photospheric patterns and their 3d counterparts in the corona at the nonlinear force-free limit, which can be considered as a second level of approximation in this study. Correspondingly, in the zero and first levels of approximation, namely, the potential and linear force-free extrapolation, respectively, we reveal a significant correlation between the fractal dimensions of the photospheric and coronal structures, which can be attributed to the lack of electric currents or to their purely field-aligned orientation.

  15. Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates.

    PubMed

    Cowan-Ellsberry, Christina E; Dyer, Scott D; Erhardt, Susan; Bernhard, Mary Jo; Roe, Amy L; Dowty, Martin E; Weisbrod, Annie V

    2008-02-01

    National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.

  16. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has also been modified to read standardized disdrometer data format (Joss-Waldvogel format). Other modifications to the software involve accounting for vertical ambient wind motion, as well as evaporation of the raindrop during its flight time.

  17. In vitro to In vivo extrapolation of hepatic metabolism in fish: An inter-laboratory comparison of In vitro methods

    EPA Science Inventory

    Chemical biotransformation represents the single largest source of uncertainty in chemical bioaccumulation assessments for fish. In vitro methods employing isolated hepatocytes and liver subcellular fractions (S9) can be used to estimate whole-body rates of chemical metabolism, ...

  18. Effect of scrape-off-layer current on reconstructed tokamak equilibrium

    DOE PAGES

    King, J. R.; Kruger, S. E.; Groebner, R. J.; ...

    2017-01-13

    Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer current through extrapolated parametrized and experimental fits. The extrapolation includes both the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-layer current modifies the equilibrium, the χ-squared goodness-of-fit parameter is calculated for cases with and without scrape-off-layer current. The change in χ-squared is found to be minor when scrape-off-layer current is included however flux surfaces are shifted by up to 3 cm. Here the impact on edge modes of these scrape-off-layer modificationsmore » is also found to be small and the importance of these methods to nonlinear computation is discussed.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less

  20. Predicting the future trend of popularity by network diffusion.

    PubMed

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  1. Predicting the future trend of popularity by network diffusion

    NASA Astrophysics Data System (ADS)

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  2. Extrapolation of rotating sound fields.

    PubMed

    Carley, Michael

    2018-03-01

    A method is presented for the computation of the acoustic field around a tonal circular source, such as a rotor or propeller, based on an exact formulation which is valid in the near and far fields. The only input data required are the pressure field sampled on a cylindrical surface surrounding the source, with no requirement for acoustic velocity or pressure gradient information. The formulation is approximated with exponentially small errors and appears to require input data at a theoretically minimal number of points. The approach is tested numerically, with and without added noise, and demonstrates excellent performance, especially when compared to extrapolation using a far-field assumption.

  3. Cathode fall measurement in a dielectric barrier discharge in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  4. MMOC- MODIFIED METHOD OF CHARACTERISTICS SONIC BOOM EXTRAPOLATION

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    The Modified Method of Characteristics Sonic Boom Extrapolation program (MMOC) is a sonic boom propagation method which includes shock coalescence and incorporates the effects of asymmetry due to volume and lift. MMOC numerically integrates nonlinear equations from data at a finite distance from an airplane configuration at flight altitude to yield the sonic boom pressure signature at ground level. MMOC accounts for variations in entropy, enthalpy, and gravity for nonlinear effects near the aircraft, allowing extrapolation to begin nearer the body than in previous methods. This feature permits wind tunnel sonic boom models of up to three feet in length, enabling more detailed, realistic models than the previous six-inch sizes. It has been shown that elongated airplanes flying at high altitude and high Mach numbers can produce an acceptably low sonic boom. Shock coalescence in MMOC includes three-dimensional effects. The method is based on an axisymmetric solution with asymmetric effects determined by circumferential derivatives of the standard shock equations. Bow shocks and embedded shocks can be included in the near-field. The method of characteristics approach in MMOC allows large computational steps in the radial direction without loss of accuracy. MMOC is a propagation method rather than a predictive program. Thus input data (the flow field on a cylindrical surface at approximately one body length from the axis) must be supplied from calculations or experimental results. The MMOC package contains a uniform atmosphere pressure field program and interpolation routines for computing the required flow field data. Other user supplied input to MMOC includes Mach number, flow angles, and temperature. MMOC output tabulates locations of bow shocks and embedded shocks. When the calculations reach ground level, the overpressure and distance are printed, allowing the user to plot the pressure signature. MMOC is written in FORTRAN IV for batch execution and has been implemented on a CDC 170 series computer operating under NOS with a central memory requirement of approximately 223K of 60 bit words. This program was developed in 1983.

  5. Line-of-sight extrapolation noise in dust polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poh, Jason; Dodelson, Scott

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typicalmore » Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .« less

  6. Determination of the liquidus temperature of tin using the heat pulse-based melting and comparison with traditional methods

    NASA Astrophysics Data System (ADS)

    Joung, Wukchul; Park, Jihye; Pearce, Jonathan V.

    2018-06-01

    In this work, the liquidus temperature of tin was determined by melting the sample using the pressure-controlled loop heat pipe. Square wave-type pressure steps generated periodic 0.7 °C temperature steps in the isothermal region in the vicinity of the tin sample, and the tin was melted with controllable heat pulses from the generated temperature changes. The melting temperatures at specific melted fractions were measured, and they were extrapolated to the melted fraction of unity to determine the liquidus temperature of tin. To investigate the influence of the impurity distribution on the melting behavior, a molten tin sample was solidified by an outward slow freezing or by quenching to segregate the impurities inside the sample with concentrations increasing outwards or to spread the impurities uniformly, respectively. The measured melting temperatures followed the local solidus temperature variations well in the case of the segregated sample and stayed near the solidus temperature in the quenched sample due to the microscopic melting behavior. The extrapolated melting temperatures of the segregated and quenched samples were 0.95 mK and 0.49 mK higher than the outside-nucleated freezing temperature of tin (with uncertainties of 0.15 mK and 0.16 mK, at approximately 95% level of confidence), respectively. The extrapolated melting temperature of the segregated sample was supposed to be a closer approximation to the liquidus temperature of tin, whereas the quenched sample yielded the possibility of a misleading extrapolation to the solidus temperature. Therefore, the determination of the liquidus temperature could result in different extrapolated melting temperatures depending on the way the impurities were distributed within the sample, which has implications for the contemporary methodology for realizing temperature fixed points of the International Temperature Scale of 1990 (ITS-90).

  7. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox.

    PubMed

    Zhu, Xudong; Huang, Lingli; Xu, Yamei; Xie, Shuyu; Pan, Yuanhu; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui

    2017-02-01

    Physiologically based pharmacokinetic (PBPK) models are scientific methods used to predict veterinary drug residues that may occur in food-producing animals, and which have powerful extrapolation ability. Quinocetone (QCT) and mequindox (MEQ) are widely used in China for the prevention of bacterial infections and promoting animal growth, but their abuse causes a potential threat to human health. In this study, a flow-limited PBPK model was developed to simulate simultaneously residue depletion of QCT and its marker residue dideoxyquinocetone (DQCT) in pigs. The model included compartments for blood, liver, kidney, muscle and fat and an extra compartment representing the other tissues. Physiological parameters were obtained from the literature. Plasma protein binding rates, renal clearances and tissue/plasma partition coefficients were determined by in vitro and in vivo experiments. The model was calibrated and validated with several pharmacokinetic and residue-depletion datasets from the literature. Sensitivity analysis and Monte Carlo simulations were incorporated into the PBPK model to estimate individual variation of residual concentrations. The PBPK model for MEQ, the congener compound of QCT, was built through cross-compound extrapolation based on the model for QCT. The QCT model accurately predicted the concentrations of QCT and DQCT in various tissues at most time points, especially the later time points. Correlation coefficients between predicted and measured values for all tissues were greater than 0.9. Monte Carlo simulations showed excellent consistency between estimated concentration distributions and measured data points. The extrapolation model also showed good predictive power. The present models contribute to improve the residue monitoring systems of QCT and MEQ, and provide evidence of the usefulness of PBPK model extrapolation for the same kinds of compounds.

  8. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions

    DOE PAGES

    Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane

    2017-07-12

    The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less

  9. Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation

    PubMed Central

    Zhong, Sheng-hua; Ma, Zheng; Wilson, Colin; Liu, Yan; Flombaum, Jonathan I

    2014-01-01

    Intuitively, extrapolating object trajectories should make visual tracking more accurate. This has proven to be true in many contexts that involve tracking a single item. But surprisingly, when tracking multiple identical items in what is known as “multiple object tracking,” observers often appear to ignore direction of motion, relying instead on basic spatial memory. We investigated potential reasons for this behavior through probabilistic models that were endowed with perceptual limitations in the range of typical human observers, including noisy spatial perception. When we compared a model that weights its extrapolations relative to other sources of information about object position, and one that does not extrapolate at all, we found no reliable difference in performance, belying the intuition that extrapolation always benefits tracking. In follow-up experiments we found this to be true for a variety of models that weight observations and predictions in different ways; in some cases we even observed worse performance for models that use extrapolations compared to a model that does not at all. Ultimately, the best performing models either did not extrapolate, or extrapolated very conservatively, relying heavily on observations. These results illustrate the difficulty and attendant hazards of using noisy inputs to extrapolate the trajectories of multiple objects simultaneously in situations with targets and featurally confusable nontargets. PMID:25311300

  10. An extrapolation method for compressive strength prediction of hydraulic cement products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira Tango, C.E. de

    1998-07-01

    The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less

  11. A comparison of LOD and UT1-UTC forecasts by different combined prediction techniques

    NASA Astrophysics Data System (ADS)

    Kosek, W.; Kalarus, M.; Johnson, T. J.; Wooden, W. H.; McCarthy, D. D.; Popiński, W.

    Stochastic prediction techniques including autocovariance, autoregressive, autoregressive moving average, and neural networks were applied to the UT1-UTC and Length of Day (LOD) International Earth Rotation and Reference Systems Servive (IERS) EOPC04 time series to evaluate the capabilities of each method. All known effects such as leap seconds and solid Earth zonal tides were first removed from the observed values of UT1-UTC and LOD. Two combination procedures were applied to predict the resulting LODR time series: 1) the combination of the least-squares (LS) extrapolation with a stochastic predition method, and 2) the combination of the discrete wavelet transform (DWT) filtering and a stochastic prediction method. The results of the combination of the LS extrapolation with different stochastic prediction techniques were compared with the results of the UT1-UTC prediction method currently used by the IERS Rapid Service/Prediction Centre (RS/PC). It was found that the prediction accuracy depends on the starting prediction epochs, and for the combined forecast methods, the mean prediction errors for 1 to about 70 days in the future are of the same order as those of the method used by the IERS RS/PC.

  12. Implicit Plasma Kinetic Simulation Using The Jacobian-Free Newton-Krylov Method

    NASA Astrophysics Data System (ADS)

    Taitano, William; Knoll, Dana; Chacon, Luis

    2009-11-01

    The use of fully implicit time integration methods in kinetic simulation is still area of algorithmic research. A brute-force approach to simultaneously including the field equations and the particle distribution function would result in an intractable linear algebra problem. A number of algorithms have been put forward which rely on an extrapolation in time. They can be thought of as linearly implicit methods or one-step Newton methods. However, issues related to time accuracy of these methods still remain. We are pursuing a route to implicit plasma kinetic simulation which eliminates extrapolation, eliminates phase-space from the linear algebra problem, and converges the entire nonlinear system within a time step. We accomplish all this using the Jacobian-Free Newton-Krylov algorithm. The original research along these lines considered particle methods to advance the distribution function [1]. In the current research we are advancing the Vlasov equations on a grid. Results will be presented which highlight algorithmic details for single species electrostatic problems and coupled ion-electron electrostatic problems. [4pt] [1] H. J. Kim, L. Chac'on, G. Lapenta, ``Fully implicit particle in cell algorithm,'' 47th Annual Meeting of the Division of Plasma Physics, Oct. 24-28, 2005, Denver, CO

  13. Diagnostic, Explanatory, and Detection Models of Munchausen by Proxy: Extrapolations from Malingering and Deception

    ERIC Educational Resources Information Center

    Rogers, Richard

    2004-01-01

    Objective: The overriding objective is a critical examination of Munchausen syndrome by proxy (MSBP) and its closely-related alternative, factitious disorder by proxy (FDBP). Beyond issues of diagnostic validity, assessment methods and potential detection strategies are explored. Methods: A painstaking analysis was conducted of the MSBP and FDBP…

  14. Educational Forecasting Methodologies: State of the Art, Trends, and Highlights.

    ERIC Educational Resources Information Center

    Hudson, Barclay; Bruno, James

    This overview of both quantitative and qualitative methods of educational forecasting is introduced by a discussion of a general typology of forecasting methods. In each of the following sections, discussion follows the same general format: a number of basic approaches are identified (e.g. extrapolation, correlation, systems modelling), and each…

  15. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  16. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    EPA Science Inventory

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. En...

  17. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  18. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    NASA Astrophysics Data System (ADS)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  19. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces.

    PubMed

    Sweetman, Adam; Stannard, Andrew

    2014-01-01

    In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  20. High throughput method to characterize acid-base properties of insoluble drug candidates in water.

    PubMed

    Benito, D E; Acquaviva, A; Castells, C B; Gagliardi, L G

    2018-05-30

    In drug design experimental characterization of acidic groups in candidate molecules is one of the more important steps prior to the in-vivo studies. Potentiometry combined with Yasuda-Shedlovsky extrapolation is one of the more important strategy to study drug candidates with low solubility in water, although, it requires a large number of sequences to determine pK a values at different solvent-mixture compositions to, finally, obtain the pK a in water (pwwK a ) by extrapolation. We have recently proposed a method which requires only two sequences of additions to study the effect of organic solvent content in liquid chromatography mobile phases on the acidity of the buffer compounds usually dissolved in it along wide ranges of compositions. In this work we propose to apply this method to study thermodynamic pwwK a of drug candidates with low solubilities in pure water. Using methanol/water solvent mixtures we study six pharmaceutical drugs at 25 °C. Four of them: ibuprofen, salicylic acid, atenolol and labetalol, were chosen as members of carboxylic, amine and phenol families, respectively. Since these compounds have known pwwK a values, they were used to validate the procedure, the accuracy of Yasuda-Shedlovsky and other empirical models to fit the behaviors, and to obtain pwwK a by extrapolation. Finally, the method is applied to determine unknown thermodynamic pwwK a values of two pharmaceutical drugs: atorvastatin calcium and the two dissociation constants of ethambutol. The procedure proved to be simple, very fast and accurate in all of the studied cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Availability and Quality of Size Estimations of Female Sex Workers, Men Who Have Sex with Men, People Who Inject Drugs and Transgender Women in Low- and Middle-Income Countries

    PubMed Central

    Sabin, Keith; Zhao, Jinkou; Garcia Calleja, Jesus Maria; Sheng, Yaou; Arias Garcia, Sonia; Reinisch, Annette; Komatsu, Ryuichi

    2016-01-01

    Objective To assess the availability and quality of population size estimations of female sex workers (FSW), men who have sex with men (MSM), people who inject drug (PWID) and transgender women. Methods Size estimation data since 2010 were retrieved from global reporting databases, Global Fund grant application documents, and the peer-reviewed and grey literature. Overall quality and availability were assessed against a defined set of criteria, including estimation methods, geographic coverage, and extrapolation approaches. Estimates were compositely categorized into ‘nationally adequate’, ‘nationally inadequate but locally adequate’, ‘documented but inadequate methods’, ‘undocumented or untimely’ and ‘no data.’ Findings Of 140 countries assessed, 41 did not report any estimates since 2010. Among 99 countries with at least one estimate, 38 were categorized as having nationally adequate estimates and 30 as having nationally inadequate but locally adequate estimates. Multiplier, capture-recapture, census and enumeration, and programmatic mapping were the most commonly used methods. Most countries relied on only one estimate for a given population while about half of all reports included national estimates. A variety of approaches were applied to extrapolate from sites-level numbers to national estimates in two-thirds of countries. Conclusions Size estimates for FSW, MSM, PWID and transgender women are increasingly available but quality varies widely. The different approaches present challenges for data use in design, implementation and evaluation of programs for these populations in half of the countries assessed. Guidance should be further developed to recommend: a) applying multiple estimation methods; b) estimating size for a minimum number of sites; and, c) documenting extrapolation approaches. PMID:27163256

  2. Effect of silicate and phosphate additives on the kinetics of the oxygen evolution reaction in valve-regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Vinod, M. P.; Vijayamohanan, K.; Joshi, S. N.

    Effect of sodium silicate and phosphoric acid additives on the kinetics of oxygen evolution on PbO 2 electrodes in sulfuric acid has been studied in gelled and flooded electrolytes with relevance to valve-regulated lead/acid batteries. A comparison of the open-circuit potential versus time transients, with and without these additives, indicates that the additives suppress self-discharge of the electrodes. Tafel polarization studies also suggest that the addition of phosphoric acid attenuates the rate of oxygen evolution reaction. These findings have been supported with cyclic voltammetric data.

  3. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery. Electronic supplementary information (ESI) available: Typical TG-DSC curves, XRD patterns, elemental mapping profiles, LSV curves, Tafel plots, current density difference curves, current density against ECSA curves and designed water-splitting cell. See DOI: 10.1039/c6nr00988c

  5. Toxicokinetic Triage for Environmental Chemicals

    EPA Science Inventory

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, p...

  6. Communication: A novel implementation to compute MP2 correlation energies without basis set superposition errors and complete basis set extrapolation.

    PubMed

    Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario

    2017-06-07

    By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.

  7. Dead time corrections using the backward extrapolation method

    NASA Astrophysics Data System (ADS)

    Gilad, E.; Dubi, C.; Geslot, B.; Blaise, P.; Kolin, A.

    2017-05-01

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1-2%) in restoring the corrected count rate.

  8. Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.

    2018-03-01

    We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.

  9. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Wang, Han, E-mail: wang-han@iapcm.ac.cn; CAEP Software Center for High Performance Numerical Simulation, Beijing

    2016-06-28

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn–Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps ormore » more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.« less

  10. Recreation of three-dimensional objects in a real-time simulated environment by means of a panoramic single lens stereoscopic image-capturing device

    NASA Astrophysics Data System (ADS)

    Wong, Erwin

    2000-03-01

    Traditional methods of linear based imaging limits the viewer to a single fixed-point perspective. By means of a single lens multiple perspective mirror system, a 360-degree representation of the area around the camera is reconstructed. This reconstruction is used overcome the limitations of a traditional camera by providing the viewer with many different perspectives. By constructing the mirror into a hemispherical surface with multiple focal lengths at various diameters on the mirror, and by placing a parabolic mirror overhead, a stereoscopic image can be extracted from the image captured by a high-resolution camera placed beneath the mirror. Image extraction and correction is made by computer processing of the image obtained by camera; the image present up to five distinguishable different viewpoints that a computer can extrapolate pseudo- perspective data from. Geometric and depth for field can be extrapolated via comparison and isolation of objects within a virtual scene post processed by the computer. Combining data with scene rendering software provides the viewer with the ability to choose a desired viewing position, multiple dynamic perspectives, and virtually constructed perspectives based on minimal existing data. An examination into the workings of the mirror relay system is provided, including possible image extrapolation and correctional methods. Generation of data and virtual interpolated and constructed data is also mentioned.

  11. High speed civil transport: Sonic boom softening and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1994-01-01

    An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.

  12. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.

    PubMed

    Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S

    2016-04-14

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  13. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2

    NASA Astrophysics Data System (ADS)

    Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.

    2016-04-01

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  14. Long-Term Prediction of the Arctic Ionospheric TEC Based on Time-Varying Periodograms

    PubMed Central

    Liu, Jingbin; Chen, Ruizhi; Wang, Zemin; An, Jiachun; Hyyppä, Juha

    2014-01-01

    Knowledge of the polar ionospheric total electron content (TEC) and its future variations is of scientific and engineering relevance. In this study, a new method is developed to predict Arctic mean TEC on the scale of a solar cycle using previous data covering 14 years. The Arctic TEC is derived from global positioning system measurements using the spherical cap harmonic analysis mapping method. The study indicates that the variability of the Arctic TEC results in highly time-varying periodograms, which are utilized for prediction in the proposed method. The TEC time series is divided into two components of periodic oscillations and the average TEC. The newly developed method of TEC prediction is based on an extrapolation method that requires no input of physical observations of the time interval of prediction, and it is performed in both temporally backward and forward directions by summing the extrapolation of the two components. The backward prediction indicates that the Arctic TEC variability includes a 9 years period for the study duration, in addition to the well-established periods. The long-term prediction has an uncertainty of 4.8–5.6 TECU for different period sets. PMID:25369066

  15. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-02-01

    We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.

  16. Modeling an exhumed basin: A method for estimating eroded overburden

    USGS Publications Warehouse

    Poelchau, H.S.

    2001-01-01

    The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.

  17. The Educated Guess: Determining Drug Doses in Exotic Animals Using Evidence-Based Medicine.

    PubMed

    Visser, Marike; Oster, Seth C

    2018-05-01

    Lack of species-specific pharmacokinetic and pharmacodynamic data is a challenge for pharmaceutical and dose selection. If available, dose extrapolation can be accomplished via basic equations. If unavailable, several methods have been described. Linear scaling uses an established milligrams per kilograms dose based on weight. This does not allow for differences in species drug metabolism, sometimes resulting in toxicity. Allometric scaling correlates body weight and metabolic rate but fails for drugs with significant hepatic metabolism and cannot be extrapolated to avians or reptiles. Evidence-based veterinary medicine for dose design based on species similarity is discussed, considering physiologic differences between classes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  19. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    USGS Publications Warehouse

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The input for the sediment fractions is weight percentages in whole-phi notation (Krumbein, 1934; Inman, 1952), and the program permits the user to select output in either method of moments or inclusive graphics statistics (Fig. 1). Users select options primarily with mouse-click events, or through interactive dialogue boxes.

  20. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    NASA Astrophysics Data System (ADS)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal epsilon-martensite phase was determined using X-ray diffractrometry. It was found that the amount of epsilon-martensite increases significantly from 2% for the Laser surface processing to 13% in the as cast specimen, 24% in the annealed specimen, and 51% for the TIG surface processing. Moreover, the corrosion rate in Ringer solution was calculated by applying the Tafel extrapolation method on each alloy condition. The lowest corrosion rate (0.435 microm/year) was achieved in the Laser treated alloy and it is attributed to the lack of appreciable athermal epsilon-martensite. The highest corrosion rate (15.5 microm/year) was found to occur in the TIG treated alloy, which possesses the largest amount of epsilon-martensite. In turn, this suggests that surface modification through melting induces variable amounts of athermal epsilon-martensite in the as-cast Co-Cr-Mo-C alloys. Apparently, rapid solidification of melted surfaces in the Co-alloy is highly effective in modifying the induced amounts of HCP phase, and hence, the exhibited properties.

  1. Quantification of Phenol, Phenyl Glucuronide, and Phenyl Sulfate in Blood of Unanesthetized Rainbow Trout by On-line Microdialysis Sampling

    EPA Science Inventory

    In this study we have developed a novel method to estimate in vivo rates of metabolism in unanesthetized fish. This method provides a basis for evaluating the accuracy of in vitro-in vivo metabolism extrapolations. As such, this research will lead to improved risk assessments f...

  2. Advances in variable selection methods I: Causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships

    EPA Science Inventory

    Hydrological predictions at a watershed scale are commonly based on extrapolation and upscaling of hydrological behavior at plot and hillslope scales. Yet, dominant hydrological drivers at a hillslope may not be as dominant at the watershed scale because of the heterogeneity of w...

  3. In vitro methods for the determination of test chemicals metabolism utilizing fish liver subcellular fractions and hepatocytes

    EPA Science Inventory

    The purpose of this one-day short course is to train students on methods used to measure in vitro metabolism in fish and extrapolate this information to the intact animal. This talk is one of four presentations given by course instructors. The first part of this talk provides a...

  4. Developing a Theory of Digitally-Enabled Trial-Based Problem Solving through Simulation Methods: The Case of Direct-Response Marketing

    ERIC Educational Resources Information Center

    Clark, Joseph Warren

    2012-01-01

    In turbulent business environments, change is rapid, continuous, and unpredictable. Turbulence undermines those adaptive problem solving methods that generate solutions by extrapolating from what worked (or did not work) in the past. To cope with this challenge, organizations utilize trial-based problem solving (TBPS) approaches in which they…

  5. 26 CFR 1.263A-7 - Changing a method of accounting under section 263A.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... extrapolation, rather than based on the facts and circumstances of a particular year's data. All three methods... analyze the production and resale data for that particular year and apply the rules and principles of... books and records, actual financial and accounting data which is required to apply the capitalization...

  6. 26 CFR 1.263A-7 - Changing a method of accounting under section 263A.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... extrapolation, rather than based on the facts and circumstances of a particular year's data. All three methods... analyze the production and resale data for that particular year and apply the rules and principles of... books and records, actual financial and accounting data which is required to apply the capitalization...

  7. Interspecies Extrapolation

    EPA Science Inventory

    Interspecies extrapolation encompasses two related but distinct topic areas that are germane to quantitative extrapolation and hence computational toxicology-dose scaling and parameter scaling. Dose scaling is the process of converting a dose determined in an experimental animal ...

  8. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  9. Nitrogen anion-decorated cobalt tungsten disulfides solid solutions on the carbon nanofibers for water splitting.

    PubMed

    Wan, Meng; Li, Jiang; Li, Tao; Zhu, Han; Wu, Weiwei; Du, Mingliang

    2018-06-28

    A facile method to prepared nitrogen anion-decorated cobalt tungsten disulfides solid solutions retaining ultra-thin WS2-like nanosheet structures (The N-CoxW1-xS2) anchored on carbon nanofibers is developed. The synergistic effect of the WS2 nanosheets provides a secure framework for stabilizing the amorphous Co-S clusters, carbon nanofibers (CNFs) substrate and nitrogen anion-decoration significantly enhances the inherent conductivity of the catalyst, resulting in a significantly promoted hydrogen evolution reaction (HER) activity and stable performance compared to pure Co9S8 nanoparticles or ultra-thin WS2 nanosheets. The N-CoxW1-xS2 electrode demonstrates the excellent electrocatalytic performance, with current density of 10 mA cm-2 at a low overpotential of 93 mV and Tafel slope of 85 mV dec-1, as well as the long-term stability in acid electrolyte. The present investigation may provide a feasible strategy for incorporating other heteroatoms into transitional metal disulfides (TMDs) materials to design catalysts with highly active and stable performance for water splitting. © 2018 IOP Publishing Ltd.

  10. Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution.

    PubMed

    Jing, Shengyu; Lu, Jiajia; Yu, Guangtao; Yin, Shibin; Luo, Lin; Zhang, Zengsong; Ma, Yanfeng; Chen, Wei; Shen, Pei Kang

    2018-05-29

    Developing non-noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost-effective electrochemical evolution of hydrogen. Herein, carbon-encapsulated WO x anchored on a carbon support (WO x @C/C) that has remarkable Pt-like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, WO bond, and hollow sites). Experimental results confirm that WO x @C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm -2 , and also has outstanding stability at -50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost-effective catalysts for scalable hydrogen generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    PubMed

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  12. Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: Combined experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Migahed, M. A.; elgendy, Amr.; EL-Rabiei, M. M.; Nady, H.; Zaki, E. G.

    2018-05-01

    Two new sequences of Gemini di-quaternary ammonium salts were synthesized characterized by FTIR and 1HNMR spectroscopic techniques and evaluated as corrosion inhibitor for X-65 steel dissolution in deep oil wells formation water saturated with CO2. The anti-corrosion performance of these compounds was studied by different electrochemical techniques i.e. (potentiodynamic polarization and AC impedance methods), Surface morphology (SEM and EDX) analysis and quantum chemical calculations. Results showed that the synthesized compounds were of mixed-type inhibitors and the inhibition capability was influenced by the inhibitor dose and the spacer substitution in their structure as indicated by Tafel plots. Surface active parameters were determined from the surface tension profile. The synthesized compounds adsorbed via Langmuir adsorption model with physiochemical adsorption as inferred from the standard free energy (ΔG°ads) values. Surface morphology (SEM and EDX) data for inhibitor (II) shows the development of adsorbed film on steel specimen. Finally, the experimental results were supported by the quantum chemical calculations using DFT theory.

  13. Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER)

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobing; Chen, Juan; Chen, Yuqing; Feng, Pingjing; Lai, Huixian; Li, Jintang; Luo, Xuetao

    2018-03-01

    Herein, Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co3O4/NPC composites. When applied as catalysts for the oxygen evolution reaction (OER), the M-Co3O4/NPC composites derived from the flower-like ZIF-67 showed superior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co3O4/NPC composite displayed a small over-potential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 mV dec-1, and a desirable stability. (94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co3O4/NPC composite in the OER was attributed to its favorable structure. [Figure not available: see fulltext.

  14. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  15. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    PubMed

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  16. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production.

    PubMed

    Liu, Yun; Zhou, Xiaoli; Ding, Tao; Wang, Chunde; Yang, Qing

    2015-11-21

    The design and synthesis of robust, high-performance and low-cost three-dimensional (3D) hierarchical structured materials for the electrochemical reduction of water to generate hydrogen is of great significance for practical water splitting applications. In this study, we develop an in situ space-confined method to synthesize an MoS2-based 3D hierarchical structure, in which the MoS2 nanosheets grow in the confined nanopores of metal-organic frameworks (MOFs)-derived 3D carbons as electrocatalysts for efficient hydrogen production. Benefiting from its unique structure, which has more exposed active sites and enhanced conductivity, the as-prepared MoS2/3D nanoporous carbon (3D-NPC) composite exhibits remarkable electrocatalytic activity for the hydrogen evolution reaction (HER) with a small onset overpotential of ∼0.16 V, large cathodic currents, small Tafel slope of 51 mV per decade and good durability. We anticipate that this in situ confined growth provides new insights into the construction of high performance catalysts for energy storage and conversion.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  18. Metal-Rich Transition Metal Diborides as Electrocatalysts for Hydrogen Evolution Reactions in a Wide Range of pH

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-09-23

    Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less

  19. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGES

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; ...

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  20. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System.

    PubMed

    Luo, Pan; Zhang, Huijuan; Liu, Li; Zhang, Yan; Deng, Ju; Xu, Chaohe; Hu, Ning; Wang, Yu

    2017-01-25

    Water splitting is one of the ideal technologies to meet the ever increasing demands of energy. Many materials have aroused great attention in this field. The family of nickel-based sulfides is one of the examples that possesses interesting properties in water-splitting fields. In this paper, a controllable and simple strategy to synthesize nickel sulfides was proposed. First, we fabricated NiS 2 hollow microspheres via a hydrothermal process. After a precise heat control in a specific atmosphere, NiS porous hollow microspheres were prepared. NiS 2 was applied in hydrogen evolution reaction (HER) and shows a marvelous performance both in acid medium (an overpotential of 174 mV to achieve a current density of 10 mA/cm 2 and the Tafel slope is only 63 mV/dec) and in alkaline medium (an overpotential of 148 mV to afford a current density of 10 mA/cm 2 and the Tafel slope is 79 mV/dec). NiS was used in oxygen evolution reaction (OER) showing a low overpotential of 320 mV to deliver a current density of 10 mA/cm 2 , which is meritorious. These results enlighten us to make an efficient water-splitting system, including NiS 2 as HER catalyst in a cathode and NiS as OER catalyst in an anode. The system shows high activity and good stabilization. Specifically, it displays a stable current density of 10 mA/cm 2 with the applying voltage of 1.58 V, which is a considerable electrolyzer for water splitting.

  1. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  2. WORKSHOP ON APPLICATION OF STATISTICAL METHODS TO BIOLOGICALLY-BASED PHARMACOKINETIC MODELING FOR RISK ASSESSMENT

    EPA Science Inventory

    Biologically-based pharmacokinetic models are being increasingly used in the risk assessment of environmental chemicals. These models are based on biological, mathematical, statistical and engineering principles. Their potential uses in risk assessment include extrapolation betwe...

  3. Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.

    PubMed

    Davidson, Shaun; Pretty, Chris; Pironet, Antoine; Desaive, Thomas; Janssen, Nathalie; Lambermont, Bernard; Morimont, Philippe; Chase, J Geoffrey

    2017-01-01

    This paper develops a means of more easily and less invasively estimating ventricular dead space volume (Vd), an important, but difficult to measure physiological parameter. Vd represents a subject and condition dependent portion of measured ventricular volume that is not actively participating in ventricular function. It is employed in models based on the time varying elastance concept, which see widespread use in haemodynamic studies, and may have direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling curve (stroke volume vs end-diastolic volume) and its end-systolic equivalent (stroke volume vs end-systolic volume), developed across normal clinical procedures such as recruitment manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0) to determine Vd. To demonstrate the broad applicability of the method, it was validated across a cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of cardiac states from healthy baseline behaviour to circulatory failure due to septic shock induced by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear correlation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion respectively, as well as good agreement between the two linearly extrapolated y-intercepts (Vd) for each subject (no more than 7.8% variation). Method validity was further supported by the physiologically reasonable Vd values produced, equivalent to 44.3-53.1% and 49.3-82.6% of baseline end-systolic volume before and after endotoxin infusion respectively. This method has the potential to allow Vd to be estimated without a particularly demanding, specialised protocol in an experimental environment. Further, due to the common use of both mechanical ventilation and recruitment manoeuvres in intensive care, this method, subject to the availability of multi-beat echocardiography, has the potential to allow for estimation of Vd in a clinical environment.

  4. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.

    PubMed

    Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2016-07-01

    We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.

  5. The Extrapolation of Elementary Sequences

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Saul, Ronald

    1992-01-01

    We study sequence extrapolation as a stream-learning problem. Input examples are a stream of data elements of the same type (integers, strings, etc.), and the problem is to construct a hypothesis that both explains the observed sequence of examples and extrapolates the rest of the stream. A primary objective -- and one that distinguishes this work from previous extrapolation algorithms -- is that the same algorithm be able to extrapolate sequences over a variety of different types, including integers, strings, and trees. We define a generous family of constructive data types, and define as our learning bias a stream language called elementary stream descriptions. We then give an algorithm that extrapolates elementary descriptions over constructive datatypes and prove that it learns correctly. For freely-generated types, we prove a polynomial time bound on descriptions of bounded complexity. An especially interesting feature of this work is the ability to provide quantitative measures of confidence in competing hypotheses, using a Bayesian model of prediction.

  6. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    NASA Astrophysics Data System (ADS)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  7. FY17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Truster, T. J.; Cochran, K. B.

    Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less

  8. Introduction of risk size in the determination of uncertainty factor UFL in risk assessment

    NASA Astrophysics Data System (ADS)

    Xue, Jinling; Lu, Yun; Velasquez, Natalia; Yu, Ruozhen; Hu, Hongying; Liu, Zhengtao; Meng, Wei

    2012-09-01

    The methodology for using uncertainty factors in health risk assessment has been developed for several decades. A default value is usually applied for the uncertainty factor UFL, which is used to extrapolate from LOAEL (lowest observed adverse effect level) to NAEL (no adverse effect level). Here, we have developed a new method that establishes a linear relationship between UFL and the additional risk level at LOAEL based on the dose-response information, which represents a very important factor that should be carefully considered. This linear formula makes it possible to select UFL properly in the additional risk range from 5.3% to 16.2%. Also the results remind us that the default value 10 may not be conservative enough when the additional risk level at LOAEL exceeds 16.2%. Furthermore, this novel method not only provides a flexible UFL instead of the traditional default value, but also can ensure a conservative estimation of the UFL with fewer errors, and avoid the benchmark response selection involved in the benchmark dose method. These advantages can improve the estimation of the extrapolation starting point in the risk assessment.

  9. Extrapolating Survival from Randomized Trials Using External Data: A Review of Methods

    PubMed Central

    Jackson, Christopher; Stevens, John; Ren, Shijie; Latimer, Nick; Bojke, Laura; Manca, Andrea; Sharples, Linda

    2016-01-01

    This article describes methods used to estimate parameters governing long-term survival, or times to other events, for health economic models. Specifically, the focus is on methods that combine shorter-term individual-level survival data from randomized trials with longer-term external data, thus using the longer-term data to aid extrapolation of the short-term data. This requires assumptions about how trends in survival for each treatment arm will continue after the follow-up period of the trial. Furthermore, using external data requires assumptions about how survival differs between the populations represented by the trial and external data. Study reports from a national health technology assessment program in the United Kingdom were searched, and the findings were combined with “pearl-growing” searches of the academic literature. We categorized the methods that have been used according to the assumptions they made about how the hazards of death vary between the external and internal data and through time, and we discuss the appropriateness of the assumptions in different circumstances. Modeling choices, parameter estimation, and characterization of uncertainty are discussed, and some suggestions for future research priorities in this area are given. PMID:27005519

  10. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%). Electronic supplementary information (ESI) available: Experimental details, XRD, SEM-EDS, UV-vis spectra and photovoltaic parameters of devices. See DOI: 10.1039/c3nr05705d

  11. Mesopotamia, A Difficult but Interesting Topic.

    ERIC Educational Resources Information Center

    Kavett, Hyman

    1979-01-01

    Describes a method to help students become participants in historical analysis rather than observers of ancient history. Mesopotamia is used as a case study of a culture for which opportunities exist for conjecture, hypothesis formation, research, extrapolation, problem solving, and statements of causality. (Author/DB)

  12. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  13. AXES OF EXTRAPOLATION IN RISK ASSESSMENTS

    EPA Science Inventory

    Extrapolation in risk assessment involves the use of data and information to estimate or predict something that has not been measured or observed. Reasons for extrapolation include that the number of combinations of environmental stressors and possible receptors is too large to c...

  14. CROSS-SPECIES DOSE EXTRAPOLATION FOR DIESEL EMISSIONS

    EPA Science Inventory

    Models for cross-species (rat to human) dose extrapolation of diesel emission were evaluated for purposes of establishing guidelines for human exposure to diesel emissions (DE) based on DE toxicological data obtained in rats. Ideally, a model for this extrapolation would provide...

  15. Line-of-sight extrapolation noise in dust polarization

    NASA Astrophysics Data System (ADS)

    Poh, Jason; Dodelson, Scott

    2017-05-01

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g. 350 GHz) is due solely to dust and then extrapolate the signal down to a lower frequency (e.g. 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of ˜20 K , these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise on a greybody dust model consistent with Planck and Pan-STARRS observations, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r ≲0.0015 in the greybody dust models considered in this paper.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z; Bortfeld, T; Hong, T

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less

  17. Nonlinear cancer response at ultralow dose: a 40800-animal ED(001) tumor and biomarker study.

    PubMed

    Bailey, George S; Reddy, Ashok P; Pereira, Clifford B; Harttig, Ulrich; Baird, William; Spitsbergen, Jan M; Hendricks, Jerry D; Orner, Gayle A; Williams, David E; Swenberg, James A

    2009-07-01

    Assessment of human cancer risk from animal carcinogen studies is severely limited by inadequate experimental data at environmentally relevant exposures and by procedures requiring modeled extrapolations many orders of magnitude below observable data. We used rainbow trout, an animal model well-suited to ultralow-dose carcinogenesis research, to explore dose-response down to a targeted 10 excess liver tumors per 10000 animals (ED(001)). A total of 40800 trout were fed 0-225 ppm dibenzo[a,l]pyrene (DBP) for 4 weeks, sampled for biomarker analyses, and returned to control diet for 9 months prior to gross and histologic examination. Suspect tumors were confirmed by pathology, and resulting incidences were modeled and compared to the default EPA LED(10) linear extrapolation method. The study provided observed incidence data down to two above-background liver tumors per 10000 animals at the lowest dose (that is, an unmodeled ED(0002) measurement). Among nine statistical models explored, three were determined to fit the liver data well-linear probit, quadratic logit, and Ryzin-Rai. None of these fitted models is compatible with the LED(10) default assumption, and all fell increasingly below the default extrapolation with decreasing DBP dose. Low-dose tumor response was also not predictable from hepatic DBP-DNA adduct biomarkers, which accumulated as a power function of dose (adducts = 100 x DBP(1.31)). Two-order extrapolations below the modeled tumor data predicted DBP doses producing one excess cancer per million individuals (ED(10)(-6)) that were 500-1500-fold higher than that predicted by the five-order LED(10) extrapolation. These results are considered specific to the animal model, carcinogen, and protocol used. They provide the first experimental estimation in any model of the degree of conservatism that may exist for the EPA default linear assumption for a genotoxic carcinogen.

  18. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

    NASA Astrophysics Data System (ADS)

    Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil

    2013-12-01

    The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

  19. Electrochemical investigation of lead-calcium alloys in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Bass, K.; Ellis, S. R.; Johnson, M.; Hampson, N. A.

    The hydrogen evolution reaction from, and the cycle life (Pb /ar PbSO 4) of, a series of lead-calcium alloys (0 - 0.2 wt.% Ca) in sulphuric acid hav The exchange current density and Tafel slope for the H.R.E. increase with Ca content up to 0.05 wt.% then decrease to a value approaching that of pure The observed results are explained by: (i) preferential adsorption of calcium ions at the electrode surface; (ii) incorporation of Ca, to form a supersaturated solution, with alloys containing < 0.075 wt.% Ca; (iii) formation of an insoluble, non-conducting layer of calcium sulphate on the high content alloy.

  20. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    PubMed

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal.

  1. A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1991-01-01

    The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell.

  2. Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2012-05-01

    This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

  3. NMR measurement of bitumen at different temperatures.

    PubMed

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (<60 degrees C) was found to be underestimated. However, resulting from the remarkably lowered viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (<60 degrees C) can be corrected by Curie's Law. Consequently, some important petrophysical properties of bitumen, such as hydrogen index (HI), fluid content and viscosity were evaluated by using corrected T2.

  4. A combined semiempirical-DFT study of oligomers within the finite-chain approximation, evolution from oligomers to polymers.

    PubMed

    Derosa, Pedro A

    2009-06-01

    A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results. 2008 Wiley Periodicals, Inc.

  5. Effective-range function methods for charged particle collisions

    NASA Astrophysics Data System (ADS)

    Gaspard, David; Sparenberg, Jean-Marc

    2018-04-01

    Different versions of the effective-range function method for charged particle collisions are studied and compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function denoted as Δℓ [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601] and an earlier variant [Hamilton et al., Nucl. Phys. B 60, 443 (1973), 10.1016/0550-3213(73)90193-4] are related to the standard function. The potential interest of Δℓ for the study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton S10 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of Δℓ instead of the standard function. It is shown that interpolating Δℓ can lead to useful extrapolation to negative energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton system). This property is due to the connection between Δℓ and the effective-range function by Hamilton et al. that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution because Δℓ is not analytic at zero energy. The expected analytic properties of the main functions are verified in the complex energy plane by graphical color-based representations.

  6. Generalized Gilat-Raubenheimer method for density-of-states calculation in photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Boyuan; Johnson, Steven G.; Joannopoulos, John D.; Lu, Ling

    2018-04-01

    An efficient numerical algorithm is the key for accurate evaluation of density of states (DOS) in band theory. The Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR method to compute DOS of various gyroid photonic crystals of topological degeneracies.

  7. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken

    2013-08-30

    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Extrapolation procedures in Mott electron polarimetry

    NASA Technical Reports Server (NTRS)

    Gay, T. J.; Khakoo, M. A.; Brand, J. A.; Furst, J. E.; Wijayaratna, W. M. K. P.; Meyer, W. V.; Dunning, F. B.

    1992-01-01

    In standard Mott electron polarimetry using thin gold film targets, extrapolation procedures must be used to reduce the experimentally measured asymmetries A to the values they would have for scattering from single atoms. These extrapolations involve the dependent of A on either the gold film thickness or the maximum detected electron energy loss in the target. A concentric cylindrical-electrode Mott polarimeter, has been used to study and compare these two types of extrapolations over the electron energy range 20-100 keV. The potential systematic errors which can result from such procedures are analyzed in detail, particularly with regard to the use of various fitting functions in thickness extrapolations, and the failure of perfect energy-loss discrimination to yield accurate polarizations when thick foils are used.

  9. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  10. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE PAGES

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...

    2017-05-12

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  11. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    EPA Science Inventory

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  12. 7 CFR 2902.5 - Item designation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., USDA will use life cycle cost information only from tests using the BEES analytical method. (c... availability of such items and the economic and technological feasibility of using such items, including life cycle costs. USDA will gather information on individual products within an item and extrapolate that...

  13. Agro-ecoregionalization of Iowa using multivariate geographical clustering

    Treesearch

    Carol L. Williams; William W. Hargrove; Matt Leibman; David E. James

    2008-01-01

    Agro-ecoregionalization is categorization of landscapes for use in crop suitability analysis, strategic agroeconomic development, risk analysis, and other purposes. Past agro-ecoregionalizations have been subjective, expert opinion driven, crop specific, and unsuitable for statistical extrapolation. Use of quantitative analytical methods provides an opportunity for...

  14. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    NASA Technical Reports Server (NTRS)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  15. Pollutant threshold concentration determination in marine ecosystems using an ecological interaction endpoint.

    PubMed

    Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui

    2015-09-01

    The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L(-1), which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of MCAERO wing design panel method with interactive graphics module

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  17. Cross-species extrapolation of chemical effects: Challenges and new insights

    EPA Science Inventory

    One of the greatest uncertainties in chemical risk assessment is extrapolation of effects from tested to untested species. While this undoubtedly is a challenge in the human health arena, species extrapolation is a particularly daunting task in ecological assessments, where it is...

  18. The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales.

    PubMed

    Strong, James Asa; Elliott, Michael

    2017-03-15

    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    PubMed

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy

    PubMed Central

    Waddington‐Cruz, Márcia; Botteman, Marc F.; Carter, John A.; Chopra, Avijeet S.; Hopps, Markay; Stewart, Michelle; Fallet, Shari; Amass, Leslie

    2018-01-01

    ABSTRACT Introduction: This study sought to estimate the global prevalence of transthyretin familial amyloid polyneuropathy (ATTR‐FAP). Methods: Prevalence estimates and information supporting prevalence calculations was extracted from records yielded by reference‐database searches (2005–2016), conference proceedings, and nonpeer reviewed sources. Prevalence was calculated as prevalence rate multiplied by general population size, then extrapolated to countries without prevalence estimates but with reported cases. Results: Searches returned 3,006 records; 1,001 were fully assessed and 10 retained, yielding prevalence for 10 “core” countries, then extrapolated to 32 additional countries. ATTR‐FAP prevalence in core countries, extrapolated countries, and globally was 3,762 (range 3639–3884), 6424 (range, 1,887–34,584), and 10,186 (range, 5,526–38,468) persons, respectively. Discussion: The mid global prevalence estimate (10,186) approximates the maximum commonly accepted estimate (5,000–10,000). The upper limit (38,468) implies potentially higher prevalence. These estimates should be interpreted carefully because contributing evidence was heterogeneous and carried an overall moderate risk of bias. This highlights the requirement for increasing rare‐disease epidemiological assessment and clinician awareness. Muscle Nerve 57: 829–837, 2018 PMID:29211930

  1. Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria.

    PubMed Central

    Setty, O H; Shrager, R I; Bunow, B; Reynafarje, B; Lehninger, A L; Hendler, R W

    1986-01-01

    The problem of obtaining very early ratios for the H+/O stoichiometry accompanying succinate oxidation by rat liver mitochondria was attacked using new techniques for direct measurement rather than extrapolations based on data obtained after mixing and the recovery of the electrode from initial injection of O2. Respiration was quickly initiated in a thoroughly mixed O2-containing suspension of mitochondria under a CO atmosphere by photolysis of the CO-cytochrome c oxidase complex-. Fast responding O2 and pH electrodes were used to collect data every 10 ms. The response time for each electrode was experimentally measured in each experiment and suitable corrections for electrode relaxations were made. With uncorrected data obtained after 0.8 s, the extrapolation back to zero time on the basis of single-exponential curve fitting confirmed values close to 8.0 as previously reported (Costa et al., 1984). The data directly obtained, however, indicate an initial burst in H+/O ratio that peaked to values of approximately 20 to 30 prior to 50 ms and which was no longer evident after 0.3 s. Newer information and considerations that place all extrapolation methods in question are discussed. PMID:3019443

  2. Application of a framework for extrapolating chemical effects across species in pathways controlled by estrogen receptor-á

    EPA Science Inventory

    Cross-species extrapolation of toxicity data from limited surrogate test organisms to all wildlife with potential of chemical exposure remains a key challenge in ecological risk assessment. A number of factors affect extrapolation, including the chemical exposure, pharmacokinetic...

  3. Teaching Problem Solving; the Effect of Algorithmic and Heuristic Problem Solving Training in Relation to Task Complexity and Relevant Aptitudes.

    ERIC Educational Resources Information Center

    de Leeuw, L.

    Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…

  4. Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Mcanelly, W. B.; Young, C. T. K.

    1973-01-01

    Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.

  5. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are free from this systematic error, while have other metrics either comparable or only marginally worse than those estimated for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing.

  6. EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Chaowei; Feng Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn

    Due to the absence of direct measurement, the magnetic field in the solar corona is usually extrapolated from the photosphere in a numerical way. At the moment, the nonlinear force-free field (NLFFF) model dominates the physical models for field extrapolation in the low corona. Recently, we have developed a new NLFFF model with MHD relaxation to reconstruct the coronal magnetic field. This method is based on CESE-MHD model with the conservation-element/solution-element (CESE) spacetime scheme. In this paper, we report the application of the CESE-MHD-NLFFF code to Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) data with magnetograms sampled for two activemore » regions (ARs), NOAA AR 11158 and 11283, both of which were very non-potential, producing X-class flares and eruptions. The raw magnetograms are preprocessed to remove the force and then inputted into the extrapolation code. Qualitative comparison of the results with the SDO/AIA images shows that our code can reconstruct magnetic field lines resembling the EUV-observed coronal loops. Most important structures of the ARs are reproduced excellently, like the highly sheared field lines that suspend filaments in AR 11158 and twisted flux rope which corresponds to a sigmoid in AR 11283. Quantitative assessment of the results shows that the force-free constraint is fulfilled very well in the strong-field regions but apparently not that well in the weak-field regions because of data noise and numerical errors in the small currents.« less

  7. Smooth extrapolation of unknown anatomy via statistical shape models

    NASA Astrophysics Data System (ADS)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  8. SU-E-T-91: Correction Method to Determine Surface Dose for OSL Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T; Higgins, P

    Purpose: OSL detectors are commonly used in clinic due to their numerous advantages, such as linear response, negligible energy, angle and temperature dependence in clinical range, for verification of the doses beyond the dmax. Although, due to the bulky shielding envelope, this type of detectors fails to measure skin dose, which is an important assessment of patient ability to finish the treatment on time and possibility of acute side effects. This study aims to optimize the methodology of determination of skin dose for conventional accelerators and a flattening filter free Tomotherapy. Methods: Measurements were done for x-ray beams: 6 MVmore » (Varian Clinac 2300, 10×10 cm{sup 2} open field, SSD = 100 cm) and for 5.5 MV (Tomotherapy, 15×40 cm{sup 2} field, SAD = 85 cm). The detectors were placed at the surface of the solid water phantom and at the reference depth (dref=1.7cm (Varian 2300), dref =1.0 cm (Tomotherapy)). The measurements for OSLs were related to the externally exposed OSLs measurements, and further were corrected to surface dose using an extrapolation method indexed to the baseline Attix ion chamber measurements. A consistent use of the extrapolation method involved: 1) irradiation of three OSLs stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. Results: OSL measurements showed an overestimation of surface doses by the factor 2.31 for Varian 2300 and 2.65 for Tomotherapy. The relationships: SD{sup 2300} = 0.68 × M{sup 2300}-12.7 and SDτoμo = 0.73 × Mτoμo-13.1 were found to correct the single OSL measurements to surface doses in agreement with Attix measurements to within 0.1% for both machines. Conclusion: This work provides simple empirical relationships for surface dose measurements using single OSL detectors.« less

  9. 76 FR 33752 - Notice of Availability of the External Review Draft of the Guidance for Applying Quantitative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... External Review Draft of the Guidance for Applying Quantitative Data To Develop Data-Derived Extrapolation... Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies... Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies...

  10. Chiral extrapolation of nucleon axial charge gA in effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Hong-na; Wang, P.

    2016-12-01

    The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value. Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

  11. Determination of Extrapolation Distance With Pressure Signatures Measured at Two to Twenty Span Lengths From Two Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Kuhn, Neil S.

    2006-01-01

    A study was performed to determine a limiting separation distance for the extrapolation of pressure signatures from cruise altitude to the ground. The study was performed at two wind-tunnel facilities with two research low-boom wind-tunnel models designed to generate ground pressure signatures with "flattop" shapes. Data acquired at the first wind-tunnel facility showed that pressure signatures had not achieved the desired low-boom features for extrapolation purposes at separation distances of 2 to 5 span lengths. However, data acquired at the second wind-tunnel facility at separation distances of 5 to 20 span lengths indicated the "limiting extrapolation distance" had been achieved so pressure signatures could be extrapolated with existing codes to obtain credible predictions of ground overpressures.

  12. Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments

    DTIC Science & Technology

    2013-03-01

    prior to dewetting ). Also, it is often impractical to measure compressibility. Current rocket laboratory methods measure strains in propellants...distribution unlimited. Public Affairs Clearance Number XXXXX. Damage Characterization of Propellants 16 Dewetting Results 0 2 4 6 8 10 0 5 10 15 20

  13. Extrapolation Factors for Derivation of Acute Aquatic Life Screening Values: Acetylcholinesterase Inhibitors

    EPA Science Inventory

    USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...

  14. OPPTS Meeting: Linkage Of Exposure And Effects Using Genomics, Proteomics, And Metabolomics In Small Fish Models

    EPA Science Inventory

    Poster for the OPPTS Science Forum. Knowledge of possible toxic mechanisms/modes of action (MOA) of chemicals can provide valuable insights as to appropriate methods for assessing exposure and effects, thereby reducing uncertainties related to extrapolation across species, endpoi...

  15. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    EPA Science Inventory

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  16. In vitro to in vivo extrapolation of hepatic metabolism in fish: An inter-laboratory comparison of in vitro methods - presentation

    EPA Science Inventory

    Chemical biotransformation represents the largest source of uncertainty in chemical bioaccumulation assessments. Model-based estimates of chemical bioconcentration in fish may be greatly improved by including biotransformation rates, as measured in vitro. Substrate depletion assa...

  17. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.

    PubMed

    Mackie, Iain D; DiLabio, Gino A

    2011-10-07

    The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics

  18. Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    NASA Technical Reports Server (NTRS)

    Margaria, Tiziana (Inventor); Hinchey, Michael G. (Inventor); Rouff, Christopher A. (Inventor); Rash, James L. (Inventor); Steffen, Bernard (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.

  19. 76 FR 43999 - Notice of Availability of the External Review Draft of the Guidance for Applying Quantitative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-ORD-2009-0694; FRL-9442-8] Notice of Availability of the External Review Draft of the Guidance for Applying Quantitative Data to Develop Data-Derived Extrapolation... Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies Extrapolation...

  20. Improving In Vitro to In Vivo Extrapolation by Incorporating Toxicokinetic Measurements: A Case Study of Lindane-Induced Neurotoxicity

    EPA Science Inventory

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicit...

  1. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y., E-mail: yu.feng@unsw.edu.au; Lin, S.; Huang, S.

    Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation givesmore » a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect.« less

  2. Cosmogony as an extrapolation of magnetospheric research

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1984-01-01

    A theory of the origin and evolution of the Solar System which considered electromagnetic forces and plasma effects is revised in light of information supplied by space research. In situ measurements in the magnetospheres and solar wind can be extrapolated outwards in space, to interstellar clouds, and backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of cloud properties essential for the early phases in the formation of stars and solar nebulae. The latter extrapolation facilitates analysis of the cosmogonic processes by extrapolation of magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it is possible to reconstruct events 4 to 5 billion years ago with an accuracy of a few percent.

  3. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  4. Application of physiologically based pharmacokinetic (PBPK) model of trichloroethylene in rats for estimation of internal dose

    EPA Science Inventory

    Potential human health risk from chemical exposure must often be assessed for conditions for which suitable human or animal data are not available, requiring extrapolation across duration and concentration. The default method for exposure-duration adjustment is based on Haber's r...

  5. Predictive Toxicology and In Vitro to In Vivo Extrapolation (AsiaTox2015)

    EPA Science Inventory

    A significant challenge in toxicology is the “too many chemicals” problem. Humans and environmental species are exposed to as many as tens of thousands of chemicals, few of which have been thoroughly tested using standard in vivo test methods. This talk will discuss several appro...

  6. THE APPLICATION OF COMPUTATIONAL MOLECULAR METHODS TO UNDERSTAND THE HEALTH EFFECTS OF ENVIRONMENTAL CHEMICALS-POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In evaluating the risk posed by chemicals introduced into the environment, information
    about their molecular mechanism of action provides a basis for extrapolating from the
    laboratory to the environment. Polycyclic aromatic hydrocarbons (PAH) are a large class
    of...

  7. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action

    EPA Science Inventory

    Knowledge of possible toxic mechanisms/modes of action (MOA) of chemicals can provide valuable insights as to appropriate methods for assessing exposure and effects, such as reducing uncertainties related to extrapolation across species, endpoints and chemical structure. However,...

  8. An Individual-based Model for Extrapolating Standard Toxicity Test Data into Population-level Adverse Outcomes in the Fathead Minnow

    EPA Science Inventory

    While environmental toxicity testing typically focuses on organism-level endpoints such as mortality, growth, and reproduction, risk assessment guidelines specify protection goals at the level of the population and above. One method of linking these different levels of biological...

  9. GEOGRAPHIC-SPECIFIC WATER QUALITY CRITERIA DEVELOPMENT WITH MONITORING DATA USING CONDITIONAL PROBABILITIES - A PROPOSED APPROACH

    EPA Science Inventory

    A conditional probability approach using monitoring data to develop geographic-specific water quality criteria for protection of aquatic life is presented. Typical methods to develop criteria using existing monitoring data are limited by two issues: (1) how to extrapolate to an...

  10. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    EPA Science Inventory

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  11. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  12. Pion mass dependence of the HVP contribution to muon g - 2

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    One of the systematic errors in some of the current lattice computations of the HVP contribution to the muon anomalous magnetic moment g - 2 is that associated with the extrapolation to the physical pion mass. We investigate this extrapolation assuming lattice pion masses in the range of 220 to 440 MeV with the help of two-loop chiral perturbation theory, and find that such an extrapolation is unlikely to lead to control of this systematic error at the 1% level. This remains true even if various proposed tricks to improve the chiral extrapolation are taken into account.

  13. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  14. Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions.

    PubMed

    Fytas, Nikolaos G; Martín-Mayor, Víctor

    2016-06-01

    It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

  15. Evidence that Arrhenius high-temperature aging behavior for an EPDM o-ring does not extrapolate to lower temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Wise, J.; Celina, M.

    1997-09-01

    Because of the need to significantly extend the lifetimes of weapons, and because of potential implications of environmental O-ring failure on degradation of critical internal weapon components, the authors have been working on improved methods of predicting and verifying O-ring lifetimes. In this report, they highlight the successful testing of a new predictive method for deriving more confident lifetime extrapolations. This method involves ultrasensitive oxygen consumption measurements. The material studied is an EPDM formulation use for the environmental O-ring the W88. Conventional oven aging (155 C to 111 C) was done on compression molded sheet material; periodically, samples were removedmore » from the ovens and subjected to various measurements, including ultimate tensile elongation, density and modulus profiles. Compression stress relaxation (CSR) measurements were made at 125 C and 111 C on disc shaped samples (12.7 mm diameter by 6 mm thick) using a Shawbury Wallace Compression Stress Relaxometer MK 2. Oxygen consumption measurements were made versus time, at temperatures ranging from 160 C to 52 C, using chromatographic quantification of the change in oxygen content caused by reaction with the EPDM material in sealed containers.« less

  16. Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis

    DTIC Science & Technology

    1984-06-01

    multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts

  17. A Study of Coronal-Interplanetary Coupling Mechanisms

    DTIC Science & Technology

    1991-04-30

    Magnetic Feild in Astrophys. J., Vol. 344, 478-493, 1989. 111.3. Reflection and Trapping of Transient Alfven Waves Propagating in an Isothermal...1990. VI.4. A Comparison Between Progressive Extension Method (PEM) and Iterative Method (IM) for Magnetic Feild Extrapolations in the Solar...Flight Center. Representative results are shown in the upper left panel of Figure 1 in which (a) shows the observed vector magnetic field at photospheric

  18. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction.

    PubMed

    Li, Wentao; Yuan, Jiuchuang; Yuan, Meiling; Zhang, Yong; Yao, Minghai; Sun, Zhigang

    2018-01-03

    A new global potential energy surface (PES) of the O + + H 2 system was constructed with the permutation invariant polynomial neural network method, using about 63 000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For improving the accuracy of the PES, the basis set was extrapolated to the complete basis set limit by the two-point extrapolation method. The root mean square error of fitting was only 5.28 × 10 -3 eV. The spectroscopic constants of the diatomic molecules were calculated and compared with previous theoretical and experimental results, which suggests that the present results agree well with the experiment. On the newly constructed PES, reaction dynamics studies were performed using the time-dependent wave packet method. The calculated integral cross sections (ICSs) were compared with the available theoretical and experimental results, where a good agreement with the experimental data was seen. Significant forward and backward scatterings were observed in the whole collision energy region studied. At the same time, the differential cross sections biased the forward scattering, especially at higher collision energies.

  19. Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System

    NASA Astrophysics Data System (ADS)

    Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor

    2016-09-01

    The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.

  20. Application of the risk assessment paradigm to the induction of allergic contact dermatitis.

    PubMed

    Felter, Susan P; Ryan, Cindy A; Basketter, David A; Gilmour, Nicola J; Gerberick, G Frank

    2003-02-01

    The National Academy of Science (NAS) risk assessment paradigm has been widely accepted as a framework for estimating risk from exposure to environmental chemicals (NAS, 1983). Within this framework, quantitative risk assessments (QRAs) serve as the cornerstone of health-based exposure limits, and have been used routinely for both cancer and noncancer endpoints. These methods have focused primarily on the extrapolation of data from laboratory animals to establish acceptable levels of exposure for humans. For health effects associated with a threshold, uncertainty and variability inherent in the extrapolation process is generally dealt with by the application of "uncertainty factors (UFs)." The adaptation of QRA methods to address skin sensitization is a natural and desirable extension of current practices. Based on our chemical, cellular and molecular understanding of the induction of allergic contact dermatitis, one can conduct a QRA using established methods of identifying a NOAEL (No Observed Adverse Effect Level) or other point of departure, and applying appropriate UFs. This paper describes the application of the NAS paradigm to characterize risks from human exposure to skin sensitizers; consequently, this method can also be used to establish an exposure level for skin allergens that does not present an appreciable risk of sensitization. Copyright 2003 Elsevier Science (USA)

  1. Prioritizing abandoned coal mine reclamation projects within the contiguous United States using geographic information system extrapolation.

    PubMed

    Gorokhovich, Yuri; Reid, Matthew; Mignone, Erica; Voros, Andrew

    2003-10-01

    Coal mine reclamation projects are very expensive and require coordination of local and federal agencies to identify resources for the most economic way of reclaiming mined land. Location of resources for mine reclamation is a spatial problem. This article presents a methodology that allows the combination of spatial data on resources for the coal mine reclamation and uses GIS analysis to develop a priority list of potential mine reclamation sites within contiguous United States using the method of extrapolation. The extrapolation method in this study was based on the Bark Camp reclamation project. The mine reclamation project at Bark Camp, Pennsylvania, USA, provided an example of the beneficial use of fly ash and dredged material to reclaim 402,600 sq mi of a mine abandoned in the 1980s. Railroads provided transportation of dredged material and fly ash to the site. Therefore, four spatial elements contributed to the reclamation project at Bark Camp: dredged material, abandoned mines, fly ash sources, and railroads. Using spatial distribution of these data in the contiguous United States, it was possible to utilize GIS analysis to prioritize areas where reclamation projects similar to Bark Camp are feasible. GIS analysis identified unique occurrences of all four spatial elements used in the Bark Camp case for each 1 km of the United States territory within 20, 40, 60, 80, and 100 km radii from abandoned mines. The results showed the number of abandoned mines for each state and identified their locations. The federal or state governments can use these results in mine reclamation planning.

  2. Measuring the Population Burden of Injuries—Implications for Global and National Estimates: A Multi-centre Prospective UK Longitudinal Study

    PubMed Central

    Lyons, Ronan A.; Kendrick, Denise; Towner, Elizabeth M.; Christie, Nicola; Macey, Steven; Coupland, Carol; Gabbe, Belinda J.

    2011-01-01

    Background Current methods of measuring the population burden of injuries rely on many assumptions and limited data available to the global burden of diseases (GBD) studies. The aim of this study was to compare the population burden of injuries using different approaches from the UK Burden of Injury (UKBOI) and GBD studies. Methods and Findings The UKBOI was a prospective cohort of 1,517 injured individuals that collected patient-reported outcomes. Extrapolated outcome data were combined with multiple sources of morbidity and mortality data to derive population metrics of the burden of injury in the UK. Participants were injured patients recruited from hospitals in four UK cities and towns: Swansea, Nottingham, Bristol, and Guildford, between September 2005 and April 2007. Patient-reported changes in quality of life using the EQ-5D at baseline, 1, 4, and 12 months after injury provided disability weights used to calculate the years lived with disability (YLDs) component of disability adjusted life years (DALYs). DALYs were calculated for the UK and extrapolated to global estimates using both UKBOI and GBD disability weights. Estimated numbers (and rates per 100,000) for UK population extrapolations were 750,999 (1,240) for hospital admissions, 7,982,947 (13,339) for emergency department (ED) attendances, and 22,185 (36.8) for injury-related deaths in 2005. Nonadmitted ED-treated injuries accounted for 67% of YLDs. Estimates for UK DALYs amounted to 1,771,486 (82% due to YLDs), compared with 669,822 (52% due to YLDs) using the GBD approach. Extrapolating patient-derived disability weights to GBD estimates would increase injury-related DALYs 2.6-fold. Conclusions The use of disability weights derived from patient experiences combined with additional morbidity data on ED-treated patients and inpatients suggests that the absolute burden of injury is higher than previously estimated. These findings have substantial implications for improving measurement of the national and global burden of injury. Please see later in the article for the Editors' Summary PMID:22162954

  3. 75 FR 79320 - Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... is calculated from tumor data of the cancer bioassays using a statistical extrapolation procedure... carcinogenic concern currently set forth in Sec. 500.84 utilizes a statistical extrapolation procedure that... procedures did not rely on a statistical extrapolation of the data to a 1 in 1 million risk of cancer to test...

  4. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    PubMed Central

    Shi, Shih-Chen; Su, Chieh-Chang

    2016-01-01

    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives. PMID:28773733

  5. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  6. Consistent Estimates of Very Low HIV Incidence Among People Who Inject Drugs: New York City, 2005–2014

    PubMed Central

    Arasteh, Kamyar; McKnight, Courtney; Feelemyer, Jonathan; Campbell, Aimée N. C.; Tross, Susan; Smith, Lou; Cooper, Hannah L. F.; Hagan, Holly; Perlman, David

    2016-01-01

    Objectives. To compare methods for estimating low HIV incidence among persons who inject drugs. Methods. We examined 4 methods in New York City, 2005 to 2014: (1) HIV seroconversions among repeat participants, (2) increase of HIV prevalence by additional years of injection among new injectors, (3) the New York State and Centers for Disease Control and Prevention stratified extrapolation algorithm, and (4) newly diagnosed HIV cases reported to the New York City Department of Health and Mental Hygiene. Results. The 4 estimates were consistent: (1) repeat participants: 0.37 per 100 person-years (PY; 95% confidence interval [CI] = 0.05/100 PY, 1.33/100 PY); (2) regression of prevalence by years injecting: 0.61 per 100 PY (95% CI = 0.36/100 PY, 0.87/100 PY); (3) stratified extrapolation algorithm: 0.32 per 100 PY (95% CI = 0.18/100 PY, 0.46/100 PY); and (4) newly diagnosed cases of HIV: 0.14 per 100 PY (95% CI = 0.11/100 PY, 0.16/100 PY). Conclusions. All methods appear to capture the same phenomenon of very low and decreasing HIV transmission among persons who inject drugs. Public Health Implications. If resources are available, the use of multiple methods would provide better information for public health purposes. PMID:26794160

  7. Effect of the layer of anodized 7075-T6 aluminium corrosion properties

    NASA Astrophysics Data System (ADS)

    Montoya Z, R. D.; L, E. Vera; Pineda T, Y.; Cedeño, M. L.

    2017-01-01

    Aluminium alloys are widely used in various sectors of industry. The 7075-T6 alloy corresponding to an Al-Zn T6, is mostly used as structural component in the aviation industry, due to the good relationship between weight and mechanical properties. However, the negative point of this alloys is the resistance to corrosion, which is why they need to be coated with an anodic film. Different surface treatments, such as anodizing, are used to improve corrosion resistance. Anodizing is an electrolytic process by which a protective layer on aluminium known as “alumina” is formed, this is formed by the passage of an electric current in an acidic electrolyte. This investigation presents a study of the effect of the thickness of layers of alumina deposited by anodized method, in the corrosion resistance of 7075-T6 aluminium. This study was performed by using in a solution of tartaric acid - sulfuric acid and an inorganic salt. To evaluate the influence alumina layer thickness on the corrosion properties some tests were carried out by using the electrochemical spectroscopy impedances (EIS) technique and Tafel polarization curves. It was found that the grown of the thickness of film favourably influences in the corrosion resistance.

  8. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of NiCoP Hollow Quasi-Polyhedra and Their Electrocatalytic Properties for Hydrogen Evolution in Alkaline Solution.

    PubMed

    Li, Yapeng; Liu, Jindou; Chen, Chen; Zhang, Xiaohua; Chen, Jinhua

    2017-02-22

    Double metal phosphide (NiCoP) with hollow quasi-polyhedron structure was prepared by acidic etching and precipitation of ZIF-67 polyhedra and further phosphorization treatment with NaH 2 PO 2 . The morphology and microstructure of NiCoP quasi-polyhedron and its precursors were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and a micropore and chemisorption analyzer. Electrocatalytic properties were examined by typical electrochemical methods, such as linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy in 1.0 M KOH aqueous solution. Results reveal that, compared with CoP hollow polyhedra, NiCoP hollow quasi-polyhedra exhibit better electrochemical properties for hydrogen evolution with a low onset overpotential of 74 mV and a small Tafel slope of 42 mV dec -1 . When the current density is 10 mA cm -2 , the corresponding overpotential is merely 124 mV, and 93% of its electrocatalytic activity can be maintained for 12 h. This indicates that NiCoP with hollow quasi-polyhedron structure, bimetallic merit, and low cost may be a good candidate as electrocatalyst in the practical application of hydrogen evolution.

  10. Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs

    NASA Astrophysics Data System (ADS)

    Li, Maoguo; Yu, Muping; Li, Xiang

    2018-05-01

    Molybdenum sulfides are promising electrocatalysts for hydrogen evolution reaction (HER) in acid medium due to their unique properties. In order to improve their HER activity, different strategies have been developed. In this study, amorphous molybdenum sulfide was prepared by a simple wet chemical method and its HER activity was further improved by using polydihydroxyphenylalanine (PDOPA) modified MWCNTs as supports. It was found that the PDOPA can effectively improve the hydrophilic properties of multiwalled carbon nanotubes (MWCNTs) and amorphous MoSx can uniformly grow on the surface of PDOPA@MWCNTs. Compared with MoSx and MoSx/MWCNTs, MoSx/PDOPA@MWCNTs show obviously enhanced HER activities due to the superior electrical conductivity and more exposed active sites. In addition, the effect of the ratio of MoSx and PDOPA@MWCNTs and the loading amount of catalysts on the electrodes are also investigated in detail. At the optimum conditions, MoSx/PDOPA@MWCNTs display an overpotential of 198 mV at 10 mA/cm2, a Tafel slope of 53 mV/dec and a good long-term stability in 0.5 M H2SO4, which make them promising candidates for HER application.

  11. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  12. Synergetic effect at the interfaces of solution processed MoS2-WS2 composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Kim, Seong Ku; Song, Wooseok; Ji, Seulgi; Lim, Yi Rang; Lee, Young Bum; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Lee, Sun Sook

    2017-12-01

    Recently, the importance of developing an effective catalyst for hydrogen evolution reaction is emphasized because hydrogen fueled energy conversion processes are gaining attention as the next generation energy production method. We propose a transition metal dichalcogenide composite catalyst based on molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on reduced graphene oxide coated nickel (rGO-Ni) foams. The composite exhibited enhanced catalytic activity with observed on-set potential of ∼275 mV at -10 mA/cm2 and Tafel slope of 54.1 mV/dec when the composition of the composite was 50%MoS2-50%WS2. The composite catalyst demonstrated high-stability up to 300 cycles. In order to understand the enhanced catalytic activity, X-ray photoelectron spectroscopy compositional analysis was utilized. We propose that the enhancement of catalytic activities exhibited by the composited samples were achieved due to introduction of new type of interface between MoS2 and WS2 grains, regional transition of 2H phase MoS2 and WS2 to 1T phase, and formation of excess sulfur which depended directly on the composition.

  13. A study of cytocompatibility and degradation of iron-based biodegradable materials.

    PubMed

    Oriňaková, Renáta; Oriňak, Andrej; Giretová, Mária; Medvecký, L'ubomír; Kupková, Miriam; Hrubovčáková, Monika; Maskal'ová, Iveta; Macko, Ján; Kal'avský, František

    2016-02-01

    Biodegradable metallic implants are of significant importance in the replacement of bones or the repair of bone defects. Iron-phosphate-coated carbonyl iron powder (Fe/P) was prepared by the phosphating method. Moreover, Fe/P-Mn alloy was produced by sintering the Fe/P powder mixed with manganese powder. Bare carbonyl iron samples and the Fe/P and Fe/P-Mn sintered samples were evaluated for their microstructure, cytotoxicity, and hemocompatibility. The microstructure of the sintered samples was examined using an optical microscope and scanning electron microscopic analysis. Corrosion behavior was evaluated by potentiodynamic polarization in Hank's solution. The in vitro biocompatibilities were investigated by cytotoxicity and hemolysis tests. The results obtained demonstrate that the addition of Mn resulted in higher surface inhomogeneity, porosity and roughness as well as in increased cytotoxicity. The phosphate coating has a moderately negative effect on the cytotoxicity. The corrosion rates determined from Tafel diagrams were ordered in the following sequence: Fe/P-Mn, Fe, Fe/P from high to low. The hemocompatibility of experimental samples was ordered in the following sequence: Fe/P, Fe/P-Mn, Fe from high to low. All samples were found to be hemocompatible. © The Author(s) 2015.

  14. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  15. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Chen, Wei; Mukerjee, Sanjeev; Chen, Shaowei; Laufek, František

    Carbon-supported Pd 4Au- and Pd 2.5Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd 4Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media.

  16. On the equivalence of LIST and DIIS methods for convergence acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Alejandro J.; Scuseria, Gustavo E.

    2015-04-28

    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods.

  17. Biological Networks for Predicting Chemical Hepatocarcinogenicity Using Gene Expression Data from Treated Mice and Relevance across Human and Rat Species

    PubMed Central

    Thomas, Reuben; Thomas, Russell S.; Auerbach, Scott S.; Portier, Christopher J.

    2013-01-01

    Background Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. Objectives To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Methods Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Results Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Conclusions Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species. PMID:23737943

  18. Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: issues of scale, geomorphic setting, and sampling design

    USGS Publications Warehouse

    Grams, Paul E.; Topping, David J.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt

    2013-01-01

    Measurements of morphologic change are often used to infer sediment mass balance. Such measurements may, however, result in gross errors when morphologic changes over short reaches are extrapolated to predict changes in sediment mass balance for long river segments. This issue is investigated by examination of morphologic change and sediment influx and efflux for a 100 km segment of the Colorado River in Grand Canyon, Arizona. For each of four monitoring intervals within a 7 year study period, the direction of sand-storage response within short morphologic monitoring reaches was consistent with the flux-based sand mass balance. Both budgeting methods indicate that sand storage was stable or increased during the 7 year period. Extrapolation of the morphologic measurements outside the monitoring reaches does not, however, provide a reasonable estimate of the magnitude of sand-storage change for the 100 km study area. Extrapolation results in large errors, because there is large local variation in site behavior driven by interactions between the flow and local bed topography. During the same flow regime and reach-average sediment supply, some locations accumulate sand while others evacuate sand. The interaction of local hydraulics with local channel geometry exerts more control on local morphodynamic response than sand supply over an encompassing river segment. Changes in the upstream supply of sand modify bed responses but typically do not completely offset the effect of local hydraulics. Thus, accurate sediment budgets for long river segments inferred from reach-scale morphologic measurements must incorporate the effect of local hydraulics in a sampling design or avoid extrapolation altogether.

  19. An Extrapolation of a Radical Equation More Accurately Predicts Shelf Life of Frozen Biological Matrices.

    PubMed

    De Vore, Karl W; Fatahi, Nadia M; Sass, John E

    2016-08-01

    Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.

  20. Estimation of the global burden of mesothelioma deaths from incomplete national mortality data.

    PubMed

    Odgerel, Chimed-Ochir; Takahashi, Ken; Sorahan, Tom; Driscoll, Tim; Fitzmaurice, Christina; Yoko-O, Makoto; Sawanyawisuth, Kittisak; Furuya, Sugio; Tanaka, Fumihiro; Horie, Seichi; Zandwijk, Nico van; Takala, Jukka

    2017-12-01

    Mesothelioma is increasingly recognised as a global health issue and the assessment of its global burden is warranted. To descriptively analyse national mortality data and to use reported and estimated data to calculate the global burden of mesothelioma deaths. For the study period of 1994 to 2014, we grouped 230 countries into 59 countries with quality mesothelioma mortality data suitable to be used for reference rates, 45 countries with poor quality data and 126 countries with no data, based on the availability of data in the WHO Mortality Database. To estimate global deaths, we extrapolated the gender-specific and age-specific mortality rates of the countries with quality data to all other countries. The global numbers and rates of mesothelioma deaths have increased over time. The 59 countries with quality data recorded 15 011 mesothelioma deaths per year over the 3 most recent years with available data (equivalent to 9.9 deaths per million per year). From these reference data, we extrapolated the global mesothelioma deaths to be 38 400 per year, based on extrapolations for asbestos use. Although the validity of our extrapolation method depends on the adequate identification of quality mesothelioma data and appropriate adjustment for other variables, our estimates can be updated, refined and verified because they are based on commonly accessible data and are derived using a straightforward algorithm. Our estimates are within the range of previously reported values but higher than the most recently reported values. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Crump, Nicholas A.; Ugarte-Urra, Ignacio; Sun, Xudong; Aschwanden, Markus J.; Wiegelmann, Thomas

    2018-06-01

    It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied systematically. In this paper, we apply three different extrapolation techniques—a simple potential model, a nonlinear force-free (NLFF) model based on photospheric vector data, and an NLFF model based on forward fitting magnetic sources with vertical currents—to 15 active regions that span a wide range of magnetic conditions. We use a distance metric to assess how well each of these models is able to match field lines to the 12202 loops traced in coronal images. These distances are typically 1″–2″. We also compute the misalignment angle between each traced loop and the local magnetic field vector, and find values of 5°–12°. We find that the NLFF models generally outperform the potential extrapolation on these metrics, although the differences between the different extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that both the extrapolations and loop identification can be improved.

  2. An efficient approach to imaging underground hydraulic networks

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2012-07-01

    To better locate natural resources, treat pollution, and monitor underground networks associated with geothermal plants, nuclear waste repositories, and carbon dioxide sequestration sites, scientists need to be able to accurately characterize and image fluid seepage pathways below ground. With these images, scientists can gain knowledge of soil moisture content, the porosity of geologic formations, concentrations and locations of dissolved pollutants, and the locations of oil fields or buried liquid contaminants. Creating images of the unknown hydraulic environments underfoot is a difficult task that has typically relied on broad extrapolations from characteristics and tests of rock units penetrated by sparsely positioned boreholes. Such methods, however, cannot identify small-scale features and are very expensive to reproduce over a broad area. Further, the techniques through which information is extrapolated rely on clunky and mathematically complex statistical approaches requiring large amounts of computational power.

  3. Solution of the finite Milne problem in stochastic media with RVT Technique

    NASA Astrophysics Data System (ADS)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  4. Sources of atmospheric methane - Measurements in rice paddies and a discussion

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Shetter, J. D.

    1981-01-01

    Field measurements of methane fluxes from rice paddies, fresh water lakes, and saltwater marshes have been made to infer estimates of the size of these sources of atmospheric methane. The rice-paddy measurements, the first of their kind, show that the principal means of methane escape is through the plants themselves as opposed to transport across the water-air interface via bubbles or molecular diffusion. Nitrogen-fertilized plants release much more methane than unfertilized plants but even these measured rates are only one fourth as large as those inferred earlier by Koyama (1963, 1964) and on which all global extrapolations have been based to date. Measured methane fluxes from lakes and marshes are also compared to similar earlier data and it is found that extant data and flux-measurement methods are insufficient for reliable global extrapolations.

  5. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  6. A Steady-State Kalman Predictor-Based Filtering Strategy for Non-Overlapping Sub-Band Spectral Estimation

    PubMed Central

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2015-01-01

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038

  7. Methods of Technological Forecasting,

    DTIC Science & Technology

    1977-05-01

    Trend Extrapolation Progress Curve Analogy Trend Correlation Substitution Analysis or Substitution Growth Curves Envelope Curve Advances in the State of...the Art Technological Mapping Contextual Mapping Matrix Input-Output Analysis Mathematical Models Simulation Models Dynamic Modelling. CHAPTER IV...Generation Interaction between Needs and Possibilities Map of the Technological Future — (‘ross- Impact Matri x Discovery Matrix Morphological Analysis

  8. The potential influence of rain on airfoil performance

    NASA Technical Reports Server (NTRS)

    Dunham, R. Earl, Jr.

    1987-01-01

    The potential influence of heavy rain on airfoil performance is discussed. Experimental methods for evaluating rain effects are reviewed. Important scaling considerations for extrapolating model data are presented. It is shown that considerable additional effort, both analytical and experimental, is necessary to understand the degree of hazard associated with flight operations in rain.

  9. Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality

    ERIC Educational Resources Information Center

    Cattaneo, Matias D.; Titiunik, Rocío; Vazquez-Bare, Gonzalo

    2017-01-01

    The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The most common inference approaches in RD designs employ "flexible" parametric and nonparametric local polynomial methods, which rely on extrapolation and large-sample approximations of conditional expectations…

  10. Simulation-Extrapolation for Estimating Means and Causal Effects with Mismeasured Covariates

    ERIC Educational Resources Information Center

    Lockwood, J. R.; McCaffrey, Daniel F.

    2015-01-01

    Regression, weighting and related approaches to estimating a population mean from a sample with nonrandom missing data often rely on the assumption that conditional on covariates, observed samples can be treated as random. Standard methods using this assumption generally will fail to yield consistent estimators when covariates are measured with…

  11. A Reliability Simulator for Radiation-Hard Microelectronics Development

    DTIC Science & Technology

    1991-07-01

    1 3.0 PHASE II WORK PLANS ................................................................ 2... plan . The correlation experimental details including the devices utilized, the hot-carrier stressing and the wafer-level radiation correlation procedure...channel devices, and a new lifetime extrapolation method is demonstrated for p-channel devices. 3.0 PHASE II WORK PLANS The Phase 1I program consisted of

  12. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/ startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  13. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  14. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  15. CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution.

    PubMed

    Yuan, Weiyong; Wang, Xiaoyan; Zhong, Xiaoling; Li, Chang Ming

    2016-08-17

    The development of efficient and low-cost hydrogen evolution reaction (HER) catalysts is critical for storing energy in hydrogen via water splitting but still presents great challenges. Herein, we report synthesis of three-dimensional (3-D) hierarchical nanoporous carbon (HNC) supported transition metal phosphides (TMPs) for the first time by in situ growth of CoP nanoparticles (NPs) in CaCO3 NP-templated Cinnamomum platyphyllum leaf extract-derived carbon. They were subsequently employed as a HER catalyst, showing an onset potential of 7 mV and an overpotential of 95.8 mV to achieve 10 mA cm(-2), a Tafel plot of 33 mV dec(-1), and an exchange current density of 0.1182 mA cm(-2), of which the onset overpotential and the Tafel plot are the lowest reported for non-noble-metal HER catalysts, and the overpotential to achieve 10 mA cm(-2) and the exchange current density also compare favorably to most reported HER catalysts. In addition, this catalyst exhibits excellent durability with negligible loss in current density after 2000 CV cycles ranging from +0.01 to -0.17 V vs RHE at a scan rate of 100 mV s(-1) or 22 h of chronoamperometric measurement at an overpotential of 96 mV and a high Faraday efficiency of close to 100%. This work not only creates a novel high-performance non-noble-metal HER electrocatalyst and demonstrates the great advantages of the in situ grown 3-D HNC supported TMP NPs for the electrocatalysis of HER but also offers scientific insight into the mechanism for the in situ growth of TMP and their precursor NPs, in which an ultralow reactant concentration and rich functional groups on the 3-D HNC support play critical roles.

  16. Comparison of Cliff-Lorimer-Based Methods of Scanning Transmission Electron Microscopy (STEM) Quantitative X-Ray Microanalysis for Application to Silicon Oxycarbides Thin Films.

    PubMed

    Parisini, Andrea; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo; Armigliato, Aldo

    2018-06-01

    In this work, we compare the results of different Cliff-Lorimer (Cliff & Lorimer 1975) based methods in the case of a quantitative energy dispersive spectrometry investigation of light elements in ternary C-O-Si thin films. To determine the Cliff-Lorimer (C-L) k-factors, we fabricated, by focused ion beam, a standard consisting of a wedge lamella with a truncated tip, composed of two parallel SiO2 and 4H-SiC stripes. In 4H-SiC, it was not possible to obtain reliable k-factors from standard extrapolation methods owing to the strong CK-photon absorption. To overcome this problem, an extrapolation method exploiting the shape of the truncated tip of the lamella is proposed herein. The k-factors thus determined, were then used in an application of the C-L quantification procedure to a defect found at the SiO2/4H-SiC interface in the channel region of a metal-oxide field-effect-transistor device. As in this procedure, the sample thickness is required, a method to determine this quantity from the averaged and normalized scanning transmission electron microscopy intensity is also detailed. Monte Carlo simulations were used to investigate the discrepancy between experimental and theoretical k-factors and to bridge the gap between the k-factor and the Watanabe and Williams ζ-factor methods (Watanabe & Williams, 2006).

  17. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity† †Electronic supplementary information (ESI) available: Movies S1 to S4: spatially resolved LSV-SECCM movies obtained from the electrocatalytic HER on the surface of bulk MoS2. Fig. S1 to S14: XRD, XPS, Raman, SEM and OM characterization of MoS2; SEM images of the nanopipets; WCA measurements; LSVs and Tafel plots obtained from the HER on MoS2. See DOI: 10.1039/c7sc02545a Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Kang, Minkyung; Maddar, Faduma M.; Li, Fengwang; Walker, Marc; Zhang, Jie

    2017-01-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS2) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS2 possesses high catalytic activity for the HER relative to the “catalytically inert” basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the “average” electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach, it is demonstrated unequivocally that while the basal plane of bulk MoS2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane (e.g., surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS2 has a Tafel slope and exchange current density (J 0) of ∼120 mV per decade and 2.5 × 10–6 A cm–2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge plane has a comparable Tafel slope and a J 0 that is estimated to be more than an order-of-magnitude larger (∼1 × 10–4 A cm–2). Finally, by tracking the temporal evolution of water contact angle (WCA) after cleavage, it is shown that cathodic polarization has a ‘self-cleaning’ effect on the surface of MoS2, consistent with the time-independent (i.e., time after cleavage) HER voltammetric response. PMID:28989686

  18. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  19. Interspecies scaling: predicting volumes, mean residence time and elimination half-life. Some suggestions.

    PubMed

    Mahmood, I

    1998-05-01

    Extrapolation of animal data to assess pharmacokinetic parameters in man is an important tool in drug development. Clearance, volume of distribution and elimination half-life are the three most frequently extrapolated pharmacokinetic parameters. Extensive work has been done to improve the predictive performance of allometric scaling for clearance. In general there is good correlation between body weight and volume, hence volume in man can be predicted with reasonable accuracy from animal data. Besides the volume of distribution in the central compartment (Vc), two other volume terms, the volume of distribution by area (Vbeta) and the volume of distribution at steady state (VdSS), are also extrapolated from animals to man. This report compares the predictive performance of allometric scaling for Vc, Vbeta and VdSS in man from animal data. The relationship between elimination half-life (t(1/2)) and body weight across species results in poor correlation, most probably because of the hybrid nature of this parameter. To predict half-life in man from animal data, an indirect method (CL=VK, where CL=clearance, V is volume and K is elimination rate constant) has been proposed. This report proposes another indirect method which uses the mean residence time (MRT). After establishing that MRT can be predicted across species, it was used to predict half-life using the equation MRT=1.44 x t(1/2). The results of the study indicate that Vc is predicted more accurately than Vbeta and VdSS in man. It should be emphasized that for first-time dosing in man, Vc is a more important pharmacokinetic parameter than Vbeta or VdSS. Furthermore, MRT can be predicted reasonably well for man and can be used for prediction of half-life.

  20. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    NASA Astrophysics Data System (ADS)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  1. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Samuel M., E-mail: samuel.greene@chem.ox.ac.uk; Shan, Xiao, E-mail: xiao.shan@chem.ox.ac.uk; Clary, David C., E-mail: david.clary@chem.ox.ac.u

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives aremore » obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.« less

  3. Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds

    NASA Technical Reports Server (NTRS)

    Lu, Limin; Zuo, Lin

    1994-01-01

    The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.

  4. A Simple Method for Assessing Upper-Limb Force-Velocity Profile in Bench Press.

    PubMed

    Rahmani, Abderrahmane; Samozino, Pierre; Morin, Jean-Benoit; Morel, Baptiste

    2018-02-01

    To analyze the reliability and validity of a field computation method based on easy-to-measure data to assess the mean force ([Formula: see text]) and velocity ([Formula: see text]) produced during a ballistic bench-press movement and to verify that the force-velocity profile (F-v) obtained with multiple loaded trials is accurately described. Twelve participants performed ballistic bench presses against various lifted mass from 30% to 70% of their body mass. For each trial, [Formula: see text] and [Formula: see text] were determined from an accelerometer (sampling rate 500 Hz; reference method) and a simple computation method based on upper-limb mass, barbell flight height, and push-off distance. These [Formula: see text] and [Formula: see text] data were used to establish the F-v relationship for each individual and method. A strong to almost perfect reliability was observed between the 2 trials (ICC > .90 for [Formula: see text] and .80 for [Formula: see text], CV% < 10%), whatever the considered method. The mechanical variables ([Formula: see text], [Formula: see text]) measured with the 2 methods and all the variables extrapolated from the F-v relationships were strongly correlated (r 2  > .80, P < .001). The practical differences between the methods for the extrapolated mechanical parameters were all <5%, indicating very probably no differences. The findings suggest that the simple computation method used here provides valid and reliable information on force and velocity produced during ballistic bench press, in line with that observed in laboratory conditions. This simple method is thus a practical tool, requiring only 3 simple parameters (upper-limb mass, barbell flight height, and push-off distance).

  5. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  6. An automated leaching method for the determination of opal in sediments and particulate matter

    NASA Astrophysics Data System (ADS)

    Müller, Peter J.; Schneider, Ralph

    1993-03-01

    An automated leaching method for the analysis of biogenic silica (opal) in sediments and particulate matter is described. The opaline material is extracted with 1 M NaOH at 85°C in a stainless steel vessel under constant stirring, and the increase in dissolved silica is continuously monitored. For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The resulting absorbance versus time plot is then evaluated according to the extrapolation procedure of DEMASTER (1981). The method has been tested on sponge spicules, radiolarian tests. Recent and Pliocene diatomaceous ooze samples, clay minerals and quartz, artificial sediment mixtures, and on various plankton, sediment trap and sediment samples. The results show that the relevant forms of biogenic opal in Quaternary sediments are quantitatively recovered. The time required for an analysis is dependent on the sample type, ranging from 10 to 20 min for plankton and sediment trap material and up to 40-60 min for Quaternary sediments. The silica co-extracted from silicate minerals is largely compensated for by the applied extrapolation technique. The remaining degree of uncertainty is on the order of 0.4 wt% SiO 2 or less, depending on the clay mineral composition and content.

  7. Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis.

    PubMed

    Cohnstaedt, Lee W; Rochon, Kateryn; Duehl, Adrian J; Anderson, John F; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C; Obenauer, Peter J; Campbell, James F; Lysyk, Tim J; Allan, Sandra A

    2012-03-01

    Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium "Advancements in arthropod monitoring technology, techniques, and analysis" presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles.

  8. Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis

    PubMed Central

    Rochon, Kateryn; Duehl, Adrian J.; Anderson, John F.; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C.; Obenauer, Peter J.; Campbell, James F.; Lysyk, Tim J.; Allan, Sandra A.

    2015-01-01

    Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthropod monitoring technology, techniques, and analysis” presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles. PMID:26543242

  9. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    NASA Astrophysics Data System (ADS)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  10. A Method for Estimating Zero-Flow Pressure and Intracranial Pressure

    PubMed Central

    Caren, Marzban; Paul, Raymond Illian; David, Morison; Anne, Moore; Michel, Kliot; Marek, Czosnyka; Pierre, Mourad

    2012-01-01

    Background It has been hypothesized that critical closing pressure of cerebral circulation, or zero-flow pressure (ZFP), can estimate intracranial pressure (ICP). One ZFP estimation method employs extrapolation of arterial blood pressure versus blood-flow velocity. The aim of this study is to improve ICP predictions. Methods Two revisions are considered: 1) The linear model employed for extrapolation is extended to a nonlinear equation, and 2) the parameters of the model are estimated by an alternative criterion (not least-squares). The method is applied to data on transcranial Doppler measurements of blood-flow velocity, arterial blood pressure, and ICP, from 104 patients suffering from closed traumatic brain injury, sampled across the United States and England. Results The revisions lead to qualitative (e.g., precluding negative ICP) and quantitative improvements in ICP prediction. In going from the original to the revised method, the ±2 standard deviation of error is reduced from 33 to 24 mm Hg; the root-mean-squared error (RMSE) is reduced from 11 to 8.2 mm Hg. The distribution of RMSE is tighter as well; for the revised method the 25th and 75th percentiles are 4.1 and 13.7 mm Hg, respectively, as compared to 5.1 and 18.8 mm Hg for the original method. Conclusions Proposed alterations to a procedure for estimating ZFP lead to more accurate and more precise estimates of ICP, thereby offering improved means of estimating it noninvasively. The quality of the estimates is inadequate for many applications, but further work is proposed which may lead to clinically useful results. PMID:22824923

  11. Species Extrapolation of Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Models to Investigate the Developmental Toxicology of Ethanol Using In vitro to In vivo (IVIVE) Methods

    EPA Science Inventory

    To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter,...

  12. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  13. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    EPA Science Inventory

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  14. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  15. Adverse Outcome Pathways and Systems Biology as Conceptual Approaches to Support Development of 21st Century Test Methods and Extrapolation Tools

    EPA Science Inventory

    The proposed paradigm for “Toxicity Testing in the 21st Century” supports the development of mechanistically-based, high-throughput in vitro assays as a potential cost effective and scientifically-sound alternative to some whole animal hazard testing. To accomplish this long-term...

  16. Methods for improving accuracy and extending results beyond periods covered by traditional ground-truth in remote sensing classification of a complex landscape

    USDA-ARS?s Scientific Manuscript database

    Successful development of approaches to quantify impacts of diverse landuse and associated agricultural management practices on ecosystem services is frequently limited by lack of historical and contemporary landuse data. We hypothesized that recent ground truth data could be used to extrapolate pre...

  17. Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution

    PubMed Central

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Eom, KwangSup; Lee, Doh C.; Joh, Han-Ik; Fuller, Thomas F.

    2017-01-01

    Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (−157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution. PMID:28106126

  18. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  19. Corrosion behavior of stainless steel weldments in physiological solutions

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Azam, M.; Deen, K. M.

    2018-01-01

    In this study corrosion behavior of TIG welded 316L stainless steel plates in simulated biological solutions is investigated. The mechanical testing results showed slight decrease in ductility after welding and the fracture surface represented mixed cleavage and inclusions containing dimple structure. The heat affected and weld zone (WZ) demonstrated higher corrosion potential and relatively large pitting tendency than base metal (BM) in both Hank’s and Ringer’s solution. The formation of delta (δ) ferrite in the heat affected and WZ decreased the corrosion resistance as confirmed from potentiodynamic Tafel scans. The decrease in pitting resistance and lower protection tendency of the WZ compared to BM and heat affected zone was also quantified from the cyclic polarization trends.

  20. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  1. Three-body unitarity in the finite volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, M.; Döring, M.

    We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less

  2. Electron impact cross sections for the 2,2P state excitation of lithium

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.; Register, D. F.

    1982-01-01

    Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.

  3. Three-body unitarity in the finite volume

    DOE PAGES

    Mai, M.; Döring, M.

    2017-12-18

    We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less

  4. Statistics of baryon correlation functions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration

    2017-12-01

    A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.

  5. Simulation-extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950-2003.

    PubMed

    Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent

    2015-08-01

    Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards.

  6. XUV Photometer System (XPS): New Dark-Count Corrections Model and Improved Data Products

    NASA Astrophysics Data System (ADS)

    Elliott, J. P.; Vanier, B.; Woods, T. N.

    2017-12-01

    We present newly updated dark-count calibrations for the SORCE XUV Photometer System (XPS) and the resultant improved data products released in March of 2017. The SORCE mission has provided a 14-year solar spectral irradiance record, and the XPS contributes to this record in the 0.1 nm to 40 nm range. The SORCE spacecraft has been operating in what is known as Day-Only Operations (DO-Op) mode since February of 2014. In this mode it is not possible to collect data, including dark-counts, when the spacecraft is in eclipse as we did prior to DO-Op. Instead, we take advantage of the position of the XPS filter-wheel, and collect these data when the wheel position is in a "dark" position. Further, in this mode dark data are not always available for all observations, requiring an extrapolation in order to calibrate data at these times. To extrapolate, we model this with a piece-wise 2D nonlinear least squares surface fit in the time and temperature dimensions. Our model allows us to calibrate XPS data into the DO-Op phase of the mission by extrapolating along this surface. The XPS version 11 data product release benefits from this new calibration. We present comparisons of the previous and current calibration methods in addition to planned future upgrades of our data products.

  7. SeqAPASS: Sequence alignment to predict across-species ...

    EPA Pesticide Factsheets

    Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, such as U.S. EPA ToxCast, and application of the adverse outcome pathway (AOP) framework for identifying and defining biological key events triggered upon perturbation of molecular initiating events and leading to adverse outcomes occuring at a level of organization relevant for risk assessment [1]. With these recent initiatives to harness the power of “the pathway” in describing and evaluating toxicity comes the need to extrapolate data beyond the model species. Sequence alignment to predict across-species susceptibilty (SeqAPASS) is a web-based tool that allows the user to begin to understand how broadly HTS data or AOP constructs may plausibly be extrapolated across species, while describing the relative intrinsic susceptibiltiy of different taxa to chemicals with known modes of action (e.g., pharmaceuticals and pesticides). The tool rapidly and strategically assesses available molecular target information to describe protein sequence similarity at the primary amino acid sequence, conserved domain, and individual amino acid residue levels. This in silico approach to species extrapolation was designed to automate and streamline the relatively complex and time-consuming process of co

  8. Interim methods for development of inhalation reference concentrations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, K.; Dourson, M.; Erdreich, L.

    1990-08-01

    An inhalation reference concentration (RfC) is an estimate of continuous inhalation exposure over a human lifetime that is unlikely to pose significant risk of adverse noncancer health effects and serves as a benchmark value for assisting in risk management decisions. Derivation of an RfC involves dose-response assessment of animal data to determine the exposure levels at which no significant increase in the frequency or severity of adverse effects between the exposed population and its appropriate control exists. The assessment requires an interspecies dose extrapolation from a no-observed-adverse-effect level (NOAEL) exposure concentration of an animal to a human equivalent NOAEL (NOAEL(HBC)).more » The RfC is derived from the NOAEL(HBC) by the application of generally order-of-magnitude uncertainty factors. Intermittent exposure scenarios in animals are extrapolated to chronic continuous human exposures. Relationships between external exposures and internal doses depend upon complex simultaneous and consecutive processes of absorption, distribution, metabolism, storage, detoxification, and elimination. To estimate NOAEL(HBC)s when chemical-specific physiologically-based pharmacokinetic models are not available, a dosimetric extrapolation procedure based on anatomical and physiological parameters of the exposed human and animal and the physical parameters of the toxic chemical has been developed which gives equivalent or more conservative exposure concentrations values than those that would be obtained with a PB-PK model.« less

  9. Vapor Pressure Data and Analysis for Selected Organophosphorus Compounds, CMMP, DPMP, DMEP, and DEEP: Extrapolation of High-Temperature Data

    DTIC Science & Technology

    2018-04-01

    EXTRAPOLATION OF HIGH -TEMPERATURE DATA ECBC-TR-1507 Ann Brozena Patrice Abercrombie-Thomas RESEARCH AND TECHNOLOGY DIRECTORATE David E. Tevault...Compounds, CMMP, DPMP, DMEP, and DEEP: Extrapolation of High - Temperature Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...22060-6201 10. SPONSOR/MONITOR’S ACRONYM(S) DTRA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved

  10. A study of numerical methods of solution of the equations of motion of a controlled satellite under the influence of gravity gradient torque

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.

    1973-01-01

    Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.

  11. Magnetic field extrapolation with MHD relaxation using AWSoM

    NASA Astrophysics Data System (ADS)

    Shi, T.; Manchester, W.; Landi, E.

    2017-12-01

    Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.

  12. Simultaneous computation of jet turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C. H.; Ramos, J. I.

    1989-01-01

    The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.

  13. Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ-γ coincidence counting method.

    PubMed

    Unno, Y; Sanami, T; Sasaki, S; Hagiwara, M; Yunoki, A

    2018-04-01

    Absolute measurement by the 4πβ-γ coincidence counting method was conducted by two photomultipliers facing across a plastic scintillator to be focused on β ray counting efficiency. The detector was held with a through-hole-type NaI(Tl) detector. The results include absolutely determined activity and its uncertainty especially about extrapolation. A comparison between the obtained and known activities showed agreement within their uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  15. Introduction to Numerical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  16. Pricing and simulation for real estate index options: Radial basis point interpolation

    NASA Astrophysics Data System (ADS)

    Gong, Pu; Zou, Dong; Wang, Jiayue

    2018-06-01

    This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.

  17. Critical study of higher order numerical methods for solving the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1978-01-01

    A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.

  18. Basic antenna transmitting characteristics using an extrapolation range measurement technique at a millimeter-wave band at NMIJ/AIST.

    PubMed

    Yamamoto, Tetsuya

    2007-06-01

    A novel test fixture operating at a millimeter-wave band using an extrapolation range measurement technique was developed at the National Metrology Institute of Japan (NMIJ). Here I describe the measurement system using a Q-band test fixture. I measured the relative insertion loss as a function of antenna separation distance and observed the effects of multiple reflections between the antennas. I also evaluated the antenna gain at 33 GHz using the extrapolation technique.

  19. Extrapolation of operators acting into quasi-Banach spaces

    NASA Astrophysics Data System (ADS)

    Lykov, K. V.

    2016-01-01

    Linear and sublinear operators acting from the scale of L_p spaces to a certain fixed quasinormed space are considered. It is shown how the extrapolation construction proposed by Jawerth and Milman at the end of 1980s can be used to extend a bounded action of an operator from the L_p scale to wider spaces. Theorems are proved which generalize Yano's extrapolation theorem to the case of a quasinormed target space. More precise results are obtained under additional conditions on the quasinorm. Bibliography: 35 titles.

  20. Health Management and Service Life for Air Force Missiles

    DTIC Science & Technology

    2011-09-26

    prediction of performance will be conducted DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. PA# TBD 24 • Empiricism ...Strategic Missile A&S Approach Overview Empiricism DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. PA# TBD...Extrapolation Simulated Data 25 • Empiricism cannot always predict future state • Mechanistic method enables enhanced predictions • Mechanistic will not be

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A.

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  2. Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood

    Treesearch

    Samuel V. Glass; Charles R. Boardman; Samuel L. Zelinka

    2017-01-01

    Recently, the dynamic vapor sorption (DVS) technique has been used to measure sorption isotherms and develop moisture-mechanics models for wood and cellulosic materials. This method typically involves measuring the time-dependent mass response of a sample following step changes in relative humidity (RH), fitting a kinetic model to the data, and extrapolating the...

  3. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. Themore » four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.« less

  4. High Temperature Properties Test and Research of 9Cr1Mo (P9) Seamless Pipe Used in Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian

    Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.

  5. An evaluation of rise time characterization and prediction methods

    NASA Technical Reports Server (NTRS)

    Robinson, Leick D.

    1994-01-01

    One common method of extrapolating sonic boom waveforms from aircraft to ground is to calculate the nonlinear distortion, and then add a rise time to each shock by a simple empirical rule. One common rule is the '3 over P' rule which calculates the rise time in milliseconds as three divided by the shock amplitude in psf. This rule was compared with the results of ZEPHYRUS, a comprehensive algorithm which calculates sonic boom propagation and extrapolation with the combined effects of nonlinearity, attenuation, dispersion, geometric spreading, and refraction in a stratified atmosphere. It is shown there that the simple empirical rule considerably overestimates the rise time estimate. In addition, the empirical rule does not account for variations in the rise time due to humidity variation or propagation history. It is also demonstrated that the rise time is only an approximate indicator of perceived loudness. Three waveforms with identical characteristics (shock placement, amplitude, and rise time), but with different shock shapes, are shown to give different calculated loudness. This paper is based in part on work performed at the Applied Research Laboratories, the University of Texas at Austin, and supported by NASA Langley.

  6. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filamentmore » that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.« less

  7. Ionization potential for the 1s{sup 2}2s{sup 2} of berylliumlike systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.T.; Zhu, X.W.; Wang, Z.W.

    1993-05-01

    The 1s{sup 2}2s{sup 2}, ground state energies of beryllium- like systems are calculated with a full-core plus correlation method. A partial saturation of basis functions method is used to extrapolated a better nonrelativistic energy. The 1s{sup 2}2s{sup 2} ionization potentials are calculated by including the relativistic corrections, mass polarization and QED effects. These results are compared with the existing theoretical and experimental data in the literature. The predicted BeI, CIII, NIV, and OV ionization potentials are within the quoted experimental error. Our result for FVI, 1267606.7 cm{sup -1}, supports the recent experiment of Engstrom, 1267606(2) cm{sup -1}, over the datummore » in the existing data tables. The predicted specific mass polarization contribution to the ionization potential for BeI, 0.00688 a.u., agrees with the 0.00674(100) a.u. from the experiment of Wen. Using the calculated results of Z=4-10, 15, and 20, we extrapolated the results for other Z systems up to Z=25 for which the ionization potentials are not explicitly computed.« less

  8. Forecasting United States heartworm Dirofilaria immitis prevalence in dogs.

    PubMed

    Bowman, Dwight D; Liu, Yan; McMahan, Christopher S; Nordone, Shila K; Yabsley, Michael J; Lund, Robert B

    2016-10-10

    This paper forecasts next year's canine heartworm prevalence in the United States from 16 climate, geographic and societal factors. The forecast's construction and an assessment of its performance are described. The forecast is based on a spatial-temporal conditional autoregressive model fitted to over 31 million antigen heartworm tests conducted in the 48 contiguous United States during 2011-2015. The forecast uses county-level data on 16 predictive factors, including temperature, precipitation, median household income, local forest and surface water coverage, and presence/absence of eight mosquito species. Non-static factors are extrapolated into the forthcoming year with various statistical methods. The fitted model and factor extrapolations are used to estimate next year's regional prevalence. The correlation between the observed and model-estimated county-by-county heartworm prevalence for the 5-year period 2011-2015 is 0.727, demonstrating reasonable model accuracy. The correlation between 2015 observed and forecasted county-by-county heartworm prevalence is 0.940, demonstrating significant skill and showing that heartworm prevalence can be forecasted reasonably accurately. The forecast presented herein can a priori alert veterinarians to areas expected to see higher than normal heartworm activity. The proposed methods may prove useful for forecasting other diseases.

  9. IWGT report on quantitative approaches to genotoxicity risk ...

    EPA Pesticide Factsheets

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose–response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clast

  10. Theoretical investigation of gas-phase molecular complex formation between 2-hydroxy thiophenol and a water molecule.

    PubMed

    Kumar Deb, Debojit; Sarkar, Biplab

    2017-01-18

    The torsional potential of OH and SH rotations in 2-hydroxy thiophenol is systematically studied using the MP2 ab initio method. The outcome of state-of-the-art calculations is used in the investigation of the structures and conformational preferences of 2-hydroxy thiophenol and aims at further interaction studies with a gas phase water molecule. SCS-MP2 and CCSD(T) complete basis set (CBS) limit interaction energies for these complexes are presented. The SCS-MP2/CBS limit is achieved using various two-point extrapolation methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets. The CCSD(T) correction term is determined as the difference between CCSD(T) and SCS-MP2 interaction energies calculated using a smaller basis set. The effect of counterpoise correction on the extrapolation to the CBS limit is discussed. The performance of DFT based wB97XD, M06-2X and B3LYP-D3 functionals is tested against the benchmark energy from ab initio calculations. Hydrogen bond interactions are characterized by carrying out QTAIM, NCIPLOT, NBO and SAPT analyses.

  11. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Armour; Allton, C. R.; Leinweber, Derek B.

    2010-09-01

    The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value ofmore » Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.« less

  12. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.

    PubMed

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-03-21

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).

  13. Neuron-Inspired Interpenetrative Network Composed of Cobalt-Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production.

    PubMed

    Shen, Juanxia; Yang, Zhi; Ge, Mengzhan; Li, Ping; Nie, Huagui; Cai, Qiran; Gu, Cancan; Yang, Keqin; Huang, Shaoming

    2016-07-13

    The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field.

  14. Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as Cox W(1- x ) S2 for Conspicuously Enhanced Hydrogen Generation.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun

    2016-07-01

    Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD-based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2 . However, experimentally it requires systematic approach to form Cox W(1- x ) S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary Cox W(1- x ) S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm(-2) and shows Tafel slope of 67 mV dec(-1) . Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of Galaxite, Mn0.9Co0.1Al2O4, and its application as a novel nanocatalyst for electrochemical hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Saeidfirozeh, Homa; Shafiekhani, Azizollah; Beheshti-Marnani, Amirkhosro; Askari, Mohammad Bagher

    2018-06-01

    A new compound Mn0.9Co0.1Al2O4 nanowires were synthesized by thermal method. The resulting powder samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). We found that a set of phase transformation occurred during the process. Eventually, five phases including three spinal phases, the corundum (á-Al2O3) and MnO were formed at 1100 °C.As dominant morphology, the cubic galaxite nanowires were identified by X-ray analysis. Moreover, X-ray analysis showed that Mn3O4 and Co3O4 nanoparticles were formed in tetragonal and cubic symmetry respectively. The SEM image revealed that a dominate morphology of product has cubic nanowires shape with an average diameter in range 38-43 nm. Furthermore, we observed that influence of temperature was very important in the nanowire formation process. Electrochemical hydrogen evolution reaction (HER) of synthetic composite was evaluated and the over potential of HER was calculated about 110 mV with low Tafel slope equal to 42 mV dec-1, which was comparable with amounts reported transition metal dichalcogenides with satisfying durability.

  16. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    DOE PAGES

    Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.

    2016-01-21

    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

  17. Advanced Computational Techniques for Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    CFD has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow us to perform simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.

  18. Image sharpening for mixed spatial and spectral resolution satellite systems

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Cox, S.

    1983-01-01

    Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.

  19. [Scenario analysis--a method for long-term planning].

    PubMed

    Stavem, K

    2000-01-10

    Scenarios are known from the film industry, as detailed descriptions of films. This has given name to scenario analysis, a method for long term planning using descriptions of composite future pictures. This article is an introduction to the scenario method. Scenarios describe plausible, not necessarily probable, developments. They focus on problems and questions that decision makers must be aware of and prepare to deal with, and the consequences of alternative decisions. Scenarios are used in corporate and governmental planning, and they can be useful and complementary to traditional planning and extrapolation of past experience. The method is particularly useful in a rapidly changing world with shifting external conditions.

  20. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium.

    PubMed

    Mancier, Valérie; Leclercq, Didier

    2007-02-01

    Two new determination methods of the power dissipated in an aqueous medium by an ultrasound generator were developed. They are based on the use of a heat flow sensor inserted between a tank and a heat sink that allows to measure the power directly coming through the sensor. To be exploitable, the first method requires waiting for stationary flow. On the other hand, the second, extrapolated from the first one, makes it possible to determine the dissipated power in only five minutes. Finally, the results obtained with the flowmetric method are compared to the classical calorimetric ones.

  1. The effects of SENSE on PROPELLER imaging.

    PubMed

    Chang, Yuchou; Pipe, James G; Karis, John P; Gibbs, Wende N; Zwart, Nicholas R; Schär, Michael

    2015-12-01

    To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method. © 2014 Wiley Periodicals, Inc.

  2. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  3. Application of a framework for extrapolating chemical effects ...

    EPA Pesticide Factsheets

    Cross-species extrapolation of toxicity data from limited surrogate test organisms to all wildlife with potential of chemical exposure remains a key challenge in ecological risk assessment. A number of factors affect extrapolation, including the chemical exposure, pharmacokinetics, life-stage, and pathway similarities/differences. Here we propose a framework using a tiered approach for species extrapolation that enables a transparent weight-of-evidence driven evaluation of pathway conservation (or lack thereof) in the context of adverse outcome pathways. Adverse outcome pathways describe the linkages from a molecular initiating event, defined as the chemical-biomolecule interaction, through subsequent key events leading to an adverse outcome of regulatory concern (e.g., mortality, reproductive dysfunction). Tier 1 of the extrapolation framework employs in silico evaluations of sequence and structural conservation of molecules (e.g., receptors, enzymes) associated with molecular initiating events or upstream key events. Such evaluations make use of available empirical and sequence data to assess taxonomic relevance. Tier 2 uses in vitro bioassays, such as enzyme inhibition/activation, competitive receptor binding, and transcriptional activation assays to explore functional conservation of pathways across taxa. Finally, Tier 3 provides a comparative analysis of in vivo responses between species utilizing well-established model organisms to assess departure from

  4. Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)

    1998-01-01

    The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.

  5. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion.

    PubMed

    Costentin, Cyrille; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel

    2014-10-21

    A very efficient electrogenerated Fe(0) porphyrin catalyst was obtained by substituting in tetraphenylporphyrin two of the opposite phenyl rings by ortho-, ortho'-phenol groups while the other two are perfluorinated. It proves to be an excellent catalyst of the CO2-to-CO conversion as to selectivity (the CO faradaic yield is nearly quantitative), overpotential, and turnover frequency. Benchmarking with other catalysts, through catalytic Tafel plots, shows that it is the most efficient, to the best of our knowledge, homogeneous molecular catalyst of the CO2-to-CO conversion at present. Comparison with another Fe(0) tetraphenylporphyrin bearing eight ortho-, ortho'-phenol functionalities launches a general strategy where changes in substituents will be designed so as to optimize the operational combination of all catalyst elements of merit.

  6. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  7. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  8. Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.

    PubMed

    Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong

    2016-02-01

    In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.

  9. Wear and corrosion behaviour of Al2O3-TiO2 coatings produced by flame thermal projection

    NASA Astrophysics Data System (ADS)

    Forero-Duran, M.; Dulce-Moreno, H. J.; Ferrer-Pacheco, M.; Vargas-Galvis, F.

    2017-12-01

    Evaluated the wear resistance and the coatings corrosion behaviour of Al2O3-TiO2 prepared by thermal spraying by flame on AISI 1020 carbon steel substrates, previously coated with an alloy base Ni. For this purpose, were controlled parameters of thermal spraying and the use of powders of similar but different chemical composition is taken as a variable commercial reference for ceramic coating. SEM images allowed to know the morphology of the powders and coatings. Electrochemical techniques (Tafel) were applied to evaluate the protection against corrosion. Coatings were tested for wear with a tribometer configuration bola-disco. It was determined that the phases present in coatings are directly relate to the behaviour against corrosion and wear them. Keywords: wear, corrosion, thermal imaging.

  10. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    NASA Astrophysics Data System (ADS)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10 -4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22--30°C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones.

  11. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  12. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    NASA Astrophysics Data System (ADS)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting seismic velocity distributions. Compositional variations in the polyphase rock samples do not significantly change the velocity patterns, allowing the use of RTA-derived volume percentages for the modeling of elastic moduli.

  13. Study of the vortex conditions of wings with large sweepback by extrapolation of the Jones method

    NASA Technical Reports Server (NTRS)

    Hirsch, P.

    1980-01-01

    The pockets of separation originating on the leading edges are surrounded by vortex sheets. Their configuration and intensity were determined by four conditions with the JONES approximation, which is itself corrected by a simple logic. Field pressures and stresses were computed for different cases and are compared with test results (pure deltas, swallow tails, truncations, strakes, ducks, fuselage).

  14. Excited meson spectroscopy with two chirally improved quarks

    NASA Astrophysics Data System (ADS)

    Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.

    The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.

  15. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.

    1991-01-01

    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The simulation was complicated by wind-tunnel background noise and the propagation of low frequency sound around the circuit.

  16. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    USGS Publications Warehouse

    Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The uncertainties and limitations of the estimates of overall sediment quantities are discussed. Implications for watershed management and future reservoir sedimentation studies are also presented.

  17. Estimation of Potential Population Level Effects of Contaminants on Wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.

    2001-06-11

    The objective of this project is to provide DOE with improved methods to assess risks from contaminants to wildlife populations. The current approach for wildlife risk assessment consists of comparison of contaminant exposure estimates for individual animals to literature-derived toxicity test endpoints. These test endpoints are assumed to estimate thresholds for population-level effects. Moreover, species sensitivities to contaminants is one of several criteria to be considered when selecting assessment endpoints (EPA 1997 and 1998), yet data on the sensitivities of many birds and mammals are lacking. The uncertainties associated with this approach are considerable. First, because toxicity data are notmore » available for most potential wildlife endpoint species, extrapolation of toxicity data from test species to the species of interest is required. There is no consensus on the most appropriate extrapolation method. Second, toxicity data are represented as statistical measures (e.g., NOAEL s or LOAELs) that provide no information on the nature or magnitude of effects. The level of effect is an artifact of the replication and dosing regime employed, and does not indicate how effects might increase with increasing exposure. Consequently, slight exceedance of a LOAEL is not distinguished from greatly exceeding it. Third, the relationship of toxic effects on individuals to effects on populations is poorly estimated by existing methods. It is assumed that if the exposure of individuals exceeds levels associated with impaired reproduction, then population level effects are likely. Uncertainty associated with this assumption is large because depending on the reproductive strategy of a given species, comparable levels of reproductive impairment may result in dramatically different population-level responses. This project included several tasks to address these problems: (1) investigation of the validity of the current allometric scaling approach for interspecies extrapolation an d development of new scaling models; (2) development of dose-response models for toxicity data presented in the literature; and (3) development of matrix-based population models that were coupled with dose-response models to provide realistic estimation of population-level effects for individual responses.« less

  18. Endangered species toxicity extrapolation using ICE models

    EPA Science Inventory

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  19. Present constraints on the H-dibaryon at the physical point from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2011-11-10

    The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependencemore » observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.« less

  20. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

Top