Sample records for tagetes lucida cav

  1. Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test.

    PubMed

    Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Lezama-Velasco, R; Vazquez-Palacios, G; Bonilla-Jaime, H

    2008-11-20

    Tagetes lucida (Asteraceae), has been referred in Mexican traditional medicine for the treatment of different central nervous system (CNS) diseases, mainly depression. Nevertheless, the available scientific information about this species is scarce and there are no reports related to its possible effect on the CNS. In this work, the antidepressant-like effect of extract of Tagetes lucida was evaluated in rats, as well as its potential adverse effects on male sexual behavior (MSB). Antidepressant activity was studied using forced swimming test (FST), motor activity in the open-field test and on MSB in sexually experienced male. The aqueous extract of Tagetes lucida in doses of 5, 10, 50, 100 and 200mg/(kgday)(-1) were administered orally for 14 consecutive days and evaluated on day 14, 2h after the last dose treatment. Fluoxetine (10mg/(kgday)(-1), p.o.) was used as the control positive. The aqueous extract (10, 50, 100mg/(kgday)(-1)) significantly reduced immobility and increased swimming without affecting climbing behavior in the FST. These same doses were not able to modify neither the motor activity nor the MSB. These data indicate that the extract of Tagetes lucida possesses antidepressant-like properties in rats.

  2. Acclimatization study of Tagetes lucida L. in Egypt and the chemical characterization of its essential oils.

    PubMed

    Omer, Elasyed A; Hendawy, Saber F; Ismail, Rasha F; Petretto, Giacomo L; Rourke, Jonathan P; Pintore, Giorgio

    2017-07-01

    Seeds of Tagetes lucida were imported to Egypt from Canada and propagated under greenhouse conditions in peat moss media. Soil was sandy in texture and the irrigation system was dripping irrigation. The growth parameters were determined at five successive plant ages, fresh and dry weights of herb were determined at three successive plant ages. The yield of aerial parts after 175 days, was about 7.5 Mg/ha. The essential oil (EO) was extracted by hydro-distillation for three hours with a yield of about 0.5% (w/v). The EO of each sample was subjected to gas-chromatography/mass spectrometry analyses to study the chemical composition. The main component of the EO was identified as methyl chavicol which matched over 90% of the whole composition. Chlorophyll a and carotenes increased with increasing plant age in both sites and seasons. Flavonoids decreased with the development of plant age, while the opposite was true with coumarines content.

  3. Use of dimethyldioxirane in the epoxidation of the main constituents of the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora.

    PubMed

    Veloza, Luz A; Orozco, Lina M; Sepúlveda-Arias, Juan C

    2011-07-01

    Dimethyldioxirane (DMDO), a widely used oxidant in organic synthesis is considered an environmentally friendly oxygen transfer reagent because acetone is the only byproduct formed in its oxidation reactions. This work describes the isolation of the main constituents (terpenes) in the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora, their epoxidation with DMDO in acetone solution and the characterization of the resulting epoxides by GC-MS (EI) and NMR. This is one of the first reports involving the application of dioxirane chemistry to essential oils in order to generate modified compounds with potential uses in several areas of medicine and industry.

  4. Cytotoxic activity of four Mexican medicinal plants.

    PubMed

    Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo

    2009-01-01

    Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.

  5. 21 CFR 73.295 - Tagetes (Aztec marigold) meal and extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Tagetes (Aztec marigold) meal and extract. 73.295... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.295 Tagetes (Aztec marigold) meal and extract. (a) Identity. (1) The color additive tagetes (Aztec marigold) meal is the dried, ground...

  6. 21 CFR 73.295 - Tagetes (Aztec marigold) meal and extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Tagetes (Aztec marigold) meal and extract. 73.295... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.295 Tagetes (Aztec marigold) meal and extract. (a) Identity. (1) The color additive tagetes (Aztec marigold) meal is the dried, ground...

  7. 21 CFR 73.295 - Tagetes (Aztec marigold) meal and extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Tagetes (Aztec marigold) meal and extract. 73.295... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.295 Tagetes (Aztec marigold) meal and extract. (a) Identity. (1) The color additive tagetes (Aztec marigold) meal is the dried, ground...

  8. 21 CFR 73.295 - Tagetes (Aztec marigold) meal and extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Tagetes (Aztec marigold) meal and extract. 73.295... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.295 Tagetes (Aztec marigold) meal and extract. (a) Identity. (1) The color additive tagetes (Aztec marigold) meal is the dried, ground...

  9. 21 CFR 73.295 - Tagetes (Aztec marigold) meal and extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Tagetes (Aztec marigold) meal and extract. 73.295... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.295 Tagetes (Aztec marigold) meal and extract. (a) Identity. (1) The color additive tagetes (Aztec marigold) meal is the dried, ground...

  10. Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels

    PubMed Central

    Duong, Son Q.; Thomas, Sam; Harry, Jo Beth; Patel, Chirag; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Background Voltage-gated Cav1.2 calcium channels play a crucial role in Ca2+ signaling. The pore-forming α1C subunit is regulated by accessory Cavβ subunits, cytoplasmic proteins of various size encoded by four different genes (Cavβ1 - β4) and expressed in a tissue-specific manner. Methods and Results Here we investigated the effect of three major Cavβ types, β1b, β2d and β3, on the structure of Cav1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Cav1.2 to form clusters depends on the type of the Cavβ subunit present. The highest density of Cav1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac β1b present. Cav1.2 channels containing β3, the predominant Cavβ subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between α1C and Cavβ in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Cav1.2 channels in the plasma membrane depends on the Cavβ type. The presence of different Cavβ subunits does not result in significant differences in the intramolecular distance between the termini of α1C, but significantly affects the distance between the termini of neighbor α1C subunits, which varies from 67 Å with β1b to 79 Å with β3. Conclusions Thus, our results show that the structural organization of Cav1.2 channels in the plasma membrane depends on the type of Cavβ subunits present. PMID:19492014

  11. COGNITIVE-ENHANCING PROPERTIES OF MORINDA LUCIDA (RUBIACEAE) AND PELTOPHORUM PTEROCARPUM (FABACEAE) IN SCOPOLAMINE-INDUCED AMNESIC MICE.

    PubMed

    O, Elufioye Taiwo; Halimah A, Hameed

    2017-01-01

    Cognitive disorders associated with aging have been successfully managed by African traditional medical practitioners using various plants. This study evaluated the cognitive enhancing potentials of Morinda lucida (L) Rubiaceae and Peltophorum pterocarpum (DC) ex. K Heyne in scopolamine induced amnesic animals. The anti-amnesic activity of the ethyl acetate extracts of Morinda lucida and Peltophorum pterocarpum at doses of 4 mg/kg, 6 mg/kg and 8 mg/kg were assessed in scopolamine induced amnesic mice using Morris water maze test model. Effect of the extracts on the histology of the hippocampus was also evaluated. The ethyl acetate extract of Morinda lucida and Peltophorum pterocarpum ameliorated scopolamine induced memory deficit in the animals under study. There was no effect of the extract on the histology of the hippocampus. However, there was an increase in the density of cells in the hippocampus of treated group as compared to the untreated. Morinda lucida and Peltophorum pterocarpum showed considerable enhancement of cognition in scopolamine induced amnesic mice.

  12. Expression-associated polymorphisms of CAV1-CAV2 affect intraocular pressure and high-tension glaucoma risk

    PubMed Central

    Kim, Sewon; Kim, Kyunglan; Heo, Dong Won; Kim, Jong-Sung; Park, Chan Kee; Kim, Chang-sik

    2015-01-01

    Purpose The human CAV1-CAV2 locus has been associated with susceptibility to primary open-angle glaucoma in four studies of Caucasian, Chinese, and Pakistani populations, although not in several other studies of non-Korean populations. In this study with Korean participants, the CAV1-CAV2 locus was investigated for associations with susceptibility to primary open-angle glaucoma accompanied by elevated intraocular pressure (IOP), namely, high-tension glaucoma (HTG), as well as with IOP elevation, which is a strong risk factor for glaucoma. Methods Two single nucleotide polymorphisms (SNPs) were genotyped in 1,161 Korean participants including 229 patients with HTG and 932 healthy controls and statistically examined for association with HTG susceptibility and IOP. One SNP was rs4236601 G>A, which had been reported in the original study, and the other SNP was rs17588172 T>G, which was perfectly correlated (r2=1) with another reported SNP rs1052990. Expression quantitative trait loci (eQTL) analysis was performed using GENe Expression VARiation (Genevar) data. Results Both SNPs were associated with HTG susceptibility, but the rs4236601 association disappeared when adjusted for the rs17588172 genotype and not vice versa. The minor allele G of rs17588172 was associated significantly with 1.5-fold increased susceptibility to HTG (p=0.0069) and marginally with IOP elevation (p=0.043) versus the major allele T. This minor allele was also associated with decreased CAV1 and CAV2 mRNA in skin and adipose according to the Genevar eQTL analysis. Conclusions The minor allele G of rs17588172 in the CAV1-CAV2 locus is associated with decreased expression of CAV1 and CAV2 in some tissues, marginally with IOP elevation, and consequently with increased susceptibility to HTG. PMID:26015768

  13. Insecticidal activity and chemical composition of the Morinda lucida essential oil against pulse beetle Callosobruchus maculatus.

    PubMed

    Owolabi, Moses S; Padilla-Camberos, Eduardo; Ogundajo, Akintayo L; Ogunwande, Isiaka A; Flamini, Guido; Yusuff, Olaniyi K; Allen, Kirk; Flores-Fernandez, Karen Isabel; Flores-Fernandez, Jose Miguel

    2014-01-01

    Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL) and Primo-ban-20 (LC90 = 0.726 μg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and β-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  14. Cav1.2 and Cav1.3 L‐type calcium channels independently control short‐ and long‐term sensitization to pain

    PubMed Central

    Radwani, Houda; Lopez‐Gonzalez, Maria José; Cattaert, Daniel; Roca‐Lapirot, Olivier; Dobremez, Eric; Bouali‐Benazzouz, Rabia; Eiríksdóttir, Emelía; Langel, Ülo; Favereaux, Alexandre; Errami, Mohammed; Landry, Marc

    2016-01-01

    Key points L‐type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short‐ and long‐term plasticity.We demonstrate that Cav1.3 but not Cav1.2 is essential for wind‐up.These results identify Cav1.3 as a key conductance responsible for short‐term sensitization in physiological pain transmission.We confirm the role of Cav1.2 in a model of long‐term plasticity associated with neuropathic pain.Up‐regulation of Cav1.2 and down‐regultation of Cav1.3 in neuropathic pain underlies the switch from physiology to pathology.Finally, the results of the present study reveal that therapeutic targeting molecular pathways involved in wind‐up may be not relevant in the treatment of neuropathy. Abstract Short‐term central sensitization to pain temporarily increases the responsiveness of nociceptive pathways after peripheral injury. In dorsal horn neurons (DHNs), short‐term sensitization can be monitored through the study of wind‐up. Wind‐up, a progressive increase in DHNs response following repetitive peripheral stimulations, depends on the post‐synaptic L‐type calcium channels. In the dorsal horn of the spinal cord, two L‐type calcium channels are present, Cav1.2 and Cav1.3, each displaying specific kinetics and spatial distribution. In the present study, we used a mathematical model of DHNs in which we integrated the specific patterns of expression of each Cav subunits. This mathematical approach reveals that Cav1.3 is necessary for the onset of wind‐up, whereas Cav1.2 is not and that synaptically triggered wind‐up requires NMDA receptor activation. We then switched to a biological preparation in which we knocked down Cav subunits and confirmed the prominent role of Cav1.3 in both naive and spinal nerve ligation model of neuropathy (SNL). Interestingly, although a clear mechanical allodynia dependent on Cav1.2 expression was observed after SNL, the amplitude of wind‐up was decreased

  15. Insecticidal Activity and Chemical Composition of the Morinda lucida Essential Oil against Pulse Beetle Callosobruchus maculatus

    PubMed Central

    Owolabi, Moses S.; Ogundajo, Akintayo L.; Ogunwande, Isiaka A.; Yusuff, Olaniyi K.; Flores-Fernandez, Karen Isabel; Flores-Fernandez, Jose Miguel

    2014-01-01

    Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL) and Primo-ban-20 (LC90 = 0.726 μg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and β-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides. PMID:25143991

  16. Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABAB receptor activation

    PubMed Central

    McArthur, Jeffrey R.; Cuny, Hartmut; Clark, Richard J.; Adams, David J.

    2014-01-01

    Neuronal Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) calcium channels contribute to synaptic transmission and are modulated through G protein–coupled receptor pathways. The analgesic α-conotoxin Vc1.1 acts through γ-aminobutyric acid type B (GABAB) receptors (GABABRs) to inhibit Cav2.2 channels. We investigated GABABR-mediated modulation by Vc1.1, a cyclized form of Vc1.1 (c-Vc1.1), and the GABABR agonist baclofen of human Cav2.1 or Cav2.3 channels heterologously expressed in human embryonic kidney cells. 50 µM baclofen inhibited Cav2.1 and Cav2.3 channel Ba2+ currents by ∼40%, whereas c-Vc1.1 did not affect Cav2.1 but potently inhibited Cav2.3, with a half-maximal inhibitory concentration of ∼300 pM. Depolarizing paired pulses revealed that ∼75% of the baclofen inhibition of Cav2.1 was voltage dependent and could be relieved by strong depolarization. In contrast, baclofen or Vc1.1 inhibition of Cav2.3 channels was solely mediated through voltage-independent pathways that could be disrupted by pertussis toxin, guanosine 5′-[β-thio]diphosphate trilithium salt, or the GABABR antagonist CGP55845. Overexpression of the kinase c-Src significantly increased inhibition of Cav2.3 by c-Vc1.1. Conversely, coexpression of a catalytically inactive double mutant form of c-Src or pretreatment with a phosphorylated pp60c-Src peptide abolished the effect of c-Vc1.1. Site-directed mutational analyses of Cav2.3 demonstrated that tyrosines 1761 and 1765 within exon 37 are critical for inhibition of Cav2.3 by c-Vc1.1 and are involved in baclofen inhibition of these channels. Remarkably, point mutations introducing specific c-Src phosphorylation sites into human Cav2.1 channels conferred c-Vc1.1 sensitivity. Our findings show that Vc1.1 inhibition of Cav2.3, which defines Cav2.3 channels as potential targets for analgesic α-conotoxins, is caused by specific c-Src phosphorylation sites in the C terminus. PMID:24688019

  17. Immunity to canine adenovirus respiratory disease: a comparison of attenuated CAV-1 and CAV-2 vaccines.

    PubMed

    Cornwell, H J; Koptopoulos, G; Thompson, H; McCandlish, I A; Wright, N G

    1982-01-09

    Four litters of puppies were divided into three groups. One group was vaccinated with a live CAV-1 vaccine and another with a live CAV-2 vaccine. Throat swabs were collected from two dogs in each of these groups to monitor the possible excretion of vaccine virus, but none was found. Both groups, together with the third group of unvaccinated controls, were challenged 17 days later with an aerosol of virulent CAV-2. One dog from each group was killed on the third, fourth, seventh, ninth, 11th and 14th days after challenge. The unvaccinated dogs developed a clinical disease characterised by anorexia, dullness, coughing and tachypnoea. The lungs were consolidated and histological examination revealed the main lesion to be a severe necrotising bronchiolitis. Large amounts of virus were present in the respiratory tissues of these dogs and high titres of virus were isolated from throat swabs. In contrast, both groups of vaccinated dogs remained clinically almost normal with minimal lesions, present for a much shorter period of time. Virus was found on day 4 in the respiratory tissues of one dog vaccinated with CAV-1 but the other vaccinated animals contained little or no virus. In general, the degree of protection afforded by CAV-1 vaccine seemed similar to that provided by CAV-2 vaccine.

  18. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca2+ Channels

    PubMed Central

    Pellegrini, Chiara; Lecci, Sandro; Lüthi, Anita; Astori, Simone

    2016-01-01

    Study Objectives: Low-threshold voltage-gated T-type Ca2+ channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). Methods: We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. Results: CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca2+ currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10–15 Hz), which was accompanied by an increase in the δ band (1–4 Hz). Conclusions: Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms. Citation: Pellegrini C, Lecci S, Lüthi A, Astori S. Suppression of sleep spindle rhythmogenesis in mice with deletion of Cav3.2 and Cav3.3 T-type Ca2+ channels. SLEEP 2016;39(4):875

  19. Cav-1 promotes atherosclerosis by activating JNK-associated signaling.

    PubMed

    Wang, Dong-Xia; Pan, Yong-Quan; Liu, Bing; Dai, Li

    2018-05-07

    The objective of the study is to calculate the role and underlying the molecular mechanisms of caveolin-1 (Cav-1) in atherosclerosis (AS). Cav-1 was mainly expressed in the endothelial cells of atherosclerotic lesions in both human patients and apolipoprotein E deficient (ApoE -/- ) mice. Cav-1 deficiency (Cav-1 -/- ) attenuated high-fat diet (HFD)-induced atherosclerotic lesions in ApoE -/- mice, supported by the reduced aortic plaques. Cav-1 -/- reduced the macrophage content and decreased the release of inflammation-related cytokines or chemokine in serum or abdominal aortas, accompanied with the inactivation of inhibitor κB kinase κ (IKKβ)/p65/IκBα signaling pathway. Also, the activity of mitogen-activated protein kinases 7/c-Jun-N-terminal kinase (MKK7/JNK) signaling was decreased by Cav-1 -/- . In addition, oxidative stress induced by HFD in ApoE -/- mice was alleviated by Cav-1 -/- . In response to HFD, Cav-1 -/- markedly reduced triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDLC) and very low-density lipoprotein-cholesterol (VLDLC) in serum of HFD-fed ApoE -/- mice, whereas enhanced high-density lipoprotein-cholesterol (HDLC) contents. Consistent with these findings, haematoxylin and eosin (H&E) and Oil Red O staining showed fewer lipid droplets in the liver of Cav-1-deficient mice. Further, real time-quantitative PCR (RT-qPCR) analysis indicated that Cav-1 -/- alleviated dyslipidemia both in liver and abdominal aortas of ApoE -/- mice fed with HFD. Cav-1 inhibition-induced attenuation of inflammatory response, oxidative stress and dyslipidemia were confirmed in vitro using mouse vascular smooth muscle cells (VSMCs) treated with ox-LDL. Surprisingly, the processes regulated by Cav-1-knockdown could be abolished through promoting JNK activation in ox-LDL-treated VSMCs. In conclusion, Cav-1 expression could promote HFD-induced AS in a JNK-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  20. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels.

    PubMed

    Pellegrini, Chiara; Lecci, Sandro; Lüthi, Anita; Astori, Simone

    2016-04-01

    Low-threshold voltage-gated T-type Ca(2+) channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca(2+) currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10-15 Hz), which was accompanied by an increase in the δ band (1-4 Hz). Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms. © 2016 Associated Professional Sleep Societies, LLC.

  1. Mexican Spotted Owl Recovery Plan, First Revision (Strix occidentalis lucida)

    Treesearch

    Mexican Spotted Owl Recovery Team U.S. Fish and Wildlife Service

    2012-01-01

    In 1993 the U.S. Fish and Wildlife Service (FWS) listed the Mexican spotted owl (Strix occidentalis lucida; "owl") as threatened under the Endangered Species Act (ESA). Critical habitat for the Mexican spotted owl was designated in 2004, comprising approximately 3.5 million hectares (ha) (8.6 million acres [ac]) on Federal lands in Arizona, Colorado, New...

  2. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers.

    PubMed

    Park, Yun Ji; Park, Soo-Yun; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Ahn, Hyung-Geun; Kim, Jae Kwang; Park, Sang Un

    2017-02-18

    Species of Tagetes , which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula . In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9- cis -β-carotene, and 13- cis -β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula . Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  3. Effects of S(+)-efonidipine on the rabbit sinus node action potential and calcium channel subunits Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1.

    PubMed

    Tanaka, Hikaru; Namekata, Iyuki; Ogawa, Toru; Tsuneoka, Yayoi; Komikado, Chisa; Takahara, Akira; Iida-Tanaka, Naoko; Izumi-Nakaseko, Hiroko; Tsuru, Hiromichi; Adachi-Akahane, Satomi

    2010-12-15

    The effect of S(+)-efonidipine on sinus node action potential and calcium channel α-subunits was examined. The slope of the phase 4 depolarization of isolated rabbit sinus node tissue was significantly reduced by S(+)-efonidipine (1 μM), slightly reduced by nifedipine (1 μM), but was not affected by R(-)-efonidipine. S(+)-efonidipine (1 μM), inhibited the expressed Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1 channel currents by 75.7%, 75.3% and 94.0%, nifedipine 84.0%, 43.2% and 14.9%, and R(-)-efonidipine 30.0%, 19.6% and 92.8%, respectively. Thus, the prolongation of the phase 4 depolarization of the rabbit sinus node by S(+)-efonidipine may be explained by blockade of the Ca(V)1.3 channel current. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.

    PubMed

    Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J

    2011-10-01

    Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.

  5. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons

    PubMed Central

    López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario

    2015-01-01

    The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199

  6. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses

    PubMed Central

    Shi, Liheng; Chang, Janet Ya-An; Yu, Fei; Ko, Michael L.; Ko, Gladys Y.-P.

    2017-01-01

    L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4) expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3−/−) mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3−/− mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3−/− mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported. PMID:29259539

  7. Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Korniichuk, O. S.; Voznyuk, T. M.; Kovalchuk, M. V.; Lytvynenko, T. L.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Estrella-Liopis, V. R.; Borodinova, T. I.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Tagetes patula L. under growth limiting factors in terrestrial conditions.

  8. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    PubMed

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dispersal movements of juvenile Mexican Spotted Owls (Strix occidentalis lucida) in New Mexico

    Treesearch

    David P. Arsenault; Angela Hodgson; Peter B. Stacey

    1997-01-01

    Tail-mounted radio transmitters were attached to 12 juvenile and 3 sub-adult (yearling) Mexican Spotted Owls (Strix occidentalis lucida) in southwestern New Mexico from 1993 to 1996. Most juveniles dispersed from their natal territories during September. Intervals between dispersal of siblings ranged from 3 to more than 15 days. Juveniles exhibited...

  10. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  11. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  12. Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Corti.

    PubMed

    Waka, N; Knipper, M; Engel, J

    2003-10-01

    Voltage-activated Ca2+ channels play an important role in synaptic transmission, signal processing and development. The immunohistochemical localization of Cav1.2 (alpha1C) and Cav2.3 (alpha1E) Ca2+ channels was studied in the developing and adult mouse organ of Corti using subunit-specific antibodies and fluorescent secondary antibodies with cochlear cryosections. Cav1.2 immunoreactivity has been detected from postnatal day 14 (P14) onwards at the synapses between cholinergic medial efferents and outer hair cells as revealed by co-staining with anti-synaptophysin and anti-choline acetyltransferase. Most likely the Cav1.2 immunoreactivity was located presynaptically at the site of contact of the efferent bouton with the outer hair cell which suggests a role for class C L-type Ca2+ channels in synaptic transmission of the medial efferent system. The localization of the second Ca2+ channel tested, Cav2.3, showed a pronounced change during cochlear development. From P2 until P10, Cav2.3 immunoreactivity was found in the outer spiral bundle followed by the inner spiral bundle, efferent endings and by medial efferent fibers. Around P14, Cav2.3 immunoreactivity disappeared from these structures and from P19 onwards it was observed in the basal poles of the outer hair cell membranes.

  13. Monomia lucida sp. nov., a new swimming crab (Crustacea: Decapoda: Portunidae) from the South China Sea.

    PubMed

    Koch, Milan; ĎuriŠ, ZdenĚk

    2018-02-27

    A new species of the portunid genus, Monomia Gistel, 1848, is described from the South China Sea in Vietnam. Monomia lucida sp. nov. is morphologically most similar to M. argentata (A. Milne-Edwards, 1861), which was originally described from Sarawak, on the island of Borneo. In addition to the stout, forward-directed anterolateral teeth of the carapace, the subrectangular sixth segment of the male pleon, and the long and slender laterally bent first gonopods, adults of the new species reach a greater size, and can also be distinguished from M. argentata by the colour pattern on the natatory dactylus. The independent specific status of M. lucida sp. nov. is also supported by molecular evidence. Aside from a comparison of this new species with other known congeners, new photographs of the holotype of M. samoensis (Ward, 1939) are also provided.

  14. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    PubMed Central

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  15. Calmodulin regulates Cav3 T-type channels at their gating brake

    PubMed Central

    Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David

    2017-01-01

    Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185

  16. Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and Levamisole-resistant Caenorhabditis elegans strains.

    PubMed

    Piña-Vázquez, Denia M; Mayoral-Peña, Zyanya; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A; Arellano-Carbajal, Fausto

    2017-04-18

    Psidium guajava and Tagetes erecta have been used traditionally to treat gastrointestinal parasites, but their active metabolites and mechanisms of action remain largely unknown. To evaluate the anthelmintic potential of Psidium guajava and Tagetes erecta extracts on Levamisole-sensitive and Levamisole-resistant strains of the model nematode Caenorhabditis elegans. Aqueous extracts of Psidium guajava (PGE) and Tagetes erecta (TEE) were assayed on locomotion and egg-laying behaviors of the wild-type (N2) and Levamisole-resistant (CB193) strains of Caenorhabditis elegans. Both extracts paralyzed wild-type and Levamisole-resistant nematodes in a dose-dependent manner. In wild-type worms, TEE 25mg/mL induced a 75% paralysis after 8h of treatment and PGE 25mg/mL induced a 100% paralysis after 4h of treatment. PGE exerted a similar paralyzing effect on N2 wild-type and CB193 Levamisole-resistant worms, while TEE only partially paralyzed CB193 worms. TEE 25mg/mL decreased N2 egg-laying by 65% with respect to the untreated control, while PGE did it by 40%. Psidium guajava leaves and Tagetes erecta flower-heads possess hydrosoluble compounds that block the motility of Caenorhabditis elegans by a mechanism different to that of the anthelmintic drug Levamisole. Effects are also observable on oviposition, which was diminished in the wild-type worms. The strong anthelmintic effects in crude extracts of these plants warrants future work to identify their active compounds and to elucidate their molecular mechanisms of action. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of the medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida.

    PubMed

    Adedapo, A A; Jimoh, F O; Koduru, S; Masika, P J; Afolayan, A J

    2008-07-01

    The medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida (Scrophulariaceae) were evaluated by assessing their antibacterial and antioxidant properties in vitro using standard procedures. The antioxidant activities of methanol extract of the leaves as determined by the ABTS, DPPH, proanthocyanidins and total flavonoids were higher than that of the stem. On the other hand, the total phenols, the flavonoids and the FRAP contents of the stem were higher than that of the leaves. The extracts however showed poor activity against both Gram-positive and Gram-negative bacteria. The methanol extract of the stem showed activities against Bacillus cereus and Staphylococcus epidermidis at MIC of 1.0 mg/ml. The methanol extract of the leaves did not show activity against any of the organisms used in this study. This study has to some extent validated the medicinal potential of the leaves and stems of H. lucida.

  18. [Effect of Morinda lucida Benth. (Rubiaceae) and Newbouldia leavis P. Beauv. (Bignoniaceae) on sickling of red blood cells].

    PubMed

    Joppa, K M; Vovor, A; Eklu-Gadegbeku, K; Agbonon, A; Aklikokou, K; Gbeassor, M

    2008-06-01

    The purpose of this study was to evaluate the In vitro anti-sickling activity of two plants widely used for treatment of sickle cell disease in Togo, i.e., Morinda lucida et Newbouldia leavis. A concentration-dependent decrease in the rate of sickling was observed after incubation of red blood cells with plant extracts and 2% sodium metabisulfite as compared to incubation with 0.9% NaCl. On samples with a SS blood genotype the inhibition rate of Morinda lucida was 17.30% at a concentration of 1 mg/ml and 92.31% at a concentration of 30 mg/ml. On samples with an AS blood genotype, the inhibition rate of Morinda lucida 48.10% at a concentration of 1 mg/ml and 99.34% at a concentration of 30 mg/ml. Using Newbouldia leavis the inhibition rates at concentrations of 1 mg/ml and 30 mg/ml were 15.66% and 90.42% respectively on samples with a SS blood genotype and 64.03% and 99.02% respectively on samples with an AS blood genotype. The study protocol appeared to be adequate for both SS and AS blood genotypes since the Pearson correlation coefficient between rates measured on the two types of samples was 0.92 for Newuboulida and 0.89 for Morinda. These findings show that these two plants have clear-cut in vitro anti-sickling activity and support their use in traditional medicine.

  19. Down-regulation of CaV1.2 channels during hypertension: how fewer CaV1.2 channels allow more Ca2+ into hypertensive arterial smooth muscle

    PubMed Central

    Tajada, Sendoa; Cidad, Pilar; Colinas, Olaia; Santana, L Fernando; López-López, José R; Pérez-García, M Teresa

    2013-01-01

    Hypertension is a clinical syndrome characterized by increased arterial tone. Although the mechanisms are varied, the generally accepted view is that increased CaV1.2 channel function is a common feature of this pathological condition. Here, we investigated the mechanisms underlying vascular dysfunction in a mouse model of genetic hypertension. Contrary to expectation, we found that whole-cell CaV1.2 currents (ICa) were lower in hypertensive (BPH line) than normotensive (BPN line) myocytes. However, local CaV1.2 sparklet activity was higher in BPH cells, suggesting that the relatively low ICa in these cells was produced by a few hyperactive CaV1.2 channels. Furthermore, our data suggest that while the lower expression of the pore-forming α1c subunit of CaV1.2 currents underlies the lower ICa in BPH myocytes, the increased sparklet activity was due to a different composition in the auxiliary subunits of the CaV1.2 complexes. ICa currents in BPN cells were produced by channels composed of α1c/α2δ/β3 subunits, while in BPH myocytes currents were probably generated by the opening of channels formed by α1c/α2δ/β2 subunits. In addition, Ca2+ sparks evoked large conductance, Ca2+-activated K+ (BK) currents of lower magnitude in BPH than in BPN myocytes, because BK channels were less sensitive to Ca2+. Our data are consistent with a model in which a decrease in the global number of CaV1.2 currents coexist with the existence of a subpopulation of highly active channels that dominate the resting Ca2+ influx. The decrease in BK channel activity makes the hyperpolarizing brake ineffective and leads BPH myocytes to a more contracted resting state. PMID:24167226

  20. BIN1 is Reduced and Cav1.2 Trafficking is Impaired in Human Failing Cardiomyocytes

    PubMed Central

    Hong, Ting-Ting; Smyth, James W.; Chu, Kevin Y.; Vogan, Jacob M.; Fong, Tina S.; Jensen, Brian C.; Fang, Kun; Halushka, Marc K.; Russell, Stuart D.; Colecraft, Henry; Hoopes, Charles W.; Ocorr, Karen; Chi, Neil C.; Shaw, Robin M.

    2011-01-01

    Background Heart failure is a growing epidemic and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T-tubules. BIN1 is a membrane scaffolding protein that causes Cav1.2 to traffic to T-tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. Objective To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Methods Intact myocardium and freshly isolated cardiomyocytes from non-failing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after shRNA mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino mediated knockdown of BIN1. Results BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced 42% by imaging and biochemical T-tubule fraction of Cav1.2 is reduced 68%. Total calcium current is reduced 41% in a cell line expressing non-trafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. Conclusions The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. PMID:22138472

  1. New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth.

    PubMed

    Suzuki, Mitsuko; Tung, Nguyen Huu; Kwofie, Kofi D; Adegle, Richard; Amoa-Bosompem, Michael; Sakyiamah, Maxwell; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo Kyereme; Anyan, William K; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred Ampomah; Appiah-Opong, Regina; Nyarko, Alexander K; Yamaoka, Shoji; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo; Ohta, Nobuo; Boakye, Daniel A; Ayi, Irene; Shoyama, Yukihiro

    2015-08-01

    Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 μM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Extinction of Contextual Cocaine Memories Requires Cav1.2 within D1R-Expressing Cells and Recruits Hippocampal Cav1.2-Dependent Signaling Mechanisms

    PubMed Central

    Lee, Anni S.; Fischer, Delaney K.; Van Kempen, Tracey A.; Mudragel, Vladimir; Glass, Michael J.

    2017-01-01

    Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug–context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories. SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine

  3. Antioxidant capacity, insecticidal ability and heat-oxidation stability of Tagetes lemmonii leaf extract.

    PubMed

    Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing

    2018-04-30

    The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma

    PubMed Central

    Thorleifsson, Gudmar; Walters, G Bragi; Hewitt, Alex W; Masson, Gisli; Helgason, Agnar; DeWan, Andrew; Sigurdsson, Asgeir; Jonasdottir, Adalbjorg; Gudjonsson, Sigurjon A; Magnusson, Kristinn P; Stefansson, Hreinn; Lam, Dennis S C; Tam, Pancy O S; Gudmundsdottir, Gudrun J; Southgate, Laura; Burdon, Kathryn P; Gottfredsdottir, Maria Soffia; Aldred, Micheala A; Mitchell, Paul; St Clair, David; Collier, David A; Tang, Nelson; Sveinsson, Orn; Macgregor, Stuart; Martin, Nicholas G; Cree, Angela J; Gibson, Jane; MacLeod, Alex; Jacob, Aby; Ennis, Sarah; Young, Terri L; Chan, Juliana C N; Karwatowski, Wojciech S S; Hammond, Christopher J; Thordarson, Kristjan; Zhang, Mingzhi; Wadelius, Claes; Lotery, Andrew J; Trembath, Richard C; Pang, Chi Pui; Hoh, Josephine; Craig, Jamie E; Kong, Augustine; Mackey, David A; Jonasson, Fridbert; Thorsteinsdottir, Unnur; Stefansson, Kari

    2011-01-01

    We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10-10). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG. PMID:20835238

  5. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes.

    PubMed

    Hong, Ting-Ting; Smyth, James W; Chu, Kevin Y; Vogan, Jacob M; Fong, Tina S; Jensen, Brian C; Fang, Kun; Halushka, Marc K; Russell, Stuart D; Colecraft, Henry; Hoopes, Charles W; Ocorr, Karen; Chi, Neil C; Shaw, Robin M

    2012-05-01

    Heart failure is a growing epidemic, and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T tubules. Bridging integrator 1 (BIN1) is a membrane scaffolding protein that causes Cav1.2 to traffic to T tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Intact myocardium and freshly isolated cardiomyocytes from nonfailing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch-clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking-competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after small hairpin RNA-mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino-mediated knockdown of BIN1. BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced to 42% by imaging, and a biochemical T-tubule fraction of Cav1.2 is reduced to 68%. The total calcium current is reduced to 41% in a cell line expressing a nontrafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth.

    PubMed Central

    Kwofie, Kofi D.; Tung, Nguyen Huu; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M.; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K.; Anyan, William K.; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A.; Yamaoka, Shoji; Boakye, Daniel A.; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene

    2016-01-01

    Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals. PMID:26953191

  7. Calmodulin overexpression does not alter Cav1.2 function or oligomerization state.

    PubMed

    Findeisen, Felix; Tolia, Alexandra; Arant, Ryan; Kim, Eun Young; Isacoff, Ehud; Minor, Daniel L

    2011-01-01

    Interactions between calmodulin (CaM) and voltage-gated calcium channels (Ca(v)s) are crucial for Ca(v) activity-dependent feedback modulation. We recently reported an X-ray structure that shows two Ca(2+)/CaM molecules bound to the Ca(v)1.2 C terminal tail, one at the PreIQ region and one at the IQ domain. Surprisingly, the asymmetric unit of the crystal showed a dimer in which Ca(2+)/CaM bridged two PreIQ helixes to form a 4:2 Ca(2+)/CaM:Ca(v) C-terminal tail assembly. Contrary to previous proposals based on a similar crystallographic dimer, extensive biochemical analysis together with subunit counting experiments of full-length channels in live cell membranes failed to find evidence for multimers that would be compatible with the 4:2 crossbridged complex. Here, we examine this possibility further. We find that CaM over-expression has no functional effect on Ca(v)1.2 inactivation or on the stoichiometry of full-length Ca(v)1.2. These data provide further support for the monomeric Ca(v)1.2 stoichiometry. Analysis of the electrostatic surfaces of the 2:1 Ca(2+)/CaM:Ca(V) C-terminal tail assembly reveals notable patches of electronegativity. These could influence various forms of channel modulation by interacting with positively charged elements from other intracellular channel domains.

  8. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    PubMed

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  9. PREFACE: 9th International Symposium on Cavitation (CAV2015)

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Müller, A.

    2015-12-01

    It is our pleasure and privilege to welcome all the participants of the 9th International Symposium on Cavitation (CAV2015) to Lausanne. Since its initiation in 1986 in Sendai, Japan, the CAV symposium has grown to become the world's foremost event dedicated to cavitation. Hosted by EPFL (Ecole Polytechnique Fédérale de Lausanne) and staged at the SwissTech Convention Center, CAV2015 is a unique opportunity to exchange with leading scientists and industry experts about the latest advances in theoretical modelling, numerical simulation and experimentation related to cavitation phenomena with a special emphasis on practical applications. The topics covered by CAV2015 include cavitation in ¬fluid machinery and fuel systems, bubble dynamics, cavitation erosion, advanced numerical simulation, sonochemistery, biomedicine and experimental techniques. CAV2015 will also host an exhibition of leading providers of state of the art measurement equipment, including high-speed imaging systems, non-intrusive velocimetry, pressure sensors, as well as numerical solvers. We have accepted over 190 papers, which will be presented in four parallel sessions. The proceedings will appear in the open access Journal of Physics: Conference Series (JPCS), which is part of the IOP Conference Series. All published papers are fully citable and upon publication will be free to download in perpetuity. We would like to thank all the reviewers for their great help during the selection process. We will also propose six plenary speakers to highlight cavitation issues in different fields. Finally, we would like to warmly thank our sponsors for their valuable support and the local Organizing Committee for the efforts in setting up this important event. We look forward to seeing you in Lausanne!

  10. Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum herbst.

    PubMed

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesús; Stashenko, Elena E

    2011-03-09

    A tool for integrated pest management is the use of essential oils (EOs) and plant extracts. In this study, EOs from Tagetes lucida , Lepechinia betonicifolia , Lippia alba , Cananga odorata , and Rosmarinus officinalis , species grown in Colombia, were analyzed by gas chromatography-mass spectrometry. These oils as well as several of their constituents were tested for repellent activity against Tribolium castaneum , using the area preference method. The main components (>10%) found in EOs were methylchavicol, limonene/α-pinene, carvone/limonene, benzyl acetate/linalool/benzyl benzoate, and α-pinene, for T. lucida, L. betonicifolia, L. alba, C. odorata, and R. officinalis, respectively. All EOs were repellent, followed a dose-response relationship, and had bioactivity similar to or better than that of commercial compound IR3535. EOs from C. odorata and L. alba were the most active. Compounds from EOs, such benzyl benzoate, β-myrcene, and carvone, showed good repellent properties. In short, EOs from plants cultivated in Colombia are sources of repellents against T. castaneum.

  11. Modulation of Ca(v)3.1 T-type Ca2+ channels by the ran binding protein RanBPM.

    PubMed

    Kim, Taehyun; Kim, Sunoh; Yun, Hyung-Mun; Chung, Kwang Chul; Han, Ye Sun; Shin, Hee-Sup; Rhim, Hyewhon

    2009-01-02

    In order to study the currently unknown cellular signaling pathways of Ca(v)3.1 T-type Ca(2+) channels (Ca(v)3.1 channels), we performed a yeast two-hybrid screening using intracellular domains of Ca(v)3.1 alpha1 subunit as bait. After screening the human brain cDNA library, several proteins, including RanBPM, were identified as interacting with Ca(v)3.1 channels. RanBPM was found to bind to the cytoplasmic intracellular loop between transmembrane domains I and II of Ca(v)3.1 channels. Using whole-cell patch-clamp techniques, we found that Ca(v)3.1 currents were increased by the expression of RanBPM in HEK293/Ca(v)3.1 cells. We next examined whether RanBPM affected the biophysical properties and plasma membrane expression of Ca(v)3.1 channels. Furthermore, we showed that the PKC activator inhibited Ca(v)3.1 currents, an effect that was abolished by the expression of RanBPM. These results suggest that RanBPM could be a key regulator of Ca(v)3.1 channel-mediated signaling pathways.

  12. The CaV2.3 R-Type Voltage-Gated Ca2+ Channel in Mouse Sleep Architecture

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-01-01

    Study Objectives: Voltage-gated Ca2+ channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca2+ channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca2+ channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca2+ channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3−/− mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca2+ influx into RTN neurons can trigger small-conductance Ca2+-activated K+-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca2+ channels in rodent sleep. Methods: The role of CaV2.3 Ca2+ channels was analyzed in CaV2.3−/− mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. Results: CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3−/− mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca2+ channel expression. The detailed mechanisms of SWS increase in CaV2.3−/− mice remain to be determined. Conclusions: Low-voltage activated CaV2.3 R-type Ca2+ channels in the thalamocortical

  13. The voltage gated Ca(2+)-channel Cav3.2 and therapeutic responses in breast cancer.

    PubMed

    Pera, Elena; Kaemmerer, Elke; Milevskiy, Michael J G; Yapa, Kunsala T D S; O'Donnell, Jake S; Brown, Melissa A; Simpson, Fiona; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-01-01

    Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca(2+))-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca(2+)-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca(2+)-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome. Expression levels of a panel of Ca(2+)-pumps, channels and channel regulators were assessed using RT-qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and KM-Plotter cohort). Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor positive (ER+) breast cancers, whereas Cav3.2 levels were

  14. Exclusion of alternative exon 33 of CaV1.2 calcium channels in heart is proarrhythmogenic

    PubMed Central

    Li, Guang; Wang, Juejin; Liao, Ping; Bartels, Peter; Zhang, Hengyu; Yu, Dejie; Liang, Mui Cheng; Poh, Kian Keong; Yu, Chye Yun; Jiang, Fengli; Yong, Tan Fong; Wong, Yuk Peng; Hu, Zhenyu; Huang, Hua; Zhang, Guangqin; Galupo, Mary Joyce; Bian, Jin-Song; Ponniah, Sathivel; Trasti, Scott Lee; Foo, Roger; Hoppe, Uta C.; Herzig, Stefan; Soong, Tuck Wah

    2017-01-01

    Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure–function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential −10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33−/−-null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33−/− mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear. PMID:28490495

  15. CaV3.1 is a tremor rhythm pacemaker in the inferior olive

    PubMed Central

    Park, Young-Gyun; Park, Hye-Yeon; Lee, C. Justin; Choi, Soonwook; Jo, Seonmi; Choi, Hansol; Kim, Yang-Hann; Shin, Hee-Sup; Llinas, Rodolfo R.; Kim, Daesoo

    2010-01-01

    The rhythmic motor pathway activation by pacemaker neurons or circuits in the brain has been proposed as the mechanism for the timing of motor coordination, and the abnormal potentiation of this mechanism may lead to a pathological tremor. Here, we show that the potentiation of CaV3.1 T-type Ca2+ channels in the inferior olive contributes to the onset of the tremor in a pharmacological model of essential tremor. After administration of harmaline, 4- to 10-Hz synchronous neuronal activities arose from the IO and then propagated to cerebellar motor circuits in wild-type mice, but those rhythmic activities were absent in mice lacking CaV3.1 gene. Intracellular recordings in brain-stem slices revealed that the CaV3.1-deficient inferior olive neurons lacked the subthreshold oscillation of membrane potentials and failed to trigger 4- to 10-Hz rhythmic burst discharges in the presence of harmaline. In addition, the selective knockdown of CaV3.1 gene in the inferior olive by shRNA efficiently suppressed the harmaline-induced tremor in wild-type mice. A mathematical model constructed based on data obtained from patch-clamping experiments indicated that harmaline could efficiently potentiate CaV3.1 channels by changing voltage-dependent responsiveness in the hyperpolarizing direction. Thus, CaV3.1 is a molecular pacemaker substrate for intrinsic neuronal oscillations of inferior olive neurons, and the potentiation of this mechanism can be considered as a pathological cause of essential tremor. PMID:20498062

  16. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  17. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    PubMed Central

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  18. A novel CaV2.2 channel inhibition by piracetam in peripheral and central neurons.

    PubMed

    Bravo-Martínez, Jorge; Arenas, Isabel; Vivas, Oscar; Rebolledo-Antúnez, Santiago; Vázquez-García, Mario; Larrazolo, Arturo; García, David E

    2012-10-01

    No mechanistic actions for piracetam have been documented to support its nootropic effects. Voltage-gated calcium channels have been proposed as a promising pharmacological target of nootropic drugs. In this study, we investigated the effect of piracetam on Ca(V)2.2 channels in peripheral neurons, using patch-clamp recordings from cultured superior cervical ganglion neurons. In addition, we tested if Ca(V)2.2 channel inhibition could be related with the effects of piracetam on central neurons. We found that piracetam inhibited native Ca(V)2.2 channels in superior cervical ganglion neurons in a dose-dependent manner, with an IC(50) of 3.4 μmol/L and a Hill coefficient of 1.1. GDPβS dialysis did not prevent piracetam-induced inhibition of Ca(V)2.2 channels and G-protein-coupled receptor activation by noradrenaline did not occlude the piracetam effect. Piracetam altered the biophysical characteristics of Ca(V)2.2 channel such as facilitation ratio. In hippocampal slices, piracetam and ω-conotoxin GVIA diminished the frequency of excitatory postsynaptic potentials and action potentials. Our results provide evidence of piracetam's actions on Ca(V)2.2 channels in peripheral neurons, which might explain some of its nootropic effects in central neurons.

  19. G protein modulation of CaV2 voltage-gated calcium channels.

    PubMed

    Currie, Kevin P M

    2010-01-01

    Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.

  20. Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti.

    PubMed

    Green, M M; Singer, J M; Sutherland, D J; Hibben, C R

    1991-06-01

    The steam distilled oils of 3 species of marigold, Tagetes patula, T. erecta and T. minuta, were tested for larvicidal activity toward third instar Aedes aegypti; activity at 10 ppm was demonstrated only for T. minuta. The larvicidal property of the whole oil dispersed in water persisted for at least 9 days. The terpene, ocimenone, which is a part of the whole oil, was found to be larvicidal only at a higher concentration than the whole oil and to lose its activity within 24 h after dispersal in water. These results suggest a potential utilization of oil of T. minuta or its components for the control of Ae. aegypti and other species of mosquitoes.

  1. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    PubMed

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  2. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception.

    PubMed

    Bourinet, Emmanuel; Alloui, Abdelkrim; Monteil, Arnaud; Barrère, Christian; Couette, Brigitte; Poirot, Olivier; Pages, Anne; McRory, John; Snutch, Terrance P; Eschalier, Alain; Nargeot, Joël

    2005-01-26

    Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (CaV3.1, CaV3.2, and CaV3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting CaV3.2 induced a knockdown of the CaV3.2 mRNA and protein expression as well as a large reduction of 'CaV3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that CaV3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking CaV3.2 T-type channels to pain perception and suggest that CaV3.2 may offer a specific molecular target for the treatment of pain.

  3. Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (CaV1.2) channels

    PubMed Central

    Fang, Kun; Colecraft, Henry M

    2011-01-01

    Abstract Ca2+ influx via CaV1/CaV2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α1 and cytosolic β is necessary for trafficking CaV1/CaV2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α1 intracellular I–II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for CaV1/CaV2 channel membrane trafficking. There are hints that other α1 subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of CaV1.2-α1C by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α1C into the β-independent CaV3.1-α1G channel. Surprisingly, functional analyses demonstrated α1C I–II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I–II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α1C intracellular domains, with the I–II loop and C-terminus being essential. The results suggest β binding to the α1C I–II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I–II loop and retention signals elsewhere. PMID:21746784

  4. Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.).

    PubMed

    Sharma, Anuradha; Malaviya, Piyush

    2016-01-01

    Current study presents the effect of irrigation with different concentrations (20, 40, 60, 80 and 100%) of untreated and treated brewery-distillery effluent on germination behaviour of marigold (Tagetes erecta L. var. Pusa Basanti). The 100% untreated effluent showed acidic pH (4.80) and higher values of BOD (1500.00 mg l(-1)), COD (4000.00 mg l(-1)), chloride (1742.20 mg l(-1)), TSS (900.00 mg l(-1)) as compared to that of treated effluent. Tagetes seeds were exposed to different concentrations of effluent and the results revealed maximum values of germination parameters viz., percent germination, peak value, germination value, germination index, speed of germination and vigour index at 20% untreated and 60% treated effluent concentrations, whereas the values for negative germination parameters viz., delay index, germination period and percent inhibition were minimum at 20% untreated and 60% treated effluent concentrations.

  5. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    PubMed

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  6. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation

    PubMed Central

    Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. PMID:21139419

  7. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    PubMed

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  8. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  9. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness.

    PubMed

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R

    2015-06-23

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca(2+) channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states.

  10. Haematological, biochemical and organ changes in broiler chickens fed varying levels of Morinda lucida (brimstone) leaf meal supplementation in the diets.

    PubMed

    Lala, A O; Ajayi, O L; Okwelum, N; Oso, A O; Fakorede, T V; Adebayo, T A; Jagbojo, J E

    2018-06-01

    The aim of this study was to evaluate the effects of dietary supplementation of Morinda lucida leaf meal (MLLM) on the haematology, biochemical and organ changes of broiler chickens. One hundred and ninety-eight day-old Marshall broiler chicks were completely randomised into 6 treatments in a 3 × 2 factorial arrangement of three levels of M. lucida leaf meal supplementation (0, 0.1 and 0.2 g/kg) with or without medication. The treatment consisted of both negative (without MLLM and routine medication) and positive (containing no MLLM but with routine medication) control groups while each treatment was replicated thrice. MLLM-supplemented diets and routine medication decreased (p < 0.05) the white blood cell count compared to the negative control. Dietary supplementation with MLLM in combination with normal routine medication increased (p < 0.05) total serum protein when compared with treatment group without MLLM and routine medication. Dietary supplementation with MLLM and routine medication reduced (p < 0.05) serum creatinine concentration of the broiler chickens. Birds fed with 0.2 g/kg MLLM supplement coupled with medication and those on negative control had higher (p < 0.05) creatinine values. Serum enzyme activities reduced (p < 0.05) following supplementation. MLLM supplementation recorded no significant effect (p > 0.05) on the liver, kidney, heart and gizzard. M. lucida leaf meal can be compared to routine medication for improved health status of broiler chickens. Dietary inclusion with 0.1 g/kg MLML combined with routine medication could be used in producing healthy and safe chickens.

  11. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency–induced bone loss

    PubMed Central

    Cao, Chike; Barnett, Adam S.; Mirando, Anthony J.; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L.; Karner, Courtney M.; Hilton, Matthew J.

    2017-01-01

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage–gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts. PMID:29202453

  12. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss.

    PubMed

    Cao, Chike; Ren, Yinshi; Barnett, Adam S; Mirando, Anthony J; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L; Guilak, Farshid; Karner, Courtney M; Hilton, Matthew J; Pitt, Geoffrey S

    2017-11-16

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.

  13. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype.

    PubMed

    Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas

    2010-05-01

    Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.

  14. Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2.

    PubMed

    Liu, Xiaoni; Kerov, Vasily; Haeseleer, Françoise; Majumder, Anurima; Artemyev, Nikolai; Baker, Sheila A; Lee, Amy

    2013-01-01

    Mutations in the gene encoding Cav 1.4, CACNA1F, are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Cav 1.4 channels, there are defects in the development of "ribbon" synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression of Cav 1.4 channels. Whether defects in PR synapse development due to altered Cav 1.4 function are common features contributing to the pathogenesis of CSNB2 is unknown. To resolve this issue, we profiled changes in the subcellular distribution of Cav 1.4 channels and synapse morphology during development in wild-type (WT) mice and mouse models of CSNB2. Using Cav 1.4-selective antibodies, we found that Cav 1.4 channels associate with ribbon precursors early in development and are concentrated at both rod and cone PR synapses in the mature retina. In mouse models of CSNB2 in which the voltage-dependence of Cav 1.4 activation is either enhanced (Cav 1.4I756T) or inhibited (CaBP4 KO), the initial stages of PR synaptic ribbon formation are largely unaffected. However, after postnatal day 13, many PR ribbons retain the immature morphology. This synaptic abnormality corresponds in severity to the defect in synaptic transmission in the adult mutant mice, suggesting that lack of sufficient mature synapses contributes to vision impairment in Cav 1.4I756T and CaBP4 KO mice. Our results demonstrate the importance of proper Cav 1.4 function for efficient PR synapse maturation, and that dysregulation of Cav 1.4 channels in CSNB2 may have synaptopathic consequences.

  15. Bio-controlling Effect of Leaf Extract of Tagetes patula L. (Marigold) on Growth Parameters and Diseases of Tomato.

    PubMed

    Nahak, Gayatri; Kanta Sahu, Rajani

    2017-01-01

    The genus Tagetes (Asteraceae) is native to Americas but some of its members (in particular T. erecta and T. patula) commonly known as marigolds were naturalized in the old world (India, North Africa and Europe) as early as in 16th century. The flowers of French marigold (Tagetes patula L.) are widely used in folk medicine, in particular for treating inflammation-related disorders. This study investigated the potential use of marigold (Tagetes patula L.) flower aqueous flower extract by spaying method on tomato plants on a weekly basis and the data of growth, yield and disease of tomato pants were observed from 10th day onwards under field condition. The marigold flower extract showed significant increase in shoot height, number of branches, number of leaves, number of buds, number of flowers and number of fruits of tomato plant, while significant reduction in various diseases of tomato plants over control at probability level ***p<0.001. The percentage of reduction of disease was calculated after the spray of marigold flower aqueous extract on plants. The marigold flower extract was found effectively in controlling canker (62.82%), early blight (61.53%), wilt (18.42%), fruit spot (27.41%), blossom end rot (50.43%) and sun scald (26.44%) in comparison to controls under field condition. The findings are in line with the bio-controlling properties of marigold preparations as bio-pesticide confirmed in growth and yield of tomato plants. Thus, marigold can contribute in reducing use of chemical pesticides and act as a good alternative to synthetic pesticides.

  16. Inhibition of recombinant Ca(v)3.1 (alpha(1G)) T-type calcium channels by the antipsychotic drug clozapine.

    PubMed

    Choi, Kee-Hyun; Rhim, Hyewhon

    2010-01-25

    Low voltage-activated T-type calcium channels are involved in the regulation of the neuronal excitability, and could be subject to many antipsychotic drugs. The effects of clozapine, an atypical antipsychotic drug, on recombinant Ca(v)3.1 T-type calcium channels heterologously expressed in human embryonic kidney 293 cells were examined using whole-cell patch-clamp recordings. At a standard holding potential of -100 mV, clozapine inhibited Ca(v)3.1 currents with an IC(50) value of 23.7+/-1.3 microM in a use-dependent manner. However, 10 microM clozapine inhibited more than 50% of the Ca(v)3.1 currents in recordings at a more physiologically relevant holding potential of -75 mV. Clozapine caused a significant hyperpolarizing shift in the steady-state inactivation curve of the Ca(v)3.1 channels, which is presumably the main mechanism accounting for the inhibition of the Ca(v)3.1 currents. In addition, clozapine slowed Ca(v)3.1 deactivation and inactivation kinetics but not activation kinetics. Clozapine-induced changes in deactivation and inactivation rates of the Ca(v)3.1 channel gating would likely facilitate calcium influx via Ca(v)3.1 T-type calcium channels. Thus, clozapine may exert its therapeutic and/or side effects by altering cell's excitability and firing properties through actions on T-type calcium channels.

  17. NMR solution structure study of one saturated sulphur-containing amides from Glycosmis lucida.

    PubMed

    Geng, Zhu-Feng; Yang, Kai; Li, Yin-Ping; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Zhang, Zhe; Du, Shu-Shan

    2017-04-01

    One sulphur-containing amide (N-[2-(4-Hydroxyphenyl)-ethyl]-3-methanesulfonyl-N-methyl-propionamide) which was isolated from Glycosmis lucida Wall ex Huang had a different NMR profile with this kind of compounds' normal case. Based on the information obtained by nuclear magnetic resonance pectroscopy (NMR) and mass spectrometry (MS), its configurations in solution were investigated. The results indicated that the compound would have two stable configurations in solution as the double bond switched between C-N and C-O in an appropriate rate. This phenomenon was clearly exposed by the one dimension selective NOE (1D-NOE) experiments. This conclusion would play an active role in the structure analysis work of this kind of compounds.

  18. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein–Protein Interaction Inhibitors of CaV Function

    PubMed Central

    2017-01-01

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein–protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein–protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein–protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (CaVβ). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated with AID binding to CaVβ. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVβ interaction that modulate CaV function in an CaVβ isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein–protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design. PMID:28278376

  19. TRANSCRIPTIONAL UPREGULATION OF α2δ-1 ELEVATES ARTERIAL SMOOTH MUSCLE CELL CAV1.2 CHANNEL SURFACE EXPRESSION AND CEREBROVASCULAR CONSTRICTION IN GENETIC HYPERTENSION

    PubMed Central

    Bannister, John P.; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H.

    2012-01-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes comprising a pore forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats (SHR) was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive SHR displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1 to CaV1.2α1 ratio (α2δ-1:CaV1.2α1), CaV1.2 current-density and non-inactivating current, and pressure- and - depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein, but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current-density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension. PMID:22949532

  20. Cav-1 deficiency promotes liver fibrosis in carbon tetrachloride (CCl4)-induced mice by regulation of oxidative stress and inflammation responses.

    PubMed

    Ji, De-Gang; Zhang, Yan; Yao, Song-Mei; Zhai, Xu-Jie; Zhang, Li-Rong; Zhang, Yao-Zhong; Li, Hui

    2018-06-01

    Caveolin-1 (Cav-1), as a membrane protein involved in the formation of caveolae, binds steroid receptors and endothelial nitric oxide synthase, limiting its translocation and activation. In the present study, we investigated the role of Cav-1 in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl 4 ) in murine animals. Therefore, the wild type (WT) and Cav-1-knockout (Cav-1 -/- ) mice were used in our study and subjected to CCl 4 . The results indicated that CCl 4 induced the decrease of Cav-1 expression in liver tissue samples. And Cav-1 -/- intensified CCl 4 -triggered hepatic injury, evidenced by the stronger hepatic histological alterations, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. CCl 4 led to oxidative stress, supported by the reduced superoxide dismutase (SOD) activity and glutathione (GSH) levels, as well as enhanced malondialdehyde (MDA) and O 2 - levels in liver samples. And the process was intensified by Cav-1 -/- . Additionally, CCl 4 -caused hepatic inflammation was aggregated by Cav-1 -/- via further increasing the secretion of pro-inflammatory cytokines. Moreover, CCl 4 -caused fibrosis was strengthened by Cav-1 -/- , which was evidenced by the up-regulation of α-smooth muscle actin (α-SMA), collagen alpha 1 type 1 (Col1A1), lysyl oxidase (Lox) and transforming growth factor-β1 (TGF-β1) in liver tissues. Similar results were observed in TGF-β1-stimulated hepatic stellate cells (HSCs) and LX-2 cells without Cav-1 expressions that in vitro, suppressing Cav-1 further accelerated TGF-β1-induced oxidative stress, inflammation and fibrosis development. In conclusion, our results indicated that Cav-1 played an important role in CCl 4 -induced hepatic injury, which may be used as potential therapeutic target for hepatic fibrosis treatment. Copyright © 2018. Published by Elsevier Masson SAS.

  1. Alcohol Withdrawal-Induced Seizure Susceptibility is Associated with an Upregulation of CaV1.3 Channels in the Rat Inferior Colliculus

    PubMed Central

    Akinfiresoye, Luli R.; Allard, Joanne S.; Lovinger, David M.

    2015-01-01

    Background: We previously reported increased current density through L-type voltage-gated Ca2+ (CaV1) channels in inferior colliculus (IC) neurons during alcohol withdrawal. However, the molecular correlate of this increased CaV1 current is currently unknown. Methods: Rats received three daily doses of ethanol every 8 hours for 4 consecutive days; control rats received vehicle. The IC was dissected at various time intervals following alcohol withdrawal, and the mRNA and protein levels of the CaV1.3 and CaV1.2 α1 subunits were measured. In separate experiments, rats were tested for their susceptibility to alcohol withdrawal–induced seizures (AWS) 3, 24, and 48 hours after alcohol withdrawal. Results: In the alcohol-treated group, AWS were observed 24 hours after withdrawal; no seizures were observed at 3 or 48 hours. No seizures were observed at any time in the control-treated rats. Compared to control-treated rats, the mRNA level of the CaV1.3 α1 subunit was increased 1.4-fold, 1.9-fold, and 1.3-fold at 3, 24, and 48 hours, respectively. In contrast, the mRNA level of the CaV1.2 α1 subunit increased 1.5-fold and 1.4-fold at 24 and 48 hours, respectively. At 24 hours, Western blot analyses revealed that the levels of the CaV1.3 and CaV1.2 α1 subunits increased by 52% and 32%, respectively, 24 hours after alcohol withdrawal. In contrast, the CaV1.2 and CaV1.3 α1 subunits were not altered at either 3 or 48 hours during alcohol withdrawal. Conclusions: Expression of the CaV1.3 α1 subunit increased in parallel with AWS development, suggesting that altered L-type CaV1.3 channel expression is an important feature of AWS pathogenesis. PMID:25556199

  2. Alterations of Ca(v)1.2 and 5-hydroxytryptamine in rat hearts after positional asphyxia.

    PubMed

    Li, X-F; Huang, Q-Y

    2015-01-01

    We investigated alterations of cardiac Ca(v)1.2 and 5-hydroxytryptamine (5-HT) associated with positional asphyxia. Male rats were divided into five groups: a control group with no restraint, group 1 restrained for 1 h, group 2 restrained for 2 h, group 3 restrained for 4 h, and group 4 restrained for 8 h. The rats that were restrained for 8 h ultimately suffered fatal asphyxia. After the restraint periods, the rats were sacrificed and immunohistochemistry was performed to evaluate the expressions of Ca(v)1.2 and 5-HT in the heart. Sections were analyzed by digital image analysis. Cardiac expression of Ca(v)1.2 and 5-HT proteins were significantly decreased by positional asphyxia in the rat, shown by integrated optical density (IOD) compared to controls. Our findings indicate that Ca(v)1.2 and 5-HT alterations could cause abnormal cardiac function, and the proteins investigated here may be useful for investigating the mechanisms underlying positional asphyxia.

  3. Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6.

    PubMed

    Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L; Rodríguez-Lebrón, Edgardo

    2011-09-01

    Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Ca(V)2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a Ca(V)2.1 mini-gene reporter system, we found that pathogenic CAG expansions in Ca(V)2.1 enhance splicing activity at the 3'end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding Ca(V)2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding Ca(V)2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding Ca(V)2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    PubMed

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  5. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  6. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    PubMed

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC 50 : >50µg/ml) neither was it cytotoxic (MLD 50 : >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P < 0.05) malondialdehyde concentrations in the liver and erythrocyte at higher doses compared to untreated controls. PPCPE increased glutathione concentration and activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P < 0.05) at higher doses compared to the untreated controls. The results suggest that PPCPE may require bioactivation in vivo in order to exert its antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability.

    PubMed

    Voisin, Tiphaine; Bourinet, Emmanuel; Lory, Philippe

    2016-07-01

    In this study, we describe a new knock-in (KI) mouse model that allows the study of the H191-dependent regulation of T-type Cav3.2 channels. Sensitivity to zinc, nickel and ascorbate of native Cav3.2 channels is significantly impeded in the dorsal root ganglion (DRG) neurons of this KI mouse. Importantly, we describe that this H191-dependent regulation has discrete but significant effects on the excitability properties of D-hair (down-hair) cells, a sub-population of DRG neurons in which Cav3.2 currents prominently regulate excitability. Overall, this study reveals that the native H191-dependent regulation of Cav3.2 channels plays a role in the excitability of Cav3.2-expressing neurons. This animal model will be valuable in addressing the potential in vivo roles of the trace metal and redox modulation of Cav3.2 T-type channels in a wide range of physiological and pathological conditions. Cav3.2 channels are T-type voltage-gated calcium channels that play important roles in controlling neuronal excitability, particularly in dorsal root ganglion (DRG) neurons where they are involved in touch and pain signalling. Cav3.2 channels are modulated by low concentrations of metal ions (nickel, zinc) and redox agents, which involves the histidine 191 (H191) in the channel's extracellular IS3-IS4 loop. It is hypothesized that this metal/redox modulation would contribute to the tuning of the excitability properties of DRG neurons. However, the precise role of this H191-dependent modulation of Cav3.2 channel remains unresolved. Towards this goal, we have generated a knock-in (KI) mouse carrying the mutation H191Q in the Cav3.2 protein. Electrophysiological studies were performed on a subpopulation of DRG neurons, the D-hair cells, which express large Cav3.2 currents. We describe an impaired sensitivity to zinc, nickel and ascorbate of the T-type current in D-hair neurons from KI mice. Analysis of the action potential and low-threshold calcium spike (LTCS) properties revealed

  8. Pharmacoresistant Cav 2·3 (E-type/R-type) voltage-gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction.

    PubMed

    Galetin, Thomas; Tevoufouet, Etienne E; Sandmeyer, Jakob; Matthes, Jan; Nguemo, Filomain; Hescheler, Jürgen; Weiergräber, Marco; Schneider, Toni

    2013-07-01

    Voltage-gated Ca(2+) channels regulate cardiac automaticity, rhythmicity and excitation-contraction coupling. Whereas L-type (Cav 1·2, Cav 1·3) and T-type (Cav 3·1, Cav 3·2) channels are widely accepted for their functional relevance in the heart, the role of Cav 2·3 Ca(2+) channels expressing R-type currents remains to be elucidated. We have investigated heart rate dynamics in control and Cav 2·3-deficient mice using implantable electrocardiogram radiotelemetry and pharmacological injection experiments. Autonomic block revealed that the intrinsic heart rate does not differ between both genotypes. Systemic administration of isoproterenol resulted in a significant reduction in interbeat interval in both genotypes. It remained unaffected after administering propranolol in Cav 2·3(-|-) mice. Heart rate from isolated hearts as well as atrioventricular conduction for both genotypes differed significantly. Additionally, we identified and analysed the developmental expression of two splice variants, i.e. Cav 2·3c and Cav 2·3e. Using patch clamp technology, R-type currents could be detected in isolated prenatal cardiomyocytes and be related to R-type Ca(2+) channels. Our results indicate that on the systemic level, the pharmacologically inducible heart rate range and heart rate reserve are impaired in Cav 2·3 (-|-) mice. In addition, experiments on Langendorff perfused hearts elucidate differences in basic properties between both genotypes. Thus, Cav 2·3 does not only contribute to the cardiac autonomous nervous system but also to intrinsic rhythm propagation. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Splice isoform-specific suppression of the CaV2.1 variant underlying Spinocerebellar ataxia type 6

    PubMed Central

    Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L.; Rodríguez-Lebrón, Edgardo

    2011-01-01

    Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the CaV2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a CaV2.1 mini-gene reporter system, we found that pathogenic CAG expansions in CaV2.1 enhance splicing activity at the 3′end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding CaV2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding CaV2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding CaV2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. PMID:21550405

  10. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility

    PubMed Central

    Fang, Xue; Li, Xuelian; Yin, Zhihua; Xia, Lingzi; Quan, Xiaowei; Zhao, Yuxia; Zhou, Baosen

    2017-01-01

    Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. PMID:29190968

  11. Regulation of Neuronal Cav3.1 Channels by Cyclin-Dependent Kinase 5 (Cdk5)

    PubMed Central

    González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels. PMID:25760945

  12. Regulation of neuronal cav3.1 channels by cyclin-dependent kinase 5 (Cdk5).

    PubMed

    Calderón-Rivera, Aida; Sandoval, Alejandro; González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.

  13. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction

    PubMed Central

    Wu, Jing; Zhou, Shan-Lei; Pi, Lin-Hua; Shi, Xia-Jie; Ma, Ling-Ran; Chen, Zi; Qu, Min-Li; Li, Xin; Nie, Sheng-Dan; Liao, Duan-Fang; Pei, Jin-Jing; Wang, Shan

    2017-01-01

    The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction. PMID:28489581

  14. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

    PubMed

    Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra

    2008-07-25

    Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.

  15. Proximal clustering between BK and CaV1.3 channels promotes functional coupling and BK channel activation at low voltage

    PubMed Central

    Vivas, Oscar; Moreno, Claudia M; Santana, Luis F; Hille, Bertil

    2017-01-01

    CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near −50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials. DOI: http://dx.doi.org/10.7554/eLife.28029.001 PMID:28665272

  16. Effects of Steam-Distilled Shoot Extract of Mexican Marigold, Tagetes minuta (Asterales: Asterceae), and Entomopathogenic Fungi on Larval Tetanops myopaeformis (Roder)

    USDA-ARS?s Scientific Manuscript database

    Interactions of a formulation of steam distilled shoot extract of Mexican marigold, Tagetes minuta, and entomopathogenic fungi were evaluated for management of the sugarbeet root maggot, Tetanops myopaeformis (Röder). Shoot extract plus surfactant was used to test the hypothesis that this fungicidal...

  17. Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1): Evidence of a signaling complex

    PubMed Central

    Fan, Jing; Gandini, Maria A.; Zhang, Fang-Xiong; Chen, Lina; Souza, Ivana A.; Zamponi, Gerald W.

    2017-01-01

    ABSTRACT Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels. We found that HCN1 co-immunoprecipitated with Cav3.2 from lysates of either mouse brain or tsA-201 cells, with the HCN1 N-terminus associating with the Cav3.2 N-terminus. Cav3.2 channel activity appeared to be functionally regulated by HCN1. The expression of HCN1 induced a decrease in Cav3.2 Ba2+ influx (IBa2+) along with altered channel kinetics and a depolarizing shift in activation gating. However, a reciprocal regulation of HCN1 by Cav3.2 was not observed. This study highlights a regulatory role of HCN1 on Cav3.2 voltage-dependent properties, which are expected to affect physiologic functions such as synaptic transmission and cellular excitability. PMID:28467171

  18. Transcription factor Sp1 regulates T-type Ca(2+) channel CaV 3.1 gene expression.

    PubMed

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Felix, Ricardo

    2014-05-01

    Voltage-gated T-type Ca(2+) (CaV 3) channels mediate a number of physiological events in developing and mature cells, and are implicated in neurological and cardiovascular diseases. In mammals, there are three distinct T-channel genes (CACNA1G, CACNA1H, and CACNA1I) encoding proteins (CaV 3.1-CaV 3.3) that differ in their localization as well as in molecular, biophysical, and pharmacological properties. The CACNA1G is a large gene that contains 38 exons and is localized in chromosome 17q22. Only basic characteristics of the CACNA1G gene promoter region have been investigated classifying it as a TATA-less sequence containing several potential transcription factor-binding motifs. Here, we cloned and characterized a proximal promoter region and initiated the analysis of transcription factors that control CaV 3.1 channel expression using the murine Cacna1g gene as a model. We isolated a ∼1.5 kb 5'-upstream region of Cacna1g and verified its transcriptional activity in the mouse neuroblastoma N1E-115 cell line. In silico analysis revealed that this region possesses a TATA-less minimal promoter that includes two potential transcription start sites and four binding sites for the transcription factor Sp1. The ability of one of these sites to interact with the transcription factor was confirmed by electrophoretic mobility shift assays. Consistent with this, Sp1 over-expression enhanced promoter activity while siRNA-mediated Sp1 silencing significantly decreased the level of CaV 3.1 protein and reduced the amplitude of whole-cell T-type Ca(2+) currents expressed in the N1E-115 cells. These results provide new insights into the molecular mechanisms that control CaV 3.1 channel expression. © 2013 Wiley Periodicals, Inc.

  19. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.

    PubMed

    Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah

    2018-05-04

    Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.

  20. Discovery of the Dinoponera lucida male (Hymenoptera, Formicidae), a threatened giant ant from the Atlantic rain forest.

    PubMed

    Escárraga, Mayron E; Lattke, John E; Azevedo, Celso O

    2017-11-10

    The male of the endangered ant Dinoponera lucida Emery is described, providing morphometric measurements, high-resolution images, and a distribution map of the species. This ant inhabits the Brazilian Atlantic forest, an ecosystem strongly impacted by fragmentation. The males show clear morphological differences from the known males of other species of Dinoponera. We briefly discuss the relevance of the male description for the conservation strategies of this ant.

  1. Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes

    PubMed Central

    Nystoriak, Matthew A.; Nieves-Cintrón, Madeline; Patriarchi, Tommaso; Buonarati, Olivia R.; Prada, Maria Paz; Morotti, Stefano; Grandi, Eleonora; Fernandes, Julia Dos Santos; Forbush, Katherine; Hofmann, Franz; Sasse, Kent C.; Scott, John D.; Ward, Sean M.; Hell, Johannes W.; Navedo, Manuel F.

    2017-01-01

    Hypercontractility of arterial myocytes and enhanced vascular tone during diabetes are, in part, attributed to the effects of increased glucose (hyperglycemia) on L-type CaV1.2 channels. In murine arterial myocytes, kinase-dependent mechanisms mediate the increase in CaV1.2 activity in response to increased extracellular glucose. We identified a subpopulation of the CaV1.2 channel pore-forming subunit (α1C) within nanometer proximity of protein kinase A (PKA) at the sarcolemma of murine and human arterial myocytes. This arrangement depended upon scaffolding of PKA by an A-kinase anchoring protein 150 (AKAP150) in mice. Glucose-mediated increases in CaV1.2 channel activity were associated with PKA activity, leading to α1C phosphorylation at Ser1928. Compared to arteries from low-fat diet (LFD)–fed mice and nondiabetic patients, arteries from high-fat diet (HFD)–fed mice and from diabetic patients had increased Ser1928 phosphorylation and CaV1.2 activity. Arterial myocytes and arteries from mice lacking AKAP150 or expressing mutant AKAP150 unable to bind PKA did not exhibit increased Ser1928 phosphorylation and CaV1.2 current density in response to increased glucose or to HFD. Consistent with a functional role for Ser1928 phosphorylation, arterial myocytes and arteries from knockin mice expressing a CaV1.2 with Ser1928 mutated to alanine (S1928A) lacked glucose-mediated increases in CaV1.2 activity and vasoconstriction. Furthermore, the HFD-induced increases in CaV1.2 current density and myogenic tone were prevented in S1928A knockin mice. These findings reveal an essential role for α1C phosphorylation at Ser1928 in stimulating CaV1.2 channel activity and vasoconstriction by AKAP-targeted PKA upon exposure to increased glucose and in diabetes. PMID:28119464

  2. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    PubMed

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  3. Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks

    PubMed Central

    Kim, Su-Hyun; Park, Ye-Ryoung; Lee, Boyoung; Choi, Byungil; Kim, Hyun

    2017-01-01

    Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knock-out (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at ≥ 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote (≥ 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task. PMID:28715454

  4. Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks.

    PubMed

    Kim, Su-Hyun; Park, Ye-Ryoung; Lee, Boyoung; Choi, Byungil; Kim, Hyun; Kim, Chong-Hyun

    2017-01-01

    Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knock-out (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at ≥ 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote (≥ 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task.

  5. Review: Cav2.3 R-type Voltage-Gated Ca2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity

    PubMed Central

    Wormuth, Carola; Lundt, Andreas; Henseler, Christina; Müller, Ralf; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2016-01-01

    Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders. PMID:27843503

  6. Up-regulation of Cav3.1 expression in SH-SY5Y cells induced by lidocaine hydrochloride.

    PubMed

    Gong, Qin; Wen, Xianjie; Li, Heng; He, Jian; Wang, Yunhua; Wu, Huiping; Wang, Hanbing; Wang, Xiaoping

    2018-01-12

    Neurotoxicity induced by the local anaesthetics has aroused concern. A previous study has shown that an overload of intracellular calcium was involved in the neurotoxic effect. Cav3.1 is one of the low-voltage-activated (LVA) calcium channels which play a key point to regulate the intracellular calcium ion level. This study aimed to investigate the changes of the Cav3.1 expression in the SH-SY5Y cells treated with lidocaine hydrochloride. The SH-SY5Y cells were treated with different concentrations of lidocaine hydrochloride(1 mM, 5 mM and 10 mM, namely L1 group, L5 group and L10 group) and different exposure times (1 h,12 h and 24 h), respectively. Cell viability, Cav3.1 protein and mRNA expression were detected. The results showed that cell viability decreased and Cav3.1 mRNA and protein expression increased with the concentration (from 1 mM to 10 mM) of the lidocaine hydrochloride and exposure time (from 1 h to 24 h) to the SH-SY5Y cell line increased. Those data showed that lidocaine hydrochloride induced SH-SY5Y cell toxicity and up-regulated Cav3.1mRNA and protein expression.

  7. DEMONSTRATION BULLETIN: CAV-OX ULTRAVIOLET OXIDATION PROCESS MAGNUM WATER TECHNOLOGY

    EPA Science Inventory

    The CAV-OX® technology (see Fig- ure 1) destroys organic contaminants, including chlorinated hy- drocarbons, in water. The process uses hydrogen peroxide, hy- drodynamic cavitation, and ultraviolet (UV) radiation to photolyze and oxidize organic compounds present in water at ...

  8. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum.

    PubMed

    Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Faussone-Pellegrini, Maria Simonetta; Vannucchi, Maria Giuliana

    2011-11-01

    Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1(-/-) mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1(-/-) mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1(-/-) mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1-knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1-associated proteins. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  9. Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2

    PubMed Central

    Michalakis, Stylianos; Shaltiel, Lior; Sothilingam, Vithiyanjali; Koch, Susanne; Schludi, Verena; Krause, Stefanie; Zeitz, Christina; Audo, Isabelle; Lancelot, Marie-Elise; Hamel, Christian; Meunier, Isabelle; Preising, Markus N.; Friedburg, Christoph; Lorenz, Birgit; Zabouri, Nawal; Haverkamp, Silke; Garrido, Marina Garcia; Tanimoto, Naoyuki; Seeliger, Mathias W.; Biel, Martin; Wahl-Schott, Christian A.

    2014-01-01

    Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chromosomal recessive inheritance. Occasionally, clinical symptoms have been observed in female carriers, too. It is currently unknown how these mutations lead to symptoms in carriers and how the retinal network in these females is affected. To investigate these clinically important issues, we compared retinal phenotypes in Cav1.4-deficient and Cav1.4 heterozygous mice and in human female carrier patients. Heterozygous Cacna1f carrier mice have a retinal mosaic consistent with differential X-chromosomal inactivation, characterized by adjacent vertical columns of affected and non-affected wild-type-like retinal network. Vertical columns in heterozygous mice are well comparable to either the wild-type retinal network of normal mice or to the retina of homozygous mice. Affected retinal columns display pronounced rod and cone photoreceptor synaptopathy and cone degeneration. These changes lead to vastly impaired vision-guided navigation under dark and normal light conditions and reduced retinal electroretinography (ERG) responses in Cacna1f carrier mice. Similar abnormal ERG responses were found in five human CACNA1F carriers, four of which had novel mutations. In conclusion, our data on Cav1.4 deficient mice and human female carriers of mutations in CACNA1F are consistent with a phenotype of mosaic CSNB2. PMID:24163243

  10. Prognostic relevance of the expressions of CAV1 and TES genes on 7q31 in melanoma.

    PubMed

    Vizkeleti, Laura; Ecsedi, Szilvia; Rakosy, Zsuzsa; Begany, Agnes; Emri, Gabriella; Toth, Reka; Orosz, Adrienn; Szollosi, Attila Gabor; Mehes, Gabor; Adany, Roza; Balazs, Margit

    2012-01-01

    The 7q31 locus contains several genes affected in cancer progression. Although evidences exist regarding its impact on tumorigenesis, the role of genetic alterations and the expressions of locus-related genes are still controversial. Our study aimed to define the 7q31 copy number alterations in primary melanomas, primary-metastatic tumor pairs and cell lines. Data were correlated with clinical-pathological parameters. Genetic data show that 7q31 copy number distribution was heterogeneous in both primary and metastatic tumors. Extra copies were highly accompanied by chromosome 7 polisomy, and significantly increased in primary lesions with poor prognosis. Additionally, we determined the mRNA and protein levels of the locus-related CAV1 and TES genes. TES mRNA level was associated with metastatic location. CAV1 mRNA and protein levels were significantly higher in thicker tumors, however, lack of protein was also observed in a subpopulation of thin lesions. Expressions of CAV1 and TES were not associated with 7q31 alterations. In conclusion, 7q31 amplification can predict unfavorable outcome. Alterations of TES mRNA level may predict the location of metastasis. CAV1 possibly affect the cancer cell invasion.

  11. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1−/− mouse ileum

    PubMed Central

    Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Simonetta Faussone-Pellegrini, Maria; Vannucchi, Maria Giuliana

    2011-01-01

    Abstract Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins. PMID:21535398

  12. Insecticidal activity of floral, foliar, and root extracts of Tagetes minuta (Asterales: Asteraceae) against adult mexican bean weevils (Coleoptera: Bruchidae)

    Treesearch

    David K. Weaver; Carl D. Wells; Florence V. Dunkel; Wolfgang Bertsch; Sharlene E. Sing; Shobha Sriharan

    1994-01-01

    Experiments were conducted to determine speed of action and toxicities of extracts of Tagetes minuta L., a source of naturally occurring insecticidal compounds. LC50 values for male and female Mexican bean weevils, Zabrotes subfasciatus (Boheman), were determined for floral, foliar, and root extracts of T. minuta. The 24-h LC50 values ranged from 138 μ g/cm2 for males...

  13. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells

    PubMed Central

    Dumenieu, Mael; Senkov, Oleg; Mironov, Andrey; Bourinet, Emmanuel; Kreutz, Michael R; Dityatev, Alexander; Heine, Martin; Bikbaev, Arthur

    2018-01-01

    Abstract Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids. PMID:29790938

  14. β-Subunits Promote the Expression of CaV2.2 Channels by Reducing Their Proteasomal Degradation*

    PubMed Central

    Waithe, Dominic; Ferron, Laurent; Page, Karen M.; Chaggar, Kanchan; Dolphin, Annette C.

    2011-01-01

    The β-subunits of voltage-gated calcium channels regulate their functional expression and properties. Two mechanisms have been proposed for this, an effect on gating and an enhancement of expression. With respect to the effect on expression, β-subunits have been suggested to enhance trafficking by masking an unidentified endoplasmic reticulum (ER) retention signal. Here we have investigated whether, and how, β-subunits affect the level of CaV2.2 channels within somata and neurites of cultured sympathetic neurons. We have used YFP-CaV2.2 containing a mutation (W391A), that prevents binding of β-subunits to its I-II linker and found that expression of this channel was much reduced compared with WT CFP-CaV2.2 when both were expressed in the same neuron. This effect was particularly evident in neurites and growth cones. The difference between the levels of YFP-CaV2.2(W391A) and CFP-CaV2.2(WT) was lost in the absence of co-expressed β-subunits. Furthermore, the relative reduction of expression of CaV2.2(W391A) compared with the WT channel was reversed by exposure to two proteasome inhibitors, MG132 and lactacystin, particularly in the somata. In further experiments in tsA-201 cells, we found that proteasome inhibition did not augment the cell surface CaV2.2(W391A) level but resulted in the observation of increased ubiquitination, particularly of mutant channels. In contrast, we found no evidence for selective retention of CaV2.2(W391A) in the ER, in either the soma or growth cones. In conclusion, there is a marked effect of β-subunits on CaV2.2 expression, particularly in neurites, but our results point to protection from proteasomal degradation rather than masking of an ER retention signal. PMID:21233207

  15. Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation.

    PubMed

    Findeisen, Felix; Minor, Daniel L

    2010-12-08

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Structural basis for the differential effects of CaBP1 and calmodulin on CaV1.2 calcium-dependent inactivation

    PubMed Central

    Findeisen, Felix; Minor, Daniel L.

    2010-01-01

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641

  17. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

    PubMed

    Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A

    2014-11-01

    Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.

  18. Subthreshold pharmacological and genetic approaches to analyzing CaV2.1-mediated NMDA receptor signaling in short-term memory.

    PubMed

    Takahashi, Eiki; Niimi, Kimie; Itakura, Chitoshi

    2010-10-25

    Ca(V)2.1 is highly expressed in the nervous system and plays an essential role in the presynaptic modulation of neurotransmitter release machinery. Recently, the antiepileptic drug levetiracetam was reported to inhibit presynaptic Ca(V)2.1 functions, reducing glutamate release in the hippocampus, although the precise physiological role of Ca(V)2.1-regulated synaptic functions in cognitive performance at the system level remains unknown. This study examined whether Ca(V)2.1 mediates hippocampus-dependent spatial short-term memory using the object location and Y-maze tests, and perirhinal cortex-dependent nonspatial short-term memory using the object recognition test, via a combined pharmacological and genetic approach. Heterozygous rolling Nagoya (rol/+) mice carrying the Ca(V)2.1alpha(1) mutation had normal spatial and nonspatial short-term memory. A 100mg/kg dose of levetiracetam, which is ineffective in wild-type controls, blocked spatial short-term memory in rol/+ mice. At 5mg/kg, the N-methyl-D-aspartate (NMDA) receptor blocker (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which is ineffective in wild-type controls, also blocked the spatial short-term memory in rol/+ mice. Furthermore, a combination of subthreshold doses of levetiracetam (25 mg/kg) and CPP (2.5mg/kg) triggered a spatial short-term memory deficit in rol/+ mice, but not in wild-type controls. Similar patterns of nonspatial short-term memory were observed in wild-type and rol/+ mice when injected with levetiracetam (0-300 mg/kg). These results indicate that Ca(V)2.1-mediated NMDA receptor signaling is critical in hippocampus-dependent spatial short-term memory and differs in various regions. The combination subthreshold pharmacological and genetic approach presented here is easily performed and can be used to study functional signaling pathways in neuronal circuits. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Studies on the chemical constituents from the stem and leaves of Tagetes erecta.

    PubMed

    Zhang, Yu; Zhang, Ting-Ting

    2010-09-01

    To investigate the chemical constituents of the stem and leaves of Tagetes erecta. The materials extracted with ethanol were first purified with D101 resin and then separated by repeated silica gel column chromatography as well as recrystallization to get single compounds. The chemical structures of the compounds were elucidated on the basis of physicochemical properties, spectroscopic analysis and comparing with standard sample and literatures. Six compounds were identified as 4'-methoxy-eupatolitin-3-O-glucoside (I), kaempferitrin (II), rutin (III), beta-sitosterol (IV), daucosterol (V) and gallic acid (VI). Compounds I, II, III are isolated from the plant for the first time; the compounds IV, V, VI are isolated from the stem and leaves of the plant for the first time.

  20. Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization

    PubMed Central

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-01-01

    Interactions between voltage-gated calcium channels (CaVs) and calmodulin (CaM) modulate CaV function. In this study, we report the structure of a Ca2+/CaM CaV1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM–IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes CaV1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the CaV1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. PMID:20953164

  1. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.

    PubMed

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-12-01

    Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.

  2. Inhibitory gene expression of the Cav3.1 T-type calcium channel to improve neuronal injury induced by lidocaine hydrochloride.

    PubMed

    Wen, Xianjie; Xu, Shiyuan; Zhang, Qingguo; Li, Xiaohong; Liang, Hua; Yang, Chenxiang; Wang, Hanbing; Liu, Hongzhen

    2016-03-15

    Cav3.1 is a low-voltage-activated (LVA) calcium channel that plays a key role in regulating intracellular calcium ion levels. In this study, we observed the effects of lidocaine hydrochloride on the pshRNA-CACNA1G-SH-SY5Y cells that silenced Cav3.1 mRNA by RNA interference, and investigated the roles of p38 MAPK in these effects. We constructed the pNC-puro-CACNA1G-SH-SY5Y cells and pshRNA-CACNA1G -SH-SY5Y cells by the RNA interference. All the cells were cultured with or without 10mM lidocaine hydrochloride for 24 h. The cell morphology, cell viability, Cav3.1 and p38 protein expression, cell apoptosis rate and intracellular calcium ion concentration were detected. We found that all cells treated with 10mM lidocaine hydrochloride for 24 h showed cellular rounding, axonal regression, and cellular floating. Compared with the cells in SH-SY5Y+Lido group and NC+Lido group, those in the RNAi+Lido group showed similar changes, but of smaller magnitude. Additionally, following lidocaine hydrochloride all cells displayed increased Cav3.1 and p38 MAPK protein, apoptosis rate, and intracellular calcium ion levels; however,these changes in the RNAi+Lido group were less pronounced than in the SH-SY5Y+Lido and NC+Lido groups. The cell viability decreased following lidocaine hydrochloride treatment, but viability of the cells in the RNAi+Lido group was higher than in the SH-SY5Y+Lido and NC+Lido groups. The results showed that Cav3.1 may be involved in neuronal injury induced by lidocaine hydrochloride and that p38 MAPK phosphorylation was reduced upon Cav3.1 gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. CAV-OX CAVITATION OXIDIATION PROCESS - MAGNUM WATER TECHNOLOGY, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the ability of the CAV-OX cavitation oxidation process to remove volatile organic compounds (VOC) present in aqueous wastes. This report also presents economic data based on the Superfund Innovative Technology Evaluation (SITE) Program demonstration and nine...

  4. Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5

    PubMed Central

    Henry, Margit; Rotshteyn, Tamara; Brunn, Anna; Carstov, Mariana; Deckert, Martina; Hescheler, Jürgen; Sachinidis, Agapios; Pfitzer, Gabriele

    2018-01-01

    In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels—the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)–underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 –the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 –the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis. PMID

  5. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    PubMed

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  6. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels

    PubMed Central

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred

    2016-01-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular

  7. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells.

    PubMed

    Mudado, M A; Rodrigues, A L; Prado, V F; Beirão, P S L; Cruz, J S

    2004-06-01

    T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 +/- 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 +/- 2.4 and 6.7 +/- 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 +/- 0.97 and 7.5 +/- 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of alpha1G (CaV3.1) and alpha1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.

  8. Chemical composition and evaluation of antinociceptive activity of the essential oil of Stevia serrata Cav. from Guatemala.

    PubMed

    Reis Simas, Daniel Luiz; Mérida-Reyes, Max Samuel; Muñoz-Wug, Manuel Alejandro; Cordeiro, Millena Santos; Giorno, Thais Biondino Sardella; Taracena, Edwin Adolfo; Oliva-Hernández, Bessie Evelyn; Martínez-Arévalo, José Vicente; Fernandes, Patricia Dias; Pérez-Sabino, Juan Francisco; Jorge Ribeiro da Silva, Antonio

    2017-11-13

    The composition and the antinociceptive activity of the essential oil of Stevia serrata Cav. from a population located in the west highlands of Guatemala were evaluated. A yield of 0.2% (w/w) of essential oil was obtained by hydrodistillation of the dried aerial parts of the plant. The essential oil analysed by GC-FID and GC-MS showed a high content of sesquiterpenoids, with chamazulene (60.1%) as the major component and 91.5% of the essential oil composition was identified. To evaluate antinociceptive activity in mice, the essential oil of S. serrata Cav. was administered as gavage, using three different doses. In the formalin test, the animals were pre-treated with oral doses of the essential oil before the administration of formalin. Oral administration of S. serrata Cav. essential oil produced a marked antinociceptive activity. Therefore, the plant could be domesticated as a source of essential oil rich in chamazulene for developing medicinal products.

  9. PIP₂ hydrolysis is responsible for voltage independent inhibition of CaV2.2 channels in sympathetic neurons.

    PubMed

    Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E

    2013-03-08

    GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast.

    PubMed

    Matza, Didi; Flavell, Richard A

    2009-09-01

    T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.

  11. Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels

    PubMed Central

    Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P.; Kim, Min Jeong; Froehner, Stanley C.; Scheuer, Todd; Catterall, William A.

    2016-01-01

    Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585

  12. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    PubMed

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  13. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    PubMed Central

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  14. The stargazin-related protein γ7 interacts with the mRNA binding protein hnRNP A2 and regulates the stability of specific mRNAs including CaV2.2

    PubMed Central

    Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.

    2009-01-01

    The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037

  15. Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities.

    PubMed

    Ehlinger, Daniel G; Commons, Kathryn G

    2017-10-01

    Polymorphism in the gene CACNA1C, encoding the pore-forming subunit of Cav1.2 L-type calcium channels, has one of the strongest genetic linkages to schizophrenia, bipolar disorder and major depressive disorder: psychopathologies in which serotonin signaling has been implicated. Additionally, a gain-of-function mutation in CACNA1C is responsible for the neurodevelopmental disorder Timothy syndrome that presents with prominent behavioral features on the autism spectrum. Given an emerging role for serotonin in the etiology of autism spectrum disorders (ASD), we investigate the relationship between Cav1.2 and the ascending serotonin system in the Timothy syndrome type 2 (TS2-neo) mouse, which displays behavioral features consistent with the core triad of ASD. We find that TS2-neo mice exhibit enhanced serotonin tissue content and axon innervation of the dorsal striatum, as well as decreased serotonin turnover in the amygdala. These regionally specific alterations are accompanied by an enhanced active coping response during acute stress (forced swim), serotonin neuron Fos activity in the caudal dorsal raphe, and serotonin type 1A receptor-dependent feedback inhibition of the rostral dorsal raphe nuclei. Collectively, these results suggest that the global gain-of-function Cav1.2 mutation associated with Timothy syndrome has pleiotropic effects on the ascending serotonin system including neuroanatomical changes, regional differences in forebrain serotonin metabolism and feedback regulatory control mechanisms within the dorsal raphe. Altered activity of the ascending serotonin system continues to emerge as a common neural signature across several ASD mouse models, and the capacity for Cav1.2 L-type calcium channels to impact both serotonin structure and function has important implications for several neuropsychiatric conditions. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    PubMed

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain.

    PubMed

    Huang, Chia-Yi; Chu, Dachen; Hwang, Wei-Chao; Tsaur, Meei-Ling

    2012-11-01

    Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding. Copyright © 2012 Wiley Periodicals, Inc.

  18. Regulation of CaV2 calcium channels by G protein coupled receptors

    PubMed Central

    Zamponi, Gerald W.; Currie, Kevin P.M.

    2012-01-01

    Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655

  19. Ca2+-independent Activation of Ca2+/Calmodulin-dependent Protein Kinase II Bound to the C-terminal Domain of CaV2.1 Calcium Channels*

    PubMed Central

    Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.

    2013-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606

  20. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

    PubMed

    Santiago González, Diara A; Cheli, Veronica T; Zamora, Norma N; Lama, Tenzing N; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2017-10-18

    Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2 KO ). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2 KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2 KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2 KO OPCs were identified by a Cre reporter, we establish that Cav1.2 KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca 2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca 2+ channel for OPC maturation during the remyelination of the adult brain. SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca 2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To

  1. Phosphorylation sites in the Hook domain of CaVβ subunits differentially modulate CaV1.2 channel function.

    PubMed

    Brunet, Sylvain; Emrick, Michelle A; Sadilek, Martin; Scheuer, Todd; Catterall, William A

    2015-10-01

    Regulation of L-type calcium current is critical for the development, function, and regulation of many cell types. Ca(V)1.2 channels that conduct L-type calcium currents are regulated by many protein kinases, but the sites of action of these kinases remain unknown in most cases. We combined mass spectrometry (LC-MS/MS) and whole-cell patch clamp techniques in order to identify sites of phosphorylation of Ca(V)β subunits in vivo and test the impact of mutations of those sites on Ca(V)1.2 channel function in vitro. Using the Ca(V)1.1 channel purified from rabbit skeletal muscle as a substrate for phosphoproteomic analysis, we found that Ser(193) and Thr(205) in the HOOK domain of Ca(V)β1a subunits were both phosphorylated in vivo. Ser(193) is located in a potential consensus sequence for casein kinase II, but it was not phosphorylated in vitro by that kinase. In contrast, Thr(205) is located in a consensus sequence for cAMP-dependent phosphorylation, and it was robustly phosphorylated in vitro by PKA. These two sites are conserved in multiple Ca(V)β subunit isoforms, including the principal Ca(V)β subunit of cardiac Ca(V)1.2 channels, Ca(V)β2b. In order to assess potential modulatory effects of phosphorylation at these sites separately from the effects of phosphorylation of the α11.2 subunit, we inserted phosphomimetic or phosphoinhibitory mutations in Ca(V)β2b and analyzed their effects on Ca(V)1.2 channel function in transfected nonmuscle cells. The phosphomimetic mutation Ca(V)β2b(S152E) decreased peak channel currents and shifted the voltage dependence of both activation and inactivation to more positive membrane potentials. The phosphoinhibitory mutation Ca(V)β2b(S152A) had opposite effects. There were no differences in peak Ca(V)1.2 currents or voltage dependence between the phosphomimetic mutation Ca(V)β2b(T164D) and the phosphoinhibitory mutation Ca(V)β2b(T164A). However, calcium-dependent inactivation was significantly increased for the

  2. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice.

    PubMed

    Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit

    2015-09-18

    The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.

  3. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels

    PubMed Central

    Watase, Kei; Barrett, Curtis F.; Miyazaki, Taisuke; Ishiguro, Taro; Ishikawa, Kinya; Hu, Yuanxin; Unno, Toshinori; Sun, Yaling; Kasai, Sayumi; Watanabe, Masahiko; Gomez, Christopher M.; Mizusawa, Hidehiro; Tsien, Richard W.; Zoghbi, Huda Y.

    2008-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by CAG repeat expansions within the voltage-gated calcium (CaV) 2.1 channel gene. It remains controversial whether the mutation exerts neurotoxicity by changing the function of CaV2.1 channel or through a gain-of-function mechanism associated with accumulation of the expanded polyglutamine protein. We generated three strains of knockin (KI) mice carrying normal, expanded, or hyperexpanded CAG repeat tracts in the Cacna1a locus. The mice expressing hyperexpanded polyglutamine (Sca684Q) developed progressive motor impairment and aggregation of mutant CaV2.1 channels. Electrophysiological analysis of cerebellar Purkinje cells revealed similar Ca2+ channel current density among the three KI models. Neither voltage sensitivity of activation nor inactivation was altered in the Sca684Q neurons, suggesting that expanded CAG repeat per se does not affect the intrinsic electrophysiological properties of the channels. The pathogenesis of SCA6 is apparently linked to an age-dependent process accompanied by accumulation of mutant CaV2.1 channels. PMID:18687887

  4. Antidepressant-like action of the hydromethanolic flower extract of Tagetes erecta L. in mice and its possible mechanism of action.

    PubMed

    Khulbe, Aarti; Pandey, Savita; Sah, Sangeeta Pilkhwal

    2013-01-01

    Tagetes erecta, the marigold, has commercial and ethnomedicinal use; however, reports concerning its efficacy for the treatment of depression are lacking. This study was carried out to elucidate the antidepressant effect of hydromethanolic flower extract of T. erecta. Hydromethanolic extract of flowers of Tagetes erecta was subjected to preliminary phytochemical screening. The extract (12.5, 25, and 50 mg/kg, i.p.) was evaluated for antidepressant effect using forced swim test in mice. The mechanism of antidepressant action was further examined using different drugs and imipramine was used as standard drug. T. erecta significantly inhibited the immobility period in forced swim test in mice P<0.05). T. erecta (25 mg/kg, i.p.) enhanced the anti-immobility effect of antidepressant drugs like imipramine, fluoxetine, and p-chlorophenylalanine, an inhibitor of serotonin synthesis significantly attenuated its antidepressant effect. The antidepressant effect of T. erecta in the forced swim test was prevented by pretreatment with L-arginine and sildenafil, whereas pretreatment of mice with nitric oxide synthase inhibitors potentiated the action. Pentazocine, a high-affinity sigma receptor agonist, produced synergism with effective dose of T. erecta while progesterone, a sigma receptor antagonist, reversed the antidepressant effect of T. erecta. However, the locomotor activity was not affected at tested doses. Serotonergic, nitrergic pathway, and sigma receptors are possibly involved in mediating antidepressant action of T. erecta in mouse forced swim test.

  5. Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice.

    PubMed

    Aikawa, Tomonori; Watanabe, Takaki; Miyazaki, Taisuke; Mikuni, Takayasu; Wakamori, Minoru; Sakurai, Miyano; Aizawa, Hidenori; Ishizu, Nobutaka; Watanabe, Masahiko; Kano, Masanobu; Mizusawa, Hidehiro; Watase, Kei

    2017-08-15

    Alternative splicing (AS) that occurs at the final coding exon (exon 47) of the Cav2.1 voltage-gated calcium channel (VGCC) gene produces two major isoforms in the brain, MPI and MPc. These isoforms differ in their splice acceptor sites; human MPI is translated into a polyglutamine tract associated with spinocerebellar ataxia type 6 (SCA6), whereas MPc splices to an immediate stop codon, resulting in a shorter cytoplasmic tail. To gain insight into the functional role of the AS in vivo and whether modulating the splice patterns at this locus can be a potential therapeutic strategy for SCA6, here we created knockin mice that exclusively express MPc by inserting the splice-site mutation. The resultant Cacna1aCtmKO/CtmKO mice developed non-progressive neurological phenotypes, featuring early-onset ataxia and absence seizure without significant alterations in the basic properties of the channel. Interactions of Cav2.1 with Cavβ4 and Rimbp2 were significantly reduced while those with GABAB2 were enhanced in the cerebellum of Cacna1aCtmKO/CtmKO mice. Treatment with the GABAB antagonist CGP35348 partially rescued the motor impairments seen in Cacna1aCtmKO/CtmKO mice. These results suggest that the carboxyl-terminal domain of Cav2.1 is not essential for maintaining the basic properties of the channel in the cerebellar Purkinje neurons but is involved in multiple interactions of Cav2.1 with other proteins, and plays an essential role in preventing a complex neurological disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice.

    PubMed

    Biswas, Sondip K; Brako, Lawrence; Lo, Woo-Kuen

    2014-08-01

    The wavy square array junctions are composed of truncated aquaporin-0 (AQP0) proteins typically distributed in the deep cortical and nuclear fibers in wild-type lenses. These junctions may help maintain the narrowed extracellular spaces between fiber cells to minimize light scattering. Herein, we investigate the impact of the cell shape changes, due to abnormal formation of extensive square array junctions, on the lens opacification in the caveolin-1 knockout mice. The cav1-KO and wild-type mice at age 1-22 months were used. By light microscopy examinations, cav1-KO lenses at age 1-18 months were transparent in both cortical and nuclear regions, whereas some lenses older than 18 months old exhibited nuclear cataracts. Scanning EM consistently observed the massive formation of ridge-and-valley membrane surfaces in young fibers at approximately 150 μm deep in all cav1-KO lenses studied. In contrast, the typical ridge-and-valleys were only seen in mature fibers deeper than 400 μm in wild-type lenses. The resulting extensive ridge-and-valleys dramatically altered the overall cell shape in cav1-KO lenses. Remarkably, despite dramatic shape changes, these deformed fiber cells remained intact and made close contact with their neighboring cells. By freeze-fracture TEM, ridge-and-valleys exhibited the typical orthogonal arrangement of 6.6 nm square array intramembrane particles and displayed the narrowed extracellular spaces. Immunofluorescence analysis showed that AQP0 C-terminus labeling was significantly decreased in outer cortical fibers in cav1-KO lenses. However, freeze-fracture immunogold labeling showed that the AQP0 C-terminus antibody was sparsely distributed on the wavy square array junctions, suggesting that the cleavage of AQP0 C-termini might not yet be complete. The cav1-KO lenses with nuclear cataracts showed complete cellular breakdown and large globule formation in the lens nucleus. This study suggests that despite dramatic cell shape changes, the

  7. Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells.

    PubMed

    Liao, Qiuxia; Zhang, Rui; Wang, Xiaoyu; Nian, Weiwei; Ke, Lulu; Ouyang, Wei; Zhang, Zigui

    2017-09-01

    This study investigated the effects of fluoride exposure on the mRNA expression of Cav1.2 calcium signaling pathway and apoptosis regulatory molecules in PC12 cells. The viability of PC12 cell receiving high fluoride (5.0mM) and low fluoride (0.5mM) alone or fluoride combined with L-type calcium channel (LTCC) agonist/inhibitor (5umol/L FPL6417/2umol/L nifedipine) was detected using cell counting kit-8 at different time points (2, 4, 6, 8, 12, 10, and 24h). Changes in the cell configuration were observed after exposing the cells to fluoride for 24h. The expression levels of molecules related to the LTCC were examined, particularly, Cav1.2, c-fos, CAMK II, Bax, and Bcl-2. Fluoride poisoning induced severe cell injuries, such as decreased PC12 cell activity, enhanced cell apoptosis, high c-fos, CAMKII, and Bax mRNA expression levels. Bcl-2 expression level was also reduced. Meanwhile, high fluoride, high fluoride with FPL64176, and low fluoride with FPL64176 enhanced the Cav1.2 expression level. In contrast, low fluoride, high fluoride with nifedipine, and low fluoride with nifedipine reduced the Cav1.2 expression level. Thus, Cav1.2 may be an important molecular target for the fluorosis treatment, and the LTCC inhibitor nifedipine may be an effective drug for fluorosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    PubMed Central

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  9. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.

    PubMed

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C; Striessnig, Joerg; Liss, Birgit

    2014-08-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic

  10. Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.

    PubMed

    Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L

    2012-06-27

    The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  12. Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel.

    PubMed

    Björling, K; Morita, H; Olsen, M F; Prodan, A; Hansen, P B; Lory, P; Holstein-Rathlou, N-H; Jensen, L J

    2013-04-01

    Using mice deficient in the CaV 3.1 T-type Ca(2+) channel, the aim of the present study was to elucidate the molecular identity of non-L-type channels involved in vascular tone regulation in mesenteric arteries and arterioles. We used immunofluorescence microscopy to localize CaV 3.1 channels, patch clamp electrophysiology to test the effects of a putative T-type channel blocker NNC 55-0396 on whole-cell Ca(2+) currents, pressure myography and Ca(2+) imaging to test diameter and Ca(2+) responses of the applied vasoconstrictors, and Q-PCR to check mRNA expression levels of several Ca(2+) handling proteins in wild-type and CaV 3.1(-/-) mice. Our data indicated that CaV 3.1 channels are important for the maintenance of myogenic tone at low pressures (40-80 mm Hg), whereas they are not involved in high-voltage-activated Ca(2+) currents, Ca(2+) entry or vasoconstriction to high KCl in mesenteric arteries and arterioles. Furthermore, we show that NNC 55-0396 is not a specific T-type channel inhibitor, as it potently blocks L-type and non-L-type high-voltage-activated Ca(2+) currents in mouse mesenteric vascular smooth muscle cell. Our data using mice deficient in the CaV 3.1 T-type channel represent new evidence for the involvement of non-L-type channels in arteriolar tone regulation. We showed that CaV 3.1 channels are important for the myogenic tone at low arterial pressure, which is potentially relevant under resting conditions in vivo. Moreover, CaV 3.1 channels are not involved in Ca(2+) entry and vasoconstriction to large depolarization with, for example, high KCl. Finally, we caution against using NNC 55-0396 as a specific T-type channel blocker in native cells expressing high-voltage-activated Ca(2+) channels. Acta Physiologica © 2013 Scandinavian Physiological Society.

  13. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine.

    PubMed

    Bai, Qiufang; Song, Dan; Gu, Li; Verkhratsky, Alexei; Peng, Liang

    2017-04-01

    Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.

  14. ω-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels

    PubMed Central

    Tranberg, Charlotte Elisabet; Yang, Aijun; Vette, Irina; McArthur, Jeffrey R.; Baell, Jonathan B.; Lewis, Richard J.; Tuck, Kellie L.; Duggan, Peter J.

    2012-01-01

    The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner. PMID:23170089

  15. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against gram-positive bacteria.

    PubMed

    Caceres, A; Alvarez, A V; Ovando, A E; Samayoa, B E

    1991-02-01

    Respiratory ailments are important causes of morbidity and mortality in developing countries. Ethnobotanical surveys and literature reviews conducted in Guatemala during 1986-88 showed that 234 plants from 75 families, most of them of American origin, have been used for the treatment of respiratory ailments. Three Gram-positive bacteria causing respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) were used to screen 68 of the most commonly used plants for activity. Twenty-eight of these (41.2%) inhibited the growth of one or more of the bacteria tested. Staphylococcus aureus was inhibited by 18 of the plant extracts, while 7 extracts were effective against Streptococcus pyogenes. Plants of American origin which exhibited antibacterial activity were: Gnaphalium viscosum, Lippia alba, Lippia dulcis, Physalis philadelphica, Satureja brownei, Solanum nigrescens and Tagetes lucida. These preliminary in vitro results provide scientific basis for the use of these plants against bacterial respiratory infections.

  16. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    PubMed

    Rahman, W; Patel, R; Dickenson, A H

    2015-10-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional

  17. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis

    PubMed Central

    Rahman, W.; Patel, R.; Dickenson, A.H.

    2015-01-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased

  18. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.

  19. Effect of structurally related flavonoids from Zuccagnia punctata Cav. on Caenorhabditis elegans.

    PubMed

    D'Almeida, Romina E; Alberto, María R; Morgan, Phillip; Sedensky, Margaret; Isla, María I

    2014-03-01

    Zuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2´,4´-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug.

  20. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

    2014-07-01

    Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.

  1. Voltage-independent inhibition of Ca(V)2.2 channels is delimited to a specific region of the membrane potential in rat SCG neurons.

    PubMed

    Vivas, Oscar; Arenas, Isabel; García, David E

    2012-06-01

    Neurotransmitters and hormones regulate Ca(V)2.2 channels through a voltage-independent pathway which is not well understood. It has been suggested that this voltage-independent inhibition is constant at all membrane voltages. However, changes in the percent of voltage-independent inhibition of Ca(V)2.2 have not been tested within a physiological voltage range. Here, we used a double-pulse protocol to isolate the voltage-independent inhibition of Ca(V)2.2 channels induced by noradrenaline in rat superior cervical ganglion neurons. To assess changes in the percent of the voltage-independent inhibition, the activation voltage of the channels was tested between -40 and +40 mV. We found that the percent of voltage-independent inhibition induced by noradrenaline changed with the activation voltage used. In addition, voltage-independent inhibition induced by oxo-M, a muscarinic agonist, exhibited the same dependence on activation voltage, which supports that this pattern is not exclusive for adrenergic activation. Our results suggested that voltage-independent inhibition of Ca(V)2.2 channels depends on the activation voltage of the channel in a physiological voltage range. This may have relevant implications in the understanding of the mechanism involved in voltage-independent inhibition.

  2. Identification of interleukin-1 beta as a key mediator in the upregulation of Cav3.2–USP5 interactions in the pain pathway

    PubMed Central

    Stemkowski, Patrick L; Garcia-Caballero, Agustin; Gadotti, Vinicius M; M’Dahoma, Said; Chen, Lina; Souza, Ivana A

    2017-01-01

    We recently reported that nerve injury or peripheral inflammation triggers an upregulation of the deubiquitinase, USP5 in mouse dorsal root ganglion and spinal dorsal horn. This leads to dysregulated ubiquitination of Cav3.2 T-type calcium channels, thus increasing Cav3.2 channel plasma membrane expression and nociceptive signaling in the primary afferent pain pathway. This phenomenon could be recapitulated by noninvasive, optogenetic activation of transient receptor potential vanilloid-1–expressing nociceptors, indicating that neuronal activity is a key player in this process. Given the relevance of the pro-inflammatory cytokine interleukin-1 beta in many forms of pathological pain, we hypothesized that interleukin-1 beta may be a critical cofactor required to drive upregulation of interactions between USP5 and Cav3.2 channels. Here, we report that gene expression, as well as protein levels for interleukin-1 beta and the endogenous interleukin-1 receptor-I antagonist, IL-1Ra are unaltered following conditioning stimulation of optogenetically targeted cutaneous nociceptors, indicating that neuronal activity is not a driver of interleukin-1 beta signaling. In contrast, co-immunoprecipitation experiments revealed that intrathecal administration of interleukin-1 beta in wild-type mice led to an increase in the interaction between USP5 and Cav3.2 in the spinal dorsal horn. Moreover, disruption of the interaction between USP5 and Cav3.2 with TAT peptides suppressed acute nocifensive responses produced by interleukin-1 beta, which was similar to that achieved by elimination of T-type channel activity with the channel blockers, mibefradil, or TTA-A2. Finally, this upregulation could be maintained in dorsal root ganglion neuron cultures exposed overnight to interleukin-1 beta, while the copresence of interleukin-1 receptor antagonist or the dampening of neuronal cell activity with tetrodotoxin attenuated this response. Altogether, our findings identify interleukin-1 beta

  3. Repellence of the main components from the essential oil of Glycosmis lucida Wall. ex Huang against two stored product insects.

    PubMed

    Guo, Shan-Shan; Zhang, Wen-Juan; Yang, Kai; Liang, Jun-Yu; You, Chun-Xue; Wang, Cheng-Fang; Li, Yin-Ping; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan

    2017-05-01

    A screening of Chinese medicinal herbs and wild plants for agrochemicals was carried out; the essential oil of Glycosmis lucida leaves was found to possess significant repellent activity against Tribolium castaneum and Liposcelis bostrychophila. It was found that the main components included elixene (19.81%), spathulenol (10.68%), anethole (12.05%), verbenone (10.32%) followed by β-caryophyllene (6.87%). The essential oil, anethole and verbenone were strongly repellent against T. castaneum (96, 86 and 94%, respectively, at 15.73 nL cm -2 ) and L. bostrychophila (100, 68 and 72%, respectively, at 31.58 nL cm -2 ) after a 2h treatment. The results indicate that anethole and verbenone had the potential to be developed as natural repellents for control of stored product insects.

  4. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  5. Cell division versus cell elongation: the control of radicle elongation during thermoinhibition of Tagetes minuta achenes.

    PubMed

    Taylor, Nicky J; Hills, Paul N; van Staden, Johannes

    2007-12-01

    Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.

  6. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing.

    PubMed

    Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao

    2018-03-14

    Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. High doses of digoxin increase the myocardial nuclear factor-kB and CaV1.2 channels in healthy mice. A possible mechanism of digitalis toxicity.

    PubMed

    Farghaly, Hanan Sayed Mohamed; Ashry, Israa El-Sayed Mohamed; Hareedy, Mohammad Salem

    2018-06-06

    Toxic effects of digoxin may occur with normal therapeutic serum level. However, the underlying mechanisms are not fully understood. Nuclear factor kappa-B (NF-kB) is an important transcription factor in most organ systems and is often implicated in the harmful effects of cardiac injury. NF-kB promotes inflammatory responses, mediates adverse cardiac remodeling and has a function correlation with calcium. The voltage-gated L-type calcium channel CaV1.2 mediates the influx of Ca+2 into the cell in response to membrane depolarization. Our aim was to characterize the role of NF-kB during digoxin toxicity and to assess its correlation with Cav 1.2 in healthy mice in vivo. To address these questions, digoxin was administered in doses of 0.1, 1 or 5 mg/kg orally daily for seven days to the animals. Serum digoxin, serum calcium, atrial and ventricular calcium levels were measured. We, also, looked for NF-kB and CaV1.2 channel expression in cardiac muscle of mice. Digoxin at a dose of 0.1 mg/kg did not enhance serum, atrial, and ventricular Ca+2 levels, but were increased when digoxin dose of 1 and 5 mg/kg were administered. Histologically, myocardial necrosis and cellular infiltration on day 7 were significantly more severe in the 5 mg/kg/day digoxin group. Immunohistochemical studies showed more expression of both NF-kB and CaV1.2 in 1 and 5 mg/kg/day digoxin groups. These data suggest that NF-kB may be responsible for digoxin toxicity, at least partially via modulation of CaV1.2 and intracellular calcium homeostasis in the myocardium. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Comparative study of the chemical composition of essential oils of five Tagetes species collected in Venezuela.

    PubMed

    Armas, Kaylin; Rojas, Janne; Rojas, Luis; Morales, Antonio

    2012-09-01

    The leaves and inflorescences of five species of Tagetes, family Asteraceae, were collected from different locations in Mérida state, Venezuela, and their essential oils analyzed by GC and GC/MS. Several differences were observed in the composition of these oils, mainly regarding the major components, which for T. caracasana were trans-ocimenone (64.3%) and cis-tagetone (13.7%), and for T. erecta, piperitone (35.9%) and terpinolene (22.2%). High amounts of trans-anethole (87.5%) and estragole (10.7%) were observed in T. filifolia, while T. subulata essential oil contained terpinolene (26.0%), piperitenone (13.1%) and limonene (10.8%). For T. patula, two different oil samples were analyzed, leaves (TPL) and inflorescences (TPI). The TPL oil showed terpinolene (20.9%) and piperitenone (14.0%) as main components, while the TPI sample was composed mainly of beta-caryophyllene (23.7%), terpinolene (15.6%) and cis-beta-ocimene (15.5%).

  9. The Calmodulin-Binding, Short Linear Motif, NSCaTE Is Conserved in L-Type Channel Ancestors of Vertebrate Cav1.2 and Cav1.3 Channels

    PubMed Central

    Taiakina, Valentina; Boone, Adrienne N.; Fux, Julia; Senatore, Adriano; Weber-Adrian, Danielle

    2013-01-01

    NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels. PMID:23626724

  10. Redistribution of Cav2.1 channels and calcium ions in nerve terminals following end-to-side neurorrhaphy: ionic imaging analysis by TOF-SIMS.

    PubMed

    Liu, Chiung-Hui; Chang, Hung-Ming; Tseng, To-Jung; Lan, Chyn-Tair; Chen, Li-You; Youn, Su-Chung; Lee, Jian-Jr; Mai, Fu-Der; Chou, Jui-Feng; Liao, Wen-Chieh

    2016-11-01

    The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca 2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca 2+ -dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca 2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca 2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca 2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na + and K + , dramatic changes in the Ca 2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca 2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca 2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca 2+ influx and shortening the latency of muscle contraction during nerve regeneration.

  11. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis.

    PubMed

    Yuan, Hong-Fang; Zhao, Kai; Zang, Yu; Liu, Chun-Yan; Hu, Zhi-Yong; Wei, Jia-Jing; Zhou, Ting; Li, Ying; Zhang, Hui-Ping

    2017-04-11

    This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.

  12. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi

    PubMed Central

    Asrar, Abdul-Wasea A.; Elhindi, Khalid M.

    2010-01-01

    The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  13. Larvicidal Activity against Aedes aegypti and Chemical Characterization of the Inflorescences of Tagetes patula

    PubMed Central

    Antonelli-Ushirobira, Tânia Mara; Panizzon, Gean; Sereia, Ana Luiza; de Souza, José Roberto Pinto; Zequi, João Antonio Cyrino; Novello, Cláudio Roberto; Lopes, Gisely Cristiny; de Medeiros, Daniela Cristina; Silva, Denise Brentan; Leite-Mello, Eneri Vieira de Souza

    2017-01-01

    The crude acetone extract (CAE) of defatted inflorescences of Tagetes patula was partitioned into five semipurified fractions: n-hexane (HF), dichloromethane (DF), ethyl acetate (EAF), n-butanol (BF), and aqueous (AQF). BF was fractionated by reversed-phase polyamide column chromatography, obtaining 34 subfractions, which were subjected to HSCCC, where patuletin and patulitrin were isolated. CAE and the fractions BF, EAF, DF, and AQF were analyzed by LC-DAD-MS, and patuletin and patulitrin were determined as the major substances in EAF and BF, respectively. BF was also analyzed by HPLC and capillary electrophoresis (CE), and patulitrin was again determined to be the main substance in this fraction. CAE and the semipurified fractions (750, 500, 300, 100, and 50 mg/L) were assayed for larvicidal activity against Aedes aegypti, with mortality rate expressed as percentage. All fractions except AQF showed insecticidal activity after 24 h exposure of larvae to the highest concentration. However, EAF showed the highest activity with more than 50% reduction in larval population at 50 mg/L. The insecticidal activity observed with EAF might have been due to the higher concentration of patuletin present in this fraction. PMID:29362590

  14. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.

    PubMed

    Liu, Jia Nv; Zhou, Qi Xing; Wang, Song; Sun, Ting

    2009-02-01

    The role of ornamental plants has drawn much attention as the urban pollution levels exacerbate. Althaea rosea Cav. had showed its strong tolerance and accumulation ability of Cd in our previous work, thus, the effects of ethylenediamine triacetic acid (EDTA), ethylenegluatarotriacetic acid (EGTA) and sodium dodecyl sulfate (SDS) on its Cd phytoremediation capacity were further investigated in this work. It reconfirmed that the species had strong tolerance and accumulation ability of Cd. Particularly, the species can be regarded as a potential Cd-hyperaccumulator through applying chemical agents. However, different chelators and surfactants had great differences in affecting hyperaccumulating characteristics of the species. EGTA and SDS could not only increase the dry biomass of the plants, but also promote Cd accumulation in shoots and roots. On the contrary, EDTA was toxic to the species by restraining the growth of plants, although it could promote Cd accumulation in shoots and roots of the plants to a certain extent. Thus, EGTA and SDS were effective in enhancing phytoremediation with Althaea rosea Cav. for Cd contaminated soils, while EDTA is ineffective in this regard.

  15. Dysfunction of the CaV2.1 calcium channel in cerebellar ataxias

    PubMed Central

    Rajakulendran, Sanjeev; Schorge, Stephanie; Kullmann, Dimitri M

    2010-01-01

    Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease. PMID:20948794

  16. Experimental oral immunization of ferret badgers (Melogale moschata) with a recombinant canine adenovirus vaccine CAV-2-E3Δ-RGP and an attenuated rabies virus SRV9.

    PubMed

    Zhao, Jinghui; Liu, Ye; Zhang, Shoufeng; Fang, Lijun; Zhang, Fei; Hu, Rongliang

    2014-04-01

    Ferret badgers (Melogale moschata) are a major reservoir of rabies virus in southeastern China. Oral immunization has been shown to be a practical method for wildlife rabies management in Europe and North America. Two groups of 20 ferret badgers were given a single oral dose of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Δ-RGP, or an experimental attenuated rabies virus vaccine, SRV9. At 21 days, all ferret badgers had seroconverted, with serum virus-neutralizing antibodies ranging from 0.1 to 4.5 IU/mL. Titers were >0.50 IU/mL (an acceptable level) in 17/20 and 16/20 animals receiving CAV-2-E3Δ-RGP or SRV9, respectively. The serologic results indicate that the recombinant CAV-2-E3Δ-RGP is at least as effective as the attenuated rabies virus vaccine. Both may be considered for additional research as oral rabies vaccine candidates for ferret badgers.

  17. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    PubMed

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  19. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala.

    PubMed

    Girón, L M; Freire, V; Alonzo, A; Cáceres, A

    1991-09-01

    An ethnobotanical survey was conducted among the Carib population of Guatemala in 1988-1989. In general terms, the sample surveyed possessed a relatively good standard of living. Results indicated that health services were utilized by the population, and that domestic medicine, mainly plants (96.9%) was used by 15% of the population. One hundred and nineteen plants used for medicinal purposes were collected, of which 102 (85.7%) could be identified; a list of these together with the information provided for each plant is presented. The most frequently reported plants used as medicine are: Acalypha arvensis, Cassia alata, Cymbopogon citratus, Melampodium divaricatum. Momordica charantia, Neurolaena lobata, Ocimum basilicum, Petiveria alliacea and Solanum nigrescens. Most of these plants are found in the region, but some are brought from the Highlands or outside of the country, such as Malva parviflora, Matricaria chamomilla, Peumus boldus, Pimpinella anisum, Rosmarinus officinalis and Tagetes lucida. This survey demonstrated that the Carib population of Guatemala has survived in a transcultural environment of African and native Amerindian beliefs.

  20. Roost habitat of Mexican Spotted Owls (Strix occidentalis lucida) in the canyonlands of Utah

    USGS Publications Warehouse

    Willey, David W.; van Riper, Charles

    2015-01-01

    In large portions of their geographic range, Mexican Spotted Owls (Strix occidentalis lucida) roost in forest-dominated environments, but in some areas the owls use relatively arid rocky canyonlands. We measured habitat characteristics at 133 male roosts (n = 20 males) during 1992-95, and 56 female roosts (n = 13 females) during 1994-95. Across all years and study areas, 44% of Mexican Spotted Owl roosts occurred in mixed-conifer forest patches, 30% in desert scrub habitat, 16% in pinyon-juniper woodlands, and 10% of roosts occurred in riparian vegetation. Two basic substrates were used as perches by owls, including rock ledges or various trees, where roost height averaged 9 m (0.54 SD), and average height of cliffs above perched owls was 50 m (58 SD). For both males and females, trees types used most frequently included various firs (51%), followed by pinyon pine (18%), Utah juniper (15%), and big-tooth maple or box elder combined (15%). Roost sites were located in canyons composed of cliff-forming geologic formations, primarily oriented north-west to south-east. The width of canyons measured at roosts averaged 68 m (105 SD), but ranged from 1-500 m. Canopy cover at roosts used by owls ranged from 44% to 71%, mean tree height of all trees present was 9.5 m and mean diameter of trees was 25.4 cm. Non-roost habitat was warmer, not as steep, and possessed fewer caves and ledges than roost habitat. Trees present in roost plots were taller, and thus showed greater average diameter than trees present in non-roost habitat.

  1. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    PubMed

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. X-ray Photoelectron Spectroscopy study of CaV1-xMoxO3-δ

    NASA Astrophysics Data System (ADS)

    Belyakov, S. A.; Kuznetsov, M. V.; Shkerin, S. N.

    2018-06-01

    An investigation was carried out on perovskite-based derivatives of CaV1-xMoxO3-δ using X-ray Photoelectron Spectroscopy (XPS). According to the XRD pattern, the area of homogeneity covers the region from x = 0 to x = 0.6. Wide XPS-peaks of Ca, V, Mo and O are observed, signalling that elements are presented in multiple states. A model for explaining the large chemical shifts of XPS peaks due to different charging effects on different parts of the sample surface is proposed.

  3. The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression

    PubMed Central

    Moss, Fraser J.; Viard, Patricia; Davies, Anthony; Bertaso, Federica; Page, Karen M.; Graham, Alex; Cantí, Carles; Plumpton, Mary; Plumpton, Christopher; Clare, Jeffrey J.; Dolphin, Annette C.

    2002-01-01

    We have cloned and characterized a new member of the voltage-dependent Ca2+ channel γ subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential γ subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated γ7. Expression of human γ7 has been localized specifically to brain. N-type current through CaV2.2 channels was almost abolished when co-expressed transiently with γ7 in either Xenopus oocytes or COS-7 cells. Furthermore, immunocytochemistry and western blots show that γ7 has this effect by causing a large reduction in expression of CaV2.2 rather than by interfering with trafficking or biophysical properties of the channel. No effect of transiently expressed γ7 was observed on pre-existing endogenous N-type calcium channels in sympathetic neurones. Low homology to the stargazin-like γ subunits, different gene structure and the unique functional properties of γ7 imply that it represents a distinct subdivision of the family of proteins identified by their structural and sequence homology to stargazin. PMID:11927536

  4. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells.

    PubMed

    Lagrutta, Armando; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pregabalin Modulation of Neurotransmitter Release Is Mediated by Change in Intrinsic Activation/Inactivation Properties of Cav2.1 Calcium ChannelsS⃞

    PubMed Central

    Di Guilmi, Mariano N.; Urbano, Francisco J.; Inchauspe, Carlota Gonzalez

    2011-01-01

    In this work, we studied the effects of the anticonvulsant and analgesic drug pregabalin (PGB) on excitatory postsynaptic currents (EPSCs) at principal neurons of the mouse medial nucleus of the trapezoid body and on presynaptic calcium currents at the calyx of Held. We found that the acute application of PGB reduced the amplitude of EPSCs in a dose-dependent manner with a maximal blocking effect of approximately 30%. A clinical high-concentration dose of PGB (e.g., 500 μM) blocked Cav2.1 channel-mediated currents and decreased their facilitation during a 100-Hz train, without changing their voltage-dependent activation. Furthermore, PGB also removed the inactivation of Cav2.1 channels at a clinically relevant low concentration of 100 μM. These results suggest novel modulatory mechanisms mediated by the acute administration of PGB on fast excitatory synaptic transmission and might contribute to better understanding PGB anticonvulsant/analgesic clinical effects. PMID:21177783

  6. Effect of protein tyrosine kinase inhibitors on the current through the Ca(V)3.1 channel.

    PubMed

    Kurejová, Martina; Lacinová, L'ubica

    2006-02-01

    In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.

  7. Frequency of common polymorphisms in Caveolin 1 (CAV1 ) gene in adults with high serum triglycerides from Colombian Caribbean Coast

    PubMed Central

    Ruiz-Diaz, Maria Stephany; Gomez-Camargo, Doris Esther; Gomez-Alegria, Claudio Jaime

    2017-01-01

    Abstract Background: Caveolin 1 gene (CAV1) has been associated with insulin resistance, metabolic syndrome and hypertension in humans. Also, it has been related to high serum triglycerides in rodents, however there is little evidence of this relation in humans. Aim: To describe frequencies of common variations in CAV1 in adults with high serum triglycerides. Methods: A case-control study was carried out with adults from Colombian Caribbean Coast. A whole blood sample was employed to measure serum concentrations of triglycerides, glucose, total cholesterol and HDLc. Six common Single Nucleotide Polymorphism (SNP) in CAV1 were genotyped (rs926198, rs3779512, rs10270569, rs11773845, rs7804372 and rs1049337). Allelic and genotypic frequencies were determined by direct count and Hardy-Weinberg Equilibrium (HWE) was assessed. Case and control groups were compared with null-hypothesis tests. Results: A total of 220 cases and 220 controls were included. For rs3779512 an excess in homozygotes frequency was found within case group (40.4% (GG), 41.3% (GT) and 18.1% (TT); Fis=0.13, p=0.03). Another homozygotes excess among case group was found in rs7804372 (59.5% (TT), 32.3% (TA) and 8.2% (AA); Fis= 0.12, p= 0.04). In rs1049337, cases also showed an excess in homozygotes frequency (52.7% (CC), 35.0% (CT) and 12.3% (TT); Fis= 0.16, p= 0.01). Finally, for rs1049337 there were differences in genotype distribution between case and control groups (p <0.05). Conclusion: An increased frequency of homozygote genotypes was found in subjects with high serum triglycerides. These findings suggest that minor alleles for SNPs rs3779512, rs7804372 and rs1049337 might be associated to higher risk of hypertriglyceridemia. PMID:29662258

  8. Integrating Emerging Data Sources into Operational Practice: Capabilities and Limitations of Devices to Collect, Compile, Save, and Share Messages from CAVs and Connected Travelers

    DOT National Transportation Integrated Search

    2018-03-01

    Connected and automated vehicles (CAVs) and connected travelers will be providing substantially increased levels of data which will be available for agencies to consider using to improve the management and operation of the surface transportation syst...

  9. Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. and Larrea nitida Cav. extracts in clinical isolates of Candida albicans and Candida glabrata.

    PubMed

    Butassi, Estefanía; Svetaz, Laura A; Ivancovich, Juan J; Feresin, Gabriela E; Tapia, Alejandro; Zacchino, Susana A

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) and Larrea nitida Cav. (Zygophyllaceae) are indistinctly or jointly used in traditional medicine for the treatment of fungal-related infections. Although their dichloromethane (DCM) extract have demonstrated moderate antifungal activities when tested on their own, antifungal properties of combinations of both plants have not been assessed previously. The aim of this study was to establish with statistical rigor whether Z. punctata (ZpE) and L. nitida DCM extract (LnE) interact synergistically against the clinically important fungi Candida albicans and Candida glabrata and to characterize the most synergistic combinations. For synergism assessment, the statistical-based Boik's design was applied. Eight ZpE-LnE fixed-ratio mixtures were prepared from four different months of 1 year and tested against Candida strains. Lϕ (Loewe index) of each mixture at different fractions affected (ϕ) allowed for the finding of the most synergistic combinations, which were characterized by HPLC fingerprint and by the quantitation of the selected marker compounds. Lϕ and confidence intervals were determined in vitro with the MixLow method, once the estimated parameters from the dose-response curves of independent extracts and mixtures, were obtained. Markers (four flavonoids for ZpE and three lignans for LnE) were quantified in each extract and their combinations, with a valid HPLC-UV method. The 3D-HPLC profiles of the most synergistic mixtures were obtained by HPLC-DAD. Three over four IC50ZpE/IC50LnE fixed-ratio mixtures displayed synergistic interactions at effect levels ϕ > 0.5 against C. albicans. The dosis of the most synergistic (Lϕ = 0.62) mixture was 65.96 µg/ml (ZpE = 28%; LnE = 72%) containing 8 and 36% of flavonoids and lignans respectively. On the other hand, one over four IC50ZpE/IC50LnE mixtures displays synergistic interactions at ϕ > 0.5 against C. glabrata. The dosis of the most synergistic (Lϕ = 0.67) mixture was 168

  10. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  11. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    PubMed

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  12. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  13. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria

    PubMed Central

    Wagacha, John M.; Dossaji, Saifuddin F.

    2016-01-01

    The objective of this study was to determine the chemical composition and antibacterial activity of essential oils (EOs) of Tagetes minuta against three phytopathogenic bacteria Pseudomonas savastanoi pv. phaseolicola, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas axonopodis pv. manihotis. The essential oils were extracted using steam distillation method in a modified Clevenger-type apparatus while antibacterial activity of the EOs was evaluated by disc diffusion method. Gas chromatography coupled to mass spectrometry (GC/MS) was used for analysis of the chemical profile of the EOs. Twenty compounds corresponding to 96% of the total essential oils were identified with 70% and 30% of the identified components being monoterpenes and sesquiterpenes, respectively. The essential oils of T. minuta revealed promising antibacterial activities against the test pathogens with Pseudomonas savastanoi pv. phaseolicola being the most susceptible with mean inhibition zone diameters of 41.83 and 44.83 mm after 24 and 48 hours, respectively. The minimum inhibitory concentrations and minimum bactericidal concentrations of the EOs on the test bacteria were in the ranges of 24–48 mg/mL and 95–190 mg/mL, respectively. These findings provide a scientific basis for the use of T. minuta essential oils as a botanical pesticide for management of phytopathogenic bacteria. PMID:27721831

  14. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  15. Phytotoxicity testing of diesel-contaminated water using Petunia grandiflora Juss. Mix F1 and Marigold-Nemo Mix (Tagetes patula L.).

    PubMed

    Wante, Solomon Peter; Leung, David W M

    2018-06-17

    Tagetes patula (marigold) and Petunia grandiflora (petunia) have been shown to exhibit potential in phytoremediation of environmental pollutants including heavy metals and textile dyes. To investigate their phytoremediation potential of diesel, it was necessary to evaluate diesel phytotoxicity of these two ornamental plants. Marigold and petunia seeds were incubated, for 10 and 15 days, respectively, in deionised water contaminated with 0 to 4%, v/v, diesel in Petri dishes in a growth room with continuous lighting at 25 °C. It was found that as far as seed germination was concerned, petunia was less sensitive than marigold to 4% diesel in water. In contrast, petunia exhibited poorer seedling root growth than marigold in the presence of diesel contamination. This finding of differential sensitivity of these two ornamental plants to diesel-contaminated water during germination and seedling growth has not been reported before. Therefore, the implications of phytotoxicity evaluation and comparison between different species or genotypes of plants at both seed germination and postgermination seedling growth should both be taken into consideration in screening tolerant plants for phytoremediation.

  16. Performance measurement evaluation framework and co-benefit / tradeoff analysis for connected and automated vehicles (CAV) applications : a survey : a research report from the National Center for Sustainable Transportation.

    DOT National Transportation Integrated Search

    2017-09-01

    A number of Connected and/or Automated Vehicle (CAV) applications have recently been designed to improve the performance of our transportation system. Safety, mobility and environmental sustainability are three cornerstone performance metrics when ev...

  17. Analysis of sugar mill effluent and its influence on germination and growth of African marigold ( Tagetes erecta L.)

    NASA Astrophysics Data System (ADS)

    Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal

    2017-12-01

    Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.

  18. Trigeminal ganglion neuron subtype-specific alterations of CaV2.1 calcium current and excitability in a Cacna1a mouse model of migraine

    PubMed Central

    Fioretti, B; Catacuzzeno, L; Sforna, L; Gerke-Duncan, M B; van den Maagdenberg, A M J M; Franciolini, F; Connor, M; Pietrobon, D

    2011-01-01

    Abstract Familial hemiplegic migraine type-1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. The consequences of FHM1 mutations on the trigeminovascular pathway that generates migraine headache remain largely unexplored. Here we studied the calcium currents and excitability properties of two subpopulations of small-diameter trigeminal ganglion (TG) neurons from adult wild-type (WT) and R192Q FHM1 knockin (KI) mice: capsaicin-sensitive neurons without T-type calcium currents (CS) and capsaicin-insensitive neurons characterized by the expression of T-type calcium currents (CI-T). Small TG neurons retrogradely labelled from the dura are mostly CS neurons, while CI-T neurons were not present in the labelled population. CS and CI-T neurons express CaV2.1 channels with different activation properties, and the CaV2.1 channels are differently affected by the FHM1 mutation in the two TG neuron subtypes. In CI-T neurons from FHM1 KI mice there was a larger P/Q-type current density following mild depolarizations, a larger action potential (AP)-evoked calcium current and a longer AP duration when compared to CI-T neurons from WT mice. In striking contrast, the P/Q-type current density, voltage dependence and kinetics were not altered by the FHM1 mutation in CS neurons. The excitability properties of mutant CS neurons were also unaltered. Congruently, the FHM1 mutation did not alter depolarization-evoked CGRP release from the dura mater, while CGRP release from the trigeminal ganglion was larger in KI compared to WT mice. Our findings suggest that the facilitation of peripheral mechanisms of CGRP action, such as dural vasodilatation and nociceptor sensitization at the meninges, does not contribute to the generation of headache in FHM1. PMID:22005682

  19. Effect of Packaging on Shelf-life and Lutein Content of Marigold (Tagetes erecta L.) Flowers.

    PubMed

    Pal, Sayani; Ghosh, Probir Kumar; Bhattacharjee, Paramita

    2016-01-01

    African marigold (Tagetes erecta L.) flowers are highly valued for their ornamental appeal as well as medicinal properties. However, their short shelf lives cause high post-harvest loss and limit their export potential. The review of patents and research articles revealed that different types of packaging designs/materials have been successfully employed for extension of shelf lives of cut flowers. The current work focuses on designing of different packaging configurations and selection of best configuration for preservation of marigold cut flowers. Ten packaging configurations, composed of four different packaging materials i.e., low density polyethylene (LDPE), polyethylene terephthalate, glassine paper and cellophane paper, were designed. Each pack, consisting of 20 ± 1 g of marigold flowers along with non-packaged control set were stored at 23 ± 2°C, 80% R.H., in an environmental chamber and the flowers were evaluated for their sensory attributes, phytochemical characteristics and physicochemical parameters of senescence to determine their shelf lives. Flowers packed in LDPE bag showed highest shelf life of 8 days with a lead of 4 days compared to control (shelf life - 4 days). This study also established for the first time the phenomenon of carotenogenesis in marigold cut flowers with significantly (P<0.01) higher production of lutein in LDPE packaged flowers. LDPE pack was the best design among the ten package designs, in preserving lutein content of marigold flowers and extending their shelf lives. This economically viable packaging can not only boost the export potential of this ornamental flower, but also allow utilization of nutraceutical potency of lutein.

  20. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.

    PubMed

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Peralta, Ignacio; Alonso, Maria Rosario; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2018-05-07

    A detailed study of biomaterials is mandatory to comprehend their feasible biomedical applications in terms of drug delivery and tissue regeneration. Particularly, mucoadhesive biopolymers such as chitosan (chi) and carboxymethylcellulose (CMC) have become interesting biomaterials regards to their biocompatibility and non-toxicity for oral mucosal drug delivery. In this work, pH-responsive biopolymer-silica composites (Chi-SiO 2 , Chi-CMC-SiO 2 ) were developed. These two types of composites presented a different swelling behavior due to the environmental pH. Moreover, the nanocomposites were loaded with aqueous Larrea divaricata Cav. extract (Ld), a South American plant which presents antioxidant properties suitable for the treatment of gingivoperiodontal diseases. Chi-CMC-SiO 2 composites showed the highest incorporation and reached the 100% of extract release in almost 4 days while they preserved their antioxidant properties. In this study, thermal and swelling behavior were pointed out to show the distinct water-composite interaction and therefore to evaluate their mucoadhesivity. Furthermore, a cytotoxicity test with 3T3 fibroblasts was assessed, showing that in both composites the addition of Larrea divaricata Cav. extract increased fibroblast proliferation. Lastly, preliminary in vitro studies were performed with simulated body fluids. Indeed, SEM-EDS analysis indicated that only chi-SiO 2 composite may provide an environment for possible biomineralization while the addition of CMC to the composites discouraged calcium accumulation. In conclusion, the development of bioactive composites could promote the regeneration of periodontal tissue damaged throughout periodontal disease and the presence of silica nanoparticles could provide an environment for biomineralization. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus.

    PubMed

    Macedo, Iara Tersia Freitas; de Oliveira, Lorena Mayana Beserra; Camurça-Vasconcelos, Ana Lourdes Fernandes; Ribeiro, Wesley Lyeverton Correia; dos Santos, Jessica Maria Leite; de Morais, Selene Maia; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2013-01-01

    Phytotherapy can be an alternative for the control of gastrointestinal parasites of small ruminants. This study evaluated the efficacy of Alpinia zerumbet, Coriandrum sativum, Tagetes minuta and Lantana camara essential oils by two in vitro assays on Haemonchus contortus, an egg hatch test (EHT) and larval development test (LDT). No effect was observed for L. camara in the EHT. A. zerumbet, C. sativum and T. minuta essential oils exhibited a dose-dependent effect in the EHT, inhibiting 81.2, 99 and 98.1% of H. contortus larvae hatching, respectively, at a concentration of 2.5 mg mL-1. The effective concentration to inhibit 50% (EC50) of egg hatching was 0.94, 0.63 and 0.53 mg mL-1 for A. zerumbet, C. sativum and T. minuta essential oils, respectively. In LDT, L. camara, A. zerumbet, C. sativum and T. minuta at concentration of 10 mg mL-1 inhibited 54.9, 94.2, 97.8 and 99.5% of H. contortus larval development, presenting EC50 values of 6.32, 3.88, 2.89 and 1.67 mg mL-1, respectively. Based on the promising results presented in this in vitro model, it may be possible use of these essential oils to control gastrointestinal nematodes. However, their anthelmintic activity should be confirmed in vivo.

  2. In vitro and in vivo Nematocidal Activity of Allium sativum and Tagetes erecta Extracts Against Haemonchus contortus.

    PubMed

    Palacio- Landín, Josefina; Mendoza-de Gives, Pedro; Salinas-Sánchez, David Osvaldo; López-Arellano, María Eugenia; Liébano-Hernández, Enrique; Hernández-Velázquez, Victor Manuel; Valladares-Cisneros, María Guadalupe

    2015-12-01

    In the Mexican ethno-medicine, a number of plants have shown a successful anthelmintic activity. This fact could be crucial to identify possible green anti-parasitic strategies against nematodes affecting animal production. This research evaluated the in vitro and in vivo nematocidal effects of two single and combined plant extracts: bulbs of Allium sativum (n-hexane) and flowers of Tagetes erecta (acetone). The in vivo assay evaluated the administration of extracts either individually or combined against Haemonchus contortus in experimentally infected gerbils. The in vitro larvicidal activity percentage (LAP) of A. sativum and T. erecta extracts against H. contortus (L3) was determined by means of individual and combined usage of the extracts. Similarly, the extracts were evaluated in terms of reduction in the parasitic population in gerbils infected with H. contortus by individual and combined usage. The LAP at 40 mg/mL was 68% with A. sativum and 36.6% with T. erecta. The combination caused 83.3% mortality of parasites. The oral administration of A. sativum and T. erecta extracts at 40 mg/mL, caused 68.7% and 53.9% reduction of the parasitic burden, respectively. Meanwhile, the combined effect of both extracts shown 87.5% reduction. This study showed evidence about the effect of A. sativum and T. erecta plant extracts by means of individual and combined usage against H. contortus in in vitro and in vivo bioassays in artificially H. contortus-infected gerbils as a model.

  3. Thermodynamic Linkage Between Calmodulin Domains Binding Calcium and Contiguous Sites in the C-Terminal Tail of CaV1.2

    PubMed Central

    Evans, T. Idil Apak; Hell, Johannes; Shea, Madeline A.

    2011-01-01

    Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ′1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644–1670 bound with a Kd ~1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM. PMID:21757287

  4. The development of a droplet-vitrification method to conserve Vitis collections in the USDA-ARS National Plant Germplasm System and UDESC-CAV Santa Catarina State University in Brazil

    USDA-ARS?s Scientific Manuscript database

    Both the United States and Brazil maintain vast collections of grape genetic resources. We share a common interest in using cryopreservation methods for the secure, long-term back-up of accessions within these field collections of the USDA-ARS National Plant Germplasm System and UDESC-CAV Santa Cata...

  5. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.

    PubMed

    Lopin, Kyle V; Gray, I Patrick; Obejero-Paz, Carlos A; Thévenod, Frank; Jones, Stephen W

    2012-12-01

    Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.

  6. Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus, and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites

    PubMed Central

    Yim, Bunlong; Nitt, Heike; Wrede, Andreas; Jacquiod, Samuel; Sørensen, Søren J.; Winkelmann, Traud; Smalla, Kornelia

    2017-01-01

    Nurseries producing apple and rose rootstock plants, apple orchards as well as rose production often experience replanting problems after several cultivations at the same site when a chemical soil disinfectant is not applied. The etiology of apple and rose replanting problems is most likely caused by soil-borne pathogen complex, defined as “replant disease (RD)”. Symptoms typical of RD are reduced shoot and root growth, a smaller leaf area, a significant decrease in plant biomass, yield and fruit quality and a shorter life span. In our previous study, we showed that RD symptoms were reduced when apple rootstock M106 were grown in RD soils treated either with the soil fumigant Basamid or after biofumigation by incorporating Brassica juncea or Raphanus sativus or by growing Tagetes under field conditions compared to untreated control soil. The present study aimed at identifying potential bacterial and fungal taxa that were affected by different soil treatments and linking bacterial and fungal responders to plant performance. Miseq® Illumina® sequencing of 16S rRNA gene fragments (bacteria) and ITS regions (fungi) amplified from total community DNA extracted from soil samples taken 4 weeks after treatments were performed. Soil properties and culture history of the two RD sites greatly influenced soil microbiomes. Several bacterial genera were identified that significantly increased in treated soils such as Arthrobacter (R. sativus, both sites), Curtobacterium (Basamid, both sites), Terrimonas (Basamid and R. sativus, site A) and Ferruginibacter (B. juncea, site K and R. sativus, site A) that were also significantly and positively correlated with growth of apple M106 plants. Only few fungal genera, such as Podospora, Monographella and Mucor, were significantly promoted in soils treated with B. juncea and R. sativus (both sites). The least pronounced changes were recorded for bacterial as well as fungal communities in the RD soils planted with Tagetes. The

  7. Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry.

    PubMed

    Breithaupt, Dietmar E; Wirt, Ursula; Bamedi, Ameneh

    2002-01-02

    Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCIMS) was employed for the identification of eight lutein monoesters, formed by incomplete enzymatic saponification of lutein diesters of marigold (Tagetes erecta L.) by Candida rugosa lipase. Additionally, the main lutein diesters naturally occurring in marigold oleoresin were chromatographically separated and identified. The LC-MS method allows for characterization of lutein diesters occurring as minor components in several fruits; this was demonstrated by analysis of extracts of cape gooseberry (Physalis peruviana L.), kiwano (Cucumis metuliferus E. Mey. ex Naud.), and pumpkin (Cucurbita pepo L.). The assignment of the regioisomers of lutein monoesters is based on the characteristic fragmentation pattern: the most intense daughter ion generally results from the loss of the substituent (fatty acid or hydroxyl group) bound to the epsilon-ionone ring, yielding an allylic cation. The limit of detection was estimated at 0.5 microg/mL with lutein dimyristate as reference compound. This method provides a useful tool to obtain further insight into the biochemical reactions leading to lutein ester formation in plants.

  8. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity.

    PubMed

    Agüero, María Belén; Gonzalez, Mariela; Lima, Beatriz; Svetaz, Laura; Sánchez, Marianela; Zacchino, Susana; Feresin, Gabriela Egly; Schmeda-Hirschmann, Guillermo; Palermo, Jorge; Wunderlin, Daniel; Tapia, Alejandro

    2010-01-13

    This paper reports the in vitro antifungal activity of propolis extracts from the province of Tucuman (Argentina) as well as the identification of their main antifungal compounds and botanical origin. The antifungal activity was determined by the microdilution technique, using reference microorganisms and clinical isolates. All dermatophytes and yeasts tested were strongly inhibited by different propolis extracts (MICs between 16 and 125 microg mL(-1)). The most susceptible species were Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone 2 and 2',4'-dihydroxychalcone 3. Both displayed strong activity against clinical isolates of T. rubrum and T. mentagrophytes (MICs and MFCs between 1.9 and 2.9 microg mL(-1)). Additionally, galangin 5, pinocembrin 6, and 7-hydroxy-8-methoxyflavanone 9 were isolated from propolis samples and Zuccagnia punctata exudates, showing moderate antifungal activity. This is the first study matching the chemical profile of Z. punctata Cav. exudates with their corresponding propolis, giving strong evidence on the botanical origin of the studied propolis.

  9. Soma size and Cav1.3 channel expression in vulnerable and resistant motoneuron populations of the SOD1G93A mouse model of ALS

    PubMed Central

    Shoenfeld, Liza; Westenbroek, Ruth E.; Fisher, Erika; Quinlan, Katharina A.; Tysseling, Vicki M.; Powers, Randall K.; Heckman, Charles J.; Binder, Marc D.

    2014-01-01

    Abstract Although the loss of motoneurons is an undisputed feature of amyotrophic lateral sclerosis (ALS) in man and in its animal models (SOD1 mutant mice), how the disease affects the size and excitability of motoneurons prior to their degeneration is not well understood. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. Expression levels of the Cav1.3 channels were not differentiated by genotype, sex, or any interaction of the two. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS. PMID:25107988

  10. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae.

    PubMed

    Zhou, Xishi; Fu, Lei; Xia, Yan; Zheng, Luqing; Chen, Chen; Shen, Zhenguo; Chen, Yahua

    2017-07-19

    Arbuscular mycorrhizal fungi (AMF) are widespread soil fungi that can form endosymbiotic structures with the root systems of most plants and can improve the tolerance of host plants to heavy metals. In the present study, we investigated the effects of AMF (Glomus coronatum) inoculation on the tolerance of Tagetes patula L. to Cu. Almost all of the non-mycorrhizal plants exposed to 100 μM Cu died after 3 d, whereas phytotoxicity was only observed in mycorrhizal plants that were exposed to Cu concentrations greater than 100 μM. Analysing the dynamic accumulation of Cu indicated that, after 7 d of Cu exposure, less Cu was absorbed or accumulated by mycorrhizal plants than by control plants, and significantly less Cu was translocated to the shoots. Meanwhile, analysing the root morphology, the integrity of the root plasma membranes, the photosynthesis rate, and the content of essential elements of plants growing in cultures with 50 μM Cu revealed that AMF inoculation markedly alleviated the toxic effects of Cu stress on root system activity, photosynthesis rate, and mineral nutrient accumulation. In addition, to understand the Cu allocation, an energy spectrum analysis of Cu content at the transverse section of root tips was conducted and subsequently provided direct evidence that intraradical hyphae at the root endodermis could selectively immobilise large amounts of Cu. Indeed, the sorption and barrier mechanisms of AMF hyphae reduce Cu toxicity in the roots of T. patula and eventually enhance the plants' Cu tolerance.

  11. A comparative study of mucilage and pulp polysaccharides from tamarillo fruit (Solanum betaceum Cav.).

    PubMed

    do Nascimento, Georgia Erdmann; Iacomini, Marcello; Cordeiro, Lucimara M C

    2016-07-01

    A comparative study of mucilage (locular tissue) and pulp polysaccharides from ripe tamarillo fruits (Solanum betaceum Cav.) was carried out. After aqueous and alkaline extractions and various purification steps (freeze-thaw and α-amylase - EC 3.2.1.1 treatments, Fehling precipitation and ultrafiltration through 50 kDa cut-off membrane), the obtained fractions from mucilage were analyzed by sugar composition, HPSEC, and NMR spectroscopy analyses. The results showed that the mucilage of tamarillo contains a highly methoxylated homogalacturonans mixed with type I arabinogalactans, a linear (1 → 5)-linked α-L-arabinan, and a linear (1 → 4)-β-D-xylan. A comparison with polysaccharides extracted from the pulp revealed that differences were observed in the yield and in the ratio of extracted polysaccharides. Moreover, structural differences between pulp and mucilage polysaccharides were also observed, such as in the length of side chains of the pectins, and in the degree of branching of the xylans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.

    PubMed

    Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana

    2007-08-01

    Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent.

  13. Neo-clerodane and abietane diterpenoids with neurotrophic activities from the aerial parts of Salvia leucantha Cav.

    PubMed

    Li, Lai-Wei; Qi, Yan-Yan; Liu, Shi-Xi; Wu, Xing-De; Zhao, Qin-Shi

    2018-04-04

    Four new neoclerodane diterpenoids, leucansalvialins FI (1-4), and one rare 18(4 → 3)-abeo-abietane diterpenoid, leucansalvialin J (5), were isolated from the aerial part of Salvia leucantha Cav., along with 14 known analogues. Leucansalvialin F (1) represents the first rearranged salvigenane type clerodane-17,12:18,6-diolide. Their structures were elucidated by 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of 1, 2, 3, and 5 were determinded by X-ray diffraction crystal analysis and the ECD technique. All of the isolated components were evaluated for their neurotrophic activities on PC12 cells and all new compounds were evaluated for their cytotoxicity against five human cancer cell lines (HL-60, A-549, SMMC-7721, MCF-7, and SW480). Compounds 2 and 5 showed moderate neuroprotective effects in an in vitro assay. Copyright © 2018. Published by Elsevier B.V.

  14. Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav.

    PubMed

    Vieyra, Faustino E Morán; Boggetti, Héctor J; Zampini, Iris C; Ordoñez, Roxana M; Isla, María I; Alvarez, Rosa M S; De Rosso, Veridiana; Mercadante, Adriana Z; Borsarelli, Claudio D

    2009-06-01

    The singlet oxygen (1O2) quenching and free radical (DPPH(*), ABTS(* +) and O2(* -)) scavenging ability of three structurally-related flavonoids (7-hydroxyflavanone HF, 2',4'-dihydroxychalcone DHC and 3,7-dihydroxyflavone DHF) present in the Argentinean native shrub Zuccagnia punctata Cav. were studied in solution by combining electrochemical and kinetic measurements, mass spectroscopy, end-point antioxidant assays and computational calculations. The results showed that the antioxidant properties of these flavonoids depend on several factors, such as their electron- and hydrogen atom donor capacity, the ionization degree of the more acidic group, solvatation effects and electrostatic interactions with the oxidant species. The theoretical calculations for both the gas and solution phases at the B3LYP level of theory for the Osanger reaction field model agreed with the experimental findings, thus supporting the characterization of the antioxidant mechanism of the Z. punctata flavonoids.

  15. Systematic review and technological overview of the antimicrobial activity of Tagetes minuta and future perspectives.

    PubMed

    Santos, Daniela Coelho Dos; Schneider, Lara Rodrigues; da Silva Barboza, Andressa; Diniz Campos, Ângela; Lund, Rafael Guerra

    2017-08-17

    The antimicrobial potential of Tagetes minuta was correlated with its traditional use as antibacterial, insecticidal, biocide, disinfectant, anthelminthic, antifungal, and antiseptic agent as well as its use in urinary tract infections. This study aimed to systematically review articles and patents regarding the antimicrobial activity of T. minuta and give rise to perspectives on this plant as a potential antimicrobial agent. A literature search of studies published between 1997 and 2015 was conducted over five databases: MedLine (PubMed), Web of Science, Scopus, Google Scholar, Portal de Periódicos Capes and SciFinder, grey literature was explored using the System for Information on Dissertations database, and theses were searched using the ProQuest Dissertations and Theses Full text database and the Periódicos Capes Theses database. Additionally, the following databases for patents were analysed: United States Patent and Trademark Office (USPTO), Google Patents, National Institute of Industrial Property (INPI) and Espacenet patent search (EPO). The data were tabulated and analysed using Microsoft Office Excel 2010. After title screening, 51 studies remained and this number decreased to 26 after careful examinations of the abstracts. The full texts of these 26 studies were assessed to check if they were eligible. Among them, 3 were excluded for not having full text access, and 11 were excluded because they did not fit the inclusion criteria, which left 10 articles for this systematic review. The same process was conducted for the patent search, resulting in 4 patents being included in this study. Recent advances highlighted by this review may shed light on future directions of studies concerning T. minuta as a novel antimicrobial agent, which should be repeatedly proven in future animal and clinical studies. Although more evidence on its specificity and clinical efficacy are necessary to support its clinical use, T. minuta is expected to be a highly effective

  16. Transient compartment-like syndrome and normokalaemic periodic paralysis due to a Cav1.1 mutation

    PubMed Central

    Fan, Chunxiang; Lehmann-Horn, Frank; Weber, Marc-André; Bednarz, Marcin; Groome, James R.; Jonsson, Malin K. B.

    2013-01-01

    We studied a two-generation family presenting with conditions that included progressive permanent weakness, myopathic myopathy, exercise-induced contracture before normokalaemic periodic paralysis or, if localized to the tibial anterior muscle group, transient compartment-like syndrome (painful acute oedema with neuronal compression and drop foot). 23Na and 1H magnetic resonance imaging displayed myoplasmic sodium overload, and oedema. We identified a novel familial Cav1.1 calcium channel mutation, R1242G, localized to the third positive charge of the domain IV voltage sensor. Functional expression of R1242G in the muscular dysgenesis mouse cell line GLT revealed a 28% reduced central pore inward current and a −20 mV shift of the steady-state inactivation curve. Both changes may be at least partially explained by an outward omega (gating pore) current at positive potentials. Moreover, this outward omega current of 27.5 nS/nF may cause the reduction of the overshoot by 13 mV and slowing of the upstroke of action potentials by 36% that are associated with muscle hypoexcitability (permanent weakness and myopathic myopathy). In addition to the outward omega current, we identified an inward omega pore current of 95 nS/nF at negative membrane potentials after long depolarizing pulses that shifts the R1242G residue above the omega pore constriction. A simulation reveals that the inward current might depolarize the fibre sufficiently to trigger calcium release in the absence of an action potential and therefore cause an electrically silent depolarization-induced muscle contracture. Additionally, evidence of the inward current can be found in 23Na magnetic resonance imaging-detected sodium accumulation and 1H magnetic resonance imaging-detected oedema. We hypothesize that the episodes are normokalaemic because of depolarization-induced compensatory outward potassium flux through both delayed rectifiers and omega pore. We conclude that the position of the R1242G residue

  17. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  18. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M.

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD formore » 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.« less

  19. Preclinical evidence of the anxiolytic and sedative-like activities of Tagetes erecta L. reinforces its ethnobotanical approach.

    PubMed

    Pérez-Ortega, Gimena; Angeles-López, Guadalupe Esther; Argueta-Villamar, Arturo; González-Trujano, María Eva

    2017-09-01

    Morelos State is one of the regions of Mexico where several plant species are used in traditional medicine. Species from Tagetes genus (Asteraceae) are reported as useful in infusion to treat stomachache and intestinal diseases, but also as tranquilizers. In this study, medicinal uses of T. erecta including its depressant effect on the central nervous system (CNS) were explored by interviewing healers and merchants of local markets of Morelos State, and by investigation of the phytochemical and pharmacological tranquilizing properties. Specific anxiolytic and/or sedative-like responses of different doses of T. erecta (10, 30 and 100 or 300mg/kg, i.p.) were investigated using experimental models in mice such as: open-field, exploration cylinder, hole-board, and the barbituric-induced hypnosis potentiation. The possible anxiolytic mechanism of action was assessed in the presence of WAY100635 (0.32mg/kg, i.p.) and flumazenil (10mg/kg, i.p.), antagonists of 5-HT 1A and GABA/BDZs receptors, respectively. Individual flavonoids reported in this species were also evaluated in these experimental models. As a result of this study, healers and merchants from ten local regions of Morelos State recommended T. erecta flowers as an infusion or as a tincture for several culture-bound syndromes associated with CNS, among others. Anxiolytic and sedative-like activities of the T. erecta aqueous and organic polar extracts were corroborated in these models associated to a participation of rutin, kaempferol, quercetin, kaempferitrin, and β-sitosterol constituents; where 5-HT 1A , but not BDZs, receptors were involved as anxiolytic mechanism of action. These data support the anxiolytic and sedative-like properties of T. erecta in traditional medicine by involving mainly serotonergic neurotransmission because of the presence in part of flavonoids and the terpenoid β-sitosterol. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta.

    PubMed

    Ai, Ye; Zhang, Chunling; Sun, Yalin; Wang, Weining; He, Yanhong; Bao, Manzhu

    2017-01-01

    According to the floral organ development ABC model, B class genes specify petal and stamen identification. In order to study the function of B class genes in flower development of Tagetes erecta, five MADS-box B class genes were identified and their expression and putative functions were studied. Sequence comparisons and phylogenetic analyses indicated that there were one PI-like gene-TePI, two euAP3-like genes-TeAP3-1 and TeAP3-2, and two TM6-like genes-TeTM6-1 and TeTM6-2 in T. erecta. Strong expression levels of these genes were detected in stamens of the disk florets, but little or no expression was detected in bracts, receptacles or vegetative organs. Yeast hybrid experiments of the B class proteins showed that TePI protein could form a homodimer and heterodimers with all the other four B class proteins TeAP3-1, TeAP3-2, TeTM6-1 and TeTM6-2. No homodimer or interaction was observed between the euAP3 and TM6 clade members. Over-expression of five B class genes of T. erecta in Nicotiana rotundifolia showed that only the transgenic plants of 35S::TePI showed altered floral morphology compared with the non-transgenic line. This study could contribute to the understanding of the function of B class genes in flower development of T. erecta, and provide a theoretical basis for further research to change floral organ structures and create new materials for plant breeding.

  1. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  3. Molecular Evidence for Multiple Origins of Hybridogenetic Fish Clones (Poeciliidae: Poeciliopsis)

    PubMed Central

    Quattro, J. M.; Avise, J. C.; Vrijenhoek, R. C.

    1991-01-01

    Hybrid matings between the sexual species Poeciliopsis monacha and Poeciliopsis lucida produced a series of diploid all-female lineages of P. monacha-lucida that inhabit the Rio Fuerte of northwestern Mexico. Restriction site analyses of mitochondrial DNA (mtDNA) clearly revealed that P. monacha was the maternal ancestor of these hybrids. The high level of mtDNA diversity in P. monacha was mirrored by similarly high levels in P. monacha-lucida; thus hybridizations giving rise to unisexual lineages have occurred many times. However, mtDNA variability among P. monacha-lucida lineages revealed a geographical component. Apparently the opportunity for the establishment of unisexual lineages varies among tributaries of the Rio Fuerte. We hypothesize that a dynamic complex of sexual and clonal fishes appear to participate in a feedback process that maintains genetic diversity in both the sexual and asexual components. PMID:2004710

  4. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    PubMed

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  5. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments.

  6. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae.

    PubMed

    Jasso Díaz, Gabriela; Hernández, Glafiro Torres; Zamilpa, Alejandro; Becerril Pérez, Carlos Miguel; Ramírez Bribiesca, J Efrén; Hernández Mendo, Omar; Sánchez Arroyo, Hussein; González Cortazar, Manasés; Mendoza de Gives, Pedro

    2017-08-01

    Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia are plants with deworming potential. The purpose of this study was to evaluate methanolic extracts of aerial parts of these plants against Haemonchus contortus eggs and infective larvae (L3) and identify compounds responsible for the anthelmintic activity. In vitro probes were performed to identify the anthelmintic activity of plant extracts: egg hatching inhibition (EHI) and larvae mortality. Open column Chromatography was used to bio-guided fractionation of the extract, which shows the best anthelmintic effect. The lethal concentration to inhibit 50% of H. contortus egg hatching or larvae mortality (LC 50 ) was calculated using a Probit analysis. Bio-guided procedure led to the recognition of an active fraction (TF11) mainly composed by 1) quercetagitrin, 2) methyl chlorogenate and chlorogenic acid. Quercetagitrin (1) and methyl chlorogenate (2) did not show an important EHI activity (3-14%) (p < 0.05); however, chlorogenic acid (3) showed 100% of EHI (LC 50 248 μg/mL) (p < 0.05). Chlorogenic acid is responsible of the ovicidal activity and it seems that, this compound is reported for the first time with anthelmintic activity against a parasite of importance in sheep industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interactions between N and C termini of α1C subunit regulate inactivation of CaV1.2 L-type Ca2+ channel

    PubMed Central

    Benmocha Guggenheimer, Adva; Almagor, Lior; Tsemakhovich, Vladimir; Tripathy, Debi Ranjan; Hirsch, Joel A; Dascal, Nathan

    2016-01-01

    The modulation and regulation of voltage-gated Ca2+ channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca2+ channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca2+, presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca2+-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca2+ entry into the cell. PMID:26577286

  8. Techno-functional properties and in vitro bile acid-binding capacities of tamarillo (Solanum betaceum Cav.) hydrocolloids.

    PubMed

    Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah

    2016-04-01

    Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Profiling the array of Ca(v)3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations.

    PubMed

    Emerick, Mark C; Stein, Rebecca; Kunze, Robin; McNulty, Megan M; Regan, Melissa R; Hanck, Dorothy A; Agnew, William S

    2006-08-01

    We describe the regulated transcriptome of CACNA1G, a human gene for T-type Ca(v)3.1 calcium channels that is subject to extensive alternative RNA splicing. Fifteen sites of transcript variation include 2 alternative 5'-UTR promoter sites, 2 alternative 3'-UTR polyadenylation sites, and 11 sites of alternative splicing within the open reading frame. A survey of 1580 fetal and adult human brain full-length complementary DNAs reveals a family of 30 distinct transcripts, including multiple functional forms that vary in expression with development. Statistical analyses of fetal and adult transcript populations reveal patterns of linkages among intramolecular splice site configurations that change dramatically with development. A shift from nearly independent, biased splicing in fetal transcripts to strongly concerted splicing in adult transcripts suggests progressive activation of multiple "programs" of splicing regulation that reorganize molecular structures in differentiating cells. Patch-clamp studies of nine selected variants help relate splicing regulation to permutations of the gating parameters most likely to modify T-channel physiology in expressing neurons. Gating behavior reflects combinatorial interactions between variable domains so that molecular phenotype depends on ensembles of coselected domains, consistent with the observed emergence of concerted splicing during development. We conclude that the structural gene and networks of splicing regulatory factors define an integrated system for the phenotypic variation of Ca(v)3.1 biophysics during nervous system development. Copyright 2006 Wiley-Liss, Inc.

  10. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate.

    PubMed

    de Fátima Reis, Carolina; de Andrade, Daniela Medeiros Lobo; Junior Neves, Bruno; de Almeida Ribeiro Oliveira, Leandra; Pinho, José Felippe; da Silva, Leidiane Pinha; Dos Santos Cruz, Jader; Bara, Maria Teresa Freitas; Andrade, Carolina Horta; Rocha, Matheus Lavorenti

    2015-10-01

    Pterodon spp. Vogel (Fabaceae), popularly known as "sucupira", has ethnopharmacological application which is described as having antispasmodic and relaxant effects. Hence, it was hypothesized that sucupira oil-resin (SOR) could induce smooth muscle relaxation. So, this study investigated the mechanisms involved in the vasorelaxant effect of SOR and its isolated diterpene (methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate). Vascular reactivity experiments were performed using rat aortic rings (n=5-8) with (E+) or without endothelium (E-) in an isolated bath organ. The SOR (0-56 μg/mL) relaxed phenylephrine (E+: 86.7±7.1%; E-: 92.3±4.7%) and KCl contracted rings (E-: 97.1±2.8%). In the same way, diterpene (0-48 μg/mL) also relaxed phenylephrine (E+: 94.5±3.6%; E-: 92.2±3.4%) and KCl contracted rings (E-: 99.7±0.2%). The pre-incubation of arterial rings with cyclopiazonic acid (reticular Ca2+-ATPase inhibitor), tetraethylammonium (K+ channels blocker) or MDL-12,330A (adenylyl cyclesinhibitor) did not modify either SOR- or diterpeneinduced vasorelaxation. However, ODQ (guanylyl cyclase inhibitor) impaired only diterpene-induced vasorelaxation. SOR and diterpene significantly reduced CaCl2-induced contraction stimulated by Bay K8644 (1 μM), phenylephrine (0.1 μM) or KCl solution (40 mM). Computational molecular docking studies demonstrated that the vasodilator effect of diterpene relies on blocking the Cav 1.2 channel, and patch clamp results showed that diterpene substantially decreased the ionic current through Cav 1.2 in freshly dissociated vascular smooth muscle cells. These findings suggest that SOR and its isolated diterpene induce endothelium-independent vascular relaxation by blocking the L-type Ca2+ channel (Cav 1.2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spasmolytic effect of aqueous extract of Tagetes erecta L. flowers is mediated through calcium channel blockade on the guinea-pig ileum.

    PubMed

    Ventura-Martínez, Rosa; Ángeles-López, Guadalupe E; Rodríguez, Rodolfo; González-Trujano, Ma Eva; Déciga-Campos, Myrna

    2018-07-01

    This study provides pharmacological evidence on the spasmolytic activity of Tagetes erecta L. (marigold or cempasúchil) on the guinea-pig ileum and presents data on its mechanism of action. The relaxant effect on KCl contractions was more marked with aqueous (AqEx) than with ethanol extracts (EtEx) of T. erecta flowers (55.6 ± 11.0 vs 21.1 ± 4.4%, respectively). In addition, the aqueous extract antagonized contractions elicited by EFS, but not by acetylcholine (73.5 ± 1.9 vs 14.5 ± 5.3%, respectively). These effects were not diminished by hexamethonium or L-NAME, but this extract caused a rightward shift in the Ca 2+ concentration-response curves like that of verapamil. Quercetin and rutin, two flavonoids present in this plant, also showed spasmolytic effects (95.7 ± 2.8 and 27.9 ± 7.1%, respectively). Interestingly, in tissues without spasmogens, the extract induced contractions superimposed on their spontaneous activity. These results support the traditional use of T. erecta as a spasmolytic in folk medicine and suggest mainly that quercetin could be partly responsible for this effect. The spasmolytic effect appears to involve voltage-gated calcium channels, but not the nitric oxide pathway or the release of neurotransmitters from enteric neurons. Nevertheless, this plant could produce colic or stomachache as adverse effects in clinical situations in which these symptoms are not originally present. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    PubMed

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  13. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice

    PubMed Central

    2013-01-01

    Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842

  14. Cytoplasmic Location of α1A Voltage-Gated Calcium Channel C-Terminal Fragment (Cav2.1-CTF) Aggregate Is Sufficient to Cause Cell Death

    PubMed Central

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  15. Association between Genetic Polymorphisms in Cav2.3 (R-type) Ca2+ Channels and Fentanyl Sensitivity in Patients Undergoing Painful Cosmetic Surgery

    PubMed Central

    Fukuda, Ken-ichi; Kasai, Shinya; Hasegawa, Junko; Hayashida, Masakazu; Minami, Masabumi; Ikeda, Kazutaka

    2013-01-01

    Individual differences in the sensitivity to fentanyl, a widely used opioid analgesic, lead to different proper doses of fentanyl, which can hamper effective pain treatment. Voltage-activated Ca2+ channels (VACCs) play a crucial role in the nervous system by controlling membrane excitability and calcium signaling. Cav2.3 (R-type) VACCs have been especially thought to play critical roles in pain pathways and the analgesic effects of opioids. However, unknown is whether single-nucleotide polymorphisms (SNPs) of the human CACNA1E (calcium channel, voltage-dependent, R type, alpha 1E subunit) gene that encodes Cav2.3 VACCs influence the analgesic effects of opioids. Thus, the present study examined associations between fentanyl sensitivity and SNPs in the human CACNA1E gene in 355 Japanese patients who underwent painful orofacial cosmetic surgery, including bone dissection. We first conducted linkage disequilibrium (LD) analyses of 223 SNPs in a region that contains the CACNA1E gene using genomic samples from 100 patients, and a total of 13 LD blocks with 42 Tag SNPs were observed within and around the CACNA1E gene region. In the preliminary study using the same 100 genomic samples, only the rs3845446 A/G SNP was significantly associated with perioperative fentanyl use among these 42 Tag SNPs. In a confirmatory study using the other 255 genomic samples, this SNP was also significantly associated with perioperative fentanyl use. Thus, we further analyzed associations between genotypes of this SNP and all of the clinical data using a total of 355 samples. The rs3845446 A/G SNP was associated with intraoperative fentanyl use, 24 h postoperative fentanyl requirements, and perioperative fentanyl use. Subjects who carried the minor G allele required significantly less fentanyl for pain control compared with subjects who did not carry this allele. Although further validation is needed, the present findings show the possibility of the involvement of CACNA1E gene polymorphisms

  16. Neptunomonas phycophila sp. nov. isolated from a culture of Symbiodinium sp., a dinoflagellate symbiont of the sea anemone Aiptasia tagetes.

    PubMed

    Frommlet, Jörg; Guimarães, Bárbara; Sousa, Lígia; Serôdio, João; Alves, Artur

    2015-03-01

    A Gram-stain-negative, facultatively anaerobic, oxidase- and catalase-positive, rod-shaped bacterium, strain SYM1(T), was isolated from a culture of Symbiodinium sp., an algal symbiont of the sea anemone Aiptasia tagetes collected in Puerto Rico. Growth was observed at 4-40 °C (optimum 30 °C), at pH 5.0-11.0 (optimum pH 8.0) and with 0.5-8 % (optimum 2 %) (w/v) NaCl. Phylogenetic analyses of 16S rRNA gene sequences showed that strain SYM1(T) was a member of the genus Neptunomonas with the type strain of Neptunomonas naphthovorans as the closest phylogenetic relative with a pairwise sequence similarity of 98.15 %. However, DNA-DNA relatedness between strain SYM1(T) and N. naphthovorans CIP 106451(T) was 24 %. Moreover, strain SYM1(T) could be distinguished from its closest relative by several phenotypic characteristics such as NaCl, pH and temperature tolerance, nitrate reduction and utilization of carbon substrates. The major cellular fatty acids were C16 : 0, C18 : 1ω7c and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The genomic DNA G+C content of strain SYM1(T) was 45 mol%. Ubiquinone-8 (Q-8) was the only respiratory quinone detected. Based on a polyphasic taxonomic characterization, strain SYM1(T) represents a novel species of the genus Neptunomonas, for which the name Neptunomonas phycophila sp. nov. is proposed. The type strain is SYM1(T) ( = LMG 28329(T) = CECT 8716(T)). © 2015 IUMS.

  17. Repellent effects of the essential oils of Cymbopogon citratus and Tagetes minuta on the sandfly, Phlebotomus duboscqi.

    PubMed

    Kimutai, Albert; Ngeiywa, Moses; Mulaa, Margaret; Njagi, Peter G N; Ingonga, Johnstone; Nyamwamu, Lydia B; Ombati, Cyprian; Ngumbi, Philip

    2017-02-15

    The sandfly, Phlebotomus duboscqi is a vector of zoonotic cutaneous leishmaniasis (ZCL) that is an important public health problem in Eastern Africa. Repellents have been used for protection of humans against vectors of ZCL and other vectors that transmit killer diseases including malaria, Rift Valley fever, dengue, and yellow fever. The repellent effects of different doses of the essential oils from the lemon grass, Cymbopogon citratus and Mexican marigold, Tagetes minuta were evaluated in a two-chamber bioassay against 3- to 7-day-old unfed females of P. duboscqi in the laboratory. The results were compared with those that were obtained when test animals were treated with an equivalent dose of diethyl-3-methylbenzamide, which is a repellent that is commonly used as a positive control. Overall, percentage repellency increased with increasing doses of the essential oils while biting rates decreased with increasing concentrations of the oils. Further, the oil of C. citratus was more potent than that of T. minuta with regard to protection time and biting deterrence. The effective doses at 50% (ED 50 ) and at 90% (ED 90 ) for the oil of C. citratus, were 0.04 and 0.79 mg/ml, respectively. Those of the oil of T. minuta were 0.10 and 12.58 mg/ml. In addition, the percentage repellency of 1 mg/ml of the essential oils of C. citratus and T. minuta against sandflies was 100% and 88.89%, respectively. A lower dose of 0.5 mg/ml of the oils, elicited 89.13% repellency for C. citratus and 52.22% for T. minuta. The laboratory tests showed that the essential oils of the two plants were highly repellent to adult sand flies, P. duboscqi. Thus, the two essential oils are candidate natural repellents that can be used against P. duboscqi due to their high efficacy at very low doses, hence, the envisaged safety in their use over chemical repellents. It remains to carry out clinical studies on human subjects with appropriate formulations of the oils prior to recommending their

  18. Salinity and Alkaline pH of Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning

    USDA-ARS?s Scientific Manuscript database

    Marigold, is one of the most popular annual ornamental plants. Both the short-statured cultivars (Tagetes patula L.) and the taller cultivars (T. erecta L.) are used as container plants, in landscape and garden settings. Tagetes erecta varieties make excellent cut and dried flowers for the florist...

  19. Two Components of Voltage-Dependent Inactivation in Cav1.2 Channels Revealed by Its Gating Currents

    PubMed Central

    Ferreira, Gonzalo; Ríos, Eduardo; Reyes, Nicolás

    2003-01-01

    Voltage-dependent inactivation (VDI) was studied through its effects on the voltage sensor in Cav1.2 channels expressed in tsA 201 cells. Two kinetically distinct phases of VDI in onset and recovery suggest the presence of dual VDI processes. Upon increasing duration of conditioning depolarizations, the half-distribution potential (V1/2) of intramembranous mobile charge was negatively shifted as a sum of two exponential terms, with time constants 0.5 s and 4 s, and relative amplitudes near 50% each. This kinetics behavior was consistent with that of increment of maximal charge related to inactivation (Qn). Recovery from inactivation was also accompanied by a reduction of Qn that varied with recovery time as a sum of two exponentials. The amplitudes of corresponding exponential terms were strongly correlated in onset and recovery, indicating that channels recover rapidly from fast VDI and slowly from slow VDI. Similar to charge “immobilization,” the charge moved in the repolarization (OFF) transient became slower during onset of fast VDI. Slow VDI had, instead, hallmarks of interconversion of charge. Confirming the mechanistic duality, fast VDI virtually disappeared when Li+ carried the current. A nine-state model with parallel fast and slow inactivation pathways from the open state reproduces most of the observations. PMID:12770874

  20. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma

    PubMed Central

    Zhang, H; Su, L; Müller, S; Tighiouart, M; Xu, Z; Zhang, X; Shin, H J C; Hunt, J; Sun, S-Y; Shin, D M; Chen, Z(G)

    2008-01-01

    Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin β1 and Src. Further application of integrin β1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions. PMID:19002186

  1. Environmental Assessment for Southern Utah Relay Node Site NO. RN 8C919UT

    DTIC Science & Technology

    1993-03-18

    ambersnail Oxvloma haydeni kanabensis Mexican Spotted owl Strix occidentalis lucida We would like to bring to yoiir attention species which are candidates for... spotted owl (Strix occidentalis lucida), the Kanab ambersnail (Oxyloma haydeni kanabensis), and three plants: Welsh’s milkweed (Asclepias welshii), Jones...Hualapai, Yavapai-Apache, and Ute tribes, and the Navajo Nation . These tribes were notified, the GWEN project was explained, and information was

  2. Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α1C-subunit of Cav1.2b calcium channels in colonic smooth muscle cells.

    PubMed

    Li, Qingjie; Sarna, Sushil K

    2011-01-01

    Chronic stress elevates plasma norepinephrine, which enhances expression of the α(1C)-subunit of Ca(v)1.2b channels in colonic smooth muscle cells within 1 h. Transcriptional upregulation usually does not explain such rapid protein synthesis. We investigated whether chronic stress-induced release of norepinephrine utilizes posttranscriptional mechanisms to enhance the α(1C)-subunit. We performed experiments on colonic circular smooth muscle strips and in conscious rats, using a 9-day chronic intermittent stress protocol. Incubation of rat colonic muscularis externa with norepinephrine enhanced α(1C)-protein expression within 45 min, without a concomitant increase in α(1C) mRNA, indicating posttranscriptional regulation of α(1C)-protein by norepinephrine. We found that norepinephrine activates the PI3K/Akt/GSK-3β pathway to concurrently enhance α(1C)-protein translation and block its polyubiquitination and proteasomal degradation. Incubation of colonic muscularis externa with norepinephrine or LiCl, which inhibits GSK-3β, enhanced p-GSK-3β and α(1C)-protein time dependently. Using enrichment of phosphoproteins and ubiquitinated proteins, we found that both norepinephrine and LiCl decrease α(1C) phosphorylation and polyubiquitination. Concurrently, they suppress eIF2α (Ser51) phosphorylation and 4E-BP1 expression, which stimulates gene-specific translation. The antagonism of two upstream kinases, PI3K and Akt, inhibits the induction of α(1C)-protein by norepinephrine. Cyanopindolol (β(3)-AR-antagonist) almost completely suppresses and propranolol (β(1/2)-AR antagonist) partially suppresses norepinephrine-induced α(1C)-protein expression, whereas phentolamine and prazosin (α-AR and α(1)-AR antagonist, respectively) have no significant effect. Experiments in conscious animals showed that chronic stress activates the PI3K/Akt/GSK-3β signaling. We conclude that norepinephrine released by chronic stress rapidly enhances the protein expression of α(1C

  3. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil.

    PubMed

    Mohney, Brian K; Matz, Tricia; Lamoreaux, Jessica; Wilcox, David S; Gimsing, Anne Louise; Mayer, Philipp; Weidenhamer, Jeffrey D

    2009-11-01

    The difficulties of monitoring allelochemical concentrations in soil and their dynamics over time have been a major barrier to testing hypotheses of allelopathic effects. Here, we evaluate three diffusive sampling strategies that employ polydimethylsiloxane (PDMS) sorbents to map the spatial distribution and temporal dynamics of root-exuded thiophenes from the African marigold, Tagetes erecta. Solid phase root zone extraction (SPRE) probes constructed by inserting stainless steel wire into PDMS tubing were used to monitor thiophene concentrations at various depths beneath marigolds growing in PVC pipes. PDMS sheets were used to map the distribution of thiophenes beneath marigolds grown in thin glass boxes. Concentrations of the two major marigold thiophenes measured by these two methods were extremely variable in both space and time. Dissection and analysis of roots indicated that distribution of thiophenes in marigold roots also was quite variable. A third approach used 1 m lengths of PDMS microtubing placed in marigold soil for repeated sampling of soil without disturbance of the roots. The two ends of the tubing remained out of the soil so that solvent could be washed through the tubing to collect samples for HPLC analysis. Unlike the other two methods, initial experiments with this approach show more uniformity of response, and suggest that soil concentrations of marigold thiophenes are affected greatly even by minimal disturbance of the soil. Silicone tube microextraction gave a linear response for alpha-terthienyl when maintained in soils spiked with 0-10 ppm of this thiophene. This method, which is experimentally simple and uses inexpensive materials, should be broadly applicable to the measurement of non-polar root exudates, and thus provides a means to test hypotheses about the role of root exudates in plant-plant and other interactions.

  5. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond

    PubMed Central

    de Almeida, Cecília Jacques Gonçalves

    2017-01-01

    Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation. PMID:29250058

  6. Elevated serum vascular endothelial growth factor and development of cardiac allograft vasculopathy in children.

    PubMed

    Watanabe, Kae; Karimpour-Fard, Anis; Michael, Alix; Miyamoto, Shelley D; Nakano, Stephanie J

    2018-04-30

    Cardiac allograft vasculopathy (CAV) is a leading cause of retransplantation and death in pediatric heart transplant recipients. Our aim was to evaluate the association between serum vascular endothelial growth factor-A (VEGF) and CAV development in the pediatric heart transplant population. In this retrospective study performed at a university hospital, VEGF concentrations were measured by enzyme-linked immunosorbent assay in banked serum from pediatric heart transplant recipients undergoing routine cardiac catheterization. In subjects with CAV (n = 29), samples were obtained at 2 time-points: before CAV diagnosis (pre-CAV) and at the time of initial CAV diagnosis (CAV). In subjects without CAV (no-CAV, n = 16), only 1 time-point was used. VEGF concentrations (n = 74) were assayed in duplicate. Serum VEGF is elevated in pediatric heart transplant recipients before catheter-based diagnosis of CAV (no-CAV mean: 144.0 ± 89.05 pg/ml; pre-CAV mean: 316.2 ± 118.3 pg/ml; p = 0.0002). Receiver-operating characteristic curve analysis of pre-CAV VEGF levels demonstrated an area under the curve of 87.7% (p = 0.0002), with a VEGF level of 226.3 pg/ml predicting CAV development with 77.8% sensitivity and 91.7% specificity. VEGF is similarly elevated in subjects with angiographically diagnosed CAV and in those with normal angiography but intravascular ultrasound (IVUS) evidence of CAV. The increase in serum VEGF before onset of detectable CAV is fundamental to its utility as a predictive biomarker and suggests further investigations of VEGF in the pathogenesis of CAV are warranted in the pediatric heart transplant population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    PubMed

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  8. Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav.

    PubMed

    Zampini, Iris Catiana; Villarini, Milena; Moretti, Massimo; Dominici, Luca; Isla, María Inés

    2008-01-17

    Zuccagnia punctata Cav. (Fabaceae), a widely used plant species in Argentine folk medicine, has been shown to have a broad spectrum of antibacterial, antifungal, antioxidant and cytoprotective activities. In this study, the hydroalcoholic extract of Zuccagnia punctata and 2',4'-dihydroxychalcone isolated from it were investigated for genotoxicity/antigenotoxicity in the in vitro comet assay test on human hepatoma HepG2 cells. No acute toxicity of the extract could be determined. HepG2 cells were treated with three different concentrations (2.5, 5.0 and 10.0 microg/mL) or 2',4'-dihydroxychalcone (0.01, 0.10 and 1.00 microg/mL). To explore the potential mechanisms of action, two approaches were followed: co-treatment with 4-nitroquinoline-N-oxyde (4-NQO), a direct genotoxic compound, and a pre-treatment protocol with benzo[a]pyrene (B[a]P), an indirect genotoxic compound. The natural products neither affected cell viability nor induced DNA damage in the concentration range tested. Zuccagnia punctata tinctures were able to diminish the DNA damage induced in HepG2 cells by 4-NQO and B[a]P in 31% and 10%, respectively at 10 microg/mL. Pre-treatment of HepG2 cells with 2',4'-dihydroxychalcone was highly effective in decreasing B[a]P-induced DNA damage at a statistically significant level, with an almost clear dose-response relationship. The inhibition values were 28.2-43.9% for the tested concentrations of 0.01-1 microg/mL, respectively. The results clearly indicate that the phytoextract from Zuccagnia punctata, under the experimental conditions tested, is not genotoxic and that 2',4'-dihydroxychalcone contributes to a high degree to the antigenotoxic effects of Zuccagnia punctata tincture.

  9. Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis

    PubMed Central

    Ortiz, Rina; Díaz, Jorge; Díaz, Natalia; Lobos-Gonzalez, Lorena; Cárdenas, Areli; Contreras, Pamela; Díaz, María Inés; Otte, Ellen; Cooper-White, Justin; Torres, Vicente; Leyton, Lisette; Quest, Andrew F.G.

    2016-01-01

    Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1. PMID:27259249

  10. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).

    PubMed

    Dias, Graciela G; Ferreira, Bruno G; Moreira, Gilson R P; Isaias, Rosy M S

    2013-03-01

    Galling sap-feeding insects are presumed to cause only minor changes in host plant tissues, because they usually do not require development of nutritive tissues for their own use. This premise was examined through comparison of the histometry, cytometry and anatomical development of non-galled leaves and galls of Calophya duvauae (Scott) (Hemiptera: Calophyidae) on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). Cell fates changed from non-galled leaves to galls during the course of tissue differentiation. C. duvauae caused changes in dermal, ground, and vascular systems of the leaves of S. polygamus. Its feeding activity induced the homogenization of the parenchyma, and the neoformation of vascular bundles and trichomes. The histometric and cytometric data revealed compensatory effects of hyperplasia and cell hypertrophy in the epidermis, with hyperplasia predominating in the adaxial epidermis. There was a balance between these processes in the other tissues. Thus, we found major differences between the developmental pathways of non-galled leaves and galls. These changes were associated with phenotypic alterations related to shelter and appropriate microenvironmental conditions for the gall inducer. The nondifferentiation of a typical nutritive tissue in this case was compared to other non-phylogenetically related arthropod gall systems, and is suggested to result from convergence associated with the piercing feeding apparatus of the corresponding gall-inducer.

  11. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  12. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo.

    PubMed

    Thuesen, Anne D; Andersen, Henrik; Cardel, Majken; Toft, Anja; Walter, Steen; Marcussen, Niels; Jensen, Boye L; Bie, Peter; Hansen, Pernille B L

    2014-08-15

    Voltage-gated Ca(2+) (Cav) channels play an essential role in the regulation of renal blood flow and glomerular filtration rate (GFR). Because T-type Cav channels are differentially expressed in pre- and postglomerular vessels, it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed with the use of two T-type Cav knockout (Cav3.1(-/-) and Cav3.2(-/-)) mouse strains. Continuous recordings of blood pressure and heart rate, para-aminohippurate clearance (renal plasma flow), and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild-type (WT) and Cav3.1(-/-) and Cav3.2(-/-) mice. The contractility of afferent and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav3.2(-/-) mice constricted significantly more in response to a depolarization compared with WT mice. GFR was increased in Cav3.2(-/-) mice with no significant changes in renal plasma flow, heart rate, and blood pressure. Cav3.1(-/-) mice had a higher renal plasma flow compared with WT mice, whereas GFR was indistinguishable from WT mice. No difference in the concentration response to K(+) was observed in isolated afferent and efferent arterioles from Cav3.1(-/-) mice compared with WT mice. Heart rate was significantly lower in Cav3.1(-/-) mice compared with WT mice with no difference in blood pressure. T-type antagonists significantly inhibited the constriction of human intrarenal arteries in response to a small depolarization. In conclusion, Cav3.2 channels support dilatation of efferent arterioles and affect GFR, whereas Cav3.1 channels in vivo contribute to renal vascular resistance. It is suggested that endothelial and nerve localization of Cav3.2 and Cav3.1, respectively, may account for the observed effects. Copyright © 2014 the American Physiological Society.

  13. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity*

    PubMed Central

    Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie

    2016-01-01

    Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels. PMID:26742847

  14. The effect of the symbiosis between Tagetes erecta L. (marigold) and Glomus intraradices in the uptake of Copper(II) and its implications for phytoremediation.

    PubMed

    Castillo, O S; Dasgupta-Schubert, N; Alvarado, C J; Zaragoza, E M; Villegas, H J

    2011-12-15

    Phytoremediation is an environmental biotechnology that seeks to remediate pollution caused by bioaccumulative toxins like copper (Cu). Symbiotic mycorrhizal associations can increase the uptake and delivery of low mobility nutrients and micronutrients to the host plant because they solubilize these substances and increase their catchment area. To analyze the effect of mycorrhizae on the phytoaccumulation of Cu, we studied their ability to solubilize Cu(II) and enhance its absorption by the plant Tagetes erecta L. colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plants were grown for nine weeks in a growth chamber under controlled conditions of temperature, relative humidity and photoperiod. Cu was added in the insoluble form of CuO to simulate the insoluble Cu-O affixed species in soil. The biotic and abiotic parameters of colonization, foliar area, biomass and the pH of leachates were determined as functions of the Cu concentration that was measured in the roots, shoots and leachates by AAS. The results of Cu absorption showed that the colonized plants accumulated more Cu in the roots as well as the whole plant and that both the colonized and non-colonized plants displayed the typical behavior of Cu excluders. Mycorrhizal colonization of the roots resulted in a proliferation of vesicles and this was observed to scale with root tissue Cu concentrations. Also, the G. intraradices-T. erecta system displayed a higher resistance to the toxicity induced by Cu while nonetheless improving the indices of phytoaccumulative yields. These results suggest that G. intraradices possibly accumulates Cu in its vesicles thereby enhancing the Cu tolerance of T. erecta even while increasing root Cu accumulation. The parameters of bioconcentration factor and translocation factor measured in this work suggest that the system T. erecta-G. intraradices can potentially phytostabilize Cu in contaminated soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Quantitative analysis of the expression and distribution of calcium channel alpha 1 subunit mRNA in the atria and ventricles of the rat heart.

    PubMed

    Larsen, Janice K; Mitchell, Jennifer W; Best, Philip M

    2002-05-01

    Two distinct calcium currents are present in mammalian cardiac myocytes. Utilizing quantitative RT-PCR methods, we have analysed the expression patterns and abundance of four calcium channel alpha 1 subunit mRNAs in different regions of the rat heart and compared them to the known density of calcium currents recorded from rat atria. Our results show that Ca(V)1.2 is the most abundant of the four alpha 1 subunit transcripts in the rat heart. The Ca(V)1.2 message is more abundant in ventricle than in atria and does not vary in expression as a function of developmental age. Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNAs are 10-100 times less abundant than Ca(V)1.2. Interestingly, Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 are expressed in both atria and ventricle. The abundance of atrial Ca(V)3.1 mRNA does not change significantly during development and remains high in older animals. In contrast, levels of atrial Ca(V)3.2 mRNA are high in embryonic tissue and at 3- and 4-weeks postnatal but become undetectable at 5 weeks. Expression of atrial Ca(V)2.3 mRNA is highest at 4-weeks postnatal and then declines gradually. We have previously documented that the LVA calcium current density is highest within 4-5 weeks after birth and then declines gradually reaching less than 30% of its maximal value at 12-14 weeks. The complex relationship between atrial LVA current density and the abundance of Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNA suggests that their contribution to the cardiac LVA current may vary as a function of postnatal age. Copyright 2002 Academic Press.

  16. Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2

    PubMed Central

    Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization – an event which is requisite for pore formation and, by extension, cell death. PMID:23056496

  17. Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2.

    PubMed

    Fennessey, Christine M; Sheng, Jinsong; Rubin, Donald H; McClain, Mark S

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization - an event which is requisite for pore formation and, by extension, cell death.

  18. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    NASA Astrophysics Data System (ADS)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  19. Environmental Quality Research

    DTIC Science & Technology

    1975-02-01

    injured at 43 ppm. Lind and London(5) exposed mature Mf- r-ng marigold plants to high concentrations of HCi gas for 5-minute periods. Groups of plants...10. Geranium (Pelargonium, sp.) 11. Hollyhock (Althea rosea) ൔ. Lilac (Syringa, spr 13. Lobelia (Lobelia erinus) **14. Marigold , American (Tagetes...erecta) **15. Marigold , French (Tagetes atula- **16. Nasturtium (Tropaeolum, sp.) **17. Petunia (Petu-nia, sp.) 18. Pine, ponderosa (Pinus ponderosa) 19

  20. Pathological and immunohistochemical studies of subclinical infection of chicken anemia virus in 4-week-old chickens.

    PubMed

    Haridy, Mohie; Sasaki, Jun; Ikezawa, Mitsutaka; Okada, Kosuke; Goryo, Masanobu

    2012-06-01

    Subclinical infection of chicken anemia virus (CAV) at 4 to 6 weeks of age, after maternal antibodies have waned, is implicated in several field problems in broiler flocks. In order to understand the pathogenesis of subclinical infection with CAV, an immunopathological study of CAV-inoculated 4-week-old SPF chickens was performed. Sixty 4-week-old SPF chickens were equally divided into CAV and control groups. The CAV group was inoculated intramuscularly with the MSB1-TK5803 strain of CAV. Neither mortality nor anemia was detected in the CAV and control groups. In the CAV group, no signs were observed, except that some chickens were grossly smaller compared with the control group. Sporadic thymus lobes appeared to be reddening and atrophied. Within the first two weeks p.i. of CAV, there was a mild to moderate depletion of lymphocytes in the thymus cortex and spleen in some chickens. Moreover, lymphoid depletion of the bursa of Fabricius, proventriculus and cecal tonsils was observed. Hyperplastic lymphoid foci were observed in the liver, lungs, kidneys and heart at the 4th week p.i. of CAV. Immunohistochemically, a moderate lymphoid depletion of CD4(+)and CD8(+) T cells in the thymus cortex and spleen was observed in some chickens within two weeks p.i. of CAV. CAV inclusions and antigens were detected infrequently in the thymus cortex and spleen. It could be concluded that the immunosuppression in subclinical infection with CAV occurs as a result of reduction of cellular immunity.

  1. Transcriptional upregulation of α2δ-1 elevates arterial smooth muscle cell voltage-dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension.

    PubMed

    Bannister, John P; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H

    2012-10-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes composed of a pore-forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive spontaneously hypertensive rats displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1:CaV1.2α1 ratio, CaV1.2 current density and noninactivating current, and pressure- and depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension.

  2. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  3. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  4. The Effects of Designated Pollutants on Plants

    DTIC Science & Technology

    1978-11-01

    two marigold . . . . . . . . . . . . . . . . . . . . . . . . . 44 21. Probit analysis of five plant species: petunia , bean, radish, salvia and tomato...Tagetes patula L. French dwarf double goldie Marigold Tagetes erecta L. American,Senator Dirksen Petunia Petunia hybrida Vilm. White cascade Radish...00 s0 too 200 4w0 1000 1 20 3O 060 100 20 00 1000 HCL CONCENTRATION (MG Mŗ ) Figure 21. Probit analysis of five plant species: 16-day- petunia , 25-day

  5. Genetics Home Reference: rippling muscle disease

    MedlinePlus

    ... the CAV3 gene. Muscle conditions caused by CAV3 gene mutations are called caveolinopathies. The CAV3 gene provides instructions ... role in controlling muscle contraction and relaxation. CAV3 gene mutations that cause rippling muscle disease result in a ...

  6. Electrophysiology and metabolism of caveolin-3 overexpressing mice

    PubMed Central

    Schilling, Jan M.; Horikawa, Yousuke T.; Zemljic-Harpf, Alice E.; Vincent, Kevin P.; Tyan, Leonid; Yu, Judith K.; McCulloch, Andrew D.; Balijepalli, Ravi C.; Patel, Hemal H.; Roth, David M.

    2017-01-01

    Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: 1) ECG telemetry recordings at baseline and during pharmacological interventions, 2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and 3) baseline metabolism in Cav-3 OE and transgene negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. Expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, and heat generation, feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865

  7. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    PubMed

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  8. Serological and molecular epidemiology of canine adenovirus type 1 in red foxes (Vulpes vulpes) in the United Kingdom.

    PubMed

    Walker, David; Fee, Seán A; Hartley, Gill; Learmount, Jane; O'Hagan, Maria J H; Meredith, Anna L; de C Bronsvoort, Barend M; Porphyre, Thibaud; Sharp, Colin P; Philbey, Adrian W

    2016-10-31

    Canine adenovirus type 1 (CAV-1) causes infectious canine hepatitis (ICH), a frequently fatal disease which primarily affects canids. In this study, serology (ELISA) and molecular techniques (PCR/qPCR) were utilised to investigate the exposure of free-ranging red foxes (Vulpes vulpes) to CAV-1 in the United Kingdom (UK) and to examine their role as a wildlife reservoir of infection for susceptible species. The role of canine adenovirus type 2 (CAV-2), primarily a respiratory pathogen, was also explored. In foxes with no evidence of ICH on post-mortem examination, 29 of 154 (18.8%) red foxes had inapparent infections with CAV-1, as detected by a nested PCR, in a range of samples, including liver, kidney, spleen, brain, and lung. CAV-1 was detected in the urine of three red foxes with inapparent infections. It was estimated that 302 of 469 (64.4%) red foxes were seropositive for canine adenovirus (CAV) by ELISA. CAV-2 was not detected by PCR in any red foxes examined. Additional sequence data were obtained from CAV-1 positive samples, revealing regional variations in CAV-1 sequences. It is concluded that CAV-1 is endemic in free-ranging red foxes in the UK and that many foxes have inapparent infections in a range of tissues.

  9. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    PubMed

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.

  10. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear

    PubMed Central

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jörg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca2+ channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. CaV1.2 and CaV1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive CaV1.2 LTCCs (CaV1.2DHP−/− mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in CaV1.2DHP−/− mice, indicating that it is mediated by CaV1.2, but not by CaV1.3 LTCCs. Supporting this conclusion, CaV1.3-deficient mice (CaV1.3−/−) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral CaV1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in CaV1.2DHP−/− mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the CaV1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly CaV1.3) is not sufficient to accelerate extinction of conditioned fear in mice. PMID:18441296

  11. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    PubMed

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  12. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  13. Physiological differences between root suckers and saplings enlarge the regeneration niche in Eucryphia cordifolia Cav.

    PubMed

    Escandón, Antonio B; Rojas, Roke; Morales, Loreto V; Corcuera, Luis J; Coopman, Rafael E; Paula, Susana

    2018-01-01

    Many clonal plants produce vegetative recruits that remain connected to the parent plant. Such connections permit resource sharing among ramets, explaining the high survival rates of vegetative recruits during establishment under suboptimal conditions for sexual regeneration. We propose that differences in the regeneration niches of sexual and vegetative recruits reflect different physiological adjustments caused by parental supply of resources to the ramets. We conducted ecophysiological measurements in saplings and root suckers of Eucryphia cordifolia Cav., a tree species of the temperate rainforest of southern South America. We compared the following traits of saplings and suckers: gas exchange at the leaf level, crown architecture, daily crown carbon balance, biomass allocation to above-ground tissues (leaf-to-stem mass ratio, leaf mass area and leaf area ratio), xylem anatomy traits (lumen vessel fraction, vessel density and size) and stem ring width. We also correlated the growth rates of saplings and suckers with relevant environmental data (light and climate). Saplings showed morphological, architectural and physiological traits that enhance daily crown carbon balance and increase water-use efficiency, in order to supply their growth demands while minimizing water loss per unit of carbon gained. The radial growth of saplings diminished under dry conditions, which suggests a strong stomatal sensitivity to water availability. Suckers have low stomatal conductance, likely because the carbon supplied by the parent plant diminishes the necessity of high rates of photosynthesis. The low responsiveness of sucker growth to temporal changes in water availability also supports the existence of parental supply. The physiological differences between sexual and vegetative recruits satisfactorily explain the ecological niche of E. cordifolia, with saplings restricted to more closed and humid sites. © The Author 2017. Published by Oxford University Press. All rights

  14. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice

    PubMed Central

    Bernatchez, Pascal; Sharma, Arpeeta; Bauer, Philip M.; Marin, Ethan; Sessa, William C.

    2011-01-01

    Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A–Cav-1 and a mutant cell–permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1–deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A–Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release. PMID:21804187

  15. Bile Acids Down-Regulate Caveolin-1 in Esophageal Epithelial Cells through Sterol Responsive Element-Binding Protein

    PubMed Central

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M.; Ebert, Matthias P.A.

    2012-01-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus

  16. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  17. Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma

    PubMed Central

    Surgucheva, Irina

    2011-01-01

    Purpose Primary open-angle glaucoma (POAG), which is the most common form of glaucoma, has been associated with a heterogeneous genetic component. A genome-wide association study has identified a common sequence variant at 7q31 (rs4236601 [A]) near the caveolin genes in patients with POAG. Caveolins are a family of integral membrane proteins which participate in many cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, cell adhesion and migration. The goal of this study was to investigate the expression and regulation of caveolin 1 (CAV-1) and caveolin 2 (CAV-2) in normal and glaucoma trabecular meshwork (TM) cells. Methods CAV-1 and CAV-2 protein expression was quantified by immunoblot analysis using lysates isolated from primary and immortalized TM cells or TM tissue dissected from normal and POAG eyes. The localization of caveolins in TM cells was assessed by immunofluorescent microscopy. CAV-1 and CAV-2 protein expression was also investigated in TM cells at various time points after subjecting the cells to known glaucomatous insults like dexamethasone (DEX) and tumor growth factor beta2 (TGF-β2) treatment. Phosphorylation of CAV-1 at tyrosine 14 in normal and glaucoma TM cell lines was evaluated using a specific monoclonal antibody (Ab). The 5′ upstream region of the CAV-1 gene was amplified and the sequence variant rs4236601 (A/G polymorphic site) and several putative transcription factor-binding sites were modified by in vitro mutagenesis. The effect of nucleotide sequence modifications in the CAV-1 upstream region on gene expression was assayed in a luciferase-based system in TM and non-TM cells. Results CAV-1 and CAV-2 are expressed in TM cells, with localization to the cytoplasm and perinuclear region. DEX increased CAV-1 expression in immortalized glaucoma TM cells by 2.8±0.1 (n=3) fold at 24 h and 2.5±0.1 (n=3) fold at 48 h, compared to 1.3±0.06 (n=3) fold at 24 and 48 h in immortalized normal TM cells

  18. New developments for the detection and treatment of cardiac vasculopathy.

    PubMed

    Clerkin, Kevin J; Ali, Ziad A; Mancini, Donna M

    2017-02-15

    Cardiac allograft vasculopathy (CAV) is a major limitation to long-term survival after heart transplantation. Innovative new techniques to diagnose CAV have been applied to detect disease. This review will examine the current diagnostic and treatment options available to clinicians for CAV. Diagnostic modalities addressing the pathophysiology underlying CAV (arterial wall thickening and decreased coronary blood flow) improve diagnostic sensitivity when compared to traditional (angiography and dobutamine stress echocardiography) techniques. Limited options are available to prevent and treat CAV; however, progress has been made in making an earlier and more accurate diagnosis. Future research is needed to identify the optimal time to modify immunosuppression and investigate novel treatments for CAV.

  19. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    PubMed Central

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  20. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.

    PubMed

    Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego

    2015-12-01

    In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

  2. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae

    PubMed Central

    Zimnicka, Adriana M.; Husain, Yawer S.; Shajahan, Ayesha N.; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T.; Klomp, Jennifer; Karginov, Andrei V.; Tiruppathi, Chinnaswamy; Malik, Asrar B.; Minshall, Richard D.

    2016-01-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  3. Effects of ozone, sulfur dioxide, and alpha and delta races of Colletotrichum Lindemuthianum (Sacc. and Magn. ) Bri and Cav. on bean (Phaseolus vulgaris L. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achwanya, O.S.

    1984-01-01

    A number of bean (Phaseolus vulgaris L.) cultivars were evaluated for their responses to the air pollutants ozone and sulfur dioxide singly and in combination, as well as for their reaction to the alpha and delta races of Colletotrichum lindemuthianum (Sacc. and Magn.) Bri and Cav. Variation in response to both the pollutants and the fungus was noted among the cultivars. Anthracnose caused a reduction in the biomass of some cultivars of the order of 50%. A negative correlation of (r = -0.72, p < 0.0001) was found between the disease severity and the total plant biomass. Greater than additivemore » effects of O/sub 3/ + SO/sub 2/ mixtures were demonstrated. Chlorophyll content and biomass were found to be reliable variables for assessing treatment effects. The pollutants appeared to stimulate the disease development. Greater pollutant injury was also in the presence of the anthracnose disease. The results indicated that there was an interaction between the fungal disease and the air pollutants. Implications for evaluating bean cultivars for resistance to C. lindemuthianum under polluted atmosphere are suggested.« less

  4. Coronary Allograft Vasculopathy after Cardiac Transplantation: Prevalence, Prognostic and Risk Factors.

    PubMed

    Antunes, André; Prieto, David; Pinto, Carlos; Branco, Carlos; Correia, Pedro; Batista, Manuel; Antunes, Manuel

    2017-01-01

    Coronary allograft vasculopathy (CAV) is still a serious long-term complication after cardiac transplantation. To evaluate the prevalence of CAV in a single institution, its impact on survival and to explore associated risk factors. From November-2003 through June-2016, 316 patients were submitted to cardiac transplantation. After excluding those with paediatric age (n=8), those with previous renal or hepatic transplantation (n=2) and those who didn't survive the first year after cardiac transplantation (n=40), the study population resulted in 266 patients. Forty two patients (15.8%) with CAV, diagnosed by a new >50% coronary artery stenosis in any vessel during follow-up, were compared with a non-CAV group. Both groups share de same median age (54+10years). Recipient male sex predominated in the CAV group (93% vs. 74%), as did ischemic etiology (52% vs. 37%). Although not reaching statistical significance, CAV patients also had more dyslipidemia (60% vs. 50%), history of smoking (52% vs. 44%) and peripheral vascular disease (45% vs. 29%). The incidence of celular acute rejection 1R is more frequent in CAV group (69% vs. 60%) such as 2R or 3R (29% vs. 27%). Prolonged use of inotropic support and mechanical assistance after cardiac transplantation were comparable between both groups. The survival of this patients, who were submitted to cardiac transplantation and had lived at least 1 year, between CAV and non-CAV group was comparable at 5-year (91% vs. 85%), but tended to be lower for CAV patients in 10-year interval (52% vs. 73%). This data confirms CAV as a common long-term complication following cardiac transplantation. Although short to mid-term survival seems not to be affected by CAV, long-term survival appears lower, hence a longer follow-up is needed.

  5. A Sabin 3-Derived Poliovirus Recombinant Contained a Sequence Homologous with Indigenous Human Enterovirus Species C in the Viral Polymerase Coding Region†

    PubMed Central

    Arita, Minetaro; Zhu, Shuang-Li; Yoshida, Hiromu; Yoneyama, Tetsuo; Miyamura, Tatsuo; Shimizu, Hiroyuki

    2005-01-01

    Outbreaks of poliomyelitis caused by circulating vaccine-derived polioviruses (cVDPVs) have been reported in areas where indigenous wild polioviruses (PVs) were eliminated by vaccination. Most of these cVDPVs contained unidentified sequences in the nonstructural protein coding region which were considered to be derived from human enterovirus species C (HEV-C) by recombination. In this study, we report isolation of a Sabin 3-derived PV recombinant (Cambodia-02) from an acute flaccid paralysis (AFP) case in Cambodia in 2002. We attempted to identify the putative recombination counterpart of Cambodia-02 by sequence analysis of nonpolio enterovirus isolates from AFP cases in Cambodia from 1999 to 2003. Based on the previously estimated evolution rates of PVs, the recombination event resulting in Cambodia-02 was estimated to have occurred within 6 months after the administration of oral PV vaccine (99.3% nucleotide identity in VP1 region). The 2BC and the 3Dpol coding regions of Cambodia-02 were grouped into the genetic cluster of indigenous coxsackie A virus type 17 (CAV17) (the highest [87.1%] nucleotide identity) and the cluster of indigenous CAV13-CAV18 (the highest [94.9%] nucleotide identity) by the phylogenic analysis of the HEV-C isolates in 2002, respectively. CAV13-CAV18 and CAV17 were the dominant HEV-C serotypes in 2002 but not in 2001 and in 2003. We found a putative recombination between CAV13-CAV18 and CAV17 in the 3CDpro coding region of a CAV17 isolate. These results suggested that a part of the 3Dpol coding region of PV3(Cambodia-02) was derived from a HEV-C strain genetically related to indigenous CAV13-CAV18 strains in 2002 in Cambodia. PMID:16188967

  6. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    NASA Astrophysics Data System (ADS)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  7. Reciprocal Activating Crosstalk between c-Met and Caveolin 1 Promotes Invasive Phenotype in Hepatocellular Carcinoma

    PubMed Central

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Çokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC. PMID:25148256

  8. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    PubMed

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Cokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  9. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos; Yu, Jun; Suárez, Yajaira; Rahner, Christoph; Dávalos, Alberto; Lasunción, Miguel A.; Sessa, William C.

    2009-01-01

    SUMMARY The accumulation of LDL-derived cholesterol in the artery wall is the initiating event that causes atherosclerosis. However, the mechanisms that lead to the initiation of atherosclerosis are still poorly understood. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in promoting atherogenesis. Mice were generated lacking Cav-1 and apoE but expressing endothelial-specific Cav-1 in the double knockout background. Genetic ablation of Cav-1 on an apoE knockout background inhibits the progression of atherosclerosis while re-expression of Cav-1 in the endothelium promotes lesion expansion. Mechanistically, the loss of Cav-1 reduces LDL infiltration into the artery wall, promotes nitric oxide production and reduces the expression of leukocyte adhesion molecules, effects completely reversed in transgenic mice. In summary, this unique model provides physiological evidence supporting the important role of endothelial Cav-1 expression in regulating the entry of LDL into the vessel wall and the initiation of atherosclerosis. PMID:19583953

  10. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels

    PubMed Central

    Yu, Jun; Bergaya, Sonia; Murata, Takahisa; Alp, Ilkay F.; Bauer, Michael P.; Lin, Michelle I.; Drab, Marek; Kurzchalia, Teymuras V.; Stan, Radu V.; Sessa, William C.

    2006-01-01

    Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels. PMID:16670769

  11. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation.

    PubMed

    Choi, Kang-Ho; Kim, Hyung-Seok; Park, Man-Seok; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-10-18

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects.

  12. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    PubMed

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  13. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria.

    PubMed

    Oluwayelu, D O; Todd, D; Olaleye, O D

    2008-12-01

    This work reports the first molecular analysis study of chicken anaemia virus (CAV) in backyard chickens in Africa using molecular cloning and sequence analysis to characterize CAV strains obtained from commercial chickens and Nigerian backyard chickens. Partial VP1 gene sequences were determined for three CAVs from commercial chickens and for six CAV variants present in samples from a backyard chicken. Multiple alignment analysis revealed that the 6% and 4% nucleotide diversity obtained respectively for the commercial and backyard chicken strains translated to only 2% amino acid diversity for each breed. Overall, the amino acid composition of Nigerian CAVs was found to be highly conserved. Since the partial VP1 gene sequence of two backyard chicken cloned CAV strains (NGR/CI-8 and NGR/CI-9) were almost identical and evolutionarily closely related to the commercial chicken strains NGR-1, and NGR-4 and NGR-5, respectively, we concluded that CAV infections had crossed the farm boundary.

  14. Anatomical and phenological implications of the relationship between Schinus polygama (Cav.) (Cabrera) and the galling insect Calophya rubra (Blanchard).

    PubMed

    Guedes, L M; Aguilera, N; Ferreira, B G; Becerra, J; Hernández, V; Isaias, R M S

    2018-05-01

    The success of galling insects could be determined by synchronisation with host plant phenology and climate conditions, ensuring suitable oviposition sites for gall induction and food resources for their survival. The anatomical, histochemical and phenological synchronisation strategies between Calophya rubra (Blanchard) (Hemiptera: Psylloidea) and its host, the evergreen plant Schinus polygama (Cav.) (Cabrera) (Anacardiaceae), in the Mediterranean climate of southern Chile was evaluated and compared to that of the congeneric C. cf. duvauae (Scott) from Brazil and closely related host plant S. engleri in a subtropical climate. Anatomical, histometric, histochemical and vegetative phenology studies of the stem and galls were conducted from June 2015 to December 2016. Based on the anatomical, histometric and histochemical analysis, the conical stem gall traits imply gains over the non-galled stem toward the galling insect survival, but the maintenance of phellem, secretory ducts and pith indicate conservative developmental traits that cannot be manipulated by C. rubra. Our results indicate that the conditions of the Mediterranean climate zone limit C. rubra immature activity during unfavourable periods, probably determining a diapause period and a univoltine life cycle, which are peculiarities of the S. polygama- C. rubra system. The synchronisation between development and seasonality confers peculiarities to the S. polygama- C. rubra system in the Mediterranean climate zone. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Loss of Stromal Caveolin-1 Expression: A Novel Tumor Microenvironment Biomarker That Can Predict Poor Clinical Outcomes for Pancreatic Cancer

    PubMed Central

    Shan, Tao; Lu, Hongwei; Ji, Hong; Li, Yiming; Guo, Jian; Chen, Xi; Wu, Tao

    2014-01-01

    Aims Cancer development and progression is not only associated with the tumor cell proliferation but also depends on the interaction between tumor cells and the stromal microenvironment. A new understanding of the role of the tumor microenvironment suggests that the loss of stromal caveolin-1 (Cav-1) as a key regulator may become a potential therapy target. This study aims to elucidate whether stromal Cav-1 expression in pancreatic cancer can be a strong prognosis biomarker. Methods Tissue samples from 45 pancreatic cancer patients were studied. Parenchyma and stroma were separated and purified using laser capture microdissection. Stromal Cav-1 expression was measured from pancreatic cancer, paraneoplastic, and normal tissue using immunohistochemistry. We analyzed the correlation of stromal Cav-1 expression with clinicopathologic features and prognostic indicators, such as tumor marker HER-2/neu gene. Results Specimens from six patients (13.3%) showed high levels of stromal Cav-1 staining, those from eight patients (17.8%) showed a lower, intermediate level of staining, whereas those from 31 patients (68.9%) showed an absence of staining. Cav-1 expression in cancer-associated fibroblasts was lower than that in paracancer-associated and in normal fibroblasts. Stromal Cav-1 loss was associated with TNM stage (P = 0.018), lymph node metastasis (P = 0.014), distant metastasis (P = 0.027), and HER-2/neu amplification (P = 0.007). The relationships of age, sex, histological grade, and tumor size with stromal Cav-1 expression were not significant (P>0.05). A negative correlation was found between circulating tumor cells and stromal Cav-1 expression (P<0.05). Conclusion The loss of stromal Cav-1 in pancreatic cancer was an independent prognostic indicator, thus suggesting that stromal Cav-1 may be an effective therapeutic target for patients with pancreatic cancer. PMID:24949874

  17. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  18. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. © 2016 American Heart Association, Inc.

  19. Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation.

    PubMed

    Zou, Man; Li, Yanhui; Xia, Shu; Chu, Qian; Xiao, Xiaoguang; Qiu, Hong; Chen, Yu; Zheng, Zu'an; Liu, Fei; Zhuang, Liang; Yu, Shiying

    2017-01-01

    Triple-negative breast cancer (TNBC) is a high-risk breast cancer phenotype without specific targeted therapy options and is significantly associated with increased local recurrence in patients treated with radiotherapy. CAVEOLIN-1 (CAV-1)-mediated epidermal growth factor receptor (EGFR) nuclear translocation following irradiation promotes DNA repair and thus induces radiation resistance. In this study, we aimed to determine whether knockdown of CAV-1 enhances the radiosensitivity of basal-like TNBC cell lines and to explore the possible mechanisms. Western blotting was used to compare protein expression in a panel of breast cancer cell lines. Nuclear accumulation of EGFR as well as DNA repair and damage at multiple time points following irradiation with or without CAV-1 siRNA pretreatment were investigated using western blotting and confocal microscopy. The radiosensitizing effect of CAV-1 siRNA was evaluated using a clonogenic assay. Flowcytometry was performed to analyse cell apoptosis and cell cycle alteration. We found that CAV-1 is over-expressed in basal-like TNBC cell lines and barely expressed in HER-2-positive cells; additionally, we observed that HER-2-positive cell lines are more sensitive to irradiation than basal-like TNBC cells. Our findings revealed that radiation-induced EGFR nuclear translocation was impaired by knockdown of CAV-1. In parallel, radiation-induced elevation of DNA repair proteins was also hampered by pretreatment with CAV-1 siRNA before irradiation. Silencing of CAV-1 also promoted DNA damage 24 h after irradiation. Colony formation assays verified that cells could be radiosensitized after knockdown of CAV-1. Furthermore, G2/M cell cycle arrest and apoptosis enhancement may also contribute to the radiosensitizing effect of CAV-1 siRNA. Our results support the hypothesis that CAV-1 knockdown by siRNA causes increased radiosensitivity in basal-like TNBC cells. The mechanisms associated with this effect are reduced DNA repair through

  20. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer.

    PubMed

    He, Yuyu; Zhao, Xianda; Gao, Jun; Fan, Lifang; Yang, Guifang; Cho, William Chi-Shing; Chen, Honglei

    2012-10-24

    Caveolin-1 (Cav-1) expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts) are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC) and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV)-associated GC (EBVaGC) is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs)-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029) that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032) and was positively associated with Cav-1 expression (r = 0.432, p < 0.001). EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  1. Immune responses in pigs induced by recombinant canine adenovirus 2 expressing the glycoprotein 5 of porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhou, J-X; Xue, J-D; Yu, T; Zhang, J-B; Liu, Y; Jiang, N; Li, Y-L; Hu, R-L

    2010-04-01

    To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.

  2. Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis.

    PubMed

    Kuo, Andrew; Lee, Monica Y; Yang, Kui; Gross, Richard W; Sessa, William C

    2018-01-19

    Lipid droplets (LD) are dynamic organelles involved in intracellular lipid metabolism in almost all eukaryotic cells, and LD-associated proteins tightly regulate their dynamics. One LD coat protein is caveolin-1 (Cav-1), an essential component for caveola assembly in highly differentiated cells, including adipocytes, smooth muscle cells, and endothelial cells (EC). However, the role of Cav-1 in LD dynamics is unclear. Here we report that EC lacking Cav-1 exhibit impaired LD formation. The decreased LD formation is due to enhanced lipolysis and not caused by reduced triglyceride synthesis or fatty acid uptake. Mechanistically, the absence of Cav-1 increased cAMP/PKA signaling in EC, as indicated by elevated phosphorylation of hormone-sensitive lipase and increased lipolysis. Unexpectedly, we also observed enhanced autocrine production of prostaglandin I 2 (PGI 2 , also called prostacyclin) in Cav-1 KO EC, and this PGI 2 increase appeared to stimulate cAMP/PKA pathways, contributing to the enhanced lipolysis in Cav-1 KO cells. Our results reveal an unanticipated role of Cav-1 in regulating lipolysis in non-adipose tissue, indicating that Cav-1 is required for LD metabolism in EC and that it regulates cAMP-dependent lipolysis in part via the autocrine production of PGI 2 .

  3. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Phytotoxicity and cytogenotoxicity of hydroalcoholic extracts from Solanum muricatum Ait. and Solanum betaceum Cav. (Solanaceae) in the plant model Lactuca sativa.

    PubMed

    Dos Santos, Fabio Eduardo; Carvalho, Marcos Schleiden Sousa; Silveira, Graciele Lurdes; Correa, Felipe Folgaroli; Cardoso, Maria das Graças; Andrade-Vieira, Larissa Fonseca; Vilela, Luciane Resende

    2018-03-05

    Plants are rich in biologically active compounds. They can be explored for the production of bioherbicides. In this context, the present work aimed to evaluate the allelopathic effect of hydroalcoholic extracts from two Solanaceae species: Solanum muricatum Ait. and Solanum betaceum Cav. For this end, we conducted phytochemical screening and biological assays, determining the effects of the extracts on germination, early development, cell cycle, and DNA fragmentation in plantlets and meristematic cells of the plant model Lactuca sativa L. (lettuce). The percentage of seeds germinated under effect of S. muricatum extract did not differ from the control, but plantlet growth was reduced at the highest concentrations. For S. betaceum extract, dose dependence was observed for both germination and plantlet development, with the highest concentrations inhibiting germination. The growth curves revealed the concentrations of 2.06 and 1.93 g/L for S. muricatum and S. betaceum extracts, respectively, as those reducing 50% of root growth (RG). At these concentrations, both extracts presented mitodepressive effect, besides inducing significant increase in the frequency of condensed nuclei, associated to DNA fragmentation and cytoplasmic shrinkage. The frequency of chromosome alterations was not significant. We further discuss the mechanisms of action related to the chemical composition of the extracts, which presented organic acids, reducing sugars, proteins, amino acids, and tannins, besides catechins and flavonoids, only found in the extract of S. betaceum.

  5. Genetics Home Reference: isolated hyperCKemia

    MedlinePlus

    ... signaling and maintenance of the cell structure. CAV3 gene mutations result in a shortage of caveolin-3 protein ... this condition. In addition to isolated hyperCKemia , CAV3 gene mutations can cause other caveolinopathies including CAV3 -related distal ...

  6. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    PubMed

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  7. Differential regulation of cell functions by CSD peptide subdomains

    PubMed Central

    2013-01-01

    Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Results Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Conclusions Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the

  8. Differential regulation of cell functions by CSD peptide subdomains.

    PubMed

    Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena

    2013-09-08

    In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on

  9. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle

    PubMed Central

    Cong, P.; Pricolo, V.; Biancani, P.

    2010-01-01

    The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763

  10. Ultrasound-targeted microbubble destruction of calcium channel subunit α 1D siRNA inhibits breast cancer via G protein-coupled receptor 30.

    PubMed

    Ji, Yanlei; Han, Zhen; Shao, Limei; Zhao, Yuehuan

    2016-10-01

    Estrogen has been closely associated with breast cancer. Several studies reported that Ca2+ signal and Ca2+ channels act in estrogen-modulated non-genomic pathway of breast cancer, however little was revealed on the function of L-type Ca2+ channels. The L-type Ca2+ channel subunit α 1D, named Cav1.3 was found in breast cancer cells. We aimed to investigate the expression and activity of Cav1.3 in human breast cancer, and reveal the effect of estrogen in regulating the expression of Cav1.3. The qRT-PCR and western blotting were employed to show that Cav1.3 was highly expressed in breast cancer tissues. E2 exposure rapidly upregulated the expression of Cav1.3 in dosage- and time-dependent manner, and promoted Ca2+ influx. The silencing of G protein-coupled estrogen receptor 30 (GPER1/GPR30) using siRNA transfection inhibited the upregulation of Cav1.3 and Ca2+ influx induced by E2. Moreover, the inhibition of Cav1.3 by siRNA transfection suppressed E2-induced second peak of Ca2+ signal, the expression of p-ERK1/2, and the cell proliferation. Ultrasound-targeted microbubble destruction (UTMD) of Cav1.3 siRNA was used in MCF-7 cells in vitro and in the tumor xenografts mice in vivo. The application of UTMD significantly suppressed the tumor growth and promoted the survival rate. In conclusion, E2 upregulated the expression of Cav1.3 for Ca2+ influx to promote the expression of p-ERK1/2 for cell proliferation. The study confirmed that the mechanism of E2 inducing the expression of Cav1.3 through a non-genomic pathway, and highlighted that UTMD of Cav1.3 siRNA is a powerful promising technology for breast cancer gene therapy.

  11. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  12. AKAP localizes in a specific subset of TRPV1 and CaV1.2 positive nociceptive rat DRG neurons

    PubMed Central

    Brandao, Katherine E.; Dell’Acqua, Mark L.; Levinson, Simon R.

    2016-01-01

    Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting PKA and PKC to the TRPV1 channel in peripheral sensory neurons, thus lowering threshold for activation by multiple inflammatory reagents. However, the expression pattern of AKAP79/150 in peripheral sensory neurons is unknown. In this study we use immunofluorescence microscopy to identify in DRG sections the peripheral neuron subtypes that express the rodent isoform AKAP150, as well as the subcellular distribution of AKAP150 and its potential target ion channels. We found that AKAP150 is predominantly expressed in a subset of small DRG sensory neurons where it is localized at the plasma membrane of the soma, axon initial segment and small fibers. The majority of these neurons is peripherin positive and produces c-fibers, though a small portion produces Aδ-fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and CaV1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia. PMID:21674494

  13. Pathogenesis of coxsackievirus A9 in mice: role of the viral arginine-glycine-aspartic acid motif.

    PubMed

    Harvala, Heli; Kalimo, Hannu; Stanway, Glyn; Hyypiä, Timo

    2003-09-01

    Coxsackievirus A9 (CAV9) contains an arginine-glycine-aspartic acid (RGD) motif which participates in cell entry. Mutants with alterations in the RGD-containing region were utilized to explore the importance of the tripeptide in the pathogenesis of CAV9 in mice. Using in situ hybridization, the parental CAV9 strain was observed to infect skeletal muscle (intercostal, platysma, lingual and thigh muscles) of newborn mice, whereas the RGD-less mutants were detectable only in platysma and lingual muscles. In addition, newborn mice infected with the mutants survived longer than CAV9-infected mice. In adult mice, the parental strain of CAV9, but not the mutants, achieved moderately high titres in the pancreas. These results suggest that the RGD motif has a significant role in the pathogenesis of CAV9 in mice but also that RGD-independent entry routes can be utilized in the infection of murine tissue.

  14. Imbalance of caveolin-1 and eNOS expression in the pulmonary vasculature of experimental diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro; Gosemann, Jan-Hendrik; Takahashi, Toshiaki; Friedmacher, Florian; Duess, Johannes W; Puri, Prem

    2014-08-01

    Caveolin-1 (Cav-1) exerts major regulatory functions on intracellular signaling pathways originating at the plasma membrane. Cav-1 is a key regulator in adverse lung remodeling and the development of pulmonary hypertension (PH) regulating vasomotor tone through its ability to reduce nitric oxide (NO) production. This low-output endothelial NO synthase (eNOS) derived NO maintains normal pulmonary vascular homeostasis. Cav-1 deficiency leads to increased bioavailability of NO, which has been linked to increased nitrosative stress. Inhibition of eNOS reduced oxidant production and reversed PH, supporting the concept that Cav-1 regulation of eNOS activity is crucial to endothelial homeostasis in lungs. We designed this study to investigate the hypothesis that expression of Cav-1 is downregulated while eNOS expression is upregulated by the pulmonary endothelium in the nitrofen-induced congenital diaphragmatic hernia (CDH). Pregnant rats were exposed to nitrofen or vehicle on day 9.5 (D9.5). Fetuses were sacrificed on D21 and divided into nitrofen and control groups. Quantitative real-time polymerase chain reaction, Western blotting, and confocal immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of Cav-1 and eNOS. Pulmonary Cav-1 gene expression levels were significantly decreased, while eNOS gene expression was significantly increased in nitrofen-induced CDH(+). Western blotting and confocal microscopy revealed decreased pulmonary Cav-1 protein expression, while eNOS protein expression was increased in CDH(+) compared to controls. The striking evidence of markedly decreased gene and protein expression of Cav-1 with concurrently increased eNOS gene and protein expression in the pulmonary vasculature suggests that activation of eNOS secondary to Cav-1 deficiency may play an important role in the pathogenesis of PH in the nitrofen-induced CDH. © 2014 Wiley Periodicals, Inc.

  15. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  16. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue

    PubMed Central

    Smith, Carolyn L.; Abdallah, Salsabil; Le, Phuong; Harracksingh, Alicia N.; Artinian, Liana; Tamvacakis, Arianna N.; Rehder, Vincent; Reese, Thomas S.

    2017-01-01

    Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology. PMID:28330839

  17. Calcium Channel α2δ1 Proteins Mediate Trigeminal Neuropathic Pain States Associated with Aberrant Excitatory Synaptogenesis*

    PubMed Central

    Li, Kang-Wu; Yu, Yanhui Peter; Zhou, Chunyi; Kim, Doo-Sik; Lin, Bin; Sharp, Kelli; Steward, Oswald; Luo, Z. David

    2014-01-01

    To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cavα2δ1 with gabapentin, a ligand for the Cavα2δ1 proteins, or Cavα2δ1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cavα2δ1 in orofacial pain processing. Importantly, increased Cavα2δ1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cavα2δ1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2. PMID:24459143

  18. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis

    PubMed Central

    Strippoli, Raffaele; Loureiro, Jesús; Moreno, Vanessa; Benedicto, Ignacio; Pérez Lozano, María Luisa; Barreiro, Olga; Pellinen, Teijo; Minguet, Susana; Foronda, Miguel; Osteso, Maria Teresa; Calvo, Enrique; Vázquez, Jesús; López Cabrera, Manuel; del Pozo, Miguel Angel

    2015-01-01

    Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD. PMID:25550395

  19. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  20. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

    PubMed Central

    Stanley, Elise F

    2015-01-01

    At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441

  1. Caveolin-1 scaffolding domain peptides enhance anti-inflammatory effect of heme oxygenase-1 through interrupting its interact with caveolin-1.

    PubMed

    Weng, Ping; Zhang, Xiao-Tong; Sheng, Qiong; Tian, Wen-Fang; Chen, Jun-Liang; Yuan, Jia-Jia; Zhang, Ji-Ru; Pang, Qing-Feng

    2017-06-20

    Caveolin-1(Cav-1) scaffolding domain (CSD) peptides compete with the plasma membrane Cav-1, inhibit the interaction of the proteins and Cav-1, and re-store the functions of Cav-1 binding proteins. Heme oxygenase-1 (HO-1) binds to Cav-1 and its enzymatic activity was inhibited. In this study, we investigated the effect of CSD peptides on interaction between HO-1 and Cav-1, and on the HO-1 activity in vitro and in vivo. Our data showed that CSD peptides decreased the compartmentalization of HO-1 and Cav-1, and increased the HO-1 activity both in LPS-treated alveolar macrophages and in mice. Meanwhile, CSD peptides obviously ameliorated the pathology changes in mice and lowered the following injury indexes: the wet/dry ratio of lung tissues, total cell numbers in bronchoalveolar lavage fluid and lactate dehydrogenase activity in the serum. Mechanistically, it was firstly found that CSD peptides promoted alveolar macrophages polarization to M2 phenotype and inhibited the IκB degeneration. Furthermore, CSD peptides down-regulated the expression of IL-1β, IL-6, TNF-α, MCP-1, and iNOS in alveolar macrophages and in lung tissue. However, the protective role of CSD peptides on LPS-induced acute lung injury in mice could be abolished by zinc protoporphyrin IX (ZnPP, a HO-1 activity inhibitor). In summary, CSD peptides have beneficial anti-inflammatory effects by restoring the HO-1 activity suppressed by Cav-1 on plasma membrane.

  2. Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Aslani, Ehsan

    2017-07-01

    Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Follow-up of heart transplant recipients with serial echocardiographic coronary flow reserve and dobutamine stress echocardiography to detect cardiac allograft vasculopathy.

    PubMed

    Sade, Leyla Elif; Eroğlu, Serpil; Yüce, Deniz; Bircan, Aslı; Pirat, Bahar; Sezgin, Atilla; Aydınalp, Alp; Müderrisoğlu, Haldun

    2014-05-01

    Implementation of reliable noninvasive testing for screening cardiac allograft vasculopathy (CAV) is of critical importance. The most widely used modality, dobutamine stress echocardiography (DSE), has moderate sensitivity and specificity. The aim of this study was to assess the potential role of serial coronary flow reserve (CFR) assessment together with DSE for predicting CAV. A total of 90 studies were performed prospectively over 5 years in 23 consecutive heart transplant recipients who survived >1 year after transplantation. Assessment of CFR with transthoracic Doppler echocardiography, DSE, coronary angiography, and endomyocardial biopsy was performed annually. Results of CFR assessment and DSE were compared with angiographic findings of CAV. Acute cellular rejections were excluded by endomyocardial biopsies. CAV was detected in 17 of 90 angiograms. Mean CFR was similarly lower in both mild (CAV grade 1) and more severe (CAV grades 2 and 3) vasculopathy, but wall motion score index became higher in parallel with increasing grades of vasculopathy. Any CAV by angiography was detected either simultaneously with or later than CFR impairment, yielding 100% sensitivity for CFR. The combination of CFR and DSE increased the specificity of the latter from 64.3% to 87.2% without compromising sensitivity (77.8%). CFR is very sensitive for detecting CAV and increases the diagnostic accuracy of DSE, raising the potential for patient management tailored to risk modification and to avoid unnecessary angiographic procedures. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  4. Prevention of inclusion body hepatitis/hydropericardium syndrome in progeny chickens by vaccination of breeders with fowl adenovirus and chicken anemia virus.

    PubMed

    Toro, H; González, C; Cerda, L; Morales, M A; Dooner, P; Salamero, M

    2002-01-01

    The hypothesis that an effective protection of progeny chickens against inclusion body hepatitis/hydropericardium syndrome (IBH/HP) can be achieved by dual vaccination of breeders with fowl adenovirus (FAV) serotype 4 and chicken anemia virus (CAV) was tested. Thus, 17-wk-old brown leghorn pullet groups were vaccinated by different schemes including single FAV (inactivated), single CAV (attenuated), FAV and CAV dually, or were not vaccinated (controls). Subsequent progenies of these breeders were challenged with the virulent strains FAV-341 and CAV-10343 following three strategies: 1) FAV-341 intramuscularly (i.m.) at day 10 of age (only FAV-vaccinated and control progenies); 2) FAV + CAV i.m. simultaneously at day 10 of age (all progenies); 3) CAV i.m. at day 1 and FAV orally at day 10 of age (all progenies). The induction of IBH/HP in these progenies was evaluated throughout a 10-day period. Both breeder groups vaccinated against FAV and those vaccinated against CAV increased virus neutralizing specific antibodies. Challenge strategy 1 showed 26.6% mortality in control progeny chickens and 13.3% in the progeny of FAV-vaccinated breeders. Presence of lesions in the liver of these groups showed no significant differences (P > 0.05), suggesting a discreet protective effect of the vaccine. Challenge strategy 2 showed 29.4% mortality in controls and 94% of chickens showed hepatic inclusion bodies (HIB). Single CAV vaccination of breeders did not demonstrate a beneficial effect, with both mortality and liver lesions resembling the nonvaccinated controls. FAV vaccination of breeders significantly reduced both mortality (7.4%) and liver lesions (26% HIB) (P < 0.05), providing protection against this challenge strategy. Dual vaccination of breeders with FAV and CAV proved to be necessary to achieve maximum protection of the progeny (no mortality and 7% HIB). Challenge strategy 3 produced no mortality but consistent liver damage in controls (96% HIB). In this case, both

  5. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  6. Development of a blocking latex agglutination test for the detection of antibodies to chicken anemia virus.

    PubMed

    Trinh, Dai Quang; Ogawa, Haruko; Bui, Vuong Nghia; Nguyen, Tham Thi Hong; Gronsang, Dulyatad; Baatartsogt, Tugsbaatar; Kizito, Mugimba Kahoza; AboElkhair, Mohammed; Yamaguchi, Shigeo; Nguyen, Viet Khong; Imai, Kunitoshi

    2015-09-01

    A blocking latex agglutination test (b-LAT) developed in this study was evaluated for the detection of antibodies against chicken anemia virus (CAV) in chickens. Polystyrene latex beads were coupled with a neutralizing monoclonal antibody (mAb) to CAV (mAb-beads). When mAb-beads were mixed with antigens prepared from the lysate of MDCC-MSB1 cells infected with CAV, agglutination occurred. A short pre-incubation of CAV antigens with CAV-specific antiserum inhibited the agglutination of mAb-beads. The test results were obtained within 5min. The specificity of b-LAT was evaluated using sera from specific pathogen-free chickens and sera containing antibodies to avian influenza virus, Newcastle disease virus, infectious bursal disease virus, and Marek's disease virus; nonspecific agglutination and cross-reactivity with antibodies to unrelated viruses were not observed. The examination of 94 serum samples collected from commercial breeder chickens of various ages (17-63 weeks) revealed good agreement (93.6%, Kappa value=0.82) between b-LAT and a virus neutralization test, known to be most sensitive and specific in the detection of antibodies to CAV. These results indicate that b-LAT, a simple and rapid test, is a useful and reliable tool in CAV serology. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Inadequate increase in the volume of major epicardial coronary arteries compared with that in left ventricular mass. Novel concept for characterization of coronary arteries using 64-slice computed tomography.

    PubMed

    Ehara, Shoichi; Okuyama, Takuhiro; Shirai, Nobuyuki; Sugioka, Kenichi; Oe, Hiroki; Itoh, Toshihide; Matsuoka, Toshiyuki; Ikura, Yoshihiro; Ueda, Makiko; Naruko, Takahiko; Hozumi, Takeshi; Yoshiyama, Minoru

    2009-08-01

    Previous studies have shown a correlation between coronary artery cross-sectional diameter and left ventricular (LV) mass. However, no studies have examined the correlation between actual coronary artery volume (CAV) and LV mass. In the present study, measurements of CAV by 64-multislice computed tomography (MSCT) were validated and the relationship between CAV and LV mass was investigated. First, coronary artery phantoms consisting of syringes filled with solutions of contrast medium moving at simulated heart rates were scanned by 64-MSCT. Display window settings permitting accurate calculation of small volumes were optimized by evaluating volume-rendered images of the segmented contrast medium at different window settings. Next, 61 patients without significant coronary artery stenosis were scanned by 64-MSCT with the same protocol as for the phantoms. Coronary arteries were segmented on a workstation and the same window settings were applied to the volume-rendered images to calculate total CAV. Significant correlations between total CAV and LV mass (r=0.660, P<0.0001) were found, whereas an inverse relation was present between total CAV per 100 g of LV mass and LV mass. The novel concept of "CAV" for the characterization of coronary arteries may prove useful for future research, particularly on the causes of LV hypertrophy.

  8. Alternative Fuels Data Center

    Science.gov Websites

    Transportation Department (ITD) established the Connected and Autonomous Vehicle (CAV) Testing and Deployment testing and deployment of CAVs, coordinate with the identified agencies about how to administer the testing of CAVs on roads, review existing state statues and administrative rules that impede the testing

  9. Effect of 1-aminocyclopropane-1-carboxylic acid on the production of ethylene in senescing flowers of Ipomoea tricolor Cav

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konze, J.R.; Jones, J.F.; Boller, T.

    1980-10-01

    Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to rib segments excised from flowers of Ipomoea tricolor Cav. resulted in the formation of C/sub 2/H/sub 4/ in greater quantities than produced under natural conditions. The ability of ACC to enhance C/sub 2/H/sub 4/ production was independent of the physiological age of the tissue and its capacity to synthesize C/sub 2/H/sub 4/ without applied ACC. When ACC was fed to rib segments that had been treated with (/sup 14/C)methionine, incorporation of radioactivity into C/sub 2/H/sub 4/ was reduced by 80%. Aminoethoxyvinylglycine and aminooxyacetic acid inhibited C/sub 2/H/sub 4/ production in rib segments of I.more » tricolor but had no effect on ACC-enhanced C/sub 2/H/sub 4/ production. Protoplasts obtained from flower tissue of I. tricolor did not form C/sub 2/H/sub 4/, even when incubated with methionine or selenomethionine. They produced C/sub 2/H/sub 4/ upon incubation with ACC, however. ACC-dependent C/sub 2/H/sub 4/ production in protoplasts was inhibited by n-propyl gallate, AgCl, CoCl/sub 2/, KCN, Na/sub 2/S, and NaN/sub 3/. ACC-dependent C/sub 2/H/sub 4/ synthesis in rib segments and protoplasts was dependent on O/sub 2/, the K/sub m/ for O/sub 2/ being 1.0 to 1.4% (v/v). These results confirm the following pathway for C/sub 2/H/sub 4/ biosynthesis in I. tricolor: methionine (selenomethionine) ..-->..S-adenosylmethionine (selenoadenosylmethionine) ..-->.. ACC ..-->.. C/sub 2/H/sub 4/.« less

  10. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.

    PubMed

    Yang, Jie; Xie, Man-Xiu; Hu, Li; Wang, Xiao-Fang; Mai, Jie-Zhen; Li, Yong-Yong; Wu, Ning; Zhang, Cheng; Li, Jin; Pang, Rui-Ping; Liu, Xian-Guo

    2018-07-01

    N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Uric acid is an independent predictor of cardiac allograft vasculopathy after heart transplantation.

    PubMed

    Asleh, Rabea; Prasad, Megha; Briasoulis, Alexandros; Nardi, Valentina; Adigun, Rosalyn; Edwards, Brooks S; Pereira, Naveen L; Daly, Richard C; Lerman, Amir; Kushwaha, Sudhir S

    2018-05-01

    Cardiac allograft vasculopathy (CAV) is a major complication after heart transplantation (HT). Uric acid (UA) may play a role in CAV due to its role in stimulating T-cell-mediated immunity. Sirolimus is associated with CAV attenuation through a number of mechanisms, including immune-mediated effects. We aimed to determine whether UA is an independent predictor of CAV and whether conversion to sirolimus as primary immunosuppression modulates UA levels. We retrospectively analyzed a cohort of 224 patients who underwent HT between 2004 and 2015 and had serial coronary intravascular ultrasound (IVUS) studies. Serum UA levels were measured at baseline and last follow-up IVUS in all participants. CAV progression was assessed by measuring the change in plaque volume (ΔPV) and plaque index (ratio of plaque volume to vessel volume [ΔPI]) between last follow-up and baseline IVUS after correction for time of follow-up. Patients with high (≥7 mg/dl) compared with low (<7 mg/dl) UA had increased median ΔPV (0.33 [interquartile range 0.08 to 0.93] vs 0.07 [-0.17 to 0.38] mm 3 /mm/year; p < 0.001) and ΔPI (2.0% [0.31% to 3.9%] vs 0.33% [-1.2% to 2.0%]; p < 0.001). Elevated UA levels were associated with a significantly increased risk of developing significant CAV progression (ΔPV >0.50 mm 3 /mm) (hazard ratio 2.2, 95% confidence interval 1.1 to 4.6; p = 0.037). Sirolimus resulted in decreased UA levels (5.8 ± 1.4 vs 5.2 ± 1.5; p = 0.002) and patients converted to sirolimus and had low UA levels had the least CAV progression (p < 0.001). After adjustment for potential confounders, change in UA level was also an independent predictor of CAV progression. UA is an independent predictor of CAV after HT. Sirolimus is associated with decreased UA levels and may explain one of the mechanisms by which sirolimus attenuates CAV progression. Copyright © 2018. Published by Elsevier Inc.

  12. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    PubMed Central

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC50 of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel CaV3.2 isoform is responsible for them. PMID:21898399

  13. Differential expression of caveolin-1 in human myometrial and uterine leiomyoma smooth muscle.

    PubMed

    Zhou, Yu; Ren, Yuanyuan; Cui, Lihua; Li, Zongjin; Zhu, Yingjun; Lin, Wanjun; Wang, Yuebing

    2014-11-01

    Uterine leiomyomas, the most common neoplasms of the female genital tract, are benign tumors of the uterus arising from the smooth muscle cells (SMCs) of the myometrium with an involvement of estrogen. Caveolin-1 (Cav-1), a major protein component in caveolae membrane lipid rafts, is down-regulated in several estrogen-related cancer cells, and overexpression of Cav-1 inhibits proliferation of cancer cells and vascular SMCs as well. Therefore, we hypothesize that Cav-1 is down-regulated in human uterine leiomyoma. Western blot using tissues from clinical patients showed that Cav-1 expression was significantly lower or undetectable in uterine leiomyoma compared with their matched myometrium (P < .001). This finding was confirmed by immunohistochemistry and confocal microscopy. The cav-1 mRNA level in uterine leiomyomas was also significantly lower as detected by reverse transcription-quantitative polymerase chain reaction analysis (P = .001). To further study the underlying mechanism, we performed primary cell culture, and found that the expression of Cav-1 remained low in cultured leiomyoma SMCs (P = .009). Serum withdrawal did not change Cav-1 expression in leiomyoma SMCs, but increased expression in myometrial SMCs (P = .006). 17-β estradiol inhibited the expression of Cav-1 protein (P = .047) and mRNA (P = .007) in leiomyoma SMCs, whereas it stimulated expression in myometrial SMCs (P = .043). 17-β estradiol, although activating the mitogen-activated protein kinase pathway in both SMCs, did not stimulate their proliferation. We conclude that human uterine leiomyomas in vitro express low levels of Cav-1, which may result from estrogen inhibition. This effect of estrogen may contribute to the pathogenesis of uterine leiomyoma. Further studies in vivo are needed to verify these results. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Patterns of Exposure of Iberian Wolves (Canis lupus) to Canine Viruses in Human-Dominated Landscapes.

    PubMed

    Millán, Javier; López-Bao, José Vicente; García, Emilio J; Oleaga, Álvaro; Llaneza, Luis; Palacios, Vicente; de la Torre, Ana; Rodríguez, Alejandro; Dubovi, Edward J; Esperón, Fernando

    2016-03-01

    Wildlife inhabiting human-dominated landscapes is at risk of pathogen spill-over from domestic species. With the aim of gaining knowledge in the dynamics of viral infections in Iberian wolves (Canis lupus) living in anthropized landscapes of northern Spain, we analysed between 2010 and 2013 the samples of 54 wolves by serology and polymerase chain reaction (PCR) for exposure to four pathogenic canine viruses: canine distemper virus (CDV), canine parvovirus-2 (CPV), canine adenovirus 1 and 2 (CAV-1 and CAV-2) and canine herpesvirus. Overall, 76% of the studied wolves presented evidence of exposure to CPV (96% by HI, 66% by PCR) and 75% to CAV (75% by virus neutralization (VN), 76% by PCR, of which 70% CAV-1 and 6% CAV-2). This represents the first detection of CAV-2 infection in a wild carnivore. CPV/CAV-1 co-infection occurred in 51% of the wolves. The probability of wolf exposure to CPV was positively and significantly correlated with farm density in a buffer zone around the place where the wolf was found, indicating that rural dogs might be the origin of CPV infecting wolves. CPV and CAV-1 appear to be enzootic in the Iberian wolf population, which is supported by the absence of seasonal and inter-annual variations in the proportion of positive samples detected. However, while CPV may depend on periodical introductions by dogs, CAV-1 may be maintained within the wolf population. All wolves were negative for exposure to CDV (by VN and PCR) and CHV (by PCR). The absence of acquired immunity against CDV in this population may predispose it to an elevated rate of mortality in the event of a distemper spill-over via dogs.

  15. Sex-Dependent Expression of Caveolin 1 in Response to Sex Steroid Hormones Is Closely Associated with Development of Obesity in Rats

    PubMed Central

    Mukherjee, Rajib; Kim, Sang Woo; Choi, Myung Sook; Yun, Jong Won

    2014-01-01

    Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1. PMID:24608114

  16. Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence

    PubMed Central

    Uhrig, Stefanie; Vandael, David; Marcantoni, Andrea; Dedic, Nina; Bilbao, Ainhoa; Vogt, Miriam A; Hirth, Natalie; Broccoli, Laura; Bernardi, Rick E; Schönig, Kai; Gass, Peter; Bartsch, Dusan; Spanagel, Rainer; Deussing, Jan M; Sommer, Wolfgang H; Carbone, Emilio; Hansson, Anita C

    2017-01-01

    It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications. PMID:27905406

  17. Association of Caveolin-1 and -2 Genetic Variants and Post-treatment Serum Caveolin-1 with Prostate Cancer Risk and Outcomes

    PubMed Central

    Langeberg, Wendy J.; Tahir, Salahaldin A.; Feng, Ziding; Kwon, Erika M.; Ostrander, Elaine A.; Thompson, Timothy C.; Stanford, Janet L.

    2010-01-01

    Background Caveolin-1 (cav-1) is overexpressed by metastatic prostate cancer (PC) cells. Pre-operative serum cav-1 levels have been shown to be a prognostic marker for PC recurrence. This study evaluated the relationship between post-treatment serum cav-1 levels and single nucleotide polymorphisms (SNPs) in the cav-1 and -2 genes with risk of PC, aggressive PC, PC recurrence or death. Methods Two case-control studies of PC among men in Washington State were combined for this analysis. Cases (n=1,458) were diagnosed in 1993–96 or 2002–05 and identified via a SEER cancer registry. Age-matched controls (n=1,351) were identified via random digit dialing. Logistic regression assessed the relationship between exposures (19 haplotype-tagging SNPs from all subjects and post-treatment serum cav-1 levels from a sample of 202 cases and 226 controls) and PC risk and aggressive PC. Cox proportional hazards regression assessed the relationship between exposures and PC recurrence and death. Results Rs9920 in cav-1 was associated with an increased relative risk of overall PC (ORCT+CC=1.37, 95%CI=1.12, 1.68) and aggressive PC (ORCT+CC=1.57, 95%CI=1.20, 2.06), but not with PC recurrence or death. High post-treatment serum cav-1 levels were not associated with PC risk, aggressive PC, or PC-specific death, but approached a significant inverse association with PC recurrence (hazard ratio=0.69, 95%CI=0.47, 1.00). Conclusions We found modest evidence for an association with a variant in the cav-1 gene and risk of overall PC and aggressive PC, which merits further study. We found no evidence that higher post-treatment serum cav-1 is associated with risk of aggressive PC or adverse PC outcomes. PMID:20209490

  18. Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration.

    PubMed

    Luo, Xiaoying; Dan Wang; Luo, Xuan; Zhu, Xintao; Wang, Guozhen; Ning, Zuowei; Li, Yang; Ma, Xiaoxin; Yang, Renqiang; Jin, Siyi; Huang, Yun; Meng, Ying; Li, Xu

    2017-10-01

    Aldosterone, with pro-oxidation and pro-autophagy capabilities, plays a key role in liver fibrosis. However, the mechanisms underlying aldosterone-promoted liver sinusoidal endothelial cells (LSECs) defenestration remain unknown. Caveolin 1 (Cav1) displays close links with autophagy and fenestration. Hence, we aim to investigate the role of Cav1-related autophagy in LSECs defenestration. We found the increase of aldosterone/MR (mineralocorticoid receptor) level, oxidation, autophagy, and defenestration in LSECs in the human fibrotic liver, BDL or hyperaldosteronism models; while antagonizing aldosterone or inhibiting autophagy relieved LSECs defenestration in BDL-induced fibrosis or hyperaldosteronism models. In vitro, fenestrae of primary LSECs gradually shrank, along with the down-regulation of the NO-dependent pathway and the augment of the AMPK-dependent autophagy; these effects were aggravated by rapamycin (an autophagy activator) or aldosterone treatment. Additionally, aldosterone increased oxidation mediated by Cav1, reduced ATP generation, and subsequently induced the AMPK-dependent autophagy, leading to the down-regulation of the NO-dependent pathway and LSECs defenestration. These effects were reversed by MR antagonist spironolactone, antioxidants or autophagy inhibitors. Besides, aldosterone enhanced the co-immunoprecipitation of Cav1 with p62 and ubiquitin, and induced Cav1 co-immunofluorescence staining with LC3, ubiquitin, and F-actin in the perinuclear area of LSECs. Furthermore, aldosterone treatment increased the membrane protein level of Cav1, whereas decrease the cytoplasmic protein level of Cav1, indicating that aldosterone induced Cav1-related selective autophagy and F-actin remodeling to promote defenestration. Consequently, Cav1-related selective autophagy initiated by aldosterone-induced oxidation promotes LSECs defenestration via activating the AMPK-ULK1 pathway and inhibiting the NO-dependent pathway. Copyright © 2017 The Authors

  19. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels.

    PubMed

    Grimaldo, Lizbeth; Sandoval, Alejandro; Garza-López, Edgar; Felix, Ricardo

    2017-01-01

    N-type calcium (CaV2.2) channels are widely expressed in the brain and the peripheral nervous system, where they play important roles in the regulation of transmitter release. Although CaV2.2 channel expression levels are precisely regulated, presently little is known regarding the molecules that mediate its synthesis and degradation. Previously, by using a combination of biochemical and functional analyses, we showed that the complex formed by the light chain 1 of the microtubule-associated protein 1B (LC1-MAP1B) and the ubiquitin-proteasome system (UPS) E2 enzyme UBE2L3, may interact with the CaV2.2 channels promoting ubiquitin-mediated degradation. The present report aims to gain further insights into the possible mechanism of degradation of the neuronal CaV2.2 channel by the UPS. First, we identified the enzymes UBE3A and Parkin, members of the UPS E3 ubiquitin ligase family, as novel CaV2.2 channel binding partners, although evidence to support a direct protein-protein interaction is not yet available. Immunoprecipitation assays confirmed the interaction between UBE3A and Parkin with CaV2.2 channels heterologously expressed in HEK-293 cells and in neural tissues. Parkin, but not UBE3A, overexpression led to a reduced CaV2.2 protein level and decreased current density. Electrophysiological recordings performed in the presence of MG132 prevented the actions of Parkin suggesting enhanced channel proteasomal degradation. Together these results unveil a novel functional coupling between Parkin and the CaV2.2 channels and provide a novel insight into the basic mechanisms of CaV channels protein quality control and functional expression.

  20. Cell-free formation and interactome analysis of caveolae.

    PubMed

    Jung, WooRam; Sierecki, Emma; Bastiani, Michele; O'Carroll, Ailis; Alexandrov, Kirill; Rae, James; Johnston, Wayne; Hunter, Dominic J B; Ferguson, Charles; Gambin, Yann; Ariotti, Nicholas; Parton, Robert G

    2018-06-04

    Caveolae have been linked to the regulation of signaling pathways in eukaryotic cells through direct interactions with caveolins. Here, we describe a cell-free system based on Leishmania tarentolae ( Lt ) extracts for the biogenesis of caveolae and show its use for single-molecule interaction studies. Insertion of expressed caveolin-1 (CAV1) into Lt membranes was analogous to that of caveolin in native membranes. Electron tomography showed that caveolins generate domains of precise size and curvature. Cell-free caveolae were used in quantitative assays to test the interaction of membrane-inserted caveolin with signaling proteins and to determine the stoichiometry of interactions. Binding of membrane-inserted CAV1 to several proposed binding partners, including endothelial nitric-oxide synthase, was negligible, but a small number of proteins, including TRAF2, interacted with CAV1 in a phosphorylation-(CAV1 Y14 )-stimulated manner. In cells subjected to oxidative stress, phosphorylated CAV1 recruited TRAF2 to the early endosome forming a novel signaling platform. These findings lead to a novel model for cellular stress signaling by CAV1. © 2018 Jung et al.

  1. Calcific Aortic Valve Stenosis: Methods, Models, and Mechanisms

    PubMed Central

    Miller, Jordan D.; Weiss, Robert M.; Heistad, Donald D.

    2011-01-01

    Calcific aortic valve stenosis (CAVS) is a major health problem facing aging societies. The identification of osteoblast-like and osteoclast-like cells in human tissue has led to a major paradigm shift in the field. CAVS was thought to be a passive, degenerative process, whereas now the progression of calcification in CAVS is considered to be actively regulated. Mechanistic studies examining the contributions of true ectopic osteogenesis, non-osseous calcification, and ectopic osteoblast-like cells (that appear to function differently from skeletal osteoblasts) to valvular dysfunction have been facilitated by the development of mouse models of CAVS. Recent studies also suggest that valvular fibrosis, as well as calcification, may play an important role in restricting cusp movement, and CAVS may be more appropriately viewed as a fibrocalcific disease. High resolution echocardiography and magnetic resonance imaging have emerged as useful tools for testing the efficacy of pharmacological and genetic interventions in vivo. Key studies in humans and animals are reviewed that have shaped current paradigms in the field of CAVS, and suggest promising future areas for research. PMID:21617136

  2. A nonpolio enterovirus with respiratory tropism causes poliomyelitis in intercellular adhesion molecule 1 transgenic mice.

    PubMed

    Dufresne, Andrew T; Gromeier, Matthias

    2004-09-14

    Coxsackievirus A21 (CAV21) is classified within the species Human enterovirus C (HEV-C) of the Enterovirus genus of picornaviruses. HEV-C share striking homology with the polioviruses (PV), their closest kin among the enteroviruses. Despite a high level of sequence identity, CAV21 and PV cause distinct clinical disease typically attributed to their differential use of host receptors. PV cause poliomyelitis, whereas CAV21 shares a receptor and a propensity to cause upper respiratory tract infections with the major group rhinoviruses. As a model for CAV21 infection, we have developed transgenic mice that express human intercellular adhesion molecule 1, the cell-surface receptor for CAV21. Surprisingly, CAV21 administered to these mice via the intramuscular route causes a paralytic condition consistent with poliomyelitis. The virus appears to invade the CNS by retrograde axonal transport, as has been demonstrated to occur in analogous PV infections. We detected human intercellular adhesion molecule 1 expression on both transgenic mouse and human spinal cord anterior horn motor neurons, indicating that members of HEV-C may share PV's potential to elicit poliomyelitis in humans.

  3. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-08-15

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming alpha1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming alpha1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both alpha1A P/Q- and alpha1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics.

  4. Consequences of a novel caveolin-3 mutation in a large German family.

    PubMed

    Fischer, Dirk; Schroers, Anja; Blümcke, Ingmar; Urbach, Horst; Zerres, Klaus; Mortier, Wilhelm; Vorgerd, Matthias; Schröder, Rolf

    2003-02-01

    Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.

  5. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  6. The antinociceptive effects of a standardized ethanol extract of the Bidens odorata Cav (Asteraceae) leaves are mediated by ATP-sensitive K+ channels.

    PubMed

    Zapata-Morales, Juan Ramón; Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Carranza-Álvarez, Candy; Isiordia-Espinoza, Mario; Hernández-Morales, Alejandro; Solorio-Alvarado, Cesar

    2017-07-31

    Bidens odorata Cav (Asteraceae) is used for the empirical treatment of inflammation and pain. This work evaluated the in vitro and in vivo toxicity, antioxidant activity, as well as the anti-inflammatory and antinociceptive effects of an ethanol extract from Bidens odorata leaves (BOE). The in vitro toxicity of BOE (10-1000µg/ml) was evaluated with the comet assay in PBMC. The in vivo acute toxicity of BOE (500-5000mg/kg) and the effect of BOE (10-1000µg/ml) on the level of ROS in PBMC were determined. The in vivo anti-inflammatory activity of BOE was assessed using the TPA-induced ear edema in mice. The antinociceptive activities of BOE (50-200mg/kg p.o.) were assessed using the acetic acid and formalin tests. The antinociceptive mechanism of BOE was determined using naloxone and glibenclamide. BOE lacked DNA damage, and showed low in vivo toxicity (LD 50 > 5000mg/kg p.o.). BOE inhibited ROS production (IC 50 = 252.13 ± 20.54µg/ml), and decreased inflammation by 36.1 ± 3.66%. In both antinociceptive test, BOE (200mg/kg) exerted activity with similar activity than the reference drugs. B. odorata exerts low in vitro and in vivo toxicity, antioxidant effects, moderate in vivo anti-inflammatory activity, and antinociceptive effects mediated by ATP-sensitive K + channels. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Detection and characterization of chicken anemia virus from commercial broiler breeder chickens

    PubMed Central

    Hailemariam, Zerihun; Omar, Abdul Rahman; Hair-Bejo, Mohd; Giap, Tan Ching

    2008-01-01

    Background Chicken anemia virus (CAV) is the causative agent of chicken infectious anemia (CIA). Study on the type of CAV isolates present and their genetic diversity, transmission to their progeny and level of protection afforded in the breeder farms is lacking in Malaysia. Hence, the present study was aimed to detect CAV from commercial broiler breeder farms and characterize CAV positive samples based on sequence and phylogenetic analysis of partial VP1 gene. Results A total of 12 CAV isolates from different commercial broiler breeder farms were isolated and characterized. Detection of CAV positive embryos by the PCR assay in the range of 40 to 100% for different farms indicated high level of occurrence of vertical transmission of viral DNA to the progeny. CAV antigen was detected in the thymus and in the bone marrow but not in spleen, liver, duodenum, ovary and oviduct by indirect immunoperoxidase staining. The 12 CAV isolates were characterized based on partial sequences of VP1 gene. Six isolates (MF1A, MF3C, M3B5, NF4A, P12B and P24A) were found to have maximum homology with previously characterized Malaysian isolate SMSC-1, four isolates (M1B1, NF3A, PYT4 and PPW4) with isolate BL-5 and the remaining two (NF1D and NF2C) have maximum homology both with isolates 3-1 and BL-5. Meanwhile, seven of the isolates with amino acid profile of 75-I, 97-L, 139-Q and 144-Q were clustered together in cluster I together with other isolates from different geographical places. The remaining five isolates with amino acid profile of 75-V, 97-M, 139-K and 144-E were grouped under cluster II. All the CAV isolates demonstrated omega values (Ka/Ks) of less than one (the values ranging from 0.07 to 0.5) suggesting the occurrence of purifying (negative) selection in all the studied isolates. Conclusion The present study showed that CAV is widespread in the studied commercial broiler breeder farms. The result also indicated the occurrence of genetic variability in local CAV isolates

  8. Detection and characterization of chicken anemia virus from commercial broiler breeder chickens.

    PubMed

    Hailemariam, Zerihun; Omar, Abdul Rahman; Hair-Bejo, Mohd; Giap, Tan Ching

    2008-10-27

    Chicken anemia virus (CAV) is the causative agent of chicken infectious anemia (CIA). Study on the type of CAV isolates present and their genetic diversity, transmission to their progeny and level of protection afforded in the breeder farms is lacking in Malaysia. Hence, the present study was aimed to detect CAV from commercial broiler breeder farms and characterize CAV positive samples based on sequence and phylogenetic analysis of partial VP1 gene. A total of 12 CAV isolates from different commercial broiler breeder farms were isolated and characterized. Detection of CAV positive embryos by the PCR assay in the range of 40 to 100% for different farms indicated high level of occurrence of vertical transmission of viral DNA to the progeny. CAV antigen was detected in the thymus and in the bone marrow but not in spleen, liver, duodenum, ovary and oviduct by indirect immunoperoxidase staining. The 12 CAV isolates were characterized based on partial sequences of VP1 gene. Six isolates (MF1A, MF3C, M3B5, NF4A, P12B and P24A) were found to have maximum homology with previously characterized Malaysian isolate SMSC-1, four isolates (M1B1, NF3A, PYT4 and PPW4) with isolate BL-5 and the remaining two (NF1D and NF2C) have maximum homology both with isolates 3-1 and BL-5. Meanwhile, seven of the isolates with amino acid profile of 75-I, 97-L, 139-Q and 144-Q were clustered together in cluster I together with other isolates from different geographical places. The remaining five isolates with amino acid profile of 75-V, 97-M, 139-K and 144-E were grouped under cluster II. All the CAV isolates demonstrated omega values (Ka/Ks) of less than one (the values ranging from 0.07 to 0.5) suggesting the occurrence of purifying (negative) selection in all the studied isolates. The present study showed that CAV is widespread in the studied commercial broiler breeder farms. The result also indicated the occurrence of genetic variability in local CAV isolates that can be divided at least

  9. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    PubMed Central

    Keshavarz, Maryam; Schwarz, Heike; Hartmann, Petra; Wiegand, Silke; Skill, Melanie; Althaus, Mike; Kummer, Wolfgang; Krasteva-Christ, Gabriela

    2017-01-01

    An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/−) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT

  10. H{sub 2}S does not regulate proliferation via T-type Ca{sup 2+} channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elies, Jacobo; Johnson, Emily; Boyle, John P.

    T-type Ca{sup 2+} channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca{sup 2+} channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca{sup 2+} channel Cav3.2 is selectively inhibited by hydrogen sulfide (H{sub 2}S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H{sub 2}S could account for the anti-proliferative effects of this gasotransmitter. H{sub 2}S suppressed proliferation inmore » HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H{sub 2}S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H{sub 2}S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca{sup 2+} channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H{sub 2}S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca{sup 2+} channel isoform was the H{sub 2}S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca{sup 2+} channel-mediated proliferation by H{sub 2}S is independent of the channels’ sensitivity to H{sub 2}S. - Highlights: • T-type Ca{sup 2+} channels regulate proliferation and are sensitive to the gasotransmitters CO and H{sub 2}S. • H{sub 2}S reduced proliferation in HEK293 cells expressing the H{sub 2}S sensitive Cav3.2 channel. • H{sub 2}S also inhibited proliferation in non-transfected cells and HEK293 cells expressing Cav3.1. • Native smooth muscle cells primarily express Cav3.1. Their proliferation was also inhibited by H{sub 2}S. • Unlike CO, H{sub 2}S does not regulate smooth muscle proliferation via T-type Ca

  11. [Role of caveolin-1 in pulmonary microvascular endothelial cells injury induced by lipopolysaccharide in rat].

    PubMed

    You, Qing-hai; Zhang, Dan; Sun, Geng-yun; Yue, Yang; Xu, Xiu-juan

    2013-12-01

    To investigate the role of caveolin-1 (Cav-1) in the modulation of rat pulmonary microvascular endothelial cells (RPMVEC) injury induced by lipopolysaccharide (LPS). Cultured RPMVEC were randomly divided into time-dependent injury group induced by LPS and intervention group in which cells were pretreated by protein kinase A inhibitor (PKI). In the time-dependent injury group, monolayers of cells were constructed to determine permeability changes after 10 μg/mL LPS challenge for 0, 1, 3, 6, 12 and 24 hours with the method of Evans blue-labeled albumin flux across the monolayer (Pd). Western blotting was used to determine the Cav-1 expression after LPS stimulation and the phosphorylation-Cav-1 (p-Cav-1) expression after LPS challenge for 0, 10, 30, 60, 90, 120 minutes. In the intervention group, after pre-treatment with 10 μmol/L PKI for 30 minutes, RPMVECs were challenged with 10 μg/mL LPS, and the expression of p-Cav-1 was determined 30 minutes after LPS challenge, the permeability and the Cav-1 protein expression were assessed by Pd and Western blotting, respectively. Non-stimulation group and single PKI simulation group served as controls. Western blotting revealed that the expression of Cav-1 protein was elevated at 1 hour (2.97 ± 0.07), peaking at 3 hours (3.77 ± 0.37), then it lowered gradually, but it was still higher at 24 hours (1.45 ± 0.18) when compared with 0 hour group (1.12±0.08) with significant differences (F=178.047, P=0.000). After RPMVEC monolayers were challenged by LPS for different periods (0, 1, 3, 6, 12 and 24 hours), there were significant increases in a time-dependent manner in Cav-1 expression in the permeability as measured by Pd [(99.67 ± 4.32)%, (118.17 ± 2.32)%, (159.00 ± 2.61)%, (141.17 ± 2.64)%, (120.17 ± 2.79)% and (108.83 ± 2.04)%, F=345.869, P=0.000] which was similar to the changes in Cav-1 expression. LPS also increased Cav-1 phosphorylation in a time-dependent manner occurring at 10 minutes (2.41 ± 0.11), peaking

  12. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Daumer, Kristin M; Milliman, Janet N; Chiavarina, Barbara; Migneco, Gemma; Witkiewicz, Agnieszka K; Martinez-Cantarin, Maria P; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2010-06-15

    Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti

  13. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-01-01

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming α1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming α1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1−/− mice. In the CaV3.1−/− mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1−/− mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1−/− mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1−/− and CaV3.1−/− mice. These results suggest that both α1A P/Q- and α1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics. PMID:20547676

  14. Characterization of full genome sequences of chicken anemia viruses circulating in Egypt reveals distinct genetic diversity and evidence of recombination.

    PubMed

    Erfan, Ahmed M; Selim, Abdullah A; Naguib, Mahmoud M

    2018-06-02

    Chicken anemia virus (CAV) is one of the commercially important diseases of poultry worldwide. In Egypt, CAV has been reported to be a potential threat to the commercial poultry sectors. Hence, this study was aimed at isolation and full genomic analysis of CAVs circulating in chicken populations in different geographical location in Egypt. A total of 42 samples were collected from broiler chicken flocks in 9 governorates in Egypt from 12 to 42 days of age. The mortality rate observed among chickens was ranging from 3% to 22%. Nineteen out of 42 farms were found positive for the CAV genome by polymerase chain reaction (PCR). Full genome sequencing was conducted for 18 positive samples. Genetic analysis revealed a high similarity of >99% in 11 viruses with the vaccine strain Del-Ros; while the other seven samples shared close similarity to CAV field strains isolated from China, Taiwan, and Brazil. The data also indicated Q139 and Q144 amino acids substitutions among the VP1 of Egyptian field strains, which are known to be important in virus replication and spread. Phylogenetic analysis of the sequenced viruses (n = 18) based on either the full gene nucleotide sequence or VP1 coding sequence, suggested the circulation of four distinct genotypes in Egypt designated as group A, B, C and D. Moreover, evidence of recombination was detected among four Egyptian CAVs located within group A. The findings of this study succeeded to elucidate the epidemiological and genetic features of CAVs circulating in Egypt, and underscores the important of CAVs surveillance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Voltage-gated calcium channels of Paramecium cilia

    PubMed Central

    Lodh, Sukanya; Valentine, Megan S.; Van Houten, Judith L.

    2016-01-01

    ABSTRACT Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. PMID:27707864

  16. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy.

    PubMed

    Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan; Clerkin, Kevin J; See, Sarah B; Shaked, David; Rogers, Kortney; Nunez, Sarah; Veras, Yokarla; Addonizio, Linda; Givertz, Michael M; Naka, Yoshifumi; Mancini, Donna; Vasilescu, Rodica; Marboe, Charles; Restaino, Susan; Madsen, Joren C; Zorn, Emmanuel

    2018-03-01

    Cardiac allograft vasculopathy (CAV) has been associated with graft-infiltrating B cells, although their characteristics are still unclear. In this study we examined the frequency, localization and reactivity profile of graft-infiltrating B cells to determine their contribution to the pathophysiology of CAV. B cells, plasma cells and macrophages were examined by immunohistochemistry in 56 allografts with CAV, 49 native failed hearts and 25 autopsy specimens. A total of 102 B-cell clones were immortalized directly from the infiltrates of 3 fresh cardiac samples with CAV. Their secreted antibodies were assessed using enzyme-linked immunoassay and flow cytometry. B-cell infiltration was observed around coronary arteries in 93% of allograft explants with CAV. Comparatively, intragraft B cells were less frequent and less dense in the intraventricular myocardium from where routine biopsies are obtained. Plasma cells and macrophages were also detected in 85% and 95% of explants, respectively. Remarkably, B-cell infiltrates were not associated with circulating donor-specific antibodies (DSA) or prior episodes of antibody-mediated rejection (AMR). Among all B-cell clones generated from 3 explants with CAV, a majority secreted natural antibodies reactive to multiple autoantigens and apoptotic cells, a characteristic of innate B cells. Our study reveals a high frequency of infiltrating B cells around the coronary arteries of allografts with CAV, independent of DSA or AMR. These cells are enriched for innate B cells with a polyreactive profile. The findings shift the focus from conventional DSA-producing B cells to the potentially pathogenic polyreactive B cells in the development of clinical CAV. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    PubMed Central

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  18. Persistence of chicken anemia virus antigen and inclusions in spontaneous cases of Marek's disease visceral lymphomas in broiler chickens at slaughterhouses.

    PubMed

    Ahmed, Mohamed Sabry; Ono, Hiroki; Sasaki, Jun; Ochiai, Kenji; Goryo, Masanobu

    2016-06-01

    The chicken anemia virus (CAV) and Marek's disease virus (MDV) infect chickens worldwide; a single or dual infection by these viruses has a great impact on poultry production. In the present study, we examined the existence of CAV antigen and its inclusions in Marek's disease (MD) lymphomas in chickens in the slaughterhouses of Iwate prefecture, Japan. Forty-nine spleens and 13 livers with different degrees of nodular lesions were histopathologically examined at our laboratory. Grossly, the tested organs showed various sizes and anatomical architectures. Based on the cellular morphology and the infiltrative nature of the neoplastic lymphocytes, MD was confirmed in 76% (37/49) of the spleens and 92% (12/13) of the livers. The lesions of MD, according to the pattern of lymphocytic accumulation in the affected organs, were divided into multifocal, coalesced and diffuse. CAV intranuclear inclusion bodies were detected within the small and the large bizarre lymphocytes of the MD lymphomas in 2 livers and 9 spleens, and the immunostaining test for CAV confirmed the persistence of CAV antigens and inclusions in the neoplastic cells. This study demonstrated the persistence of CAV infection within the neoplastic cells of naturally occurring MD lymphomas in chickens.

  19. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  20. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  1. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects.

    PubMed

    Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul

    2018-03-06

    Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.

  2. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide–High Angiotensin II–Induced Cardiovascular Injury

    PubMed Central

    Pojoga, Luminita H.; Yao, Tham M.; Opsasnick, Lauren A.; Siddiqui, Waleed T.; Reslan, Ossama M.; Adler, Gail K.; Williams, Gordon H.

    2015-01-01

    Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1–replete or –deficient states would alter vascular function in a mouse model of low nitric oxide (NO)–high angiotensin II (AngII)–induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1−/−) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1–0.2 mg/ml in drinking water at days 1–11) plus AngII (0.7–2.8 mg/kg per day via an osmotic minipump at days 8–11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1−/− mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1−/− mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1−/− mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1−/− versus WT mice, further increased with L-NAME + AngII, and

  3. Glutamate Signaling and Mitochondrial Dysfunction in Models of Parkinson’s Disease

    DTIC Science & Technology

    2014-03-01

    stages of PD, an elevation in synaptically released glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to...neurons is attributable to activity -dependent calcium entry through Cav1 channels, resulting in mitochondrial oxidant stress. Although this mechanism...glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to significantly increase mitochondrial oxidant stress and

  4. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production

    PubMed Central

    Yu, Zheng; Beer, Christiane; Koester, Mario; Wirth, Manfred

    2006-01-01

    Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV) at the plasma membrane (PM) and the formation of virus like particles in multivesicular bodies (MVBs). In our study we show that caveolin-1 (Cav-1), a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA) of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD) within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly. PMID:16956408

  5. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    PubMed Central

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  6. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.

    PubMed

    Simão, D; Pinto, C; Fernandes, P; Peddie, C J; Piersanti, S; Collinson, L M; Salinas, S; Saggio, I; Schiavo, G; Kremer, E J; Brito, C; Alves, P M

    2016-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.

  7. Epidemiology and molecular characterization of chicken anaemia virus from commercial and native chickens in Taiwan.

    PubMed

    Ou, S-C; Lin, H-L; Liu, P-C; Huang, H-J; Lee, M-S; Lien, Y-Y; Tsai, Y-L

    2018-04-25

    Chicken infectious anaemia (CIA) is a disease with a highly economic impact in the poultry industry. The infected chickens are characterized by aplastic anaemia and extreme immunosuppression, followed by the increased susceptibility to secondary infectious pathogens and suboptimal immune responses for vaccination. Commercially available CIA vaccines are routinely used in the breeders in Taiwan to protect their progeny with maternal-derived antibodies. However, CIA cases still occur in the field and little is known about the genetic characteristics of Taiwanese chicken anaemia viruses (CAVs). In this study, CAV DNA was detected in 72 of 137 flocks collected during 2010-2015. Among the PCR-positive samples, the coding regions of 51 CAVs were sequenced. Phylogenetic analysis of the VP1 gene revealed that, although most of Taiwanese CAVs belonged to genotypes II and III, some isolates were clustered into a novel genotype (genotype IV). Moreover, a Taiwanese isolate in this novel genotype IV appeared to be derived from a recombination event between genotypes II and III viruses. Five Taiwanese CAV isolates were highly similar to the vaccine strains, 26P4 or Del-Ros. Taken together, these results indicate that the sequences of CAVs in Taiwan are variable, and inter-genotypic recombination had occurred between viruses of different genotypes. Moreover, vaccine-like strains might induce clinical signs of CIA in chickens. Our findings could be useful for understanding the evolution of CAVs and development of a better control strategy for CIA. © 2018 Blackwell Verlag GmbH.

  8. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients.

    PubMed

    Johansson, Inger; Andersson, Rune; Friman, Vanda; Selimovic, Nedim; Hanzen, Lars; Nasic, Salmir; Nyström, Ulla; Sigurdardottir, Vilborg

    2015-12-24

    Cytomegalovirus (CMV) is associated with an increased risk of cardiac allograft vasculopathy (CAV), the major limiting factor for long-term survival after heart transplantation (HTx). The purpose of this study was to evaluate the impact of CMV infection during long-term follow-up after HTx. A retrospective, single-centre study analyzed 226 HTx recipients (mean age 45 ± 13 years, 78 % men) who underwent transplantation between January 1988 and December 2000. The incidence and risk factors for CMV infection during the first year after transplantation were studied. Risk factors for CAV were included in an analyses of CAV-free survival within 10 years post-transplant. The effect of CMV infection on the grade of CAV was analyzed. Survival to 10 years post-transplant was higher in patients with no CMV infection (69 %) compared with patients with CMV disease (55 %; p = 0.018) or asymptomatic CMV infection (54 %; p = 0.053). CAV-free survival time was higher in patients with no CMV infection (6.7 years; 95 % CI, 6.0-7.4) compared with CMV disease (4.2 years; CI, 3.2-5.2; p < 0.001) or asymptomatic CMV infection (5.4 years; CI, 4.3-6.4; p = 0.013). In univariate analysis, recipient age, donor age, coronary artery disease (CAD), asymptomatic CMV infection and CMV disease were significantly associated with CAV-free survival. In multivariate regression analysis, CMV disease, asymptomatic CMV infection, CAD and donor age remained independent predictors of CAV-free survival at 10 years post-transplant. CAV-free survival was significantly reduced in patients with CMV disease and asymptomatic CMV infection compared to patients without CMV infection. These findings highlight the importance of close monitoring of CMV viral load and appropriate therapeutic strategies for preventing asymptomatic CMV infection.

  9. Dual-Axis Rotational Angiography is Safe and Feasible to Detect Coronary Allograft Vasculopathy in Pediatric Heart Transplant Patients: A Single-Center Experience.

    PubMed

    Rios, Rodrigo; Loomba, Rohit S; Foerster, Susan R; Pelech, Andrew N; Gudausky, Todd M

    2016-04-01

    Coronary allograft vasculopathy (CAV) is the leading cause of graft failure in pediatric heart transplant recipients, also adding to mortality in this patient population. Coronary angiography is routinely performed to screen for CAV, with conventional single-plane or bi-plane angiography being utilized. Dual-axis rotational coronary angiography (RA) has been described, mostly in the adult population, and may offer reduction in radiation dose and contrast volume. Experience with this in the pediatric population is limited. This study describes a single-institution experience with RA for screening for CAV in pediatric patients. The catheterization database at our institution was used to identify pediatric heart transplant recipients having undergone RA to screen for CAV. Procedural data including radiation dose, fluoroscopy time, contrast volume, and procedure time were collected for each catheterization. The number of instances in which RA was not successful, ECG changes were present, and CAV was detected were also collected for each catheterization. A total of 97 patients underwent 345 catheterizations utilizing RA. Median radiation dose-area product per kilogram was found to be 341.7 (mGy cm(2)/kg), total air kerma was 126.8 (mGy), procedure time was 69 min, fluoroscopy time was 9.9 min, and contrast volume was 13 ml. A total of 17 (2 %) coronary artery injections out of 690 could not be successfully imaged using RA. A total of 14 patients had CAV noted at any point, 10 of whom had progressive CAV. Electrocardiographic changes were documented in a total of 10 (3 %) RA catheterizations. Procedural characteristics did not differ between serial catheterizations. RA is safe and feasible for CAV screening in pediatric heart transplant recipients while offering coronary imaging in multiple planes compared to conventional angiography.

  10. Early aspirin use and the development of cardiac allograft vasculopathy.

    PubMed

    Kim, Miae; Bergmark, Brian A; Zelniker, Thomas A; Mehra, Mandeep R; Stewart, Garrick C; Page, Deborah S; Woodcome, Erica L; Smallwood, Jennifer A; Gabardi, Steven; Givertz, Michael M

    2017-12-01

    Cardiac allograft vasculopathy (CAV) remains a leading cause of morbidity and mortality after orthotopic heart transplantation (OHT). Little is known about the influence of aspirin on clinical expression of CAV. We followed 120 patients with OHT at a single center for a median of 7 years and categorized them by the presence or absence of early aspirin therapy post-transplant (aspirin treatment ≥6 months in the first year). The association between aspirin use and time to the primary end-point of angiographic moderate or severe CAV (International Society for Heart and Lung Transplantation grade ≥2) was investigated. Propensity scores for aspirin treatment were estimated using boosting models and applied by inverse probability of treatment weighting (IPTW). Despite a preponderance of risk factors for CAV among patients receiving aspirin (male sex, ischemic heart disease as the etiology of heart failure, and smoking), aspirin therapy was associated with a lower rate of moderate or severe CAV at 5 years. Event-free survival was 95.9% for patients exposed to aspirin compared with 79.6% for patients without aspirin exposure (log-rank p = 0.005). IPTW-weighted Cox regression revealed a powerful inverse association between aspirin use and moderate to severe CAV (adjusted hazard ratio 0.13; 95% confidence interval 0.03-0.59), which was directionally consistent for CAV of any severity (adjusted hazard ratio 0.50; 95% confidence interval 0.23-1.08). This propensity score-based comparative observational analysis suggests that early aspirin exposure may be associated with a reduced risk of development of moderate to severe CAV. These findings warrant prospective validation in controlled investigations. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    PubMed Central

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  12. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    PubMed

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  13. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom.

    PubMed

    Collaço, Rita de Cássia O; Randazzo-Moura, Priscila; Tamascia, Mariana L; da Silva, Igor Rapp F; Rocha, Thalita; Cogo, José C; Hyslop, Stephen; Sanny, Charles G; Rodrigues-Simioni, Léa

    2017-01-01

    In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA 2 , proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA 2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai. Copyright © 2016. Published by Elsevier Inc.

  14. Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy▿

    PubMed Central

    Perreau, Matthieu; Mennechet, Franck; Serratrice, Nicolas; Glasgow, Joel N.; Curiel, David T.; Wodrich, Harald; Kremer, Eric J.

    2007-01-01

    Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1β [IL-1β], gamma interferon [IFN-γ], IL-10, IL-12, and IFN-α/β secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages. PMID:17229706

  15. Role of Transient Receptor Potential Channels in Heart Transplantation: A Potential Novel Therapeutic Target for Cardiac Allograft Vasculopathy.

    PubMed

    Ma, Shuo; Jiang, Yue; Huang, Weiting; Li, Xintao; Li, Shuzhuang

    2017-05-18

    Heart transplantation has evolved as the criterion standard therapy for end-stage heart failure, but its efficacy is limited by the development of cardiac allograft vasculopathy (CAV), a unique and rapidly progressive form of atherosclerosis in heart transplant recipients. Here, we briefly review the key processes in the development of CAV during heart transplantation and highlight the roles of transient receptor potential (TRP) channels in these processes during heart transplantation. Understanding the roles of TRP channels in contributing to the key procedures for the development of CAV during heart transplantation could provide basic scientific knowledge for the development of new preventive and therapeutic approaches to manage patients with CAV after heart transplantation.

  16. The Serological and Virological Investigation of Canine Adenovirus Infection on the Dogs

    PubMed Central

    Bulut, Oya; Yapici, Orhan; Avci, Oguzhan; Simsek, Atilla; Atli, Kamil; Dik, Irmak; Yavru, Sibel; Hasircioglu, Sibel; Kale, Mehmet; Mamak, Nuri

    2013-01-01

    Two types of Canine Adenovirus (CAVs), Canine Adenovirus type 1 (CAV-1), the virus which causes infectious canine hepatitis, and Canine Adenovirus type 2 (CAV-2), which causes canine infectious laryngotracheitis, have been found in dogs. In this study, blood samples taken from 111 dogs, which were admitted to the Internal Medicine Clinic of Selcuk University, Faculty of Veterinary Medicine, with clinical symptoms. Seventy-seven dogs were sampled from Isparta and Burdur dog shelters by random sampling, regardless of the clinical findings. Dogs showed a systemic disease, characterized by fever, diarrhea, vomiting, oculonasal discharge, conjunctivitis, severe moist cough, signs of pulmonary disease and dehydration. Two dogs had corneal opacity and photophobia. In serological studies, 188 serum samples were investigated on the presence of CAV antibodies by ELISA. Total 103 (103/188–54.7%) blood samples were detected to be positive for CAV antibodies by ELISA. However, 85 (85/188–45.2%) blood samples were negative. Blood leukocyte samples from dogs were processed and inoculated onto confluent monolayers of MDCK cells using standard virological techniques. After third passage, cells were examined by direct immunoflourescence test for virus isolation. But positive result was not detected. In conclusion, this study clearly demonstrates the high prevalence of CAV infection in dogs. PMID:24223508

  17. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen

    2009-11-10

    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is anmore » unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.« less

  18. Expression and characterization of highly antigenic domains of chicken anemia virus viral VP2 and VP3 subunit proteins in a recombinant E. coli for sero-diagnostic applications

    PubMed Central

    2013-01-01

    Background Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. Generally, CAV infection occurs via vertical transmission in young chicks that are less than two weeks old, which are very susceptible to the disease. Therefore, epidemiological investigations of CAV infection and/or the evaluation of the immunization status of chickens is necessary for disease control. Up to the present, systematically assessing viral protein antigenicity and/or determining the immunorelevant domain(s) of viral proteins during serological testing for CAV infection has never been performed. The expression, production and antigenic characterization of CAV viral proteins such as VP1, VP2 and VP3, and their use in the development of diagnostic kit would be useful for CAV infection prevention. Results Three CAV viral proteins VP1, VP2 and VP3 was separately cloned and expressed in recombinant E. coli. The purified recombinant CAV VP1, VP2 and VP3 proteins were then used as antigens in order to evaluate their reactivity against chicken sera using indirect ELISA. The results indicated that VP2 and VP3 show good immunoreactivity with CAV-positive chicken sera, whereas VP1 was found to show less immunoreactivity than VP2 and VP3. To carry out the further antigenic characterization of the immunorelevant domains of the VP2 and VP3 proteins, five recombinant VP2 subunit proteins (VP2-435N, VP2-396N, VP2-345N, VP2-171C and VP2-318C) and three recombinant VP3 subunit proteins (VP3-123N, VP3-246M, VP3-366C), spanning the defined regions of VP2 and VP3 were separately produced by an E. coli expression system. These peptides were then used as antigens in indirect ELISAs against chicken sera. The results of these ELISAs using truncated recombinant VP2 and VP3 subunit proteins as coating antigen showed that VP2-345N, VP2-396N and VP3-246M gave good immunoreactivity with CAV-positive chicken sera compared to the other

  19. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  20. Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma

    PubMed Central

    Martins, Diana; Beça, Francisco F; Sousa, Bárbara; Baltazar, Fátima; Paredes, Joana; Schmitt, Fernando

    2013-01-01

    The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness. The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC. Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer. PMID:23907124

  1. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  2. Comparative phylogeography of two sympatric beeches in subtropical China: Species-specific geographic mosaic of lineages

    PubMed Central

    Zhang, Zhi-Yong; Wu, Rong; Wang, Qun; Zhang, Zhi-Rong; López-Pujol, Jordi; Fan, Deng-Mei; Li, De-Zhu

    2013-01-01

    In subtropical China, large-scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre-Quaternary events. Twenty-three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species-specific mosaic distribution of haplotypes, with many of them being range-restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within-population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the timeunit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long-term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species-specific mosaic distribution of lineages. PMID:24340187

  3. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Treesearch

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  4. 75 FR 68613 - Agency Information Collection Activities: Submission for OMB Review; Comment Request, OMB No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...; Effectiveness of a Community's Implementation of the NFIP Community Assistance Program CAC and CAV Reports... Implementation of the NFIP Community Assistance Program CAC and CAV Reports. Type of information collection...

  5. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion

    PubMed Central

    Chen, Wei Chun; Xue, Hui Zhong; Hsu, Yun (Lucy); Liu, Qing; Patel, Shail; Davis, Robin L.

    2011-01-01

    As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K+ channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca2+-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca2+ channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, and that three of them were neuron-specific (CaV1.3, CaV2.2, and CaV3.3). Further characterization of neuron-specific α-subunits showed that CaV1.3 and CaV3.3 were tonotopically-distributed, whereas CaV2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact0 (CaV2.3, CaV3.1) from loose (CaV1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca2+ plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under

  6. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    PubMed Central

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  7. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.

    PubMed

    Beqollari, Donald; Romberg, Christin F; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon; Bannister, Roger A

    2015-07-01

    In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in

  8. Comparative trial of the canine parvovirus, canine distemper virus and canine adenovirus type 2 fractions of two commercially available modified live vaccines.

    PubMed

    Bergman, J G H E; Muniz, M; Sutton, D; Fensome, R; Ling, F; Paul, G

    2006-11-25

    The results of vaccinating two groups of puppies with commercial vaccines, both of which claimed to provide adequate protection with a final vaccination at 10 weeks of age, were compared. Groups of 19 and 20 puppies with similar titres of maternally derived antibodies against canine parvovirus (cpv), canine distemper virus (cdv) and canine adenovirus type 2 (cav-2) at four weeks of age were vaccinated at six and 10 weeks of age and their responses to each vaccination were measured by comparing the titres against cpv, cdv and cav-2 in the serum samples taken immediately before the vaccination and four weeks later. After the vaccination at six weeks of age, all 19 of the puppies in group 1 had responded to cpv and cdv, and 14 had responded to cav-2; in group 2, 17 of the 20 had responded to cpv, 19 to cdv and 15 to cav-2. In both groups the puppies that did not respond to the first vaccination had responded serologically to cpv, cdv and cav-2 at 10 weeks of age.

  9. Prediction of WBGT-based clothing adjustment values from evaporative resistance

    PubMed Central

    BERNARD, Thomas E.; ASHLEY, Candi D.; GARZON, Ximena P.; KIM, Jung-Hyun; COCA, Aitor

    2017-01-01

    Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (Re,T,a). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high Re,T,a. There were data to suggest an interaction of CAV and Re,T,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (Re,T,s). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as Re,T,a. While the results look promising that Re,T,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s. PMID:29033404

  10. Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model

    PubMed Central

    Stanley, Amanda C.; Bastiani, Michele; Okano, Satomi; Nixon, Susan J.; Thomas, Gethin; Stow, Jennifer L.; Parton, Robert G.

    2012-01-01

    Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress. PMID:23049990

  11. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  12. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    PubMed

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P; Parton, Robert G; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  13. Caveolin-1 and glucose transporter 4 involved in the regulation of glucose-deprivation stress in PC12 cells.

    PubMed

    Zhang, Qi-Qi; Huang, Liang; Han, Chao; Guan, Xin; Wang, Ya-Jun; Liu, Jing; Wan, Jing-Hua; Zou, Wei

    2015-08-25

    Recent evidence suggests that caveolin-1 (Cav-1), the major protein constituent of caveolae, plays a prominent role in neuronal nutritional availability with cellular fate regulation besides in several cellular processes such as cholesterol homeostasis, regulation of signal transduction, integrin signaling and cell growth. Here, we aimed to investigate the function of Cav-1 and glucose transporter 4 (GLUT4) upon glucose deprivation (GD) in PC12 cells. The results demonstrated firstly that both Cav-1 and GLUT4 were up-regulated by glucose withdrawal in PC12 cells by using Western blot and laser confocal technology. Also, we found that the cell death rate, mitochondrial membrane potential (MMP) and intracellular free Ca(2+) concentration ([Ca(2+)]i) were also respectively changed followed the GD stress tested by CCK8 and flow cytometry. After knocking down of Cav-1 in the cells by siRNA, the level of [Ca(2+)]i was increased, and MMP was reduced further in GD-treated PC12 cells. Knockdown of Cav-1 or methylated-β-Cyclodextrin (M-β-CD) treatment inhibited the expression of GLUT4 protein upon GD. Additionally, we found that GLUT4 could translocate from cytoplasm to cell membrane upon GD. These findings might suggest a neuroprotective role for Cav-1, through coordination of GLUT4 in GD.

  14. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy

    PubMed Central

    Izquierdo-Serra, Mercè; Martínez-Monseny, Antonio F.; López, Laura; Carrillo-García, Julia; Edo, Albert; Ortigoza-Escobar, Juan Darío; García, Óscar; Carrasco-Marina, M Llanos; Gutiérrez-Solana, Luis G.; Muchart, Jordi; Montero, Raquel; Artuch, Rafael; Pérez-Cerdá, Celia; Pérez, Belén; Pérez-Dueñas, Belén; Macaya, Alfons

    2018-01-01

    Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in CACNA1A (encoding CaV2.1 channel). The underlying pathomechanisms are unknown. We analyze clinical variables to detect risk factors for SLE in a series of 43 PMM2-CDG patients. We explore the hypothesis of abnormal CaV2.1 function due to aberrant N-glycosylation as a potential novel pathomechanism of SLE and ataxia in PMM2-CDG by using whole-cell patch-clamp, N-glycosylation blockade and mutagenesis. Nine SLE were identified. Neuroimages showed no signs of stroke. Comparison of characteristics between SLE positive versus negative patients’ group showed no differences. Acute and chronic phenotypes of patients with PMM2-CDG or CACNA1A channelopathies show similarities. Hypoglycosylation of both CaV2.1 subunits (α1A and α2α) induced gain-of-function effects on channel gating that mirrored those reported for pathogenic CACNA1A mutations linked to FHM and ataxia. Unoccupied N-glycosylation site N283 at α1A contributes to a gain-of-function by lessening CaV2.1 inactivation. Hypoglycosylation of the α2δ subunit also participates in the gain-of-function effect by promoting voltage-dependent opening of the CaV2.1 channel. CaV2.1 hypoglycosylation may cause ataxia and SLEs in PMM2-CDG patients. Aberrant CaV2.1 N-glycosylation as a novel pathomechanism in PMM2-CDG opens new therapeutic possibilities. PMID:29470411

  15. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  16. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    PubMed

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  17. Dose and time-dependent sub-chronic toxicity study of hydroethanolic leaf extract of Flabellaria paniculata Cav. (Malpighiaceae) in rodents

    PubMed Central

    Akindele, Abidemi J.; Adeneye, Adejuwon A.; Salau, Oluwole S.; Sofidiya, Margaret O.; Benebo, Adokiye S.

    2014-01-01

    Flabellaria paniculata Cav. (Malpighiaceae) is a climbing shrub, the preparations of which are used in the treatment of wounds and ulcers in Nigeria and Ghana. This study investigated the sub-chronic toxicity profile of the hydroethanolic leaf extract of F. paniculata (HLE-FP). HLE-FP was administered p.o. (20, 100, and 500 mg/kg) for 30 and 60 days to different groups of rats. Control animals received 10 ml/kg distilled water. In the group of animals for reversibility study, HLE-FP administration ceased on the 60th day and animals were monitored for a further 15 days. Results showed that oral treatment with HLE-FP for 30 days caused significant (p < 0.05) reductions in weight gain pattern compared to control. These changes were sustained with 60 days treatment. However, no significant (p > 0.05) differences in relative organ weights between control and treatment groups were observed. HLE-FP-treated rats showed significant (p < 0.05) increases in Hb, PCV and RBC on day 30 and significant (p < 0.05) increases in MCV and MCH indices on day 60 compared to control. There were significant (p < 0.05) elevations in serum K+, urea and creatinine compared to control. The liver function tests showed slight but non-significant alterations in relevant parameters when compared to control. Biochemical findings were supported by histopathological observations of vital organs including the kidney and liver. Toxicities observed in respect of kidney function were irreversible at 15 days of stoppage of treatment. In the acute toxicity study, HLE-FP given p.o. caused no lethality at 5000 mg/kg but behavioral manifestations like restlessness, generalized body tremor, feed, and water refusal were observed. The i.p. LD50 was estimated to be 2951.2 mg/kg. Findings in this study showed that HLE-FP is relatively non-toxic on acute exposure and generally safe on sub-chronic administration, but could be deleterious on the kidneys on prolonged oral exposure at a high dose. Thus, caution should

  18. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petriello, Michael C.; University of Kentucky Superfund Research Center, Lexington, KY 40536; Han, Sung Gu

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehiclemore » and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity.

  19. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    PubMed

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  20. A ROLE FOR ANTIBODIES TO HLA, COLLAGEN-V AND K-α1-TUBULIN IN ANTIBODY MEDIATED REJECTION AND CARDIAC ALLOGRAFT VASCULOPATHY

    PubMed Central

    Nath, Dilip S.; Tiriveedhi, Venkataswarup; Bash, Haseeb Ilias; Phelan, Donna; Moazami, Nader; Ewald, Gregory A.; Mohanakumar, T.

    2013-01-01

    Background We determined role of donor specific antibodies (DSA) and antibodies (Abs) to self-antigens, collagen-V (Col-V) and K-α1-Tubulin (KAT) in pathogenesis of acute antibody mediated rejection (AMR) and cardiac allograft vasculopathy (CAV) following human heart transplantation (HTx). Methods 137 HTx recipients - 60 early period (≤ 12months) and 77 late period (> 12months) patients were enrolled. Circulating DSA was determined using LUMINEX. Abs against Col-I, II, IV, V and KAT were measured using ELISA. Frequency of CD4+T helper cells (CD4+Th) secreting IFN-γ, IL-5, IL-10 or IL-17 specific to self-antigens were determined using ELISPOT. Results A significant association between AMR and DSA was demonstrated. Development of DSA in AMR patients correlated well with the development of auto-Abs to Col-V(AMR(+): 383±72μg/mL, AMR(−): 172±49μg/mL, p=0.033) and KAT (AMR(+): 252±49μg/mL, AMR(−): 61±21μg/mL, p=0.014). Patients who developed AMR demonstrated increased frequencies of CD4+Th secreting IFN-γ and IL-5 with reduction in IL-10 specific for Col-V/KAT. Patients diagnosed with CAV also developed DSA and auto-Abs to Col-V (CAV(+): 835±142μg/mL, CAV(−): 242±68μg/mL, p=0.025) and KAT (CAV(+): 768±206μg/mL, CAV(−): 196±72μg/mL, p=0.001) with increased frequencies of CD4+Th secreting IL-17 with reduction in IL-10 specific for Col-V/KAT. Conclusions Development of Abs to HLA and self-antigens are associated with increases in CD4+Th secreting IFN-γ and IL-5 in AMR and IL-17 in CAV, with reduction in CD4+Th secreting IL-10 in both AMR and CAV. PMID:21383658

  1. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    PubMed Central

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  2. TRPC3 Overexpression Promotes the Progression of Inflammation-Induced Preterm Labor and Inhibits T Cell Activation.

    PubMed

    Jing, Chen; Dongming, Zheng; Hong, Cui; Quan, Na; Sishi, Liu; Caixia, Liu

    2018-01-01

    To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy. Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3-/- mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry. In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3+, CD4+, and CD8+ T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8+ T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor. TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8+ T lymphocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. The Role of Caveolin 1 in HIV Infection and Pathogenesis.

    PubMed

    Mergia, Ayalew

    2017-05-26

    Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.

  4. Dietary overlap between sympatric Mexican spotted and great horned owls in Arizona

    Treesearch

    Joseph L. Ganey; William M Block

    2005-01-01

    We estimated diet composition of sympatric Mexican spotted (Strix occidentalis lucida, n = 7 pairs of owls) and great horned owls (Bubo virginianus, n = 4 pairs) in ponderosa pine (Pinus ponderosa) - Gambel oak (Quercus gambelii) forest, northern Arizona. Both species preyed on mammals...

  5. A Framework for Evaluating Energy and Emissions of Connected and Automated Vehicles through Traffic Microsimulations

    DOT National Transportation Integrated Search

    2018-01-07

    Connected and automated vehicles (CAV) are poised to transform surface transportation systems in the United States. Near-term CAV technologies like cooperative adaptive cruise control (CACC) have the potential to deliver energy efficiency and air qua...

  6. High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations.

    PubMed

    Schittny, J C; Timpl, R; Engel, J

    1988-10-01

    Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.

  7. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    PubMed

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human

  8. Jaundice as a prognostic factor in patients undergoing radical treatment for carcinomas of the ampulla of Vater.

    PubMed

    Zhou, Jianguo; Zhang, Qian; Li, Peng; Shan, Yi; Zhao, Dongbing; Cai, Jianqiang

    2014-01-01

    Carcinomas of the ampulla of Vater (CAV) is a relatively rare malignant gastrointestinal tumor, and its postoperative prognostic factors have been well studied. However, as its first symptom, the impact of jaundice on the prognosis of CAV is not so clear. This study aims to explore the role of jaundice as a prognostic factor in patients undergoing radical treatment for CAV. The clinical data of 195 patients with CAV who were treated in the Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, from January 1989 to January 2013 were retrospectively analyzed. Among them, 170 patients with pathologically confirmed CAV entered the statistical analysis. Jaundice was defined as a total bilirubin serum concentration of ≥ 3 mg/dl. Result Of these 170 patients, 99 (58.20%) had jaundice at presentation. Jaundice showed significant correlations with tumor differentiation (P = 0.002), lymph node metastasis (P = 0.016), pancreatic invasion (P = 0.000), elevated preoperative CA199 (P = 0.000), depth of invasion (P = 0.000), and tumor stage (P = 0.000). There were more patients with pancreatic invasion in the jaundice group than in the non-jaundice group. Also, lymph node metastasis was more common in the jaundice group (n = 26) than in the non-jaundice group (n = 8). The non-jaundice group had significant better overall 5-year disease-free survival (72.6%) than the jaundice group (41.2%, P = 0.013). Jaundice was not significantly correlated with the postoperative bleeding (P = 0.050). Jaundice in patients with CAV often predicts more advanced stages and poorer prognoses. Pancreatic invasion and lymph node metastasis are more common in CAV patients with jaundice. Jaundice is not a risk factor for postoperative bleeding and preoperative biliary drainage cannot reduce the incidence of postoperative complications.

  9. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  10. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    PubMed Central

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  11. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells.

    PubMed

    Jiang, Ying; Sverdlov, Maria S; Toth, Peter T; Huang, Long Shuang; Du, Guangwei; Liu, Yiyao; Natarajan, Viswanathan; Minshall, Richard D

    2016-09-23

    Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: implication for dysregulation of neuronal function

    PubMed Central

    Somkuwar, Sucharita S.; Fannon, McKenzie J.; Head, Brian P.; Mandyam, Chitra D.

    2016-01-01

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  13. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis.

    PubMed

    Werion, Alexis; Joris, Virginie; Hepp, Michael; Papasokrati, Lida; Marique, Lancelot; de Ville de Goyet, Christine; Van Regemorter, Victoria; Mourad, Michel; Lengelé, Benoit; Daumerie, Chantal; Marbaix, Etienne; Brichard, Sonia; Many, Marie-Christine; Craps, Julie

    2016-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.

  14. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  15. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins.

    PubMed

    Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N

    2015-03-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.

  16. A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections.

    PubMed

    Deng, Xiaoyu; Zhang, Jiali; Su, Jiazi; Liu, Hao; Cong, Yanlong; Zhang, Lei; Zhang, Kemeng; Shi, Ning; Lu, Rongguang; Yan, Xijun

    2018-04-19

    The aim of this study was to establish a multiplex PCR (mPCR) method that can simultaneously detect canine parvovirus (CPV-2), canine coronavirus (CCoV) and canine adenovirus (CAV), thereby eliminating the need to detect these pathogens individually. Based on conserved regions in the genomes of these three viruses, the VP2 gene of CPV-2, the endoribonuclease nsp15 gene of CCoV, and the 52K gene of CAV were selected for primer design. The specificity of the mPCR results showed no amplification of canine distemper virus (CDV), canine parainfluenza virus (CPIV), or pseudorabies virus (PRV), indicating that the method had good specificity. A sensitivity test showed that the detection limit of the mPCR method was 1 × 10 4 viral copies. A total of 63 rectal swabs from dogs with diarrheal symptoms were evaluated using mPCR and routine PCR. The ratio of positive samples to total samples for CPV-2, CCoV, and CAV was 55.6% (35/63) for mPCR and 55.6% (35/63) for routine PCR. Thirty-five positive samples were detected by both methods, for a coincidence ratio of 100%. This mPCR method can simultaneously detect CCoV (CCoV-II), CAV (CAV-1, CAV-2) and CPV-2 (CPV-2a, CPV-2b, CPV-2c), which are associated with viral enteritis, thereby providing an efficient, inexpensive, specific, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.

  17. Cell Surface Expression of Human Ether-a-go-go-related Gene (hERG) Channels Is Regulated by Caveolin-3 Protein via the Ubiquitin Ligase Nedd4-2*

    PubMed Central

    Guo, Jun; Wang, Tingzhong; Li, Xian; Shallow, Heidi; Yang, Tonghua; Li, Wentao; Xu, Jianmin; Fridman, Michael D.; Yang, Xiaolong; Zhang, Shetuan

    2012-01-01

    The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology. PMID:22879586

  18. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  19. The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Atlas, Daphne

    2011-01-01

    A PKA consensus phosphorylation site S1928 at the α 11.2 subunit of the rabbit cardiac L-type channel, CaV1.2, is involved in the regulation of CaV1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal CaV1.2 current properties or regulation of CaV1.2 current by PKA and the beta-adrenergic receptor, but abolishes CaV1.2 phosphorylation by PKA. Here, we test the contribution of the corresponding PKA phosphorylation site of the human α 11.2 subunit S1898, to the regulation of catecholamine secretion in bovine chromaffin cells. Chromaffin cells were infected with a Semliki-Forest viral vector containing either the human wt or a mutated S1898A α 11.2 subunit. Both subunits harbor a T1036Y mutation conferring nifedipine insensitivity. Secretion evoked by depolarization in the presence of nifedipine was monitored by amperometry. Depolarization-triggered secretion in cells infected with either the wt α 11.2 or α 11.2/S1898A mutated subunit was elevated to a similar extent by forskolin. Forskolin, known to directly activate adenylyl-cyclase, increased the rate of secretion in a manner that is largely independent of the presence of S1898. Our results are consistent with the involvement of additional PKA regulatory site(s) at the C-tail of α 11.2, the pore forming subunit of CaV1.2. PMID:22216029

  20. Pro-metastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins

    PubMed Central

    Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.

    2014-01-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010

  1. Binding mechanism investigations guiding the synthesis of novel condensed 1,4-dihydropyridine derivatives with L-/T-type calcium channel blocking activity.

    PubMed

    Schaller, David; Gündüz, Miyase Gözde; Zhang, Fang Xiong; Zamponi, Gerald W; Wolber, Gerhard

    2018-05-23

    Nifedipine and isradipine are prominent examples of calcium channel blockers with a 1,4-dihydropyridine (DHP) scaffold. Although successfully used in clinics since decades for the treatment of hypertension, the binding mechanism to their target, the L-type voltage-gated calcium channel Cav1.2, is still incompletely understood. Recently, novel DHP derivatives with a condensed ring system have been discovered that show distinct selectivity profiles to different calcium channel subtypes. This property renders this DHP class as a promising tool to achieve selectivity towards distinct calcium channel subtypes. In this study, we identified a common binding mode for prominent DHPs nifedipine and isradipine using docking and pharmacophore analysis that is also able to explain the structure-activity relationship of a small subseries of DHP derivatives with a condensed ring system. These findings were used to guide the synthesis of twenty-two novel DHPs. An extensive characterization using 1 H NMR, 13 C NMR, mass spectra and elemental analysis was followed by whole cell patch clamp assays for analyzing activity at Cav1.2 and Cav3.2. Two compounds were identified with significant activity against Cav1.2. Additionally, we identified four compounds active against Cav3.2 of which three were selective over Cav1.2. Novel binding modes were analyzed using docking and pharmacophore analysis as well as molecular dynamics simulations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jianwei; Faber, Milosz; Papaneri, Amy

    2006-12-20

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virusmore » titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus.« less

  3. Prevalence and characterization of enterovirus infections among pediatric patients with hand foot mouth disease, herpangina and influenza like illness in Thailand, 2012.

    PubMed

    Puenpa, Jiratchaya; Mauleekoonphairoj, John; Linsuwanon, Piyada; Suwannakarn, Kamol; Chieochansin, Thaweesak; Korkong, Sumeth; Theamboonlers, Apiradee; Poovorawan, Yong

    2014-01-01

    Hand, foot, and mouth disease (HFMD) and herpangina are common infectious diseases caused by several genotypes of human enterovirus species A and frequently occurring in young children. This study was aimed at analyzing enteroviruses from patients with these diseases in Thailand in 2012. Detection and genotype determination of enteroviruses were accomplished by reverse transcription-polymerase chain reaction and sequencing of the VP1 region. Enterovirus-positive samples were differentiated into 17 genotypes (coxsackievirus A4 (CAV4), A5, A6, A8, A9, A10, A12, A16, A21, B1, B2, B4, B5, echovirus 7, 16, 25 and Enterovirus 71). The result showed CAV6 (33.5%), followed by CAV16 (9.4%) and EV71 (8.8%) as the most frequent genotypes in HFMD, CAV8 (19.3%) in herpangina and CAV6 (1.5%) in influenza like illness. Enterovirus infections were most prevalent during July with 34.4% in HFMD, 39.8% in herpangina and 1.6% in ILI. The higher enterovirus infection associated with HFMD and herpangina occurred in infants over one year-old. This represents the first report describing the circulation of multiple enteroviruses in Thailand.

  4. Prediction of WBGT-based clothing adjustment values from evaporative resistance.

    PubMed

    Bernard, Thomas E; Ashley, Candi D; Garzon, Ximena P; Kim, Jung-Hyun; Coca, Aitor

    2017-12-07

    Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (R e,T,a ). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high R e,T,a . There were data to suggest an interaction of CAV and R e,T,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (R e,T,s ). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as R e,T,a . While the results look promising that R e,T,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s.

  5. [Human calcium channelopathies. Voltage-gated Ca(2+) channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders].

    PubMed

    Weiergräber, M; Hescheler, J; Schneider, T

    2008-04-01

    Voltage-gated calcium channels are key components in a variety of physiological processes. Within the last decade an increasing number of voltage-gated Ca(2+) channelopathies in both humans and animal models has been described, most of which are related to the neurologic and muscular system. In humans, mutations were found in L-type Ca(v)1.2 and Ca(v)1.4 Ca(2+) channels as well as the non-L-type Ca(v)2.1 and T-type Ca(v)3.2 channels, resulting in altered electrophysiologic properties. Based on their widespread distribution within the CNS, voltage-gated calcium channels are of particular importance in the etiology and pathogenesis of various forms of epilepsy and neuropsychiatric disorders. In this review we characterise the different human Ca(2+) channelopathies known so far, further illuminating basic pathophysiologic mechanisms and clinical aspects.

  6. Effects of Unloading and Reloading on Expressions of Skelatal Muscle Membrane Proteins in Mice

    NASA Astrophysics Data System (ADS)

    Ohno, Y.; Ikuta, A.; Goto, A.; Sugiura, T.; Ohira, Y.; Yoshioka, T.; Goto, K.

    2013-02-01

    Effects of unloading and reloading on the expression levels of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) of soleus muscle in mice were investigated. Male C57BL/6J mice (11-week old) were randomly assigned to control and hindlimb-suspended groups. Some of mice in hindlimb-suspended group were subjected to continuous hindlimb suspension (HS) for 2 weeks with or without 7 days of ambulation recovery. Following HS, the muscle weight and protein expression levels of TRIM72 and Cav-3 in soleus were decreased. On the other hand, the gradual increases in muscle mass, TRIM72 and Cav-3 were observed after reloading following HS. Therefore, it was suggested that mechanical loading played a key role in a regulatory system for protein expressions of TRIM72 and Cav-3.

  7. Insecticidal activity of an essential oil of Tagetes patula L. (Asteraceae) on common bed bug Cimex lectularius L. and molecular docking of major compounds at the catalytic site of ClAChE1.

    PubMed

    Politi, Flávio Augusto Sanches; Nascimento, Juliana Damieli; da Silva, Alexander Alves; Moro, Isabela Jacob; Garcia, Mariana Lopes; Guido, Rafael Victório Carvalho; Pietro, Rosemeire Cristina Linhari Rodrigues; Godinho, Antônio Francisco; Furlan, Maysa

    2017-01-01

    Emerging resistance to insecticides has influenced pharmaceutical research and the search for alternatives to control the common bed bug Cimex lectularius. In this sense, natural products can play a major role. Tagetes patula, popularly known as dwarf marigold, is a plant native to North America with biocide potential. The aim of this work was to evaluate the biological activity of T. patula essential oil (EO) against adult common bed bugs via exposure to dry residues by the Impregnated Paper Disk Test (IPDT) using cypermethrin as a positive control. We selected the enzyme acetylcholinesterase as a target for modeling studies, with the intent of investigating the molecular basis of any biological activity of the EO. Chemical analysis of the EO was performed using gas chromatography coupled to mass spectrometry (GC-MS). Additionally, oral and dermal acute toxicity tests were performed according to Organization for Economic Cooperation and Development (OECD) guidelines. The sulforhodamine B assay (SRB) was performed to verify the cytotoxicity of EO to HaCaT cells. The EO eliminated 100 % of the bed bugs at 100 mg mL -1 with an LC 50 value of 15.85 mg mL -1 . GC-MS analysis identified α-terpinolene, limonene, piperitenone, and piperitone as major components of the mixture. Molecular modeling studies of these major compounds suggested that they are acetylcholinesterase inhibitors with good steric and electronic complementarity. The in vitro cytotoxicity evaluation revealed a LC 50  = 37.06 μg mL -1 and in vivo acute toxicity showed an LC 50 >4000 mg kg -1 , indicating that the EO presents low risk of toxic side effects in humans. The T. patula essential oil components provide a promising strategy for controlling bed bug populations with low mammalian toxicity. These findings pave the way for further in vivo studies aimed at developing a safe and effective insecticide.

  8. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Brown, A.

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less

  9. A Study of the Radio Continuum Far Infrared Correlation at Small Scales in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Martinez, Monica I.; Allen, R. J.; Wiklind, T.; Loinard, L.

    2006-12-01

    We present a study of the behavior of the Radio Continuum (RC) Far Infrared (FIR) correlation on scales corresponding to the size of small molecular clouds. This was done by comparing the spatial distribution of RC emission and FIR emission from a sample of several regions, distributed within the range 79Lucida Sans Unicode">∘ ≤ l ≤ 174Lucida Sans Unicode">∘ in the Galaxy. We have examined the 408 and 1420 MHz mosaic images of the sample, from the Canadian Galactic Plane Survey (CGPS), which later were compared with images at 60 and 100 μm. Preliminary results suggest that the RC -FIR correlation still holds at small scales, since a good qualitative correlation between RC and FIR emission is found. The physical process involved that may cause such correlation will be discussed as well as the nature of the RC emission. This research makes use of data from the Canadian Galactic Plane Survey.

  10. Prevalence and Characterization of Enterovirus Infections among Pediatric Patients with Hand Foot Mouth Disease, Herpangina and Influenza Like Illness in Thailand, 2012

    PubMed Central

    Puenpa, Jiratchaya; Mauleekoonphairoj, John; Linsuwanon, Piyada; Suwannakarn, Kamol; Chieochansin, Thaweesak; Korkong, Sumeth; Theamboonlers, Apiradee; Poovorawan, Yong

    2014-01-01

    Hand, foot, and mouth disease (HFMD) and herpangina are common infectious diseases caused by several genotypes of human enterovirus species A and frequently occurring in young children. This study was aimed at analyzing enteroviruses from patients with these diseases in Thailand in 2012. Detection and genotype determination of enteroviruses were accomplished by reverse transcription-polymerase chain reaction and sequencing of the VP1 region. Enterovirus-positive samples were differentiated into 17 genotypes (coxsackievirus A4 (CAV4), A5, A6, A8, A9, A10, A12, A16, A21, B1, B2, B4, B5, echovirus 7, 16, 25 and Enterovirus 71). The result showed CAV6 (33.5%), followed by CAV16 (9.4%) and EV71 (8.8%) as the most frequent genotypes in HFMD, CAV8 (19.3%) in herpangina and CAV6 (1.5%) in influenza like illness. Enterovirus infections were most prevalent during July with 34.4% in HFMD, 39.8% in herpangina and 1.6% in ILI. The higher enterovirus infection associated with HFMD and herpangina occurred in infants over one year-old. This represents the first report describing the circulation of multiple enteroviruses in Thailand. PMID:24887237

  11. Canine parvovirus infection, canine distemper and infectious canine hepatitis: inclination to vaccinate and antibody response in the Swedish dog population.

    PubMed

    Olson, P; Hedhammar, A; Klingeborn, B

    1996-01-01

    The inclination of dog owners to vaccinate was investigated by sending a questionnaire to randomly selected Swedish dog-owning households. According to the owners (n = 538), 86.7% of the dogs had been vaccinated against CPV and 95.8% had been vaccinated against CD/ICH. The inclination to vaccinate mixed breeds was significantly lower than the inclination to vaccinate pure-bred dogs. In a second study titres of CPV, CD and CAV-1 virus antibodies were measured in 176 randomly selected dogs with known vaccination histories. CPV antibody titres > or = 1:80 were detected in 70.9% of the CPV vaccinated dogs. There was a significant difference in the fraction of dogs with CPV titre > or = 1:80 between the group last vaccinated with live attenuated vaccine and the group last vaccinated with inactivated vaccine. Titres of CD and CAV-1 virus antibodies > or = 1:16 were found in 86.1% and 91.6% of the vaccinated dogs respectively. The fraction of dogs with CAV-1 antibody titres > or = 1:16 was significantly greater in the group that received inactivated CAV-1 vaccine than in the group vaccinated with attenuated live CAV-2 vaccine. Approximately 50% of the dogs were booster vaccinated against all 3 diseases at one year of age.

  12. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive

  13. Sound recordings of road maintenance equipment on the Lincoln National Forest, New Mexico

    Treesearch

    D. K. Delaney; T. G. Grubb

    2004-01-01

    The purpose of this pilot study was to record, characterize, and quantify road maintenance activity in Mexican spotted owl (Strix occidentalis lucida) habitat to gauge potential sound level exposure for owls during road maintenance activities. We measured sound levels from three different types of road maintenance equipment (rock crusherlloader,...

  14. Spotted Owl: Strix occidentalis

    Treesearch

    Joseph L. Ganey

    1997-01-01

    The scientific name, Strix occidentalis, translates as "owl of the west," an appropriate name for this inhabitant of western forests. The subspecies found in Arizona, the Mexican Spotted Owl, is S. o. lucida - "light" or "bright" owl of the west. This race is generally lighter in color than Spotted...

  15. Comparative habitat use of sympatric Mexican spotted and great horned owls

    Treesearch

    Joseph L. Ganey; William M. Block; Jeffrey S. Jenness; Randolph A. Wilson

    1997-01-01

    To provide information on comparative habitat use, we studied radiotagged Mexican spotted owls (Strix occidentalis lucida: n = 13) and great horned owls (Bubo virginianus: n = 4) in northern Arizona. Home-range size (95% adaptive kernel estimate) did not differ significantly between species during either the breeding or nonbreeding...

  16. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    PubMed Central

    Toni, Mattia; Spisni, Enzo; Griffoni, Cristiana; Santi, Spartaco; Riccio, Massimo; Lenaz, Patrizia; Tomasi, Vittorio

    2006-01-01

    It has been reported that cellular prion protein (PrPc) is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1) participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST)-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11), by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2) was triggered, suggesting that following translocations from rafts to caveolae or caveolaelike domains PrPc could interact with Cav-1 and induce signal transduction events. PMID:17489019

  17. Three-year duration of immunity in dogs following vaccination against canine adenovirus type-1, canine parvovirus, and canine distemper virus.

    PubMed

    Gore, Thomas C; Lakshmanan, Nallakannu; Duncan, Karen L; Coyne, Michael J; Lum, Melissa A; Sterner, Frank J

    2005-01-01

    A challenge-of-immunity study was conducted to demonstrate immunity in dogs 3 years after their second vaccination with a new multivalent, modified-live vaccine containing canine adenovirus type 2 (CAV-2), canine parvovirus (CPV), and canine distemper virus (CDV). Twenty-three seronegative pups were vaccinated at 7 and 11 weeks of age. Eighteen seronegative pups, randomized into groups of six dogs, served as challenge controls. Dogs were kept in strict isolation for 3 years following the vaccination and then challenged sequentially with virulent canine adenovirus type 1 (CAV-1), CPV, and CDV. For each viral challenge, a separate group of six control dogs was also challenged. Clinical signs of CAV-1, CPV, and CDV infections were prevented in 100% of vaccinated dogs, demonstrating that the multivalent, modified-live test vaccine provided protection against virulent CAV-1, CPV, and CDV challenge in dogs 7 weeks of age or older for a minimum of 3 years following second vaccination.

  18. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    PubMed

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  19. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    PubMed

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  20. Three-year serologic immunity against canine parvovirus type 2 and canine adenovirus type 2 in dogs vaccinated with a canine combination vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    A group of client-owned dogs and a group of dogs at a commercial kennel were evaluated for duration of antibody responses against canine parvovirus type 2 (CPV-2) and canine adenovirus type 1 (CAV-1) after receiving a combination vaccine containing recombinant canarypox-vectored canine distemper virus (CDV) and modified-live CPV-2, CAV-2, and canine parainfluenza virus, with (C6) or without (C4) two serovars of Leptospira (Recombitek C4 or C6, Merial). Duration of antibody, which correlates with protective immunity, was found to be at least 36 months in both groups. Recombitek combination vaccines can confidently be given every 3 years with assurance of protection in immunocompetent dogs against CPV-2 and CAV-1 as well as CDV. This allows this combination vaccine, like other, similar modified- live virus combination products containing CDV, CAV-2, and CPV-2, to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force.

  1. Negative modulation of the chicken infectious anemia virus promoter by COUP-TF1 and an E box-like element at the transcription start site binding deltaEF1.

    PubMed

    Miller, Myrna M; Jarosinski, Keith W; Schat, Karel A

    2008-12-01

    Expression of enhanced green fluorescent protein (EGFP) under control of the promoter-enhancer of chicken infectious anemia virus (CAV) is increased in an oestrogen receptor-enhanced cell line when treated with oestrogen and the promoter-enhancer binds unidentified proteins that recognize a consensus oestrogen response element (ERE). Co-transfection assays with the CAV promoter and the nuclear receptor chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1) showed that expression of EGFP was decreased by 50 to 60 % in DF-1 and LMH cells. The CAV promoter that included sequences at and downstream of the transcription start point had less expression than a short promoter construct. Mutation of a putative E box at this site restored expression levels. Electromobility shift assays showed that the transcription regulator delta-EF1 (deltaEF1) binds to this E box region. These findings indicate that the CAV promoter activity can be affected directly or indirectly by COUP-TF1 and deltaEF1.

  2. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. The Study of Cobb Angular Velocity in Cervical Spine during Dynamic Extension-Flexion.

    PubMed

    Ren, Dong; Hu, Zhihao; Yuan, Wen

    2016-04-01

    A kinematic study of cervical spine. The aim of the study was to confirm the interesting manifestation observed in the dynamic images of the cervical spine movement from full-extension to full-flexion. To further explore the fine motion of total process of cervical spine movement with the new concept of Cobb angular velocity (CAV). Traditionally range of motion (ROM) is used to describe the cervical spine movement from extension to flexion. It is performed with only end position radiographs. However, these radiographs fail to explain how the elaborate movement happens. The dynamic images of the cervical spine movement from full-extension to full-flexion of 12 asymptomatic subjects were collected. After transforming these dynamic images to static lateral radiographs, we overlapped C7 cervical vertebrae of each subject and divided the total process of cervical spine movement into five equal partitions. Finally, CAV values from C2/3 to C6/7 were measured and analyzed. A broken line graph was created based on the data of CAV values. A simple motion process was observed in C2/3 and C3/4 segments. The motion processes of C4/5 and C5/6 segments exhibited a more complex track of "N" and "W" than the other segments. The peak CAV values of C4/5 and C5/6 were significantly greater than the other segments. From C2/3 to C6/7, the peak CAV value appeared in sequence. The intervertebral movements of cervical spine did not take a uniform motion form when the cervical spine moved from full-extension to full-flexion. From C2/3 to C6/7, the peak CAV value appeared in order. The C4/5 and C5/6 segments exhibited more complex kinematic characteristics in sagittal movement. This leads to C4/5 and C5/6 more vulnerable to injury and degeneration. We had a hypothesis that there was a positive correlation between injury/degeneration and complexity of intervertebral movement in the view of CAV. N/A.

  4. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1more » in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.« less

  5. Distribution and habitat use of Mexican Spotted Owls in Arizona

    Treesearch

    Joseph L. Ganey; Russell P. Balda

    1989-01-01

    Distribution and habitat use of Mexican Spotted Owls (Strix occidentalis lucida) in Arizona were studied from 1984-1988. Owls were widely but patchily distributed throughout the state except for the arid southwestern portion. Distribution of the owl corresponded with distribution of forested mountains and canyonlands within the state. Owls occurred...

  6. C-Arm Computed Tomography-Assisted Adrenal Venous Sampling Improved Right Adrenal Vein Cannulation and Sampling Quality in Primary Aldosteronism.

    PubMed

    Park, Chung Hyun; Hong, Namki; Han, Kichang; Kang, Sang Wook; Lee, Cho Rok; Park, Sungha; Rhee, Yumie

    2018-05-04

    Adrenal venous sampling (AVS) is a gold standard for subtype classification of primary aldosteronism (PA). However, this procedure has a high failure rate because of the anatomical difficulties in accessing the right adrenal vein. We investigated whether C-arm computed tomography-assisted AVS (C-AVS) could improve the success rate of adrenal sampling. A total of 156 patients, diagnosed with PA who underwent AVS from May 2004 through April 2017, were included. Based on the medical records, we retrospectively compared the overall, left, and right catheterization success rates of adrenal veins during the periods without C-AVS (2004 to 2010, n=32) and with C-AVS (2011 to 2016, n=134). The primary outcome was adequate bilateral sampling defined as a selectivity index (SI) >5. With C-AVS, the rates of adequate bilateral AVS increased from 40.6% to 88.7% (P<0.001), with substantial decreases in failure rates (43.7% to 0.8%, P<0.001). There were significant increases in adequate sampling rates from right (43.7% to 91.9%, P<0.001) and left adrenal veins (53.1% to 95.9%, P<0.001) as well as decreases in catheterization failure from right adrenal vein (9.3% to 0.0%, P<0.001). Net improvement of SI on right side remained significant after adjustment for left side (adjusted SI, 1.1 to 9.0; P=0.038). C-AVS was an independent predictor of adequate bilateral sampling in the multivariate model (odds ratio, 9.01; P<0.001). C-AVS improved the overall success rate of AVS, possibly as a result of better catheterization of right adrenal vein. Copyright © 2018 Korean Endocrine Society.

  7. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    PubMed

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  8. Effects of marigold on the behavior, survival, and nutrient reserves of Aphidius platensis

    USDA-ARS?s Scientific Manuscript database

    Marigolds (Tagetes erecta L.) suppress nematodes and are attractive companion plants, but their role in biological control is unknown. We evaluated how exposure to marigold blooms impacts the aphid parasitoid, Aphidius platensis Brethes. Female wasps previously exposed to marigold spent more time wa...

  9. Involvement of Caveolin in Low K+-induced Endocytic Degradation of Cell-surface Human Ether-a-go-go-related Gene (hERG) Channels*

    PubMed Central

    Massaeli, Hamid; Sun, Tao; Li, Xian; Shallow, Heidi; Wu, Jimmy; Xu, Jianmin; Li, Wentao; Hanson, Christian; Guo, Jun; Zhang, Shetuan

    2010-01-01

    Reduction in the rapidly activating delayed rectifier K+ channel current (IKr) due to either mutations in the human ether-a-go-go-related gene (hERG) or drug block causes inherited or drug-induced long QT syndrome. A reduction in extracellular K+ concentration ([K+]o) exacerbates long QT syndrome. Recently, we demonstrated that lowering [K+]o promotes degradation of IKr in rabbit ventricular myocytes and of the hERG channel stably expressed in HEK 293 cells. In this study, we investigated the degradation pathways of hERG channels under low K+ conditions. We demonstrate that under low K+ conditions, mature hERG channels and caveolin-1 (Cav1) displayed a parallel time-dependent reduction. Mature hERG channels coprecipitated with Cav1 in co-immunoprecipitation analysis, and internalized hERG channels colocalized with Cav1 in immunocytochemistry analysis. Overexpression of Cav1 accelerated internalization of mature hERG channels in 0 mm K+o, whereas knockdown of Cav1 impeded this process. In addition, knockdown of dynamin 2 using siRNA transfection significantly impeded hERG internalization and degradation under low K+o conditions. In cultured neonatal rat ventricular myocytes, knockdown of caveolin-3 significantly impeded low K+o-induced reduction of IKr. Our data indicate that a caveolin-dependent endocytic route is involved in low K+o-induced degradation of mature hERG channels. PMID:20605793

  10. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  11. Factors associated with the development of cardiac allograft vasculopathy--a systematic review of observational studies.

    PubMed

    Braga, J R; Santos, I S O; McDonald, M; Shah, P S; Ross, H J

    2012-01-01

    Cardiac allograft vasculopathy (CAV) is a significant factor impacting outcomes after heart transplant. We performed a systematic review of risk factors for the development of CAV. A search of electronic databases was performed. The eligibility criteria included cohort and case-control studies with more than 50 adult patients submitted to a heart transplant. The outcome should be CAV diagnosed by angiography and/or intravascular ultrasound (IVUS). Two reviewers performed study selection, data abstraction, and quality assessment. Of 2514 citations, 66 articles were included--46 had 200 participants or less; 61 were single-center; and 44 were retrospective cohorts. The most used definition of CAV using angiography was the detection of any degree of abnormality (21 studies of 58). In studies using IVUS, an intimal thickness ≥0.5 mm was the most used definition (five of eight studies). Quality assessment revealed an inadequate description of patient selection, attrition, and accounting of potential confounders. Donor age, recipient age, recipient gender, etiology of heart failure, ischemic time, human leukocyte antigen matching, cytomegalovirus, lipid profile, and rejection episodes were the most studied factors. Our review indicates that the current evidence is not consistent across different studies. The definite contribution of risk factors for the development of CAV is still to be determined. © 2011 John Wiley & Sons A/S.

  12. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    PubMed Central

    Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  13. Habitat selection by Mexican Spotted Owls in Northern Arizona

    Treesearch

    Joseph L. Ganey; Russell P. Balda

    1994-01-01

    We compared use of seven habitat types to availability of those types within the home ranges of eight radio-tagged Mexican Spotted Owls (Strix occidentalis lucida). When all habitat types were considered simultaneously, habitat use differed from habitat availability for each owl. Patterns of habitat use varied among individuals and with respect to...

  14. Thermal regimes of Mexican spotted owl nest stands

    Treesearch

    Joseph L. Ganey

    2004-01-01

    To evaluate the hypothesis that spotted owls (Strix occidentalis) select habitats with cool microclimates to avoid high daytime temperatures, I sampled thermal regimes in nest areas used by Mexican spotted owls (S. o. lucida) in northern Arizona. I sampled air temperature at 30-min intervals in 30 pairs of nest and random sites...

  15. Nesting habitat of Mexican spotted owls in the Sacramento Mountains

    Treesearch

    Joseph L. Ganey; Darrell L. Apprill; Todd A. Rawlinson; Sean C. Kyle; Ryan S. Jonnes; James P. Ward

    2013-01-01

    Understanding the habitat relationships of rare species is critical to conserving populations and habitats of those species. Nesting habitat is suspected to limit distribution of the threatened Mexican spotted owl (Strix occidentalis lucida), and may vary among geographic regions. We studied selection of nesting habitat by Mexican spotted owls within their home ranges...

  16. Structural characteristics of forest stands within home ranges of Mexican spotted owls in Arizona and New Mexico

    Treesearch

    Joseph L. Ganey; William M. Block; Steven H. Ackers

    2003-01-01

    As part of a set of studies evaluating home-range size and habitat use of radio-marked Mexican spotted owls (Strix occidentalis lucida), we sampled structural characteristics of forest stands within owl home ranges on two study areas in Arizona and New Mexico. Study areas were dominated by ponderosa pine (Pinus ponderosa)-Gambel...

  17. Using terrestrial ecosystem survey data to identify potential habitat for the Mexican spotted owl on National Forest System lands: a pilot study

    Treesearch

    Joseph L. Ganey; Mary Ann Benoit

    2002-01-01

    We assessed the usefulness of Terrestrial Ecosystem Survey (TES) data as a means of identifying habitat for the Mexican spotted owl (Strix occidentalis lucida) in three National Forests in Arizona. This spatial data set incorporates information on soils, vegetation, and climatic conditions in defining a set of ecological "map units" showing potential...

  18. Temperature effects for high pressure processing of Picornaviruses

    USDA-ARS?s Scientific Manuscript database

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  19. Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter.

    PubMed

    Garza-López, Edgar; Chávez, Julio César; Santana-Calvo, Carmen; López-González, Ignacio; Nishigaki, Takuya

    2016-07-01

    CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  1. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.

  2. PrP genotype frequencies and risk evaluation for scrapie in dairy sheep breeds from southern Italy.

    PubMed

    Martemucci, Giovanni; Iamartino, Daniela; Blasi, Michele; D'Alessandro, Angela Gabriella

    2015-12-01

    Concerns regarding scrapie in sheep breeding have increased in the last few decades. The present study was carried out in dairy sheep breeds from southern Italy. In order to find breeding animals resistant to scrapie, the PrP genes of 1,205 animals from entire flocks of dairy native Apulian Leccese and Altamurana breeds, and Sicilian Comisana breed, were analysed for polymorphisms at codons 136, 154, and 171 related to scrapie resistance/susceptibility. The Altamurana breed was considered as two populations (Alt-Cav and Alt-Cra-Zoe), based on presumed cross-breeding. A total of five alleles and ten different genotypes were found. The ARQ allele was predominant for all breeds followed by ARR, the most resistant allele to scrapie, which was highly prevalent in Comisana (50%) and in native Alt-Cav (42.4%). The VRQ allele, associated with the highest susceptibility to scrapie, was detected at not negligeable levels in allocthonous Comisana (3.5%), at a low frequency (0.2%) in native Leccese and Alt-Cra-Zoe, while it was absent in Alt-Cav. The frequencies of PrP genotypes with a very low susceptibility risk to scrapie (R1) was higher in Comisana and Alt-Cav. The most susceptible genotype, ARQ/VRQ, was found only in Comisana. Within the Altamurana breed, there were notable differences between Alt-Cav and Alt-Cra-Zoe sheep. The Alt-Cav was characterised by the absence of VRQ and AHQ alleles and by the higher frequency of the ARR/ARR genotype (18.7%). Breeding programs, mainly in endangered breeds such as Altamurana, should be conducted gradually, combining resistance to scrapie, maintenance of genetic variability, and production. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quinine Pharmacokinetics and Pharmacodynamics in Children with Malaria Caused by Plasmodium falciparum

    PubMed Central

    Le Jouan, M.; Jullien, V.; Tetanye, E.; Tran, A.; Rey, E.; Tréluyer, J.-M.; Tod, M.; Pons, G.

    2005-01-01

    The aim of the present study was to assess the pharmacokinetics and the efficacy of a shorter than usual 5-day quinine treatment given orally to children in Cameroon with malaria caused by Plasmodium falciparum. Quinine (8.3 mg of base per kg of body weight every 8 h) was administered as a 2% formiate salt syrup for 5 days to 30 children (age range, 0.55 to 6.7 years) with uncomplicated falciparum malaria (initial parasitemia, 1.4 × 103 to 1.8 × 105/μl). Quinine concentrations in plasma samples (five to nine per patient) were measured by liquid chromatography on days 1 to 3. Parasitemia was counted on days 0, 1, 2, 3, 4, 7, and 14. Pharmacokinetic and pharmacodynamic data were analyzed by population approaches by using NONMEM and WinBugs, respectively. The kinetics of quinine were best described by a one-compartment model with time-varying protein binding. Clearance and the volume of distribution were positively correlated with body weight and increased over time. Parasitemia was undetectable from day 3 to 14 in all children. The time to a 4-log reduction of the initial level of parasitemia (Ter) was related to the average quinine concentration from 0 to 72 h (Cav) as Ter = Tmin [1 + (C50/Cav)s], where sigmoidicity (s) is equal to 2, Tmin is the time to eradication at infinite Cav, and C50 is the value of Cav for which Ter is twice Tmin. The C50 distribution was unimodal, and all C50 values were less than 8 mg/liter, while Cav ranged from 5.9 to 18.3 mg/liter. The median (10th to 90th percentile) Ter was 47 h (range, 39 to 76 h). The efficacy of a 5-day treatment course should be evaluated in a larger clinical trial. PMID:16127036

  4. Atypical properties of a conventional calcium channel beta subunit from the platyhelminth Schistosoma mansoni.

    PubMed

    Salvador-Recatalà, Vicenta; Schneider, Toni; Greenberg, Robert M

    2008-03-26

    The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory beta subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the alpha1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two beta subunit subtypes: a structurally conventional beta subunit and a variant beta subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavbeta subunit. Here, we focus on the modulatory phenotype of the conventional Cavbeta subunit (SmCavbeta) using the human Cav2.3 channel as the substrate for SmCavbeta and the whole-cell patch-clamp technique. The conventional Schistosoma mansoni Cavbeta subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavbeta run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavbeta lends the Cav2.3/SmCavbeta complex sensitivity to Na+ ions. A mutant version of the Cavbeta subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavbeta subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and

  5. Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavα1S-subunit

    PubMed Central

    Pirone, Antonella; Schredelseker, Johann; Tuluc, Petronel; Gravino, Elvira; Fortunato, Giuliana; Flucher, Bernhard E.; Carsana, Antonella; Salvatore, Francesco

    2010-01-01

    To identify the genetic locus responsible for malignant hyperthermia susceptibility (MHS) in an Italian family, we performed linkage analysis to recognized MHS loci. All MHS individuals showed cosegregation of informative markers close to the voltage-dependent Ca2+ channel (CaV) α1S-subunit gene (CACNA1S) with logarithm of odds (LOD)-score values that matched or approached the maximal possible value for this family. This is particularly interesting, because so far MHS was mapped to >178 different positions on the ryanodine receptor (RYR1) gene but only to two on CACNA1S. Sequence analysis of CACNA1S revealed a c.4060A>T transversion resulting in amino acid exchange T1354S in the IVS5-S6 extracellular pore-loop region of CaVα1S in all MHS subjects of the family but not in 268 control subjects. To investigate the impact of mutation T1354S on the assembly and function of the excitation-contraction coupling apparatus, we expressed GFP-tagged α1ST1354S in dysgenic (α1S-null) myotubes. Whole cell patch-clamp analysis revealed that α1ST1354S produced significantly faster activation of L-type Ca2+ currents upon 200-ms depolarizing test pulses compared with wild-type GFP-α1S (α1SWT). In addition, α1ST1354S-expressing myotubes showed a tendency to increased sensitivity for caffeine-induced Ca2+ release and to larger action-potential-induced intracellular Ca2+ transients under low (≤2 mM) caffeine concentrations compared with α1SWT. Thus our data suggest that an additional influx of Ca2+ due to faster activation of the α1ST1354S L-type Ca2+ current, in concert with higher caffeine sensitivity of Ca2+ release, leads to elevated muscle contraction under pharmacological trigger, which might be sufficient to explain the MHS phenotype. PMID:20861472

  6. Serum antibody titres to canine parvovirus, adenovirus and distemper virus in dogs in the UK which had not been vaccinated for at least three years.

    PubMed

    Böhm, M; Thompson, H; Weir, A; Hasted, A M; Maxwell, N S; Herrtage, M E

    2004-04-10

    Antibody titres to canine distemper (CDV), canine parvovirus (CPV) and canine adenovirus (CAV) were measured in 144 adult dogs that had not been vaccinated for between three and 15 years. Protective antibodies to CPV were present in 95 per cent of the population, to CDV in 71.5 per cent and to CAV in 82 per cent. The prevalence of protective titres did not decrease with increasing time interval from the last vaccination for any of the three diseases studied. Booster vaccination increased the dogs CAV titres. For comparative purposes, 199 puppies were sampled at the time of their first and second vaccination. In the case of CPV and CAV a significantly higher proportion of the adult dogs were protected than of the puppies immediately after they were vaccinated. Natural CPV boosting was strongly suspected because the dogs had significantly higher titres three years after their primary vaccination than two weeks after it and three unvaccinated dogs had acquired protective antibody levels uneventfully. There was no evidence of natural exposure to CDV.

  7. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate.

    PubMed

    Nelson, Michael T; Joksovic, Pavle M; Su, Peihan; Kang, Ho-Won; Van Deusen, Amy; Baumgart, Joel P; David, Laurence S; Snutch, Terrance P; Barrett, Paula Q; Lee, Jung-Ha; Zorumski, Charles F; Perez-Reyes, Edward; Todorovic, Slobodan M

    2007-11-14

    T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

  8. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  9. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK

    PubMed Central

    Jiang, Yida; Lin, Xianchai; Tang, Zhongshu; Lee, Chunsik; Tian, Geng; Du, Yuxiang; Yin, Xiangke; Ren, Xiangrong; Huang, Lijuan; Ye, Zhimin; Chen, Wei; Zhang, Fan; Mi, Jia; Gao, Zhiqin; Wang, Shasha; Chen, Qishan; Xing, Liying; Wang, Bin; Cao, Yihai; Sessa, William C.; Ju, Rong; Liu, Yizhi; Li, Xuri

    2017-01-01

    Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti–VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases. PMID:28923916

  10. Automated and Cooperative Vehicle Merging at Highway On-Ramps

    DOE PAGES

    Rios-Torres, Jackeline; Malikopoulos, Andreas A.

    2016-08-05

    Recognition of necessities of connected and automated vehicles (CAVs) is gaining momentum. CAVs can improve both transportation network efficiency and safety through control algorithms that can harmonically use all existing information to coordinate the vehicles. This paper addresses the problem of optimally coordinating CAVs at merging roadways to achieve smooth traffic flow without stop-and-go driving. Here we present an optimization framework and an analytical closed-form solution that allows online coordination of vehicles at merging zones. The effectiveness of the efficiency of the proposed solution is validated through a simulation, and it is shown that coordination of vehicles can significantly reducemore » both fuel consumption and travel time.« less

  11. Roost sites of radio-marked Mexican spotted owls in Arizona and New Mexico: sources of variability and descriptive characteristics

    Treesearch

    Joseph L. Ganey; William M. Block; Rudy M. King

    2000-01-01

    To increase understanding of roosting habitat of Mexican Spotted Owls (Strix occidentalis lucida) and factors that influence use of roosting habitat, we sampled habitat characteristics at 1790 sites used for roosting by 28 radio-marked Mexican Spotted Owls in three study areas in Arizona and New Mexico. We explored potential patterns of variation in...

  12. Demography of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; Gary C. White; James P. Ward; Sean C. Kyle; Darrell L. Apprill; Todd A. Rawlinson; Ryan S. Jonnes

    2014-01-01

    Information on population dynamics is key to gauging the status of threatened or endangered species. We monitored demography of a population of threatened Mexican spotted owls (Strix occidentalis lucida) in the Sacramento Mountains, New Mexico from 2003 to 2011. We estimated reproductive output for territorial pairs of owls; used mark-recapture methodology and Pradel...

  13. Estimating canopy cover in forest stands used by Mexican spotted owls: Do stand-exam routines provide estimates comparable to field-based techniques?

    Treesearch

    Joseph L. Ganey; Regis H. Cassidy; William M. Block

    2008-01-01

    Canopy cover has been identified as an important correlate of Mexican spotted owl (Strix occidentalis lucida) habitat, yet management guidelines in a 1995 U.S. Fish and Wildlife Service recovery plan for the Mexican spotted owl did not address canopy cover. These guidelines emphasized parameters included in U.S. Forest Service stand exams, and...

  14. Mexican spotted owl home range and habitat use in pine-oak forest: Implications for forest management

    Treesearch

    Joseph L. Ganey; William M. Block; Jeffrey S. Jenness; Randolph A. Wilson

    1998-01-01

    To better understand the habitat relationships of the Mexican spotted owl (Strix occidentalis lucida), and how such relationships might influence forest management, we studied home-range and habitat use of radio-marked owls in ponderosa pine (Pinus ponderosa) Gambel oak (Quercus gambelii) forest. Annual home-range size (95% adaptive-kernel estimate) averaged 895 ha...

  15. Prey ecology of Mexican spotted owls in pine-oak forests of northern Arizona

    Treesearch

    William M. Block; Joseph L. Ganey; Peter E. Scott; Rudy M. King

    2005-01-01

    We studied Mexican spotted owl (Strix occidentalis lucida) diets and the relative abundance and habitat associations of major prey species in a ponderosa pine (Pinus ponderosa)–Gambel oak (Quercus gambelii) forest in northcentral Arizona, USA, from 1990 to 1993. The owl’s diet was comprised of 94% mammals by...

  16. Calling behavior of spotted owls in Northern Arizona

    Treesearch

    Jospeh L. Ganey

    1990-01-01

    I studied the calling behavior of radio-tagged Mexican Spotted Owls (Strix occidentalis lucida) in northern Arizona. Owls used a variety of calls, with three call types (Four-note Location Call, Contact Call, and Bark Series) accounting for 86% of calling bouts heard. These calls were used by both sexes, but in significantly different proportions....

  17. Relative abundance of small mammals in nest core areas and burned wintering areas of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; Sean C. Kyle; Todd A. Rawlinson; Darrell L. Apprill; James P Ward

    2014-01-01

    Mexican Spotted Owls (Strix occidentalis lucida) are common in older forests within their range but also persist in many areas burned by wildfire and may selectively forage in these areas. One hypothesis explaining this pattern postulates that prey abundance increases in burned areas following wildfire. We observed movement to wintering areas within areas burned by...

  18. A new candidate of calcium channel blocker in silico from Tectona grandis for treatment of gestational hypertension

    NASA Astrophysics Data System (ADS)

    Azizah, A.; Suselo, Y. H.; Muthmainah, M.; Indarto, D.

    2018-05-01

    Gestational Hypertension is one of the three main causes of maternal mortality in Indonesia. Nifedipine which blockes the Cav1.2 calcium channel has frequently been used to treat gestational hypertension. However the efficacy of nifedipine has not been established yet and the prevalence of gestational hypertension is still high (27.1 %). Indonesian herbal plants have potential to be developed as natural drugs. Molecular docking, a computational method, is very often used to depict interaction between molecules and target receptor This study was therefore to identify Indonesian herbal plants that could inhibit the calcium channel in silico. This was a bioinformatics study with molecular docking approach. Three-dimensional structure of human calcium channel Cav1.2 was determined by modelling with rabbit calcium channel (ID:5GJW) as template and using the SWISS MODEL software. Nifedipine was used as a standard ligand and obtained from ZINC database with the access code ZINC19594578. Active compounds of Indonesian herbal plants were registered in HerbalDB database and their molecular structure was obtained from PubChem. Binding affinity of human Cav1.2 model-ligand complexes were assesed using AutoDock Vina 1.1.2 software and visualization of molecular conformation used Chimera 1.10 and PyMol 1.3 softwares. The Lipinsky’s rules of five were used to determine active compounds which fullfilled drug criteria. The human Cav1-2 model had 72.35% sequence identity with rabbit Cav1.1. Nifedipine bound to the human Cav1.2 model with -2.1 kcal/mol binding affinity and had binding sites at Gln1060, Phe1129, Ser1132, and Ile1173 residues. A lower binding affinity was observed in 8 phytochemicals but only obtusifolin 2-glucoside (-2.2 kcal/mol) had similar binding sites as nifedipin did. In addition, obtusifolin 2-glucoside met the Lipinsky criteria and the molecule conformation was similar with nifedipine. From the HerbalDB database, obtusifolin 2-glucoside is found in Tectona

  19. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models.

    PubMed

    Yu, Wencheng; Guo, Fang; Song, Xiaoxia

    2017-12-01

    Previous studies have reported that caveolin-1 (Cav-1) is associated with lung fibrosis. However, the role of Cav-1 expression in pirfenidone-treated idiopathic pulmonary fibrosis (IPF) is unknown. This study investigated Cav-1 expression in pirfenidone-treated IPF, and compared the effects of pirfenidone with acetylcysteine and prednisone on IPF. Rat IPF model was established by endotracheal injection of 5 mg/kg bleomycin A5 into the specific pathogen-free Wistar male rats. Pirfenidone (P, 100 mg/kg once daily), prednisone (H, 5 mg/kg once daily) and acetylcysteine (N, 4 mg/kg 3 times per day) were used to treat the rat model by intragastric administration for 45 consecutive days, respectively. The normal rats without IPF were used as the controls. After 15, 30 and 45 days of drug treatment, lung histopathology was assessed. The expression of Cav-1 was determined using real-time quantitative PCR and Western blot; the expression of tumour necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) was determined by enzyme-linked immunosorbent assay. After 15, 30 and 45 days of drug treatment, comparison of the three drug-treated groups with the model group showed significantly lower (p < 0.05) significance of airsacculitis and fibrosis scores of lung tissues, as well as expression of TGF-β1, TNF-α and PDGF, but the expression of Cav-1 was higher (p < 0.05). Compared with the N group, the fibrosis score was significantly lower and the protein expression of Cav-1 was significantly higher in the P group (p < 0.05). Additionally, the expression of Cav-1 was negatively correlated with the airsacculitis and fibrosis scores (r = -0.506, p < 0.01; r = -0.676, p < 0.01) as well as expression of TGF-β1, TNF-α and PDGF (r = -0.590, p < 0.01; r = -0.530, p < 0.01; r = -0.553, p < 0.01). Pirfenidone, prednisone and acetylcysteine can inhibit airsacculitis and

  20. Actin dynamics regulate immediate PAR-2-dependent responses to acute epidermal permeability barrier abrogation.

    PubMed

    Roelandt, Truus; Heughebaert, Carol; Verween, Gunther; Giddelo, Christina; Verbeken, Gilbert; Pirnay, Jean-Paul; Devos, Daniel; Crumrine, Debra; Roseeuw, Diane; Elias, Peter M; Hachem, Jean-Pierre

    2011-02-01

    Lamellar body (LB) secretion and terminal differentiation of stratum granulosum (SG) cells are signaled by both protease activated receptor-2 (PAR-2) and caveolin-1 (cav-1). To address the early dynamics of LB secretion, we examined cytoskeletal remodeling of keratinocytes in 3 mouse models following acute barrier abrogation: hairless mice, PAR-2 knockout (-/-) and cav-1 -/-. Under basal conditions, globular (G)-actin accumulates in SG cells cytosol, while filamentous (F)-actin is restricted to peri-membrane domains. Barrier abrogation induces the apical movement of F-actin and the retreat of the SG-G-actin front, paralleled by upstream cytoskeletal kinases activation. This phenomenon was both enhanced by PAR-2 agonist, and inhibited by cytochalasin-D and in PAR-2 knockout mice. We found that plasma membrane conformational changes causing LB secretion are controlled by PAR-2-dependent cytoskeletal rearrangements. We next addressed the interaction dynamics between cytoskeleton and plasma membrane following PAR-2-induced actin stress fiber formation in both cav-1 -/- and wildtype cells. Actin stress fiber formation is increased in cav-1 -/- cells prior to and following PAR-2 agonist peptide-treatment, while absence of cav-1 inhibits E-cadherin-mediated cell-to-cell adhesion. PAR-2 drives cytoskeletal/plasma membrane dynamics that regulate early LB secretion following barrier abrogation, stress fiber formation and keratinocyte adhesion. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    PubMed

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  2. Expression of key ion channels in the rat cardiac conduction system by laser capture microdissection and quantitative real-time PCR.

    PubMed

    Ou, Yan; Niu, Xiao-lin; Ren, Fu-xian

    2010-09-01

    The objective of this study was to investigate the molecular basis of the inferior nodal extension (INE) in the atrioventricular junctional area that accounts for arrhythmias. The INE was separated from the adult rat heart by laser capture microdissection. The mRNA expression of ion channels was detected by quantitative real-time PCR. Hierarchical clustering was used to demonstrate clustering of expression of genes in sections. The mRNA expression of HCN4, Ca(v)3.1 and Ca(v)3.2 was high in the INE, atrioventricular node and sino-atrial node, and that of Ca(v)3.2 high in Purkinje fibres. Although the expression of HCN1 and Ca(v)1.3 was low in the rat heart, it was relatively higher in the INE, atrioventricular node and sino-atrial node than in right atrial and right ventricular (working) myocytes. Both HCN2 and Ca(v)1.2 were expressed at higher levels in working myocytes than in nodal tissues and in the INE. Hierarchical clustering analysis demonstrated that the expression of the HCN and calcium channels in INE was similar to that in the slow-response automatic cells and different from that in working myocytes and Purkinje fibres. The expression of HCN and calcium channels in the INE of the adult rat heart is similar to that of slow-response automatic cells and provides a substrate for automatic phase 4 depolarization in cells.

  3. Analysis of the Effects of Connected–Automated Vehicle Technologies on Travel Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Sokolov, Vadim; Stephens, Thomas S.

    Connected–automated vehicle (CAV) technologies are likely to have significant effects not only on how vehicles operate in the transportation system, but also on how individuals behave and use their vehicles. While many CAV technologies—such as connected adaptive cruise control and ecosignals—have the potential to increase network throughput and efficiency, many of these same technologies have a secondary effect of reducing driver burden, which can drive changes in travel behavior. Such changes in travel behavior—in effect, lowering the cost of driving—have the potential to increase greatly the utilization of the transportation system with concurrent negative externalities, such as congestion, energy use,more » and emissions, working against the positive effects on the transportation system resulting from increased capacity. To date, few studies have analyzed the potential effects on CAV technologies from a systems perspective; studies often focus on gains and losses to an individual vehicle, at a single intersection, or along a corridor. However, travel demand and traffic flow constitute a complex, adaptive, nonlinear system. Therefore, in this study, an advanced transportation systems simulation model—POLARIS—was used. POLARIS includes cosimulation of travel behavior and traffic flow to study the potential effects of several CAV technologies at the regional level. Various technology penetration levels and changes in travel time sensitivity have been analyzed to determine a potential range of effects on vehicle miles traveled from various CAV technologies.« less

  4. Coordinated Endothelial Nitric Oxide Synthase activation by translocation and phosphorylation determines flow-induced NO production in resistance vessels

    PubMed Central

    Figueroa, Xavier F.; González, Daniel R.; Puebla, Mariela; Acevedo, Juan P.; Rojas-Libano, Daniel; Durán, Walter N.; Boric, Mauricio P.

    2013-01-01

    Background/Aims Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. Methods In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2–10 mL/min), on NO production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca2+. Results Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3–5-min) that peaked during the first 15-sec, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation, and dissociation from Cav-1 depended on extracellular Ca2+, while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. Conclusions In intact resistance vessels, changes in flow induce NO production by transient Ca2+-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca2+-independent PI3K-Akt-mediated phosphorylation. PMID:24217770

  5. Intravascular ultrasound of the proximal left anterior descending artery is sufficient to detect early cardiac allograft vasculopathy.

    PubMed

    Floré, Vincent; Brown, Adam J; Pettit, Stephen J; West, Nick E J; Lewis, Clive; Parameshwar, Jayan; Hoole, Stephen P

    2018-02-01

    Cardiac allograft vasculopathy (CAV) can be detected early with intravascular ultrasound (IVUS), but there is limited information on the most efficient imaging protocol. Coronary angiography and IVUS of the three coronary arteries were performed. Volumetric IVUS analysis was performed, and a Stanford grade determined for each vessel. Eighteen patients were included 18 (range 12-24) months after transplantation. Angiographic CAV severity ranged from none (CAV0) to mild (CAV1), whereas IVUS CAV severity ranged from none (Stanford grade I) to severe (grade IV). Maximal intimal thickness measured with IVUS was significantly greater in the LAD (0.84 ± 0.48 mm) than in the LCX (0.46 ± 0.32 mm) or the RCA (0.53 ± 0.41 mm, P = .005). Diagnostic accuracy of IVUS in the left anterior descending artery was 100% (18 of 18 Stanford grades matched the patient's highest overall Stanford grade), 66% in the right coronary artery (12 of 18), and 56% in the left circumflex artery (11 of 18). The minimal required length of left anterior descending artery pullbacks to attain 100% accuracy was 36 mm (range 3-36 mm) distal from the guide catheter ostium. These data suggest that focal IVUS imaging of the proximal LAD followed by volumetric analysis may suffice when screening for transplant vasculopathy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand.

    PubMed

    Chintakovid, Watchara; Visoottiviseth, Pornsawan; Khokiattiwong, Somkiat; Lauengsuchonkul, Siriporn

    2008-02-01

    Nugget marigold, a triploid hybrid between American (Tagetes erecta L.) and French (Tagetes patula) marigolds, is a marketed flowering plant with a good ability in arsenic phytoremediation. During field trial in an arsenic-polluted area in Thailand, arsenic was found mostly in leaves (46.2%) while flowers contained the lowest arsenic content (5.8%). Arsenic species in aqueous extracts of nugget marigolds were determined by HPLC-UV-HG-QF-AAS. Inorganic arsenics, arsenite and arsenate, were the main arsenic chemical species found in roots, stems, and leaves of marigolds with accumulated arsenic. Nugget marigolds from experimental plots not only accumulated high levels of arsenic but also grew well in arsenic-contaminated areas. Phosphate fertilizer enhanced arsenic uptake when the plants were in the flowering stage. Arsenic remediation using nugget marigolds could also provide economic benefits to the remediators through marketing flowers. Therefore, marigolds should be considered as a potential economic crop for phytoremediation.

  7. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    PubMed

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  8. Use of protected activity centers by Mexican Spotted Owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; James P. Ward; Jeffrey S. Jenness; William M. Block; Shaula Hedwall; Ryan S. Jonnes; Darrell L. Apprill; Todd A. Rawlinson; Sean C. Kyle; Steven L. Spangle

    2014-01-01

    A Recovery Plan developed for the threatened Mexican Spotted Owl (Strix occidentalis lucida) recommended designating Protected Activity Centers (PACs) with a minimum size of 243 ha to conserve core use areas of territorial owls. The plan assumed that areas of this size would protect " the nest site, several roost sites, and the most proximal and highly-used...

  9. Home range, habitat use, survival, and fecundity of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; William M. Block; James P. Ward; Brenda E. Strohmeyer

    2005-01-01

    We studied home range, habitat use, and vital rates of radio-marked Mexican spotted owls (Strix occidentalis lucida) in 2 study areas in the Sacramento Mountains, New Mexico. One study area (mesic) was dominated by mixed-conifer forest, the other (xeric) by ponderosa pine (Pinus ponderosa) forest and pinon (P. edulis)-juniper (Juniperus) woodland. Based on existing...

  10. Breeding dispersal of Mexican Spotted Owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; Darrell L. Apprill; Todd A. Rawlinson; Sean C. Kyle; Ryan S. Jonnes; James P. Ward

    2014-01-01

    Dispersal is a key process influencing population dynamics and gene flow in species. Despite this, little is known about breeding dispersal in threatened Mexican Spotted Owls (Strix occidentalis lucida), here defined as movement of a non-juvenile owl between territories where it had the opportunity to breed. We observed 28 cases of breeding dispersal during a study of...

  11. Managing emerging threats to spotted owls

    Treesearch

    Ho Yi Wan; Joseph L. Ganey; Christina D. Vojta; Samuel A. Cushman

    2018-01-01

    The 3 spotted owl (Strix occidentalis) subspecies in North America (i.e., northern spotted owl [S. o. caurina], California spotted owl [S. o. occidentalis], Mexican spotted owl [S. o. lucida]) have all experienced population declines over the past century due to habitat loss and fragmentation from logging. Now, the emerging influences of climate change, high-severity...

  12. Responses of Mexican spotted owls to low-flying military jet aircraft

    Treesearch

    Charles L. Johnson; Richard T. Reynolds

    2002-01-01

    To investigate the effects of military fixed-wing aircraft training on the behavior of the endangered Mexican spotted owl (Strix occidentalis lucida), we subjected four adults and one juvenile owl to low-altitude, fixed-wing, jet aircraft overflight trials in Colorado in 1996 and 1997. Trials consisted of three sequential fly-bys, each at a greater aircraft speed and...

  13. An apparent case of long-distance breeding dispersal by a Mexican spotted owl in New Mexico

    Treesearch

    Joseph L. Ganey; Jeffrey S. Jenness

    2013-01-01

    The Mexican spotted owl (Strix occidentalis lucida) is widely but patchily distributed throughout the southwestern United States and the Republic of Mexico (Gutiérrez and others 1995, Ward and others 1995). This owl typically occurs in either rocky canyonlands or forested mountain and canyon systems containing mixed-conifer or pine-oak (Pinus spp. - Quercus spp.)...

  14. Activity patterns of nesting Mexican Spotted Owls

    Treesearch

    David K. Delaney; Teryl G. Grubb; Paul Beier

    1999-01-01

    We collected 2,665 hr of behavioral information using video surveillance on 19 Mexican Spotted Owl (Strix occidentalis lucida) pairs between 25 April and 26 July 1996. Prey deliveries per day increased as the nesting season progressed, with an average of 2.68 prey deliveries during incubation, 4.10 items during brooding, and 4.51 items during the...

  15. Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophy-related caveolin-3 P104L and TFT mutants.

    PubMed

    Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio

    2007-10-30

    Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.

  16. Antibody titers for canine parvovirus type-2, canine distemper virus, and canine adenovirus type-1 in adult household dogs.

    PubMed

    Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Orito, Kensuke; Lynch, Jonathan; Sahara, Hiroeki

    2011-09-01

    Serum antibody titers for canine parvovirus type-2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type-1 (CAV-1) were investigated in 1031 healthy adult household dogs (2 to 18 years old) given an annual inoculation in the previous 11 to 13 months. The number of dogs retaining significant titers of antibodies against CPV-2, CDV, and CAV-1 were 888 (86%), 744 (72%), and 732 (71%), respectively. There were no differences between males and females in antibody titers against the 3 viruses. Antibody titer for CPV-2 was significantly higher in younger dogs than in older dogs, CDV antibody was significantly higher in older dogs than in younger dogs, and CAV titer was not associated with age.

  17. Antibody titers for canine parvovirus type-2, canine distemper virus, and canine adenovirus type-1 in adult household dogs

    PubMed Central

    Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Orito, Kensuke; Lynch, Jonathan; Sahara, Hiroeki

    2011-01-01

    Serum antibody titers for canine parvovirus type-2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type-1 (CAV-1) were investigated in 1031 healthy adult household dogs (2 to 18 years old) given an annual inoculation in the previous 11 to 13 months. The number of dogs retaining significant titers of antibodies against CPV-2, CDV, and CAV-1 were 888 (86%), 744 (72%), and 732 (71%), respectively. There were no differences between males and females in antibody titers against the 3 viruses. Antibody titer for CPV-2 was significantly higher in younger dogs than in older dogs, CDV antibody was significantly higher in older dogs than in younger dogs, and CAV titer was not associated with age. PMID:22379198

  18. Effects of Organic and Inorganic Fertilizers on Marigold Growth and Flowering

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to evaluate the growth and flowering responses of greenhouse-grown French marigold (Tagetes patula L. ‘Janie Deep Orange’) to two non-composted broiler chicken litter-based organic fertilizers 4-2-2 and 3-3-3, and one commonly used synthetic controlled-release fertiliz...

  19. Translations on North Korea, Number 573.

    DTIC Science & Technology

    1978-02-02

    Production 61 Ore Production 61 Changsong Mine 61 - c - KIM IL-SONG PHOTOS APPEARING IN ’NODONG SINMUN,’ DECEMBER 1977 [Editorial Report] The...Pyongyang Domestic Service in Korean 0800 GMT 12 Jan 78 SK] CHANGSONG MINE—The Changsong mine has overfulfilled the tagets set for tunneling by 270

  20. Modulation of low-voltage-activated T-type Ca²⁺ channels.

    PubMed

    Zhang, Yuan; Jiang, Xinghong; Snutch, Terrance P; Tao, Jin

    2013-07-01

    Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.