Sample records for tagish lake meteorite

  1. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  2. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h < 5b < 11i as inferred from the mineralogy, petrology, bulk isotopes, and insoluble organic matter structure. The distribution and enantiomeric abundances of the one- to six-carbon aliphatic amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  3. The Fall and Recovery of the Tagish Lake Meteorite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrand, Alan R.; McCausland, Phil J.; Brown, Peter G.

    2006-03-01

    The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbitmore » and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.« less

  4. The Tagish Lake meteorite: a possible sample from a D-type asteroid.

    PubMed

    Hiroi, T; Zolensky, M E; Pieters, C M

    2001-09-21

    A new type of carbonaceous chondrite, the Tagish Lake meteorite, exhibits a reflectance spectrum similar to spectra observed from the D-type asteroids, which are relatively abundant in the outer solar system beyond the main asteroid belt and have been inferred to be more primitive than any known meteorite. Until the Tagish Lake fall, these asteroids had no analog in the meteorite collections. The Tagish Lake meteorite is a carbon-rich (4 to 5 weight %), aqueously altered carbonaceous chondrite and contains high concentrations of presolar grains and carbonate minerals, which is consistent with the expectation that the D-type asteroids were originally made of primitive materials and did not experience any extensive heating.

  5. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  6. Discovery of the First D-Asteroid Spectral Counterpart: Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Zolensky, M. E.; Pieters, Carle M.

    2001-01-01

    We have discovered the first meteorite, Tagish Lake, which shows a reflectance spectrum very similar to that of the D asteroids, especially 368 Haidea. D and P asteroids have been believed to be "supercarbonaceous" unlike any meteorite. Additional information is contained in the original extended abstract.

  7. The Organic Content of the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra; Huang, Yongsong; Becker, Luann; Poreda, Robert J.; Nieman, Ronald A.; Cooper, George; Williams, Michael

    2001-01-01

    The Tagish Lake meteorite felt last year on a frozen take in Canada and may provide the most pristine material of its kind. Analyses have now shown this carbonaceous chondrite to contain a suite of soluble organic compounds (approximately 100 parts per million) that includes mono- and dicarboxylic acids, dicarboximides, pyridine carboxylic acids, a sulfonic acid, and both aliphatic and aromatic hydrocarbons. The insoluble carbon exhibits exclusive aromatic character, deuterium enrichment, and fullerenes containing 'planetary' helium and argon. The findings provide insight into an outcome of early solar chemical evolution that differs from any seen so far in meteorites.

  8. Identifying the Parent Body of the Tagish Lake Meteorite and Characterizing its Internal Heating History and Surface Processes

    NASA Technical Reports Server (NTRS)

    Hiroi, Takahiro

    2004-01-01

    This short (1-year) funded research encompassed laboratory measurements of the Tagish Lake meteorite samples, experiments of simulated space weathering on them, and comparison with D, T, and P asteroids in reflectance spectrum. In spite of its limited funding and period, we have performed said experiments here at Brown University and at University of Tokyo. Some of the major results were reported at the Lunar and Planetary Science Conference held in Houston in March, 2004. The Tagish Lake meteorite shows a unique visible reflectance spectrum identical to that of the D and T type asteroids. After the present heating experiments at even the lowest temperature of 100 C, the characteristic spectral slope of the Tagish Lake meteorite sample increased. On the other hand, after irradiating its pellet sample with pulse laser, the slope decreased. As the result, the Tagish Lake meteorite and its processed samples have come to cover a wide range of visible reflectance spectra in slope from the C-type asteroids to some extreme T/D-type asteroids, including the P-type asteroids in between. Therefore, logically speaking, our initial affirmation that the Tagish Lake meteorite must have come from one of the D-type asteroids can be wrong if such a meteoritic material is hidden under a space-weathered surface regolith of a C-type asteroid. However, such a case is likely to have a small probability in general. Other major hits of this research includes the first spectral fitting of the P-type asteroids using reflectance spectra derived from the present research. This topic needs more experiments and analysis to be addressed uniquely, and thus further efforts will be proposed.

  9. Biomarkers and Microfossils in the Murchison, Rainbow, and Tagish Lake meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Jerman, Gregory A.; Rozanov, Alexei Y.; Davies, Paul C.

    2003-02-01

    During the past six years, we have conducted extensive scanning electron and optical microscopy investigations and x-ray analysis to determine the morphology, life cycle processes, and elemental distributions in living and fossil cyanobacteria, bacteria, archaea, fungi, and algae sampled from terrestrial environments relevant to Astrobiology. Biominerals, pseudomorphs and microfossils have been studied for diverse microbial groups in various states of preservation in many types of rocks (e.g., oil shales, graphites, shungites, bauxites, limestones, pyrites, phosphorites, and hydrothermal vent chimneys). Results of these studies have been applied to the search for biosignatures in carbonaceous chondrites, stony, and nickel iron meteorites. We review important biomarkers found in terrestrial rocks and meteorites and present additional evidence for the existence of indigenous bacterial microfossils in-situ in freshly fractured surfaces of the Murchison, Rainbow and Tagish Lake carbonaceous meteorites. We provide secondary and backscatter electron images and spectral data obtained with Field Emission and Environmental Scanning Electron Microscopes of biominerals and microfossils. We discuss techniques for discriminating indigenous microfossils from recent terrestrial contaminants. Images are provided of framboidal magnetites in oil shales and meteorites and images and 2D x-ray maps are shown of bacterial microfossils embedded in the mineral matrix of the Murchison, Rainbow and Tagish Lake Carbonaceous Meteorites. These microfossils exhibit characteristics that preclude their interpretation as post-arrival contaminants and we interpret them as indigenous biogenic remains.

  10. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Simkus, D. N.; Aponte, J. C.; Hilts, R. W.; Elsila, J. E.; Herd, C. D. K.

    2016-08-01

    Aldehydes and ketones detected in the Tagish Lake meteorite are highly depleted in 13C, indicating that they are unlikely relic Strecker synthesis precursors. Potential sources for these compounds and the effects of aqueous alteration are discussed.

  11. Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu

    2018-01-01

    Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.

  12. Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Huang, Yongsong

    2002-05-01

    The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI- and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three through ten-carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of forty-four of these compounds were detected with the most abundant, succinic acid, present at ~40 nmoles/g. met. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound to compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All delta D and delta 13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. Delta D values vary from, approximately, + 1120 deg for succinic acid to + 1530 deg for methyl glutaric acid. Delta 13C values ranged from + 12.6 deg for methyl glutaric acid to + 22.9 deg for glutaric acid, with adipic acid having a significantly lower value (+ 5.5 deg). Murchison dicarboxylic acid showed similar isotopic values: their delta 13C values were generally

  13. Origin and Evolution of Prebiotic Organic Matter as Inferred from the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Herd, Christopher D.; Blinova, Alexandra; Simkus, Danielle N.; Huang, Yongsong; Tarozo, Rafael; Alexander, Conel M.; Gyngard, Frank; Nittler, Larry R.; Cody, George D.; Fogel, Marilyn L.; hide

    2011-01-01

    The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration and at least some molecules of pre-biotic importance formed during the alteration.

  14. About Tagish Lake as a Potential Parent Body for Polar Micrometeorites; Clues from their Hydrogen Isotopic Compositions

    NASA Technical Reports Server (NTRS)

    Engrand, C.; Gounelle, M.; Zolensky, M. E.; Duprat, J.

    2003-01-01

    The origin of the Antarctic micrometeorites (AMMs) is still a matter of debate. Their closest meteoritic counterparts are the C2 chondrites, but the match is not perfect, and the parent body(ies) of the AMMs is(are) still to be identified. Tagish Lake is a new meteorite fall which bears similarity with CI1 and CM2 chondrites, but is distinct from both. Based on the mineralogy of phyllosilicates, Noguchi et al. proposed that the phyllosilicate-rich AMMs and the Tagish Lake meteorites could derive from similar asteroids. The hydrogen isotopic compositions of extra-terrestrial samples can be used to get some insight on their origin. The D/H ratios of AMMs and of Tagish Lake have been measured, but using different analytical techniques. They are therefore not directly comparable. We performed additional hydrogen isotopic analyses of fragments of Tagish Lake using the same experimental setup previously used for the measurement of the hydrogen isotopic composition of AMMs. In this work, we could also analyze separately both lithologies of Tagish Lake (carbonate-poor and -rich). The distributions of delta D values measured in the two lithologies of Tagish Lake are very similar, indicating that fluids with similar hydrogen isotopic compositions altered the meteorite on the parent body for the two lithologies. Yet, the hydrogen isotopic composition of Tagish Lake is different from that of AMMs, suggesting that they do not derive from the same parent body.

  15. In-situ micro-FTIR Study of Thermal Changes of Organics in Tagish Lake Meteorite: Behavior of Aliphatic Oxygenated Functions and Effects of Minerals

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Nakamura-Messenger, Keiko; Zolensky, Michael E.

    2007-01-01

    Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition

  16. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  17. The Nature and Origin of Aromatic Organic Matter in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Keller, L. P.; Nakamura, K.; McKay, D. S.

    2004-01-01

    The Tagish Lake meteorite is an unusual carbonaceous chondrite that does not fit well within existing chondrite taxonomy. Bulk analyses suggest approx. 5 wt.% C of which approx. 1 wt.% is in the form of organic matter and the remainder is present as inorganic carbonate. The exact nature and form of this organic component is, as is the case with the other ordinary and carbonaceous chondrites, still poorly understood. Yet its significance has far reaching implications, from contributing to the abiotic evolution of the early Earth and Mars, to providing geothermal constraints in the evolution of the Solar nebula.

  18. Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Buseck, Peter R.

    Transmission electron microscopic (TEM) and electron energy-loss spectroscopic (EELS) study of the Ivuna and Orgueil (CI), and Tagish Lake (C2 ungrouped) carbonaceous chondrite meteorites shows two types of C-clay assemblages. The first is coarser-grained (to 1 μm) clay flakes that show an intense O K edge from the silicate together with a prominent C K edge, but without discrete C particles. Nitrogen is common in some clay flakes. Individual Orgueil and Tagish Lake meteorite clay flakes contain up to 6 and 8 at% C, respectively. The C K-edge spectra from the clays show fine structure revealing aromatic, aliphatic, carboxylic, and carbonate C. The EELS data shows that this C is intercalated with the clay flakes. The second C-clay association occurs as poorly crystalline to amorphous material occurring as nanometer aggregates of C, clay, and Fe-O-rich material. Some aggregates are dominated by carbonaceous particles that are structurally and chemically similar to the acid insoluble organic matter. The C K-edge shape from this C resembles that of amorphous C, but lacking the distinct peaks corresponding to aliphatic, carboxylic, and carbonate C groups. Nanodiamonds are locally abundant in some carbonaceous particles. The abundance of C in the clays suggest that molecular speciation in the carbonaceous chondrites is partly determined by the effects of aqueous processing on the meteorite parent bodies, and that clays played an important role. This intricate C-clay association lends credence to the proposal that minerals were important in the prebiotic chemical evolution of the early solar system.

  19. A Brief Review of the Lithology and Petrology of the Tagish Lake Meteorite Type Specimen

    NASA Astrophysics Data System (ADS)

    Herd, R. K.

    2009-05-01

    The mineralogical and textural characteristics of the type specimen of the Tagish Lake meteorite were described previously [1,2]. These initial descriptions recognized two lithologies, one relatively carbonate-poor, and the other relatively carbonate-rich. In addition numerous lithic fragments within the main lithologies were noted, essentially brecciated fragments within brecciated fragments [2,3]. Most research on the meteorite has generally assumed that only two lithologies were present. Many preliminary mineral and organic analyses done on pristine and non-pristine samples cannot be related to a particular matrix -- neither to the two supposed to be present, nor to any others. Distinction has sometimes been made between chondrule-bearing lithologies or fragments, and non-chondrule-bearing, or so-called dark dusty, lithologies preserved in the pristine specimen suite. To aid in a systematic approach to understanding this unique meteorite, the main petrographic features of the type specimen polished section are reviewed, based on back-scattered electron (BSE) images and electron- microprobe (EM) analyses. What is still needed is a consortium study of the pristine and non-pristine samples, that would define all the lithologies present and their inter-relationships, within the complete specimen suite, as the context and framework for ongoing research. [1] Brown, P.G. et al. (2000) Science, 290, 320-325. [2] Herd, R.K. et al. (2001) LPS XXXII, Abstract 1928. [3] Herd, R.K. and Herd, C.D.K. (2007) LPS XXXVIII, Abstract 2347.

  20. Mineralogy of Tagish Lake, a Unique Type 2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Gounelle, M.; Zolensky, M. E.; Tonui, E.; Mikouchi, T.

    2001-01-01

    We have identified in Tagish Lake an abondant carbonate-poor lithology and a less common carbonate-rich lithology. Tagish Lake shows similarities and differences with CMs and CI1s. It is a unique carbonaceous chondrite recording specific aqueous alteration conditions. Additional information is contained in the original extended abstract.

  1. The Osmium Isotopic Composition of Tagish Lake and Other Chondrites, Implications for Late Terrestrial Planetary Accretion

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.

    2003-01-01

    The goals of this investigation are twofold. First, obtain high-precision Os isotope measurements of Tagish Lake and other chondrites by TIMS. Second, measure Re, Os, Pt, and other HSE concentrations by isotope dilution using TIMS and ICPMS. These measurements will determine whether this meteorite does in fact represent C-chondrite material with timeintegrated elevated Re/Os and Pt/Os with the implications to late accretion material characteristics.

  2. Groups of meteorite-producing meteoroids containing carbonaceous chondrite meteorites

    NASA Astrophysics Data System (ADS)

    Konovalova, N. A.; A.. Ibrohimov, A.; Kalashnikova, T. M.

    2017-09-01

    Proposed probable links of meteorite and meteorite-producing fireballs were been considered. Group associations between meteorite-producing meteoroids and meteorites were been determined for four carbonaceous chondrites Murchison, Maribo, Shutters Mill and Tagish Lake and potentially meteorite-producing bolides on the basis of links of their orbits. In result the several meteorite-producing sporadic slowly fireballs were found as the possible members of groups of four studied carbonaceous chondrite meteorites. One can presume that at present the identified groups may still contain large meteorite-dropping bodies.

  3. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.; Maisano, J.; Colbert, M.; Martinez, J. E.

    2017-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics, while some are known to demonstrate mineralogical and petrologic evidence of having been thermally metamorphosed after aqueous alteration. This group of meteorites are commonly referred as thermally met-amorphosed carbonaceous chondrites (TMCCs), and their reflectance spectra show resemblances to that of C-type asteroids which typically have low albedos. This suggests that the surfaces of the C-type asteroids are also composed of both hydrous and dehydrated minerals, and thus TMCCs are among the best samples that can be studied in laboratory to reveal the true nature of the C-type asteroids. Although TMCCs are usually meteorites that were previously categorized as CI and CM chondrites, they are not strictly CI/CM because they exhibit isotopic and petrographic characteristics that significantly deviate from typical CI/CM. More appropriately, they are called CI-like and/or CM-like chondrites. Typical examples of TMCCs include the C2-ung/CM2TIV Belgica (B)-7904 and Yamato (Y) 86720. Thermal alteration is virtually complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates. The estimated heating conditions are 10 to 103 days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation. While the petrology and chemistry of TMCCs have only recently been extensively characterized, we have just begun to study in detail their organic contents. In order to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in hydrous chondrites, we investigated experimentally-heated Tagish Lake meteorite using Raman spectroscopy, as the chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to the TMCCs.

  4. Meteorite WIS91600: A New Sample Related to a D- or T-type Asteroid

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Tonui, E.; Pieters, C. M.; Zolensky, M. E.; Ueda, Y.; Miyamoto, M.; Sasaki, S.

    2005-01-01

    Since the Tagish Lake meteorite fell in January 2000, the assumed one-of-the-kind meteorite has become the hottest issue among a diversity of scientists. Meanwhile, as the physical origin of the meteorite in our solar system, D or T asteroids have been suggested by Hiroi et al. based on comparison of their visible-near-infrared (VNIR) reflectance spectra. While it is probably still true that the Tagish Lake meteorite is possibly the first recovered sample from a D or T asteroid as a meteorite fall, we report in this paper that the meteorite WIS91600 may actually be the first recovered sample from one of those asteroids as a meteorite find.

  5. In-Situ Oxygen Isotopic Composition of Tagish Lake: An Ungrouped Type 2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Engrand, Cecile; Gounelle, Matthieu; Zolensky, Mike E.

    2001-01-01

    We have measured the oxygen isotopic composition of several components of Tagish Lake by ion microprobe. This meteorite constitutes the best preserved sample of C2 matter presently available for study. It presents two different lithologies (carbonate-poor and -rich) which have fairly comparable oxygen isotopic composition, with regard to both the primary or secondary minerals. For the olivine and pyroxene grains, their delta O-18 values range from - 10.5% to + 7.4% in the carbonate-poor lithology, with a mean Delta O-17 value of - 3.7 2.4%. In the carbonate-rich lithology, delta O-18 varies from - 7.9% to + 3.3%, and the mean Delta O-17 value is - 4.7 +/- 1.4%. Olivine inclusions (Fo(sub >99)) with extreme O-16-enrichment were found in both lithologies: delta O-18 = - 46.1 %, delta O-187= - 48.3% and delta O-18 = - 40.6%, delta O-17 = - 41.2% in the carbonate-rich lithology; delta O-18 = - 41.5%, delta O-17 = -43.4%0 in the carbonate-poor lithology. Anhydrous minerals in the carbonate-poor lithology are slightly more O-16-rich than in the carbonate-rich one. Four low-iron manganese-rich (LIME) olivine grains do not have an oxygen isotopic composition distinct from the other "normal" olivines. The phyllosilicate matrix presents the same range of oxygen isotopic compositions in both lithologies: delta O-18 from approximately 11 % to approximately 6%, with an average Delta. O-17 approximately 0%. Because the bulk Tagish Lake oxygen isotopic composition given by Brown et al. is on the high end of our matrix analyses, we assume that this "bulk Tagish Lake" composition probably only represents that of the carbonate-rich lithology. Calcium carbonates have delta O-18 values up to 35%, with Delta O-17 approximately 0.5%0. Magnetite grains present very high Delta O-17 values approximately + 3.4%0 +/- 1.2%. Given our analytical uncertainties and our limited carbonate data, the matrix and the carbonate seem to have formed in isotopic equilibrium. In that case, their large

  6. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.

    2007-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.

  7. Chiral Analyses of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    2004-01-01

    Contents include the following: 1. Characterization of Tagish Lake organic content. The first two grant years were largely devoted to the molecular and isotopic analyses of Tagish Lake organic composition. This carbonaceous meteorite fell in Canada in the winter of the year 2000, and its exceptional atmospheric entry and subsequent recovery (e. g., the sample was recovered and stored by avoiding hand contact and above freezing temperatures) contributed in providing a rare and pristine extraterrestrial material. 2. Chiral analyses of Murchison and Murray soluble organics. One of the most intriguing finding in regard to soluble meteorite organics is the presence within the amino acid suite of some compounds displaying L-enantiomeric excesses. This configuration is exclusive in the amino acids of terrestrial proteins and the finding has raised speculations of a possible role of amino acids from meteorites in the origin of homochirality on the early Earth. The main objective for this NASA funding was the characterization of enantiomeric excesses in meteorites and we have conducted several studies toward establishing their distribution and indignity.

  8. Coordinated In Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    NASA Technical Reports Server (NTRS)

    Nakamura--Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Gibson, E. K.

    2013-01-01

    The Sutter s Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall [1]. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and N-15/N-14 relative to terrestrial values [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [2]. Some meteorites and IDPs contain gm-size inclusions with extreme H and N isotopic anomalies [3-5], possibly due to preserved primordial organic grains. The abundance and isotopic composition of C in Sutter's Mill were found to be similar to the Tagish Lake meteorite [6]. In the Tagish Lake meteorite, the principle carriers of large H and N isotopic anomalies are sub-micron hollow organic spherules known as organic nanoglobules [7]. Organic nanoglobules are commonly distributed among primitive meteorites [8, 9] and cometary samples [10]. Here we report in-situ analyses of organic nano-globules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS).

  9. Transmission Electron Microscopy of the Matrix Minerals in the Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Kasama, T.; Zolensky, M. E.; Tachikawa, O.

    2001-01-01

    We studied the Tagish Lake matrix minerals by TEM. The result shows similarities to CIs (and CRs) and differences from CMs, but its heterogeneity (e.g., carbonate abundance, saponite/serpentine ratio) suggests its complex history. Additional information is contained in the original extended abstract.

  10. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  11. Meteorite Falls and the Fragmentation of Meteorites

    NASA Technical Reports Server (NTRS)

    Momeni, Daniel

    2016-01-01

    In order to understand the fragmentation of objects entering the atmosphere and why some produce more fragments than others, I have searched the Meteoritical Society database for meteorites greater than 20 kilograms that fell in the USA, China, and India. I also studied the video and film records of 21 fireballs that produced meteorites. A spreadsheet was prepared that noted smell, fireball, explosion, whistling, rumbling, the number of fragments, light, and impact sounds. Falls with large numbers of fragments were examined to look for common traits. These were: the Norton County aubrite, explosion and a flare greater than 100 fragments; the Forest City H5 chondrite explosion, a flare, a dust trail, 505 specimens; the Richardton H5 chondrite explosion and light, 71 specimens; the Juancheng H5 chondrite explosion, a rumbling, a flare, a dust trail,1000 specimens; the Tagish Lake C2 chondrite explosion, flare, dust trail, 500 specimens. I conclude that fragmentation is governed by the following: (1) Bigger meteors undergo more stress which results in more specimens; (2) Harder meteorites also require more force to break them up which will cause greater fragmentation; (3) Force and pressure are directly proportional during falls. General observations made were; (1) Meteorites produce fireballs sooner due to high friction; (2) Meteors tend to explode as well because of high stress; (3) Softer meteorites tend to cause dust trails; (4) Some falls produce light as they fall at high velocity. I am grateful to NASA Ames for this opportunity and Derek Sears, Katie Bryson, and Dan Ostrowski for discussions.

  12. Lunar and Planetary Science XXXV: Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Meteorites" included the following reports:Description of a New Stony Meteorite Find from Bulloch County, Georgia; Meteorite Ablation Derived from Cosmic Ray Track Data Dhofar 732: A Mg-rich Orthopyroxenitic Achondrite Halogens, Carbon and Sulfur in the Tagish Lake Meteorite: Implications for Classification and Terrestrial Alteration; Electromagnetic Scrape of Meteorites and Probably Columbia Tiles; Pre-Atmospheric Sizes and Orbits of Several Chondrites; Research of Shock-Thermal History of the Enstatite Chondrites by Track, Thermoluminescence and Neutron-Activation (NAA) Methods; Radiation and Shock-thermal History of the Kaidun CR2 Chondrite Glass Inclusions; On the Problem of Search for Super-Heavy Element Traces in the Meteorites: Probability of Their Discovery by Three-Prong Tracks due to Nuclear Spontaneous Fission Trace Element Abundances in Separated Phases of Pesyanoe, Enstatite Achondrite; Evaluation of Cooling Rate Calculated by Diffusional Modification of Chemical Zoning: Different Initial Profiles for Diffusion Calculation; Mineralogical Features and REE Distribution in Ortho- and Clinopyroxenes of the HaH 317 Enstatite Chondrite Dhofar 311, 730 and 731: New Lunar Meteorites from Oman; The Deuterium Content of Individual Murchison Amino Acids; Clues to the Formation of PV1, an Enigmatic Carbon-rich Chondritic Clast from the Plainview H-Chondrite Regolith Breccia ;Numerical Simulations of the Production of Extinct Radionuclides and ProtoCAIs by Magnetic Flaring.

  13. Lunar and Planetary Science XXXV: Organics and Alteration in Carbonaceous Chondrites: Goop and Crud

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Organics and Alteration in Carbonaceous Chondrites: Goop and Crud" included the following reports:Organics on Fe-Silicate Grains: Potential Mimicry of Meteoritic Processes?; Molecular and Compound-Specific Isotopic Study of Monocarboxylic Acids in Murchison and Antarctic Meteorites; Nanoglobules, Macromolecular Materials, and Carbon Sulfides in Carbonaceous Chondrites; Evidence for Terrestrial Organic Contamination of the Tagish Lake Meteorite; Nitrogen Isotopic Imaging of Tagish Lake Carbon Globules; Microscale Distribution of Hydrogen Isotopes in Two Carbonaceous Chondrites; The Nature and Origin of Aromatic Organic Matter in the Tagish Lake Meteorite; Terrestrial Alteration of CM Chondritic Carbonate; Serpentine Nanotubes in CM Chondrites; Experimental Study of Serpentinization Reactions; Chondrule Glass Alteration in Type IIA Chondrules in the CR2 Chondrites EET 87770 and EET 92105: Insights into Elemental Exchange Between Chondrules and Matrices; Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 ;and A Unique Style of Alteration of Iron-Nickel Metal in WIS91600, an Unusual C2 Carbonaceous Chondrite.

  14. Chemical Evolution of Presolar Organics in Astromaterials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Clemett, S. J.; Messenger, Scott; Keller, L. P.

    2010-01-01

    Sub-micron, hollow organic globules reported from several carbonaceous chondrites, interplanetary dust particles, and comet Wild-2 samples returned by NASA?s Stardust mission are enriched in N-15/N-14 and D/H compared with terrestrial materials and the parent materials [1-4]. These anomalies are ascribed to the preservation of presolar cold molecular cloud material from where H, C, and N isotopic constraints point to chemical fractionation near 10 K [5]. An origin well beyond the planet forming region and their survival in meteorites suggests submicrometer organic globules were once prevalent throughout the solar nebula. The survival of the membrane structures indicates primitive meteorites and cometary dust particles would have delivered these organic precursors to the early Earth as well as other planets and satellites. The physical, chemical, and isotopic properties of the organic globules varies to its meteorite types and its lithologies. For example, organic globules in the Tagish Lake meteorite are always embedded in fined grained (poorly crystallized) saponite, and hardly encapsulated in coarse grained serpentine, even though saponite and serpentine are both main components of phyllosilicate matrix of the Tagish Lake meteorite. The organic globules are commonly observed in the carbonate-poor lithology but not in the carbonate-rich one. In Tagish Lake, isolated single globules are common, but in the Bells (CM2) meteorite, globules are mostly aggregated. We will review the evolutions of the organic globules from its birth to alteration in the parent bodies in terms of its own physical and chemical properties as well as its associated minerals.

  15. Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Huang, Y.

    2003-03-01

    Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.

  16. News and Views: Betelgeuse bubbles up dust; Hydrothermal activity on early asteroids; Is this a record? Galaxy evolution in 3D; LOFAR looks farther; IOPD makes plans

    NASA Astrophysics Data System (ADS)

    2011-08-01

    Red supergiant star Betelgeuse is surrounded by a vast halo of silicate and aluminium dust, visible in false colour in this infrared image from the European Southern Observatory's Very Large Telescope. This material may eventually form planets around a new star. Biochemical analysis of the Tagish Lake meteorites, some of the most pristine samples of carbonaceous chondrites known, suggests that much of the variation in organic matter between different meteorite samples can be ascribed to hydrothermal activity on meteorite parent bodies. European Southern Observatory astronomers have discovered the most distant quasar yet - and reckon it is one of the brightest objects in the early universe.

  17. Lithium isotopes as indicators of meteorite parent body alteration

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; James, Rachael H.; Fehr, Manuela A.; Bland, Philip A.; Gounelle, Matthieu

    2013-05-01

    Hydrothermal processing on planetesimals in the early solar system produced new mineral phases, including those generated by the transformation of anhydrous silicates into their hydrated counterparts. Carbonaceous chondrites represent tangible remnants of such alteration products. Lithium isotopes are known to be responsive to aqueous alteration, yet previously recognized variability within whole rock samples from the same meteorite appears to complicate the use of these isotopes as indicators of processing by water. We demonstrate a new way to use lithium isotopes that reflects aqueous alteration in carbonaceous chondrites. Temperature appears to exert a control on the production of acetic acid-soluble phases, such as carbonates and poorly crystalline Fe-oxyhydroxides. Temperature and degree of water-rock interaction determines the amount of lithium isotope fractionation expressed as the difference between whole rock and acetic acid-leachable fractions. Using these features, the type 1 chondrite Orgueil (δ7Li(whole rock) = 4.3‰; Δ7Li(acetic-whole) = 1.2‰) can be distinguished from the type 2 chondrites Murchison (δ7Li(whole rock) = 3.8; Δ7Li(acetic-whole) = 8.8‰) and carbonate-poor Tagish Lake (δ7Li(whole rock) = 4.3; Δ7Li(acetic-whole) = 9.4‰). This initial study suggests that lithium isotopes have the potential to reveal the role of liquid water in the early solar system.

  18. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  19. Mid-infrared Study of Stones from the Sutters Mill Meteorite

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Flynn, George; Wirick, Sue

    2013-01-01

    =O absorption feature near 1700/cm distinguishes the organics in the Sutter's Mill meteorite from that in most IDPs and in Murchison, but is consistent with the organic matter in Tagish Lake.

  20. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  1. Meteorite Fall Detection and Analysis via Weather Radar: Worldwide Potential for Citizen Science

    NASA Astrophysics Data System (ADS)

    Fries, M.; Bresky, C.; Laird, C.; Reddy, V.; Hankey, M.

    2017-12-01

    Meteorite falls can be detected using weather radars, facilitating rapid recovery of meteorites to minimize terrestrial alteration. Imagery from the US NEXRAD radar network reveals over two dozen meteorite falls where meteorites have been recovered, and about another dozen that remain unrecovered. Discovery of new meteorite falls is well suited to "citizen science" and similar outreach activities, as well as automation of computational components into internet-based search tools. Also, there are many more weather radars employed worldwide than those in the US NEXRAD system. Utilization of weather radars worldwide for meteorite recovery can not only expand citizen science opportunities but can also lead to significant improvement in the number of freshly-fallen meteorites available for research. We will discuss the methodologies behind locating and analyzing meteorite falls using weather radar, and how to make them available for citizen science efforts. An important example is the Aquarius Project, a Chicago-area consortium recently formed with the goal of recovering meteorites from Lake Michigan. This project has extensive student involvement geared toward development of actual hardware for recovering meteorites from the lake floor. Those meteorites were identified in weather radar imagery as they fell into the lake from a large meteor on 06 Feb 2017. Another example of public interaction is the meteor detection systems operated by the American Meteor Society (AMS). The AMS website has been developed to allow public reporting of meteors, effectively enabling citizen science to locate and describe significant meteor events worldwide.

  2. Structure and Bonding of Carbon in Clays from CI Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Garview, Laurence a. J.; Buseck, Peter R.

    2005-01-01

    Carbonaceous chondrites (CC) contain a diverse suite of C-rich materials. Acid dissolution of these meteorites leaves a C-rich residue with chemical and structural affinities to kerogen. This material has primarily been analyzed in bulk, and much information has been provided regarding functional groups and elemental and isotopic compositions. However, comparatively little work has been done on C in unprocessed meteorites. Studies of CCs suggest a spatial relationship of some C-rich materials with products of aqueous alteration. Recent studies revealed discrete submicronsized, C-rich particles in Tagish Lake and a range of CM2 meteorites. A challenge is to correlate the findings from the bulk acid-residue studies with those of high-spatial resolution-mineralogical and spectroscopic observations of unprocessed meteorites. Hence, the relationship between the C-rich materials in the acid residues and its form and locations in the unprocessed meteorite remains unclear. Here we provide information on the structure and bonding of C associated with clays in CI carbonaceous chondrites. Additional information is included in the original extended abstract.

  3. Meteorites found on Misfits Flat dry lake, Nevada

    NASA Astrophysics Data System (ADS)

    Harlan, Scott; Jenniskens, Peter; Zolensky, Michael E.; Yin, Qing-Zhu; Verosub, Kenneth L.; Rowland, Douglas J.; Sanborn, Matthew; Huyskens, Magdalena; Creager, Emily R.; Jull, A. J. Timothy

    2016-04-01

    Meteorites have been found on the small Misfits Flat dry lakebed near Stagecoach, Nevada (119.382W, +39.348N). Since the first find on Sept. 22, 2013, a total of 58 stones of weathering stage W2/3 with a combined mass of 339 g have been collected in 19 visits to the area. This small (3.3 × 3.6 km) lakebed is now a newly designated dense collection area (DCA). Most meteorites were found in a small 350 × 180 m area along the north shore and most are fragments of several broken individual stones. Three of these fragments were classified as an LL4/5 of shock stage S2, now named Misfits Flat 001, one of which (stone MF33) fell 8.1 ± 1.3 ka ago based on the 14C terrestrial age, assuming it came from a 20-80 cm diameter meteoroid. In addition, a small darkly crusted meteorite MF34, now named Misfits Flat 002, was found 820 m WSW from the main mass. This meteorite is classified as an LL5 ordinary chondrite with shock stage S4/5. The meteorite is saturated in 14C at 63 dpm kg-1, suggesting it originated from the center of a 0.5 m diameter meteoroid, or deep inside a ~1.0 m meteoroid, less than 300 yr ago. Accounts exist of a fireball seen at 13:15 UT on March 2, 1895, that are consistent with the find location of Misfits Flat 002.

  4. Scanning electron microscopical and cross-sectional analysis of extraterrestrial carbonaceous nanoglobules

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.

    2008-05-01

    Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.

  5. N-15-Rich Organic Globules in a Cluster IDP and the Bells CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, Lindsay P.

    2008-01-01

    Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and 15N/14N relative to terrestrial values [1-3]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [1]. Some meteorites and IDPs contain m-size inclusions with extreme H and N isotopic anomalies [2-4], possibly due to preserved pristine primordial organic grains. We recently showed that the in the Tagish Lake meteorite, the principle carriers of these anomalies are sub- m, hollow organic globules [5]. The globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. We proposed that similar materials should be common among primitive meteorites, IDPs, and comets. Similar objects have been observed in organic extracts of carbonaceous chondrites [6-8], however their N and H isotopic compositions are generally unknown. Bulk H and N isotopic compositions may indicate which meteorites best preserve interstellar organic compounds. Thus, we selected the Bells CM2 carbonaceous chondrites for study based on its large bulk 15N (+335 %) and D (+990 %) [9].

  6. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    PubMed

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  7. Fall and Recovery of the Murrili Meteorite, and an Update on the Desert Fireball Network

    NASA Astrophysics Data System (ADS)

    Bland, P. A.; Towner, M. C.; Sansom, E. K.; Devillepoix, H.; Howie, R. M.; Paxman, J. P.; Cupak, M.; Benedix, G. K.; Cox, M. A.; Jansen-Sturgeon, T.; Stuart, D.; Strangway, D.

    2016-08-01

    The Murrili meteorite was recovered from Lake Eyre, South Australia, on 31 December 2015. It is the third meteorite recovered by the Desert Fireball Network, and the first since the network was upgraded and expanded.

  8. A Carbonaceous Chondrite Based Simulant of Phobos

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.; Patel, Manish; Pearson, V.; Wilson, S.; Edmunson, J.

    2016-01-01

    In support of an ESA-funded concept study considering a sample return mission, a simulant of the Martian moon Phobos was needed. There are no samples of the Phobos regolith, therefore none of the four characteristics normally used to design a simulant are explicitly known for Phobos. Because of this, specifications for a Phobos simulant were based on spectroscopy, other remote measurements, and judgment. A composition based on the Tagish Lake meteorite was assumed. The requirement that sterility be achieved, especially given the required organic content, was unusual and problematic. The final design mixed JSC-1A, antigorite, pseudo-agglutinates and gilsonite. Sterility was achieved by radiation in a commercial facility.

  9. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    PubMed

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)).

  10. The Meteorite Fall in Carancas, Lake Titicaca Region, Southern Peru: First Results

    NASA Astrophysics Data System (ADS)

    Núñez Del Prado, H.; Macharé, J.; Macedo, L.; Chirif, H.; Pari, W.; Ramirez-Cardona, M.; Aranda, A.; Greenwood, R. C.; Franchi, I. A.; Canepa, C.; Bernhardt, H.-J.; Plascencia, L.

    2008-03-01

    The meteorite fall that occurred on September 15, 2007, in the Carancas community is a rare case where it is possible to study both impact phenomenology and meteorite characteristics, including accurate time framework.

  11. Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids

    NASA Technical Reports Server (NTRS)

    Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan

    2003-01-01

    The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.

  12. Small D-type asteroids in the NEO population: new targets for space missions

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.

    2018-06-01

    In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.

  13. Tectonic-karstic origin of the alleged "impact crater" of Lake Isli (Imilchil district, High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Ibouh, Hassan; Michard, André; Charrière, André; Benkaddour, Abdelfattah; Rhoujjati, Ali

    2014-03-01

    The scenic lakes Tislit and Isli of the Imilchil area in the central High Atlas of Morocco have been recently promoted to the rank of "dual impact crater" by a group of geoscientists. This was promptly denied by a group of meteorite specialists, but the first team reiterated their impact crater interpretation, now restricted to Lake Isli. This alleged 40-kyr-old impact crater would be associated with the Agoudal meteorite recognized further in the southeast. Here, we show that the lake formed during the Lowe-Middle Pleistocene in a small Pliocene (?) pull-apart basin through additional collapsing due to karst phenomena in the underlying limestones. This compares with the formation of a number of lakes of the Atlas Mountains. None of the "proofs" produced in support of a meteoritic origin of Lake Isli coincides with the geology of the area.

  14. Meteorites

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Korotev, Randy

    2017-05-01

    For thousands of years, people living in Egypt, China, Greece, Rome, and other parts of the world have been fascinated by shooting stars, which are the light and sound phenomena associated with meteorite impacts. The earliest written record of meteorite fall is logged by Chinese chroniclers back to 687 bce. However, centuries before that, Egyptians have been using "heavenly iron" to make their first iron tools, including a dagger recently found in King Tutankhamun's tomb that dates back to the 14th century bce. Even though human beings have a long history of observing meteors and utilizing meteorites, we did not start to recognize their true celestial origin until the Age of Enlightenment. In 1794 German physicist and musician Ernst Chladni was the first to summarize the scientific evidences and to demonstrate that these unique objects are indeed from outside of the Earth. After more than two centuries of joint efforts by countless keen amateur, academic, institutional, and commercial collectors, more than 55,000 meteorites have been catalogued and classified in the Meteoritical Bulletin Database. This number is continually growing, and meteorites are found all over the world, especially in dry and sparsely populated regions such as Antarctica and Sahara Desert. Although there are thousands of individual meteorites, they can be handily classified into three broad groups by simple examinations of the specimens. The most common type is stony meteorite, which is made of mostly silicate rocks. Iron meteorites are the easiest to be preserved for thousands (or even millions) of years on the Earth's surface environments, and they are composed of more than 90% iron and nickel metals. The stony-irons contain roughly the same amount of metals and silicates, and these spectacular meteorites are the favorites of many collectors and museums. After 200 years, meteoritics (the science of meteorites) has grown out of its infancy and become a vibrant area of research today. The

  15. Search for EPR markers of the history and origin of the insoluble organic matter in extraterrestrial and terrestrial rocks.

    PubMed

    Gourier, Didier; Binet, Laurent; Scrzypczak, Audrey; Derenne, Sylvie; Robert, François

    2004-05-01

    The insoluble organic matter (IOM) of three carbonaceous meteorites (Orgueil, Murchison and Tagish Lake meteorites) and three samples of cherts (microcrystalline SiO2 rock) containing microfossils with age ranging between 45 million years and 3.5 billion years is studied by electron paramagnetic resonance (EPR). The age of the meteorites is that of the solar system (4.6 billion years). The purpose of this work was to determine the EPR parameters, which allow us to discriminate between biogenic and extra terrestrial origin for the organic matter. Such indicators should be relevant for the controversy regarding the biogenicity of the organic matter in the oldest cheroot (3.5 billion years) and in Martian meteorites containing microbe-like microstructures. The organic matter of meteorites contains a high concentration of diradicaloid moieties characterised by a diamagnetic ground state S = 0 and a thermally accessible triplet state S = 1. The three meteorites exhibit the same singlet-triplet gap (ST gap) DeltaE approximately 0.1 eV. To the best of our knowledge, such diradicaloids are unknown in insoluble organic matter of terrestrial origin. We have also shown that the EPR linewidth of insoluble organic matter in cherts and coals decrease logarithmically with the age of the organic matter. We conclude from this result that the organic matter in the oldest cherts (3.5 billion years) has the same age as their SiO2 matrix, and is not due to a latter contamination by bacteria, as was recently found in meteoritic samples.

  16. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  17. The New Peruvian Meteorite Carancas: Mössbauer Spectroscopy and X-Ray Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Munayco, P.; Munayco, J.; Varela, M. E.; Scorzelli, R. B.

    2013-02-01

    The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4-5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.

  18. What Do We Know About the "Carancas-Desaguadero" Fireball, Meteorite and Impact Crater?

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Ishitsuka, J.; Rosales, D.; Vidal, E.; Dalmau, A.; Pavel, D.; Benavente, S.; Miranda, P.; Pereira, G.; Vallejos, V.; Varela, M. E.; Brandstätter, F.; Schultz, P. H.; Harris, R. S.; Sánchez, L.

    2008-03-01

    On September 15, 2007, at noon local time, a fireball was observed and heard in the southern shore of the Lake Titicaca, close to the border between Peru and Bolivia. A crater was formed due to the impact of a chondrite meteorite weighing more than 2 tons.

  19. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    NASA Astrophysics Data System (ADS)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  20. Meteoritic basalts

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1989-01-01

    The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant. Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.

  1. Meteorites for K-12 Classrooms: NASA Meteorite Educational Materials

    NASA Astrophysics Data System (ADS)

    Lindstrom, M.; Allen, J.

    1995-09-01

    The fall of a new meteorite is an event that catches the interest of the public in matters of science. The threat of a huge impact like last year's comet Shoemaker-Levy 9 gives us all reason to evaluate such potential risks. NASA's meteorite educational materials use our natural interest in rocks from space to present classroom activities on planetary science. The meteorite educational package includes a meteorite sample disk, a teachers's guide and a slide set. The sample disk is a lucite disk containing chips of six different kinds of meteorites (3 chondrites, achondrite, iron, stony-iron). EXPLORING METEORITE MYSTERIES is a teacher's guide with background information and 19 hands-on or heads-on activities for grades 4-12. It was prepared in a partnership of planetary scientists and teachers. The slide set consists of 48 slides with captions to be used with the activities. The materials will be available in Fall 1995. Teachers may obtain a loan of the whole package from NASA Teacher Resource Centers; researchers may borrow them from the JSC meteorite curator. The booklet is available separately from the same sources, and the slide set will be available from NASA CORE. EXPLORING METEORITE MYSTERIES is an interdisciplinary planetary science unit which teaches basic science concepts and techniques together with math, reading, writing and social studies The activities are done in a variety of different teaching styles which emphasize observation, experimentation and critical thinking. The activities are ideal for middle schools where teaming makes interdisciplinary units desireable, but most of the activities can be easily modified for grade levels from upper elementary through high school. Meteorites are a natural subject for interdisciplinary teaching because their study involves all fields of science and offers fascinating historical accounts and possibilities for creative expression. Topics covered in EXPLORING METEORITE MYSTERES are centered around basic

  2. Meteorites

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2015-08-01

    Meteorites have long been known to offer a unique window into planetary formation processes at the time of solar system formation and into the materials that rained down on Earth at the time of the origin of life. Their material properties determine the impact hazard of Near Earth Asteroids. Some insight into how future laboratory studies of meteorites and laboratory astrophysics simulations of relevant physical processes can help address open questions in these areas and generate new astronomical observations, comes from what was learned from the recent laboratory studies of freshly fallen meteorites. The rapid recovery of Almahata Sitta (a polymict Ureilite), Sutter's Mill (a CM chondrite regolith breccia), Novato (an L6 chondrite), and Chelyabinsk (an LL5 chondrite) each were followed by the creation of a meteorite consortium, which grew to over 50 researchers in the case of Chelyabinsk. New technologies were used to probe the organic content of the meteorites as well as their magnetic signatures, isotopic abundances, trapped noble gasses, and cosmogenic radio nucleides, amongst others. This has resulted in fascinating insight into the nature of the Ureilite parent body, the likely source region of the CM chondrites in the main asteroid belt, and the collisional environment of the CM parent body. This work has encouraged follow-up in the hope of catching more unique materials. Rapid response efforts are being developed that aim to recover meteorites as pristinely as possible from falls for which the approach orbit was measured. A significant increase in the number of known approach orbits for different meteorite types will help tie meteorite types to their asteroid family source regions. Work so far suggests that future laboratory studies may recognize multiple source regions for iron-rich ordinary chondrites, for example. Hope is that these source regions will give insight into the material properties of impacting asteroids. At least some future laboratory

  3. Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.

    2008-01-01

    The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.

  4. METEORITE - ASTRONOMY

    NASA Image and Video Library

    1985-08-28

    S85-39565 (For release August 1996) --- According to scientists, this 4.5 billion year old rock, labeled meteorite ALH84001, is believed to have once been a part of Mars and to contain fossil evidence that primitive life may have existed on Mars more than 3.6 billion years ago. The rock is a portion of a meteorite that was dislodged from Mars by a huge impact about 16 million years ago and that fell to Earth in Antarctica 13,000 years ago. The meteorite was found in Allan Hills ice field, Antarctica, by an annual expedition of the National Science Foundation?s Antarctic Meteorite Program in 1984. It is preserved for study at the Johnson Space Center?s (JSC) Meteorite Processing Laboratory in Houston, Texas.

  5. Antarctic meteorites

    NASA Astrophysics Data System (ADS)

    Cassidy, W. A.; Rancitelli, L. A.

    1982-04-01

    An abundance of meteorites has been discovered on two sites in the Antarctic which may assist in the study of the origins of meteorites and the history of the solar system. Characteristics particular to those meteorites discovered in this region are explained. These specimens, being well preserved due to the climate, have implications in the study of the cosmic ray flux through time, the meteoroid complex in space, and cosmic ray exposure ages. Implications for the study of the Antarctic, particularly the ice flow, are also discussed. Further discoveries of meteorites in this region are anticipated.

  6. International Workshop on Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Annexstad, J. O.; Schultz, L.; Waenke, H.

    1986-01-01

    Topics addressed include: meteorite concentration mechanisms; meteorites and the Antarctic ice sheet; iron meteorites; iodine overabundance in meteorites; entrainment, transport, and concentration of meteorites in polar ice sheets; weathering of stony meteorites; cosmic ray records; radiocarbon dating; element distribution and noble gas isotopic abundances in lunar meteorites; thermoanalytical characterization; trace elements; thermoluminescence; parent sources; and meteorite ablation and fusion spherules in Antarctic ice.

  7. Asteroid Regolith Simulants: Development, Characteristics, and Testing

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2015-12-01

    As part of a NASA Small Business Innovation Research (SBIR) award to the University of Central Florida and Deep Space Industries, we are developing a family of asteroid regolith simulants based on meteorite mineralogies but using terrestrial materials, to support NASAs exploration goals for asteroids. We are planning on developing five types of simulant based on the following meteorite types: CI-carbonaceous chondrite, CM-carbonaceous chondrite, Tagish Lake, L-ordinary chondrite, and iron. To the greatest extent reasonable (based on input costs and health/safety) we will duplicate the mineralogy, chemistry, oxidation state, hydration state, and particle size distribution found in regolith meteorites of each type. The major limitations on the fidelity of simulant will be health and safety issues for the users of the simulants. For example, much of the organic component of volatile-rich carbonaceous chondrites are in the form of Polycyclic Aromatic Hydrocarbons (PAHs). These are essentially combustion residues, possibly of complex regolith processing, with more carbon atoms than hydrogen. However, many PAHs are toxic, carcinogenic, and/or mutagenic. Several are banned in the European Union and California. This sort of material would endanger users, be impossible to distribute, and not make a useable regolith simulant. There are several reasonable, no-toxic alternatives to PAHs. We will report on the status of simulant development and the progress of our validation experiments.

  8. Meteoritics, Number 19

    DTIC Science & Technology

    1964-06-01

    of the Migeya meteorite, which contains volatile organic compounds (a feature which proves the absence of overheating during its life), is 4.3...pattern in their discovery of gallium and germanium in iron meteorites as small ad- mixtures. Iron meteorites are divided into four groups by their content...as a basis for the classification of meteorites by their composition that we have suggested- By comparing the data they obtained on gallium and

  9. Rediscovery of Polish meteorites

    NASA Astrophysics Data System (ADS)

    Tymiński, Z.; Stolarz, M.; Żołądek, P.; Wiśniewski, M.; Olech, A.

    2016-01-01

    The total number of Polish registered meteorites (by July 2016) including the meteoritical artifacts as Czestochowa Raków I and II is 22. Most of them are described by the pioneer of Polish Meteoritics Jerzy Pokrzywnicki who also identified the meteorite fall locations. In recent years prospectors found impressive specimens of known Polish meteorites such as Morasko: 34 kg, 50 kg, 164 kg, 174 kg and 261 kg or Pultusk: 1578 g, 1576 g, 1510 g, 610 g and 580 g expanding and determining precisely the known meteorite strewn fields.

  10. Asteroid/meteorite streams

    NASA Astrophysics Data System (ADS)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  11. Asteroid/meteorite streams

    NASA Technical Reports Server (NTRS)

    Drummond, J.

    1991-01-01

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  12. Fossils of Prokaryotic Microorganisms in the Orgueil Meteorite

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    The Orgueil CII meteorite, which fell in southern France on the evening of May 14, 1864, has been one of the most extensively studied of all known carbonaceous meteorites. Field Emission Scanning Electron Microscopy (FESEM) studies of freshly fractured interior surfaces of the Orgueil meteorite have resulted in the detection of the fossilized remains of a large and diverse population of filamentous prokaryotic microorganisms. The taphonomy and the diverse modes of the preservation of these remains ,are diverse. Some of the remains exhibit carbonization of a hollow sheath and in other cases the remains are permineralized with water-soluble evaporite minerals, such as magnesium sulfate or ammonium salts. After the sample is fractured and the interior surfaces are exposed to the atmospheric moisture, some of these friable remains have been observed to exhibit significant alterations in appearance with time. Images are presented to document the changes that have been observed in some forms within the past two years. Images and EDS spectral data will also be presented to document the studies carried out on abiotic forms to search for possible nonbiological interpretations of the indigenous filamentous microstructures that have been found in the Orgueil meteorite. Images and EDS data will be presented showing the size, size range, morphology and chemical compositions of abiotic microstructures found in native crystalline and fibrous Epsomites from Poison Lake, Washington, USA and Catalayud, Zaragoza, Aragon, Spain. Many of these embedded forms are consistent in size and microstructure with cyanobacteria morphotypes. Some of the forms are exhibit known characteristics differentiation of cells, and reproductive structures of filamentous trichomic prokaryotes (bacteria and cyanobacteria) and the degraded remains of microfibrils associated with sheaths of cyanobacteria. In this paper, recently obtained comparative images and EDS data will be presented for the mineralized

  13. Primitive Oxygen-, Nitrogen-, and Organic-Rich Vein Preserved in a Xenolith Hosted in the Metamorphosed Carancas Meteorite

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukawa, Y.; Franchi, I.; Wright, I.; Zhao, I.; Rahman, Z.; Utas, J.

    2018-01-01

    Primitive xenolithic CI-like carbonaceous (C) clasts are sometimes hosted within meteorites of a different origin (ordinary chondrite, ureilite, howardite, and eucrite). These xenoliths contain aggregates of macromolecular carbon (MMC), which are often present as discrete grains and exhibit a wide range of structural order and chemical compositions. The Carancas meteorite is a H4-5 that impacted south of Lake Titicaca, Peru in 2007. While the meteorite exhibits extensive recrystallization of the matrix indicating metamorphism, it contains dark, CI-like clasts that show no evidence of heating. Similar to other xenolithic clasts, the examined C clast of Carancas contains MMC, which however exists in the form of a vein-like structure dissimilar to the typical occurrence of MMC in meteorites. We investigated the organic and isotopic compositions of the organic-rich vein with C,N,O-X-ray absorption near-edge structure (XANES), Raman spectroscopy, and NanoSIMS, in order to constrain its possible origin.

  14. Submicrometer Organic Grains: Widespread Constituents of the Early Solar System

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamuri-Messenger, Keiko; Keller, Lindsay; Matrajt, Graciela; Clemett, Simon; Ito, Motoo

    2007-01-01

    Primitive meteorites and interplanetary dust particles (IDPs) contain remants of interstellar organic matter, marked by anomalous H and N isotopic ratios. These isotopic anomalies are attributed to mass fractionation during chemical reactions at cryogenic temperatures (10-100K) in a cold molecular cloud. Significant variations in the chemistry and isotopic compositions of organic compounds within and between these samples suggest varying histories of alteration and dilution of the presolar components. Recent studies have reported large H and N isotopic anomalies preserved in sub-m organic inclusions in both meteorites and IDPs. In the Tagish Lake meteorite, the largest H and N isotopic anomalies are associated with sub-m, hollow organic globules. The common physical, chemical, and isotopic characteristics of these globules suggest that they formed before being incorporated into their parent meteorite. These organic globules probably originated as organic ice coatings that formed on preexisting ice or mineral grains in a cold molecular cloud. Radiation driven photochemistry may have processed them into refractory organic grains. This model implies that submicrometer organic grains were widely distributed throughout the solar nebula during the epoch of planet formation. Submicrometer organic particles were detected by the Giotto and Vega encounters with comet Halley, termed CHON particles based on their major element chemistry. The first direct samples of cometary dust (comet Wild-2) were returned by the Stardust spacecraft in January 2006. These samples exhibit widely varying, fine grained mineralogy similar to anhydrous IDPs, including submicrometer carbonaceous grains. The submicrometer organic grains from comet Wild-2 exhibit H and N isotopic anomalies of similar magnitude to those commonly observed in primitive meteorites and IDPs. Isotopically anomalous, submicrometer organic grains have now been observed in meteorites, IDPs, the Oort-cloud comet Halley, and

  15. Sutter's Mill dicarboxylic acids as possible tracers of parent-body alteration processes

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Garvie, Laurence A. J.

    2014-11-01

    Dicarboxylic acids were searched for in three Sutter's Mill (SM) fragments (SM2 collected prerain, SM12, and SM41) and found to occur almost exclusively as linear species of 3- to 14-carbon long. Between these, concentrations were low, with measured quantities typically less than 10 nmole g-1 of meteorite and a maximum of 6.8 nmole g-1 of meteorite for suberic acid in SM12. The SM acids' molecular distribution is consistent with a nonbiological origin and differs from those of CMs, such as Murchison or Murray, and of some stones of the C2-ungrouped Tagish Lake meteorite, where they are abundant and varied. Powder X-ray diffraction of SM12 and SM41 show them to be dominated by clays/amorphous material, with lesser amounts of Fe-sulfides, magnetite, and calcite. Thermal gravimetric (TG) analysis shows mass losses up to 1000 °C of 11.4% (SM12) and 9.4% (SM41). These losses are low compared with other clay-rich carbonaceous chondrites, such as Murchison (14.5%) and Orgueil (21.1%). The TG data are indicative of partially dehydrated clays, in accordance with published work on SM2, for which mineralogical studies suggest asteroidal heating to around 500 °C. In view of these compositional traits and mineralogical features, it is suggested that the dicarboxylic acids observed in the SM fragments we analyzed likely represent a combination of molecular species original to the meteorite as well as secondary products formed during parent-body alteration processes, such as asteroidal heating.

  16. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, William; Brown, Peter; Matney, Mark

    2017-01-01

    A Near Earth object impacting into Earth's atmosphere may produce damaging effects at the surface due to airblast, thermal pulse, or kinetic impact in the form of meteorites. At large sizes (>many tens of meters), the damage is amplified by the hypersonic impact of these large projectiles moving with cosmic velocity, leaving explosively produced craters. However, much more common is simple "kinetic" damage caused by the impact of smaller meteorites moving at terminal speeds. As of this date a handful of instances are definitively known of people or structures being directly hit and/or damaged by the kinetic impact of meteorites. Meteorites known to have struck humans include the Sylacauga, Alabama fall (1954) and the Mbale meteorite fall (1992). Much more common is kinetic meteorite damage to cars, buildings, and even a post box (Claxton, Georgia - 1984). Historical accounts indicate that direct kinetic damage by meteorites may be more common than recent accounts suggest (Yau et al., 1994). In this talk we will examine the contemporary meteorite flux and estimate the frequency of kinetic damage to various structures, as well as how the meteorite flux might affect the rate of human casualties. This will update an earlier study by Halliday et al (1985), adding variations expected in meteorite flux with latitude (Le Feuvre and Wieczorek, 2008) and validating these model predictions of speed and entry angle with observations from the NASA and SOMN fireball networks. In particular, we explore the physical characteristics of bright meteors which may be used as a diagnostic for estimating which fireballs produce meteorites and hence how early warning of such kinetic damage may be estimated in advance through observations and modelling.

  17. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, William; Brown, Peter; Matney, Mark

    2017-01-01

    A Near Earth object impacting into Earth's atmosphere may produce damaging effects at the surface due to airblast, thermal pulse, or kinetic impact in the form of meteorites. At large sizes (greater than many tens of meters), the damage is amplified by the hypersonic impact of these large projectiles moving with cosmic velocity, leaving explosively produced craters. However, much more common is simple "kinetic" damage caused by the impact of smaller meteorites moving at terminal speeds. As of this date a handful of instances are definitively known of people or structures being directly hit and/or damaged by the kinetic impact of meteorites. Meteorites known to have struck humans include the Sylacauga, Alabama fall (1954) and the Mbale meteorite fall (1992). Much more common is kinetic meteorite damage to cars, buildings, and even a post box (Claxton, Georgia - 1984). Historical accounts indicate that direct kinetic damage by meteorites may be more common than recent accounts suggest (Yau et al., 1994). In this talk we will examine the contemporary meteorite flux and estimate the frequency of kinetic damage to various structures, as well as how the meteorite flux might affect the rate of human casualties. This will update an earlier study by Halliday et al (1985), adding variations expected in meteorite flux with latitude (Le Feuvre and Wieczorek, 2008) and validating these model predictions of speed and entry angle with observations from the NASA and SOMN fireball networks. In particular, we explore the physical characteristics of bright meteors which may be used as a diagnostic for estimating which fireballs produce meteorites and hence how early warning of such kinetic damage may be estimated in advance through observations and modeling.

  18. The Meteoritical Bulletin, No. 103

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Agee, Carl B.

    2017-05-01

    Meteoritical Bulletin 103 contains 2582 meteorites including 10 falls (Ardón, Demsa, Jinju, Križevci, Kuresoi, Novato, Tinajdad, Tirhert, Vicência, Wolcott), with 2174 ordinary chondrites, 130 HED achondrites, 113 carbonaceous chondrites, 41 ureilites, 27 lunar meteorites, 24 enstatite chondrites, 21 iron meteorites, 15 primitive achondrites, 11 mesosiderites, 10 Martian meteorites, 6 Rumuruti chondrites, 5 ungrouped achondrites, 2 enstatite achondrites, 1 relict meteorite, 1 pallasite, and 1 angrite, and with 1511 from Antarctica, 588 from Africa, 361 from Asia, 86 from South America, 28 from North America, and 6 from Europe. Note: 1 meteorite from Russia was counted as European. The complete contents of this bulletin (244 pages) are available on line. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at http://www.lpi.usra.edu/meteor/.

  19. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001.

    PubMed

    Kazmierczak, Józef; Kempe, Stephan

    2003-04-01

    Modern carbonate globules, located in cracks of submerged volcanic rocks and in calcareous pinnacles in alkaline (sodic) Lake Van, Turkey, appear to be analogues for the approximately 3.9 billion-year-old carbonate globules in Martian meteorite ALH84001. These terrestrial globules have similar diameters and are chemically and mineralogically zoned. Furthermore, they display surface and etching structures similar to those described from ALH84001, which were interpreted as fossilized microbial forms. These terrestrial carbonates formed at low temperatures where Ca-rich groundwaters enter the lake. Chemical, mineralogical, microbiological, and biomolecular methods were used in an attempt to decipher the process responsible for the genesis of these structures. Although the exact mode of formation of Lake Van carbonates remains an enigma, their similarity to the Martian globules indicates that the ALH84001 carbonates may have formed in similar setting on ancient Mars.

  20. Foundations of Forensic Meteoritics

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    1992-07-01

    It may be useful to know if a meteorite was found at the site where it fell. For instance, the polymict ureilites North Haig and Nilpena were found 1100 km apart, yet are petrologically identical [1]. Could this distance represent transport from a single strewn field, or does it represent distinct fall sites? A meteorite may contain sufficient clues to suggest some characteristics of its fall site. If these inferences are inconsistent with the find site, one may infer that the meteorite has been transported. It will likely be impossible to determine the exact fall site of a transported meteorite. Data relevant to a meteorite's fall site may be intrinsic to the meteorite, or acquired at the site. For instance, an intrinsic property is terrestrial residence age (from abundances of cosmogenic radioisotopes and their decay products); a meteorite's terrestrial residence age must be the same or less than that of the surface on which it fell. After falling, a meteorite may acquire characteristic telltales of terrestrial geological, geochemical, and biological processes. These telltale clues may include products of chemical weathering, adhering geological materials, biological organisms living (or once living) on the meteorite, and biological materials adhering to (but never living on) the meteorite. The effects of chemical weathering, present in all but the freshest finds, range from slight rusting to extensive decomposition and veining The ages of weathering materials and veins, as with terrestrial residence ages above, must be less than the age of the fall surface. The mineralogy and chemistry, elemental and isotopic, of weathering materials will differ according to the mineralogy and composition of the meteorite, and the mineralogy, geochemistry, hydrology, and climate of the fall site. Weathering materials may also vary as climate changes and may vary among the microenvironments associated with a meteorite on the Earth's surface. Geological materials (rock, sediment

  1. The Meteoritical Bulletin, No. 105

    NASA Astrophysics Data System (ADS)

    Bouvier, Audrey; Gattacceca, Jérôme; Grossman, Jeffrey; Metzler, Knut

    2017-11-01

    Meteoritical Bulletin 105 contains 2666 meteorites including 12 falls (Aouinet Legraa, Banma, Buritizal, Ejby, Kamargaon, Moshampa, Mount Blanco, Murrili, Osceola, Sariçiçek, Sidi Ali Ou Azza, Stubenberg), with 2244 ordinary chondrites, 142 HED achondrites, 116 carbonaceous chondrites, 37 Lunar meteorites, 20 enstatite chondrites, 20 iron meteorites, 20 ureilites, 19 Martian meteorites, 12 Rumuruti chondrites, 10 primitive achondrites, 9 mesosiderites, 5 angrites, 4 pallasites, 4 ungrouped achondrites, 2 ungrouped chondrites, 1 enstatite achondrite, and 1 relict meteorite, and with 1545 from Antarctica, 686 from Africa, 245 from Asia, 147 from South America, 22 from North America, 14 from Europe, 5 from Oceania, 1 from unknown origin. Note: 5 meteorites from Russia were counted as European. It also includes a list of approved new Dense Collection Areas and a nomenclature of the Aletai (IIIE-an) iron meteorites from Xinjiang, China.

  2. Antarctic Meteorite Newsletter

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn

    2000-01-01

    This newsletter contains something for everyone! It lists classifications of about 440 meteorites mostly from the 1997 and 1998 ANSMET (Antarctic Search for Meteorites) seasons. It also gives descriptions of about 45 meteorites of special petrologic type. These include 1 iron, 17 chondrites (7 CC, 1 EC, 9 OC) and 27 achondrites (25 HED, UR). Most notable are an acapoloite (GRA98028) and an olivine diogenite (GRA98108).

  3. Antarctic Meteorite Location Map Series

    NASA Technical Reports Server (NTRS)

    Schutt, John (Editor); Fessler, Brian (Editor); Cassidy, William (Editor)

    1989-01-01

    Antarctica has been a prolific source of meteorites since meteorite concentrations were discovered in 1969. The Antarctic Search For Meteorites (ANSMET) project has been active over much of the Trans-Antarctic Mountain Range. The first ANSMET expedition (a joint U.S.-Japanese effort) discovered what turned out to be a significant concentration of meteorites at the Allan Hills in Victoria Land. Later reconnaissance in this region resulted in the discovery of meteorite concentrations on icefields to the west of the Allan Hills, at Reckling Moraine, and Elephant Moraine. Antarctic meteorite location maps (reduced versions) of the Allan Hills main, near western, middle western, and far western icefields and the Elephant Moraine icefield are presented. Other Antarctic meteorite location maps for the specimens found by the ANSMET project are being prepared.

  4. Radiocarbon datings of Yamato meteorites

    NASA Technical Reports Server (NTRS)

    Kigoshi, K.; Matsuda, E.

    1986-01-01

    The terrestrial ages of five Yamato Meteorites were measured by the content of cosmic-ray-produced carbon-14. Three Yamato Meteorites Y-74013, Y-74097, and Y-74136, which are all diogenites, were found at sites from one to two kilometers apart from each other. Evidence is presented for these three meteorites being a single meteorite. Also presented is a method adopted in the experimental procedure which includes a check for modern carbon contamination in the meteorites.

  5. Laser induced breakdown spectroscopy on meteorites

    NASA Astrophysics Data System (ADS)

    de Giacomo, A.; Dell'Aglio, M.; de Pascale, O.; Longo, S.; Capitelli, M.

    2007-12-01

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite).

  6. The Meteoritical Bulletin, No. 86

    NASA Astrophysics Data System (ADS)

    Russell, Sara S.; Zipfel, Jutta; Grossman, Jeffrey N.; Grady, Monica M.

    2002-07-01

    Meteoritical Bulletin No. 86 lists information for 11 54 newly classified meteorites, comprising 661 from Antarctica, 218 from Africa, 207 from Asia (203 of which are from Oman), 62 from North America, 3 from South America, and 3 from Europe. Information is provided for 5 falls (El Idrissia, Undulung, Dashoguz, El Tigre, and Yafa). Noteworthy specimens include 7 martian meteorites (Dhofar 378, Grove Mountains 99027, Northwest Africa 856, 1068, and 1110, and Sayh al Uhaymir 060 and 090); 4 lunar meteorites (Dhofar 301, 302, 303, and 489); 9 new iron meteorites; a mesosiderite (Northwest Africa 1242); an ungrouped stony-iron meteorite (Dar al Gani 962); and a wide variety of other interesting stony meteorites, including CH, CK, CM, CR, CV, R, enstatite, unequilibrated ordinary, and ungrouped chondrites, primitive achondrites, howardite-eucrite-diogenite (HED) achondrites, and ureilites.

  7. Lunar Meteorites: A Global Geochemical Dataset

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  8. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  9. Meteorite falls in Africa

    NASA Astrophysics Data System (ADS)

    Khiri, Fouad; Ibhi, Abderrahmane; Saint-Gerant, Thierry; Medjkane, Mohand; Ouknine, Lahcen

    2017-10-01

    The study of meteorites provides insight into the earliest history of our solar system. From 1800, about the year meteorites were first recognized as objects falling from the sky, until December 2014, 158 observed meteorite falls were recorded in Africa. Their collected mass ranges from 1.4 g to 175 kg with the 1-10 kg cases predominant. The average rate of African falls is low with only one fall recovery per 1.35-year time interval (or 0.023 per year per million km2). This African collection is dominated by ordinary chondrites (78%) just like in the worldwide falls. The seventeen achondrites include three Martian meteorite falls (Nakhla of Egypt, Tissint of Morocco and Zagami of Nigeria). Observed Iron meteorite falls are relatively rare and represent only 5%. The falls' rate in Africa is variable in time and in space. The number of falls continues to grow since 1860, 80% of which were recovered during the period between 1910 and 2014. Most of these documented meteorite falls have been recovered from North-Western Africa, Eastern Africa and Southern Africa. They are concentrated in countries which have a large surface area and a large population with a uniform distribution. Other factors are also favorable for observing and collecting meteorite falls across the African territory, such as: a genuine meteorite education, a semi-arid to arid climate (clear sky throughout the year most of the time), croplands or sparse grasslands and possible access to the fall location with a low percentage of forest cover and dense road network.

  10. Fullerenes in Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.

    1994-01-01

    The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.

  11. Meteorite Magazine: Promoting Science, Discovery, And Education

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Lebofsky, N. R.; Sears, H.; Sears, D.

    2006-09-01

    In late 2005, Larry and Nancy Lebofsky and Derek and Hazel Sears took over the editing and publishing of Meteorite magazine. We saw a great educational potential for the magazine. With a circulation over 600, the magazine reaches a broad readership: meteorite scientists, hunters, collectors, and enthusiasts. Unlike the professional journal of the Meteoritical Society, Meteoritics and Planetary Sciences, the articles in Meteorite range from scientific articles, reports from meteorite shows, and how to preserve meteorites to stories about searching for meteorites around the world. Meteorites are of interest to people. Asteroids, meteoroids, meteors, and meteorites are in many states' science standards. Yet, how many museums have meteorite collections with staff who know little about them? How many amateur astronomers, when seeing meteors or meteor showers, can explain how asteroids, comets, meteors, and meteorites are related and what they tell us about the formation of our Solar System? How many meteorite collectors are knowledgeable about how these objects are related to each other? How do we reach the broader community? Unlike the hundreds of amateur and school astronomy clubs, there are no meteorite clubs. While one can point out the wonders of the night sky and what can be seen through a telescope at star parties, there is no such thing as school meteorite hunting parties. The meteorite and planetary sciences communities working together can bring the excitement of meteorites and the science behind these fascinating objects to teachers, students, and museum and planetarium staff. We will present ideas for accomplishing this.

  12. Antarctic Meteorite Classification and Petrographic Database

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Satterwhite, C. E.; Righter, Kevin

    2011-01-01

    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970's as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters

  13. Comparison of lunar rocks and meteorites: Implications to histories of the moon and parent meteorite bodies

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Fodor, R. V.; Keil, K.

    1977-01-01

    There are many similarities between lunar samples and stone meteorites. Lunar samples, especially from the highlands, indicate that they have been affected by complex and repeated impact processes. Similar complex and repeated impact processes have also been operative on the achondritic and chondritic meteorites. Similarities between lunar and meteoritic rocks are discussed as follows: (1) Monomict and polymict breccias occur in lunar rocks, as well as in achondritic and chondritic meteorites, having resulted from complex and repeated impact processes; (2) Chondrules are present in lunar meteorites, as well as in a few achondritic and most chondritic meteorites. They apparently crystallized spontaneously from molten highly supercooled droplets which may have formed from impact melts or, perhaps, volcanic processes (as well as from the solar nebula, in the case of meteoritic chondrites); (3) Lithic fragments vary from little modified (relative to the apparent original texture) to partly or completely melted and recrystallized lithic fragments. Their detailed study allows conclusions to be drawn about their parent rock types and their origin, thereby gaining insight into preimpact histories of lunar and meteoritic breccias. There is evidence that cumulate rocks were involved in the early history of both moon and parent meteorite bodies.

  14. Organic Molecules in Meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10

  15. Meteorites, Microfossils and Exobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1997-01-01

    The discovery of evidence for biogenic activity and possible microfossils in a Martian meteorite may have initiated a paradigm shift regarding the existence of extraterrestrial microbial life. Terrestrial extremophiles that live in deep granite and hydrothermal vents and nanofossils in volcanic tuffs have altered the premise that microbial life and microfossils are inconsistent with volcanic activity and igneous rocks. Evidence for biogenic activity and microfossils in meteorites can no longer be dismissed solely because the meteoritic rock matrix is not sedimentary. Meteorite impact-ejection and comets provide mechanisms for planetary cross-contamination of biogenic chemicals, microfossils, and living microorganisms. Hence, previously dismissed evidence for complex indigenous biochemicals and possible microfossils in carbonaceous chondrites must be re-examined. Many similar, unidentifiable, biological-like microstructures have been found in different carbonaceous chondrites and the prevailing terrestrial contaminant model is considered suspect. This paper reports the discovery of microfossils indigenous to the Murchison meteorite. These forms were found in-situ in freshly broken, interior surfaces of the meteorite. Environmental Scanning Electron Microscope (ESEM) and optical microscopy images indicate that a population of different biological-like forms are represented. Energy Dispersive Spectroscopy reveals these forms have high carbon content overlaying an elemental distribution similar to the matrix. Efforts at identification with terrestrial microfossils and microorganisms were negative. Some forms strongly resemble bodies previously isolated in the Orgueil meteorite and considered microfossils by prior researchers. The Murchison forms are interpreted to represent an indigenous population of the preserved and altered carbonized remains (microfossils) of microorganisms that lived in the parent body of this meteorite at diverse times during the past 4.5 billion

  16. Relationships among basaltic lunar meteorites

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1991-01-01

    During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.

  17. Classification of an unidentified meteorite through TXRF technique and the chemical comparison with a known meteorite

    NASA Astrophysics Data System (ADS)

    Zaki, Wafaa

    2013-12-01

    Meteorites, space rocks, are characterized by several distinctive properties that distinguish them from terrestrial (Earth) rocks. Meteorites may have all or most of such properties. Sometimes, meteorite characterization requires detailed chemical analyses. Two types of meteorites were studied and chemically analyzed. One, had already been located and listed internationally (AL-Taamem Meteorite77). The other one is not listed yet as it fell in 1993 at the northern Kurdistan region of Iraq. The chemical analysis of grinded meteorite was conducted using TXRF technique. The analysis involved the utilization of one type of carrier and one type of disks (quartz). High purity silicon was used for fixing the meteorite powder onto the quartz glass disks for vacuum uses. Each sample test was carried out twice using the Bruker S2 Picofox TXRF instrument (for 600s). The spectra were investigated and several indicative characteristics were concluded. The samples were identified as meteorite, particularly for the appearance of the typical nickel peak near the iron peak in the spectra. This is in accordance with the method of classification of meteorites and by comparison between the listed and unlisted samples. All these analyses were conducted in the laboratories of Chemistry for Technologies in Brescia University, Italy).

  18. The Meteoritical Bulletin, No. 97

    NASA Astrophysics Data System (ADS)

    Weisberg, Michael K.; Smith, Caroline; Benedix, Gretchen; Herd, Christopher D. K.; Righter, Kevin; Haack, Henning; Yamaguchi, Akira; Chennaoui Aoudjehane, Hasnaa; Grossman, Jeffrey N.

    2010-03-01

    In this edition of The Meteoritical Bulletin, a total of 506 newly approved meteorite names with their relevant data are reported. These include 354 from northwest Africa, 31 from the Americas, 15 from Antarctica (Koreamet), 85 from Asia, 20 from Australia, and 1 from Europe. Among these meteorites are 2 falls, Grimsby (Canada) and Santa Lucia (2008) (Argentina). Also described are a CM with low degree of alteration, new ungrouped chondrites and achondrites, and 4 Martian meteorites.

  19. Antarctic Meteorite Classification and Petrographic Database Enhancements

    NASA Technical Reports Server (NTRS)

    Todd, N. S.; Satterwhite, C. E.; Righter, K.

    2012-01-01

    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970 s as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters. This paper describes enhancements that have been made to the database and to the data and photo acquisition process to provide the meteorite community with faster access to meteorite data concurrent with the publication of the Antarctic Meteorite Newsletter twice a year.

  20. Antarctic Martian Meteorites at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  1. Organics In Meteorites

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood

    1996-01-01

    The variety of classes of organic compounds that occur in carbonaceous meteorites suggests a rich pre-planetary chemistry with possible connections to interstellar, solar nebular and parent body processes. Structural diversity prevails within all classes examined in detail. Among amino acids for instance, all possible isomers are found up to species containing 4-6 carbon atoms, with abundances decreasing with increasing molecular weight. Such diversity seems limited to those carbonaceous meteorites which show evidence of having been exposed to liquid water; meteorites lacking such evidence also show much lower abundances and less structural diversity in their organic contents. This apparent dependency on water suggests a role for cometary ices in the chemical evolution of organic compounds on parent bodies. Measurements of the stable isotope compositions of C, H, N and S in classes of compounds and at the individual compound level show strong deviations from average chondritic values. These deviations are difficult to explain by solar system or parent body processes, and precedents for some of these isotopic anomalies exist in interstellar (e.g., high D/H ratios) and circumstellar chemistry. Therefore, presolar origins for much if not all of the meteoritic organic compounds (or their precursors) is a distinct possibility. In contrast, evidence of solar nebular origins is either lacking or suspect. Results from molecular and isotopic analyses of meteoritic organics, from laboratory simulations and from a model of interstellar grain reactions will be used to flesh out the hypothesis that this material originated with interstellar chemistry, was distributed within the early solar system as cometary ices, and was subsequently altered on meteorite parent bodies to yield the observed compounds.

  2. Guide to the US collection of antarctic meteorites 1976-1988 (everything you wanted to know about the meteorite collection). Antarctic Meteorite Newsletter, Volume 13, Number 1

    NASA Technical Reports Server (NTRS)

    Score, Roberta; Lindstrom, Marilyn M.

    1990-01-01

    The state of the collection of Antarctic Meteorites is summarized. This guide is intended to assist investigators plan their meteorite research and select and request samples. Useful information is presented for all classified meteorites from 1976 to 1988 collections, as of Sept. 1989. The meteorite collection has grown over 13 years to include 4264 samples of which 2754 have been classified. Most of the unclassified meteorites are ordinary chondrites because the collections have been culled for specimens of special petrologic type. The guide consists of two large classification tables. They are preceded by a list of sample locations and important notes to make the tables understandable.

  3. Meteorites from Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Radu, Gelu; Pop, Dana

    2003-04-01

    The article represents an interview of the journalist Gelu Radu with the director of the Meteorites Museum from the Geological Faculty of the Cluj-Napoca University (Romania) Dana Pop concerning the History, Collection and Actual state of an unique in Romania Meteorites Museum, founded in 1882 after the fall of the Mociu Meteorit (Cluj County) on 3 february 1882. One discusses about the collection of the Museum and the policy of changes with other similar museums throughout the world.

  4. Mysterious iodine-overabundance in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed.

  5. 40 Years of Collecting Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Sattershite, C. E.; Righter, K.; Harrington, R.

    2017-01-01

    This year marks the 40th anniversary of the first Martian meteorite found in Antarctica by ANSMET, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET team making for a total of 15 Martian meteorites in the Antarctic collection at Johnson Space Center. Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate meteorites. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottites in 1982 [1]. This meteorite has been allocated to 125 scientists for research and there are 181.964 g remaining at Johnson Space Center (JSC). Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain chemical compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft [2]. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 195 scientists for research and there are 5304.770 g of sample is available. Five years later, ANSMET found ALH 84001 (1930.900 g), the only Martian orthopyroxenite. This meteorite was initially classified as a diogenite but was reclassified as being a Martian

  6. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  7. Presolar Organic Globules in Astromaterials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.

    2012-01-01

    Presolar grains were identified in meteorite residues 20 years ago based on their exotic isotopic compositions [1]. Their study has provide new insights into stellar evolution and the first view of the original building blocks of the solar system. Organic matter in meteorites and IDPs is highly enriched in D/H and N-15/N-14 at micron scales, possibly due to presolar organic grains [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material. Identifying the carriers of these anomalies and elucidating their physical and chemical properties may give new views of interstellar chemistry and better understanding of the original components of the protosolar disk. However, identifying the carriers has been hampered by their small size and the inability to chemically isolate them. Thanks to major advances in nano-scale analytical techniques and advanced sample preparation, we were able to show that in the Tagish Lake meteorite, the principle carriers of these isotopic anomalies are sub-microns, hollow organic globules [5]. The organic globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. Organic globules with similar physical, chemical, and isotopic properties are also recently found from Bells CM2 carbonaceous chondrite, in IDPs [6] and in the comet Wild-2 samples returned by Stardust [7]. These results support the view that microscopic organic grains were widespread constituents of the protoplanetary disk. Their exotic isotopic compositions trace their origins to the outermost portions of the protosolar disk or a presolar cold molecular cloud.

  8. Annual Occurrence of Meteorite-Dropping Fireballs

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  9. The Meteoritical Bulletin, no. 85, 2001 September

    USGS Publications Warehouse

    Grossman, J.N.; Zipfel, J.

    2001-01-01

    Meteoritical Bulletin No. 85 lists information for 1376 newly classified meteorites, comprising 658 from Antarctica, 409 from Africa, 265 from Asia (262 of which are from Oman), 31 from North America, 7 from South America, 3 from Australia, and 3 from Europe. Information is provided for 11 falls (Dergaon, Dunbogan, Gujba, Independence, Itqiy, Mora??vka, Oued el Hadjar, Sayama, Sologne, Valera, and Worden). Noteworthy non-Antarctic specimens include 5 martian meteorites (Dar al Gani 876, Northwest Africa 480 and 817, and Sayh al Uhaymir 051 and 094); 6 lunar meteorites (Dhofar 081, 280, and 287, and Northwest Africa 479, 482, and 773); an ungrouped enstatite-rich meteorite (Itqiy); a Bencubbin-like meteorite (Gujba); 9 iron meteorites; and a wide variety of other interesting stony meteorites, including CH, CK, CM, CO, CR, CV, R, enstatite, and unequilibrated ordinary chondrites, primitive achondrites, HED achondrites, and ureilites.

  10. Terrestrial Ages of Antarctic Meteorites- Update 1999

    NASA Technical Reports Server (NTRS)

    Nishiizumi, Kunihiko; Welten, K. C.; Caffee, Marc W.

    1999-01-01

    We are continuing our ongoing study of cosmogenic nuclides in Antarctic meteorites. In addition to the studies of exposure histories of meteorites, we study terrestrial ages and pairing of Antarctic meteorites and desert meteorites. Terrestrial ages of Antarctic meteorites provide information on meteorite accumulation mechanisms, mean weathering lifetimes, and influx rates. The determination of Cl-36(half-life=3.01 x 10(exp 5) y) terrestrial ages is one of our long-term on-going projects, however, in many instances neither Cl-36 or C-14 (5,730 y) yields an accurate terrestrial age. Using Ca-14 (1.04 x 10(exp 5) y) for terrestrial age determinations solves this problem by filling the c,ap in half-life between 14-C and Cl-36 ages. We are now applying the new Ca-41- Cl-36 terrestrial age method as well as the Cl-36-Be-10 method to Antarctic meteorites. Our measurements and C-14 terrestrial age determinations by the University of Arizona group are always complementary. We have measured Cl-36 in over 270 Antarctic meteorites since our previous compilation of terrestrial ages. Since a large number of meteorites have been recovered from many different icefields in Antarctica, we continue to survey the trends of terrestrial ages for different icefields. We have also measured detailed terrestrial ages vs. sample locations for Allan Hills, Elephant Moraine, and Lewis Cliff Icefields, where meteorites have been found with very long ages. The updated histograms of terrestrial ages of meteorites from the Allan Hills Main Icefield and Lewis Cliff Icefield are shown. These figures include C-14 ages obtained by the University of Arizona group. Pairs of meteorites are shown as one object for which the age is the average of all members of the same fall. The width of the bars represents 70,000 years, which was a typical uncertainty for Cl-36 ages. We reduced the uncertainty of terrestrial age determinations to approx. 40,000 years by using pairs of nuclides such as Ca-41-Cl-36 or Cl

  11. Thermoluminescence and Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Hasan, F. A.

    1986-01-01

    The level of natural thermoluminescence (TL) in meteorites is the result of competition between build-up, due to exposure to cosmic radiation, and thermal decay. Antarctic meteorites tend to have lower natural TL than non-Antarctic meteorites because of their generally larger terrestrial ages. However, since a few observed falls have low TL due to a recent heating event, such as passage within approximately 0.7 astronomical units of the Sun, this could also be the case for some Antarctic meteorites. Dose rate variations due to shielding, heating during atmospheric passage, and anomalous fading also cause natural TL variations, but the effects are either relatively small, occur infrequently, or can be experimentally circumvented. The TL sensitivity of meteorites reflects the abundance and nature of the feldspar. Thus intense shock, which destroys feldspar, causes the TL sensitivity to decrease by 1 to 2 orders of magnitude, while metamorphism, which generates feldspar through the devitrification of glass, causes TL sensitivity to increase by a factor of approximately 10000. The TL-metamorphism relationship is particularly strong for the lowest levels of metamorphism. The order-disorder transformation in feldspar also affect the TL emission characteristics and thus TL provides a means of paleothermometry.

  12. The Meteoritical Bulletin, No. 100, 2014 June

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Grossman, Jeffrey N.; Garvie, Laurence

    2014-08-01

    Meteoritical Bulletin 100 contains 1943 meteorites including 8 falls (Boumdeid [2011], Huaxi, Košice, Silistra, Sołtmany, Sutter's Mill, Thika, Tissint), with 1575 ordinary chondrites, 139 carbonaceous chondrites, 96 HED achondrites, 25 ureilites, 18 primitive achondrites, 17 iron meteorites, 15 enstatite chondrites, 11 lunar meteorites, 10 mesosiderites, 10 ungrouped achondrites, 8 pallasites, 8 Martian meteorites, 6 Rumuruti chondrites, 3 enstatite achondrites, and 2 angrites, and with 937 from Antarctica, 592 from Africa, 230 from Asia, 95 from South America, 44 from North America, 36 from Oceania, 6 from Europe, and 1 from an unknown location. This will be the last Bulletin published in the current format. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available online at http://www.lpi.usra.edu/meteor/

  13. Meteoritic basalts. Final report, 1986-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treiman, A.H.

    1989-10-01

    The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant.more » Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.« less

  14. The 45th Annual Meteoritical Society Meeting

    NASA Technical Reports Server (NTRS)

    Jones, P. (Compiler); Turner, L. (Compiler)

    1982-01-01

    Impact craters and shock effects, chondrite formation and evolution, meteorites, chondrules, irons, nebular processes and meteorite parent bodies, regoliths and breccias, antarctic meteorite curation, isotopic studies of meteorites and lunar samples, organics and terrestrial weathering, refractory inclusions, cosmic dust, particle irradiations before and after compaction, and mineralogic studies and analytical techniques are discussed.

  15. Effective radium-226 concentration in meteorites

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Perrier, Frédéric; Moreira, Manuel; Zanda, Brigitte; Rochette, Pierre; Teitler, Yoram

    2017-07-01

    The analysis of noble gases in meteorites provides constraints on the early solar system and the pre-solar nebula. This requires a better characterization and understanding of the capture, production, and release of noble gases in meteorites. The knowledge of transfer properties of noble gases for each individual meteorite could benefit from using radon-222, radioactive daughter of radium-226. The radon-222 emanating power is commonly quantified by the effective radium-226 concentration (ECRa), the product of the bulk radium-226 concentration and of the emanation coefficient E, which represents the probability of one decaying radium-226 to inject one radon-222 into the free porous network. Owing to a non-destructive, high-sensitivity accumulation method based on long photomultiplier counting sessions, we are now able to measure ECRa of meteorite samples, which usually have mass smaller than 15 g and ECRa < 0.5 Bq kg-1. We report here the results obtained from 41 different meteorites, based on 129 measurements on 70 samples using two variants of our method, showing satisfactory repeatability and a detection limit below 10-2 Bq kg-1 for a sample mass of 1 g. While two meteorites remain below detection level, we obtain for 39 meteorites heterogeneous ECRa values with mean (min-max range) of ca. 0.1 (0.018-1.30) Bq kg-1. Carbonaceous chondrites exhibit the largest ECRa values and eucrites the smallest. Such values are smaller than typical values from most terrestrial rocks, but comparable with those from Archean rocks (mean of ca. 0.18 Bq kg-1), an end-member of terrestrial rocks. Using uranium concentration from the literature, E is inferred from ECRa for all the meteorite samples. Values of E for meteorites (mean 40 ± 4%) are higher than E values for Archean rocks and reported values for lunar and Martian soils. Exceptionally large E values likely suggest that the 238U-226Ra pair would not be at equilibrium in most meteorites and that uranium and/or radium are most

  16. Natural thermoluminescence of Antarctic meteorites and related studies

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.

    1998-01-01

    The natural thermoluminescence (TL) laboratory's primary purpose is to provide data on newly recovered Antarctic meteorites that can be included in discovery announcements and to investigate the scientific implications of the data. Natural TL levels of meteorites are indicators of recent thermal history and terrestrial history, and the data can be used to study the orbital/radiation history of groups of meteorites (e.g., H chondrites) or to study the processes leading to the concentration of meteorites at certain sites in Antarctica. An important application of these data is the identification of fragments, or "pairs" of meteorites produced during atmospheric passage or during terrestrial weathering. Thermoluminescence data are particularly useful for pairing within the most common meteorite classes, which typically exhibit very limited petrographic and chemical diversity. Although not originally part of the laboratory's objectives, TL data are also useful in the identification and classification of petrographically or mineralogically unusual meteorites, including unequilibrated ordinary chondrites and some basaltic achondrites. In support of its primary mission, the laboratory also engages in TL studies of modern falls, finds from hot deserts, and terrestrial analogs and conducts detailed studies of the TL properties of certain classes of meteorites. These studies include the measurement of TL profiles in meteorites, the determination of TL levels of finds from the Sahara and the Nullarbor region of Australia, and comparison of TL data to other indicators of irradiation or terrestrial history, such as cosmogenic noble gas and radionuclide abundances. Our current work can be divided into five subcategories, (a) TL survey of Antarctic meteorites, (b) pairing and field relations of Antarctic meteorites, (c) characterization of TL systematics of meteorites, (d) comparison of natural TL and other terrestrial age indicators for Antarctic meteorites, and for meteorites

  17. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  18. Meteoritic Microfossils in Eltanin Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2006-01-01

    We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km-sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain nun-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored approximately 80,000 sq-km. of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 0.4 to 2.8 g/cm2. This is the most meteorite-rich locality known on Earth.

  19. Detection of a meteorite 'stream' - Observations of a second meteorite fall from the orbit of the Innisfree chondrite

    NASA Astrophysics Data System (ADS)

    Halliday, I.

    1987-03-01

    The first observational evidence of multiple meteorite falls from the same orbit is adduced from the February 6, 1980 fall of a meteorite precisely 3 yr after the fall of the Innisfree meteorite. Due consideration of the detection probability for two related objects with the meteorite camera network in western Canada suggests that the Innisfree brecciated LL chondrite was a near-surface fragment from a parent object whose radius was of the order of several tens of meters. A meteorite mass of 1.8 kg is predicted for the new object, whose recovery in the vicinity of Ridgedale, Saskatchewan, is now sought for the sake of comparison with the Innisfree chondrite.

  20. Four new iron meteorite finds

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Wasson, J. T.; Bild, R. W.

    1977-01-01

    Four new iron meteorites are described: Buenaventura (IIIB) from Chihuahua, Mexico: mass 114 kg; Denver City (anomalous) from Texas, USA: mass 26.1 kg; Kinsella (IIIB) from Alberta, Canada: mass 3.7 kg; and Tacoma (IA) from Washington, USA: mass 17 g. Denver City is unique - i.e., not related to any other known iron. Tacoma is the smallest iron meteorite recorded. The meteorites were initially discovered in 1969, 1975, 1946, and between 1925 and 1932, respectively.

  1. Curation of US Martian Meteorites Collected in Antarctica

    NASA Technical Reports Server (NTRS)

    Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.

    1998-01-01

    To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.

  2. Keto-acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-01-01

    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  3. The Meteoritical Bulletin, No. 88, 2004 July

    USGS Publications Warehouse

    Russell, S.S.; Folco, L.; Grady, M.M.; Zolensky, M.E.; Jones, R.; Righter, K.; Zipfel, J.; Grossman, J.N.

    2004-01-01

    The Meteoritical Bulletin No. 88 lists information for 1610 newly classified meteorites, comprising 753 from Antarctica, 302 from Africa, 505 from Asia (495 of which are from Oman), 40 from North America, 5 from South America, 4 from Europe, and 1 of unknown origin. Information is provided for 9 falls (Alby sur Che??ran, Al Zarnkh, Devgaon, Kamioka, Kendrapara, Maromandia, New Orleans, Sivas, and Villalbeto de la Pen??a). Noteworthy specimens include a eucrite fall (Alby sur Che??ran), 6 martian meteorites, 13 lunar meteorites, and 12 irons including one weighing 3 metric ions (Dronino). ?? Meteoritical Society, 2004.

  4. Meteorites and the Evolution of Our Solar System

    NASA Technical Reports Server (NTRS)

    Nava, David F.

    1999-01-01

    The study of meteorites has long been of intense interest ever since these objects were discovered to be of extraterrestrial origin. Meteorite research contributes to unraveling the mysteries in understanding the formation and evolution processes of our solar system. Meteorites, of which there are a variety of widely diverse types of chemical and mineralogical compositions, are the most ancient of solar system objects that can be studied in the laboratory. They preserve a unique historical record of the astronomical and astrophysical events of our solar system. This record is being discerned by a host of ever evolving analytical laboratory methods. Recent discoveries of what are believed to be Martian meteorites, lunar meteorites, a meteorite containing indigenous water, and the recovery from the Cretaceous layer of a small meteorite fragment thought to be from the dinosaur-killing asteroid have fueled additional excitement for studying meteorites.

  5. Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  6. Organic Chemistry of Meteorites

    NASA Technical Reports Server (NTRS)

    Chang, S.; Morrison, David (Technical Monitor)

    1994-01-01

    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  7. Antarctic Meteorite Newsletter. Volume 20

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Satterwhite, Cecilia E.

    1997-01-01

    The availability of 116 new meteorites from the 1994-1996 collections is announced. There are 4 special chondrites, 2 carbonaceous chondrites, and 1 achondrite among the new meteorites. Also included is a redescription of Lodranite GRA95209.

  8. New Insights in Preservation of Meteorites in Hot Deserts: The Oldest Hot Desert Meteorite Collection.

    NASA Astrophysics Data System (ADS)

    Hutzler, A.; Rochette, P.; Bourlès, D.; Gattacceca, J.; Merchel, S.; Jull, A. J. T.; Valenzuela, M.

    2016-08-01

    Terrestrial ages of a subset of a chilean meteorite collection have been determined with cosmogenic nuclides. We show here that provided the environnement is favorable enough, hot desert meteorites can survive over a million year.

  9. Contemporary Inuit Traditional Beliefs Concerning Meteorites

    NASA Astrophysics Data System (ADS)

    Mardon, A. A.; Mardon, E. G.; Williams, J. S.

    1992-07-01

    Inuit religious mythology and the importance of meteorites as "messages" from the Creator of all things is only now being recognized. Field investigations near Resolute, Cornwallis Island in the high Canadian Arctic in 1988 are the bases for this paper. Through interpreters, several elders of the local Inuit described in detail the Inuit belief, recognition, and wonder at the falling meteors & meteorites during the long Polar Night and Polar Day. Such events are passed on in the oral tradition from generation to generation by the elders and especially those elders who fulfill the shamanistic roles. The Inuit have come across rocks that they immediately recognize as not being "natural" and in the cases of a fall that was observed and the rock recovered the meteorite is kept either on the person or in some hidden niche known only to that person. In one story recounted a meteorite fell and was recovered at the birth of one very old elder and the belief was that if the rock was somehow damaged or taken from his possession he would die. Some indirect indication also was conveyed that the discovery and possession of meteorites allow shaman to have "supernatural" power. This belief in the supernatural power of meteorites can be seen historically in many societies, including Islam and the "black rock" (Kaaba) of Mecca. It should also be noted, however, that metallic meteorites were clearly once the major source of iron for Eskimo society as is indicated from the recovery of meteoritical iron arrow heads and harpoon heads from excavated pre-Viking contact sites. The one evident thing that became clear to the author is that the Inuit distinctly believe that these meteorites are religious objects of the highest order and it brings into question the current academic practice of sending meteorites south to research institutes. Any seeming conflict with the traditional use of meteoric iron is more apparent than real--the animals, the hunt, and the act of survival--all being

  10. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  11. Antarctic Meteorite Newsletter. Volume 22

    NASA Technical Reports Server (NTRS)

    Satterwhite, Cecilia (Editor); Lindstrom, Marilyn (Editor)

    1999-01-01

    This Newsletter Contains Classifications of 143 New Meteorites from the 1997 ANSMET Collection. Descriptions are given for 6 meteorites;2 eucrites, and 4 ordinary chondrites. We don't expect much excitement from the rest of the 1997 collection. JSC has examined another 100 meteorites to send to the Smithsonian for classification and they appear to be more of the same LL5 shower. However, past experience tells us that there will be some treasures hidden in the remaining samples. Hope rings eternal, but we can't wait to see the 1998 collection described below.

  12. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, W.; Brown, P.; Matney, M.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  13. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, W.; Matney, M.; Brown, P.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, reentering debris is approx. 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  14. Terrestrial ages of Antarctic meteorites: Implications for concentration mechanisms

    NASA Technical Reports Server (NTRS)

    Schultz, L.

    1986-01-01

    Antarctic meteorites differ from meteorites fallen in other places in their mean terrestrial ages. Boeckl estimated the terrestrial half-life for the disintegration of stone meteorites by weathering under the climatic conditions of the Western United States to be about 3600 years. Antarctic meteorites, however, have terrestrial ages up to 70000 years, indicating larger weathering half-lives. The terrestrial ages of meteorites are determined by their concentration of cosmic-ray-produced radionuclides with suitable half-lives (C-14, Al-26, and Cl-36). These radionuclides have yielded reliable ages for the Antarctic meteorites. The distribution of terrestrial ages of Allan Hills and Yamato meteorites are examined.

  15. The Meteoritical Bulletin, No. 92, 2007 September

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Smith, Caroline; Benedix, Gretchen; Folco, Luigi; Righter, Kevin; Zipfel, Jutta; Yamaguchi, Akira; Aoudjehane, Hasnaa Chennaoui

    In this editon of The Meteoritical Bulletin, 1394 recognized meteorites are reported, 27 from specific locations within Africa, 133 from Northwest Africa, 1227 from Antartica (from ANSMET, PNRA, and PRIC expeditions), and 7 from Asia. The Meteoritical Bulletin announces the approval of four new names series by the Nomenclature Committee of the Meteoritical Society, two from Africa and one from Asia, including Al Haggounia, from Al Haggounia, Morocco, which is projected to be on the order of 3 metric tons of material related to enstatite chondrites and aubrites. Approved are two falls from Africa, Bassikounou (Mauretania) and Gashua (Nigeria). Approved from areas other than Antarctica are one lunar, two Martian, 32 other achondrites, three mesosiderites, two pallasites, one CM, two CK, one CR2, two CV3, one CR2, and four R chondrites. The Nomenclature Committee of the Meteoritical Society 48 newly approved relict meteorites from two new name series, Österplana and Gullhögen (both from Sweden).

  16. Meteorite Unit Models for Structural Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-10-01

    To assess the threat posed by an asteroid entering Earth’s atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory. Due to complex composition, it is challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Young’s modulus, compressive and tensile strengths and Poisson’s ratio, that in turn would help deduce the properties of asteroids. The meteorite unit model is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition.The Young’s Modulus and Poisson’s Ratio in the meteorite units are calculated by performing several hundreds of Monte Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these units. The size, orientation and distribution of cracks are derived by CT-scans and visual scans of various meteorites. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These meteorite unit models will be subsequently used in fragmentation modeling of full scale asteroids.

  17. Meteorite Material Model for Structural Properties

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to complex petrology, it is technically challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Youngs modulus, compressive and tensile strengths and Poissons ratio, that in turn would help deduce the properties of asteroids. The meteorite unit is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition. The Youngs Modulus and Poissons Ratio in the meteorite units are calculated by performing several hundreds of Monte-Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these meteorite units. The size, orientation and distribution of cracks are derived by extensive CT-scans and visual scans of various meteorites from the same family. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These material models will be subsequently used in fragmentation modeling of full scale asteroids.

  18. Comparison of lunar rocks and meteorites: Implications to histories of the moon and parent meteorite bodies

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Fodor, R. V.; Keil, K.

    1974-01-01

    A number of similarities between lunar and meteoritic rocks are reported and suggest that the comparison is essential for a clear understanding of meteorites as probes of the early history of the solar systems: (1) Monomict and polymict breccias occur in lunar rocks, as well as in achondritic and chondritic meteorites, having resulted from complex and repeated impact processes. (2) Chondrules are present in lunar, as well as in a few achondritic and most chondritic meteorites. It is pointed out that because chondrules may form in several different ways and in different environments, a distinction between the different modes of origin and an estimate of their relative abundance is important if their significance as sources of information on the early history of the solar system is to be clearly understood. (3) Lithic fragments are very useful in attempts to understand the pre- and post-impact history of lunar and meteoritic breccias. They vary from little modified (relative to the apparent original texture), to partly or completely melted and recrystallized lithic fragments.

  19. The Meteoritical Bulletin, No. 96, September 2009

    USGS Publications Warehouse

    Weisberg, M.K.; Smith, C.; Benedix, G.; Herd, C.D.K.; Righter, K.; Haack, H.; Yamaguchi, A.; Chennaoui, Aoudjehane H.; Grossman, J.N.

    2009-01-01

    The Meteoritical Bulletin No. 96 contains a total of 1590 newly approved meteorite names with their relevant data. These include 12 from specific locations within Africa, 76 from northwest Africa, 9 from the Americas, 13 from Asia, 1 from Australia, 2 from Europe, 950 from Antarctica recovered by the Chinese Antarctic Research Expedition (CHINARE), and 527 from the American Antarctic program (ANSMET). Among these meteorites are 4 falls, Almahata Sitta (Sudan), Sulagiri (India), Ash Creek (United States), and Maribo (Denmark). Almahata Sitta is an anomalous ureilite and is debris from asteroid 2008 TC3 and Maribo is a CM2 chondrite. Other highlights include a lunar meteorite, a CM1 chondrite, and an anomalous IVA iron. ?? The Meteoritical Society, 2009.

  20. Thermoluminescence of meteorites and their orbits

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.

    1981-01-01

    The thermoluminescence levels of 45 ordinary chondrites are measured in order to provide information on the orbital characteristics of the meteorites before impact. Glow curves of the photon emission response of powdered samples of the meteorites to temperatures up to 550 C in the natural state and following irradiation by a laboratory test dose of 110,000 rad were obtained as functions of terrestrial age and compared to those of samples of the Pribram, Lost City and Innisfree meteorites, for which accurate orbital data is available. The thermoluminescence levels in 40 out of 42 meteorites are found to be similar to those of the three control samples, indicating that the vast majority of ordinary chondrites that survive atmospheric entry have perihelia in the range 0.8-1 AU. Of the remaining two, Farmville is observed to exhibit an unusually large gradient in thermoluminescence levels with sample depth, which may be a result of a temperature gradient arising in a slowly rotating meteorite. Finally, the thermoluminescence measured in the Malakal meteorite is found to be two orders of magnitude lower than control samples, which is best explained by thermal draining by solar heating in an orbit with a perihelion distance of 0.5 to 0.6 AU.

  1. The organic inventory of primitive meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    Carbonaceous meteorites are primitive samples that provide crucial information about the solar system genesis and evolution. This class of meteorites has also a rich organic inventory, which may have contributed the first prebiotic building blocks of life to the early Earth. We have studied the soluble organic inventory of several CR and CM meteorites, using high performance liquid chromatography with UV fluorescence detection (HPLC-FD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our target organic molecules include amino acids, nucleobases and polycyclic aromatic hydrocarbons (PAHs), among others. CR chondrites contain the highest amino acids concentration ever detected in a meteorite. The degree of aqueous alteration amongst this class of meteorites seems to be responsible for the amino acid distribution. Pioneering compound-specific carbon isotope measurements of nucleobases present in carbonaceous chondrites show that these compounds have a non-terrestrial origin. This suggests that components of the ge-netic code may have had a crucial role in life's origin. Investigating the abundances, distribution and isotopic composition of organic molecules in primitive meteorites significantly improves our knowledge of the chemistry of the early solar system, and the resources available for the first living organisms on Earth.

  2. A new analysis of Monturaqui Meteorites

    NASA Astrophysics Data System (ADS)

    Kaniansky, S.; Molnár, K.

    2015-01-01

    The Monturaqui meteorite crater, located in the Andes Mountains, is known to host corroded iron meteorites (Koch and Buchwald, 1994), of probable IAB type. Over three hundred suspicious rocks with an exterior appearance were collected during the two expeditions to Monturaqui crater. A sample has been analyzed in the Department of Earth and Atmospheric Sciences, University of Alberta, Canada. The analyses support the conclusion that the Monturaqui rocks are corroded iron meteorites.

  3. The Virtual Museum for Meteorites

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Meteorites play a fundamental role in education and outreach, as these samples of extraterrestrial materials are very valuable tools to promote the public's interest in Astronomy and Planetary Sciences. Thus, for instance, meteorite exhibitions reveal the interest and fascination of students, educators and even researchers for these peculiar rocks and how these can provide information to explain many fundamental questions related to the origin and evolution of our Solar System. However, despite the efforts of private collectors, museums and other institutions to organize meteorite exhibitions, the reach of these is usually limited. But this issue can be addressed thanks to new technologies related to the Internet. In fact we can take advantage of HTML and related technologies to overcome local boundaries and open the possibility of offering these exhibitions for a global audience. With this aim a Virtual Museum for Meteorites has been created and a description of this web-based tool is given here.

  4. Cleaning a Martian Meteoritean Meteorite

    NASA Image and Video Library

    2018-02-13

    A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22247

  5. The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential

    NASA Astrophysics Data System (ADS)

    Boamah, Daniel; Koeberl, Christian

    Lake Bosumtwi is a natural inland freshwater lake that originated from a meteorite impact. The lake is becoming a popular tourist attraction in Ghana and has the potential to be developed as an ecotourism site in the future. However, there have been some unregulated human activities and unplanned infrastructure development, and there are increased levels of pollutants in the lake water. In order to make ecotourism at Lake Bosumtwi successful in the long term, the Lake Bosumtwi Development Committee has been formed to ensure that local people are empowered to mobilize their own capacities. It has been realized that an important criterion required to develop ecotourism in a socially responsible, economically efficient, and environmentally viable way is to foster a constructive dialogue between the local people and tourists about the needs of the indigenous people.

  6. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  7. Cosmochemical Studies: Meteorites and their Parent Asteroids

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    2003-01-01

    This a final technical report that focuses on cosmochemical studies of meteorites and their parent asteroids. The topics include: 1) Formation of iron meteorites and other metal rich meteorites; 2) New perspectives on the formation of chondrules; and 3) Consequences of large aerial bursts. Also a list of seven papers that received significant support from this research are included.

  8. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  9. The Meteoritical Bulletin, No. 93, 2008 March

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Smith, Caroline; Benedix, Gretchen; Folco, Luigi; Righter, Kevin; Zipfel, Jutta; Yamaguchi, Akira; Aoudjehane, Hasnaa Chennaoui

    2008-03-01

    In this edition of the Meteoritical Bulletin, 1443 approved meteorite names with their relevant data are reported, one from a specific location within Africa, 211 from Northwest Africa, 5 from KOREAMET, 598 from the Chinese Antarctic Expedition, 23 from the Americas, 151 from Asia, three from Australia, two from Europe, two from NOVA, and 447 from ANSMET that were not reported in the Meteoritical Bulletin no. 87. Also reported are 4 falls from the Americas. Some highlights of approved meteorites are 10 lunar (including NWA 5000, an 11.528 kg sample), 3 Martian, 4 irons (one from Indonesia), 2 ureilites, 5 mesosiderites, 1 pallasite, 6 brachinites, 3 CV3s, 4 CO3s, 8 CMs, 12 CK3s, and many more. Finally, the Committee on Nomenclature of the Meteoritical Society announces two new names series in North America.

  10. The breakup of a meteorite parent body and the delivery of meteorites to earth

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, D. W. G.

    1992-01-01

    Whether many of the 10,000 meteorites collected in the Antarctic are unlike those falling elsewhere is contentious. The Antarctic H chondrites, one of the major classes of stony meteorites, include a number of individuals with higher induced thermoluminescence peak temperatures than observed among non-Antarctic H chondrites. The proportion of such individuals decreases with the mean terrestrial age of the meteorites at the various ice fields. These H chondrites have cosmic-ray exposure ages of about 8 million years, experienced little cosmic-ray shielding, and suffered rapid postmetamorphic cooling. Breakup of the H chondrite parent body, 8 million years ago, may have produced two types of material with different size distributions and thermal histories. The smaller objects reached earth more rapidly through more rapid orbital evolution.

  11. Meteorite Material Model for Structural Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, P.; Carlozzi, A. A.; Karajeh, Z. S.; Bryson, K. L.

    2017-07-01

    In order to prepare material models for the entire family of asteroids, meteorite units are developed for ordinary chondrites. The meteorite unit is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition.

  12. The Old Woman, California, IIAB iron meteorite

    NASA Astrophysics Data System (ADS)

    Plotkin, Howard; Clarke, Roy S.; McCoy, Timothy J.; Corrigan, Catherine M.

    2012-05-01

    The Old Woman meteorite, discovered in March 1976 by two prospectors searching for a fabled lost Spanish gold mine in mountains ˜270 km east of Los Angeles, has achieved the status of a legend among meteorite hunters and collectors. The question of the ownership of the 2753 kg group IIAB meteorite, the second largest ever found in the United States (34°28'N, 115°14'W), gave rise to disputes involving the finders, the Bureau of Land Management, the Secretary of the Department of the Interior, the State of California, the California members of the U.S. Congress, various museums in California, the Smithsonian Institution, and the Department of Justice. Ultimately, ownership of the meteorite was transferred to the Smithsonian under the powers of the 1906 Antiquities Act, a ruling upheld in a U.S. District Court and a U.S. Court of Appeals. After additional debate, the Smithsonian removed a large cut for study and curation, and for disbursement of specimens to qualified researchers. The main mass was then returned to California on long-term loan to the Bureau of Land Management's Desert Discovery Center in Barstow. The Old Woman meteorite litigation served as an important test case for the ownership and control of meteorites found on federal lands. The Old Woman meteorite appears to be structurally unique in containing both hexahedral and coarsest octahedral structures in the same mass, unique oriented schreibersites within hexahedral areas, and polycrystalline parent austenite crystals. These structures suggest that different portions of the meteorite may have transformed via different mechanisms upon subsolidus cooling, making the large slices of Old Woman promising targets for future research.

  13. Oxygen isotope variation in stony-iron meteorites.

    PubMed

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H

    2006-09-22

    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  14. Antarctic Meteorite Newsletter, Volume 8, Number 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Requests for samples are welcomed from research scientists of all countries, regardless of their current state of funding for meteorite studies. All sample requests will be reviewed by the Meteorite Working Group (MWG), a peer-review committee that guides the collection, curation, allocation, and distribution of the U.S. Antarctic meteorites. Issurance of samples does not imply a commitment by any agency to fund the proposed research. Requests for financial support must be submitted separately to the appropriate funding agencies. As a matter of policy, U.S. Antarctic meteorites are the property of the National Science Foundation and all allocations are subject to recall.

  15. Iron Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Kehm, K.; Alexander, C. M.; Hauri, E. H.

    2001-12-01

    The recent identification of naturally occurring isotopic mass fractionation of the transition met-als on the Earth has prompted a search for similar variability in meteorites. Studies of Cu, Zn, and Fe, for example, have revealed per-mil level and larger mass fractionations between different bulk meteorites. Such variations can result from temperature-sensitive isotope exchange reactions and kinetic processes, and therefore may reflect conditions in the solar nebula and on meteorite parent bodies. Recent advances in ICP-MS have permitted isotope studies of transition metals and other elements with similarly small isotopic mass dispersions. Among the transition metals, Fe is perhaps the most difficult to analyze by ICP-MS because plasma sources are copious producers of argide molecules that interfere with the measurement of iron isotopes. However, the stable isotope behavior of Fe is of special interest because it is a non-refractory major element in meteorites, present in a variety of mineral associations and redox states. Considerable effort has gone into overcoming the inherent analytical difficulties of measuring Fe using ICP-MS. We recently reported on a technique that achieves argide reduction by operating the plasma source in so-called 'cold' mode. In this presentation, we report results from this ongoing work. To date, analyses of nine different meteorites, and eight individual Tieschitz (H3) chondrules have been completed, along with a number of measurements of the Hawaiian basalt sample Kil1919. All of the bulk meteorite compositions, which include both chondrites and irons, have identical 56Fe/54Fe to within ~ 0.14 per mil (2 sigma), and are indistinguishable from the composition of the terrestrial basalt. The Tieschitz chondrules, on the other hand, tend to have isotopically light compositions. This could reflect formation from fractionated starting material. Alternatively, Fe condensation, under non-equilibrium conditions can enrich light isotopes

  16. Asteroid 2008 TC3 Breakup and Meteorite Fractions

    NASA Technical Reports Server (NTRS)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.

    2017-01-01

    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  17. Meteorite Linked to Rock at Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This meteorite, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that meteorites could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches).

    This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large meteorite hit Mars near the rock. The meteorite impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of martian atmosphere gases.

    The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this meteorite and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.

  18. Development of a Digital Meteorite Identification Program at University of New Mexico (UNM) (Institute of Meteoritics) and Southwestern Indian Polytechnic Institute (SIPI)

    NASA Technical Reports Server (NTRS)

    Gakin, R.; Lewis, K.; Simmons, J.; Gchachu, K.; Karner, J. M.; Newsom, H. E.; Jones, R. H.

    2003-01-01

    Determining the origin and chemical composition of suspect extra terrestrial specimens has lead to meteorite identification research programs. Such programs, like the University of New Mexico-Southwestern Indian Polytechnic Institute partnership, are being inundated with many non-meteorites (meteor wrongs) sent in by interested individuals from all over the world. This meteorite identification program developed a spreadsheet that aids in identifying the types of minerals in a sample for physical properties, possible meteorite characteristics, minerals and rock properties, and possible man made characteristics. Samples that show meteorite distinctiveness are further analyzed via the Scanning Electron Microprobe (SEM).

  19. Meteorites and Microbes: Meteorite Collection and Ice Sampling at Patriot Hills, Thiel Mountains, and South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Sipiera, Paul P.; Hoover, Richard B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    During the Antarctica 2000 Expedition, sponsored by the Planetary Studies Foundation, meteorites and ice microbiota were collected from the Patriot Hills, and Thiel Mountains of Antarctica and snow samples were at the South Pole. Psychrophilic and psychrotrophic microbiota were obtained from blue ice, cryoconite and ice-bubble systems. Twenty frozen meteorites were collected using aseptic techniques from the blue ice fields near the Moulton Escarpment of the Thiel Mountains (85 S, 94 W) and from the Morris Moraine of the Patriot Hills (80 S, 81 W) Ellsworth Mountains. These ice and meteorite samples are of potential significance to Astrobiology. They may help refine chemical and morphological biomarkers and refine characteristics of microbial life in one of the harshest environments on Earth. We discuss the Antarctica 2000 Expedition and provide preliminary results of the investigation of the meteorites and ice microbiota recovered.

  20. Meteorite and meteoroid: New comprehensive definitions

    USGS Publications Warehouse

    Rubin, A.E.; Grossman, J.N.

    2010-01-01

    Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958

  1. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  2. The Meteoritical Bulletin, No. 87, 2003 July

    USGS Publications Warehouse

    Russell, S.S.; Zipfel, J.; Folco, L.; Jones, R.; Grady, M.M.; McCoy, T.; Grossman, J.N.

    2003-01-01

    Meteoritical Bulletin No. 87 lists information for 1898 newly classified meteorites, comprising 1048 from Antarctica, 462 from Africa, 356 from Asia (355 of which are from Oman), 18 from North America, 5 from South America, 5 from Europe, and 3 from Australia. Information is provided for 10 falls (Beni M'hira, Elbert, Gasseltepaoua, Hiroshima, Kilabo, Neuschwanstein, Park Forest, Pe??, Pe??te??lkole??, and Thuathe). Two of these-Kilabo and Thuathe-fell on the same day. Orbital characteristics could be calculated for Neuschwanstein. Noteworthy specimens include 8 Martian meteorites (5 from Sahara, 2 from Oman and 1 from Antarctica), 13 lunar meteorites (all except one from Oman), 3 irons, 3 pallasites, and many carbonaceous chondrites and achondrites.

  3. Life on Mars: Evidence from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  4. Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice

    NASA Astrophysics Data System (ADS)

    Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James

    2017-10-01

    Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.

  5. Close-up of a Mars Meteorite

    NASA Image and Video Library

    2018-02-13

    Close-up of a slice of a meteorite scientists have determined came from Mars. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being heaved into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22246

  6. A Martian Meteorite for Mars 2020

    NASA Image and Video Library

    2018-02-13

    Rohit Bhartia of NASA's Mars 2020 mission holds a slice of a meteorite scientists have determined came from Mars. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22245

  7. METEORITIC HYDROCARBONS AND EXTRATERRESTRIAL LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, E.

    1962-08-29

    A critical discussion is given of the comparison by Nagy Meinschein, and Hennessy of the mass spectra of the hydrocarbons from the distillate of the Orgueil meteorite with the mass spectra of two biogenic materials, butter and sediments. The conclusion of Nagy et al. that biogenic processes occur in the universe beyond the earth, is crfticized on the basis of the following facts: the mass spectra are only superficially similar; contamination is a serious problem at these low concentrations; the meteorite is very porous and hence will absorb considerable amounts of atmospheric constituents; the peak heights are not truly representativemore » of specific compounds; the meteorite contains free suifur, which would dehydrogenate hydrocarbons on heating; etc. (D.L.C.)« less

  8. Material Modeling of Stony Meteorites for Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, P.

    2016-12-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale

  9. The Kaidun Meteorite: Where Did It Come From?

    NASA Technical Reports Server (NTRS)

    Ivanov, Andrei; Zolensky, Michael

    2003-01-01

    The Kaidun meteorite, which fell on 3.12.1980 at lat. 15 deg N, long. 48.3 deg E, holds a special place in the world meteorite collection. Kaidun is characterized by an unprecedentedly wide variety of meteorite material in its makeup. The high degree of variability in this meteorite s material is evidenced by the richness of its mineral composition - nearly 60 minerals and mineral phases have been identified in Kaidun, including several never before found in nature, such as florenskiite FeTiP, the first known phosphide of a lithophilic element.

  10. Differentiated meteorites and the components of chondrites

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.

    1984-01-01

    Findings are summarized from research conducted to develop a detailed classification of all kinds of meteorites in an effort to determine the conditions in the solar nebula, the processes that produced chemical fractionations in chondrites and formed chondrules, as well as ascertain the processes that occurred in the parent bodies of differentiated meteorites (which preserve a partial record of the chondritic materials from which they formed). Fractionation patterns within iron meteorite groups are analyzed.

  11. Combining meteorites and missions to explore Mars.

    PubMed

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  12. Compositions of Three Lunar Meteorites: Meteorite Hills 01210, Northeast Africa 001, and Northwest Africa 3136

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Irving, A. J.

    2005-01-01

    We report on compositions obtained by instrumental neutron activation analysis on three new lunar meteorites, MET 01210 (Meteorite Hills, Antarctica; 23 g), NEA 001 (Northeast Africa, Sudan; 262 g), and NWA 3136 (Northwest Africa, Algeria or Morocco; 95 g). As in previous similar studies, we divided our samples into many (8-9) small (approximately 30 mg) subsamples prior to analysis.

  13. Magnetic studies on Shergotty and other SNC meteorites

    NASA Technical Reports Server (NTRS)

    Cisowski, S. M.

    1986-01-01

    The results of a study of basic magnetic properties of meteorites within the SNC group, including the four known shergottites and two nakhlites, are presented. An estimate is made of the strength of the magnetic field which produced the remanent magnetization of the Shergotty meteorite, for the purpose of constraining the choices for the parent body of these SNC meteorites. Remanence measurements in several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem to be related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. A paleointensity experiment on a weakly magnetized subsample of Shergotty revealed a low temperature component of magnetization acquired in a field of 2000 gammas, and a high temperature component reflecting a paleofield strength of between 250 and 1000 gammas. The weak field environment that these meteorites seem to reflect is consistent with either a Martian or asteroidal origin, but inconsistent with a terrestrial origin.

  14. The Meteoritical Bulletin, No. 81, 1997 July

    USGS Publications Warehouse

    Grossman, J.N.

    1997-01-01

    Meteoritical Bulletin, No. 81 lists 181 new meteorites. Noteworthy among these are a new lunar meteorite (Dar al Gani 262), four observed falls (Dong Ujimqin Qi, Galkiv, Mount Tazerzait, and Piplia Kalan), four irons (Albion, Great Sand Sea 003, Hot Springs, and Mont Dieu), two mesosiderites (Dong Ujimqin Qi and Lamont), an acapulcoite (FRO 95029), a eucrite (Piplia Kalan), two probably-paired ureilites (Dar al Gani 164 and 165), an R chondrite (Hammadah al Hamra 119), an ungrouped type-3 chondrite (Hammadah al Hamra 180), a highly unequilibrated ordinary chondrite (Wells, LL3.3), and a variety of carbonaceous and unequilibrated ordinary chondrites from Libya and Antarctica. All italicized abbreviations refer to addresses listed in the appendix. ?? Meteoritical Society, 1997.

  15. Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    NASA Technical Reports Server (NTRS)

    Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.

    2006-01-01

    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).

  16. Workshop on Meteorites From Cold and Hot Deserts

    NASA Technical Reports Server (NTRS)

    Schultz, Ludolf (Editor); Annexstad, John O. (Editor); Zolensky, Michael E. (Editor)

    1994-01-01

    The current workshop was organized to address the following points: (1) definition of differences between meteorites from Antarctica, hot deserts, and modern falls; (2) discussion of the causes of these differences; (3) implications of possible different parent populations, infall rates, weathering processes, etc.; (4) collection, curation, and distribution of meteorites; and (5) planning and coordination of future meteorite searches.

  17. The Magnetization of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Herndon, James Herndon

    1974-01-01

    Alternating field demagnetization experiments have been conducted on representative samples of the carbonaceous meteorites (carbonaceous chondrites and ureilites). The results indicate that many, if not all, of these meteorites possess an intense and stable magnetic moment of extraterrestrial origin. Thermomagnetic analyses have been conducted on samples of all known carbonaceous meteorites. In addition to yielding quantitative magnetite estimates, these studies indicate the presence of a thermally unstable component, troilite, which reacts with gaseous oxygen to form magnetite. It is proposed that the magnetite found in some carbonaceous chondrites resulted from the oxidation of troilite during the early history of the solar system. The formation of pyrrhotite is expected as a natural consequence of magnetite formation via this reaction. Consideration is given to the implications of magnetite formation on paleointensity studies.

  18. Lunar and Meteorite Sample Disk for Educators

    NASA Technical Reports Server (NTRS)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  19. Combining meteorites and missions to explore Mars

    PubMed Central

    McCoy, Timothy J.; Corrigan, Catherine M.; Herd, Christopher D. K.

    2011-01-01

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential. PMID:21969535

  20. Magnetic study of meteorites recovered in the Atacama desert (Chile): implications for meteorite paleomagnetism and the stability of hot desert surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Uehara, M.; Gattacceca, J.; Valenzuela, M.; Demory, F.; Rochette, P.

    2010-12-01

    Hot deserts are one of the large reservoirs of meteorites on Earth (about 25% of total meteorites), and some groups of rare meteorites (Rumuruti chondrites or lunar meteorites for instance). Therefore, the paleomagnetic record of hot desert meteorites is potentially a good source of information about the ancient extraterrestrial magnetic fields. However, meteorites recovered in hot deserts have typical terrestrial residence times (their so-called terrestrial ages) in the order of a few to several tens of kyr. During that time, a desert meteorite is exposed to the geomagnetic field, and is likely to acquire a Viscous Remanent Magnetization (VRM) whose intensity is controlled, among other things, by the stability of the desert surface. Moreover, with increasing terrestrial age, metallic and sulphide phases that are the dominant magnetic minerals in meteorites are oxidized and form potentially magnetic weathering minerals, resulting in the possible destruction of the primary remanence and acquisition of secondary terrestrial chemical remanence (CRM). Therefore, the paleomagnetic study of desert meteorites must take into account these terrestrial processes, in order to isolate the extraterrestrial magnetic record. We report here the paleomagnetic data obtained from 8 ordinary chondrites (3 H- and 5 L-chondrites) collected by our group in the Atacama desert (Chile) and oriented in situ with respect to the geographic north. Optical microscopy found that their weathering grades are W3 (60 - 95 % of metal is replaced by oxi-/hydroxides, 4 samples), W2 (moderate oxidation of metal, 20 - 60 % replaced; 2 samples), and W1 (only minor oxidation, 2 samples). Alternating field demagnetization experiments up to 100 mT found that W1 and W2 samples have a very low coercivity component (< 5 mT) and show unstable demagnetization paths above 10 mT, a behavior similar to that of freshly fallen ordinary chondrites. On the other hand, the more weathered samples (weathering stage W3) have

  1. Elemental composition analysis of stony meteorites discovered in Phitsanulok, Thailand

    NASA Astrophysics Data System (ADS)

    Loylip, T.; Wannawichian, S.

    2017-09-01

    A meteorite is a fragment of pure stone, iron or the mixture of stony-iron. The falling of meteorites into Earth’s surface is part of Earth’s accretion process from dust and rocks in our solar system. When these fragments come close enough to the Earth to be attracted by its gravity, they may fall into the Earth. Following the detection of objects that fall from the sky onto a home in Phitsanulok in June 27, the meteorites were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) instruments. The results from SEM/EDS analysis show that the meteorites are mainly composed of Fe-Ni and Fe-s. The meteorite is Achondrite, a class of meteorite which does not contain Chondrule. The meteorites in this work are thought to be part of a large asteroid.

  2. Weathering of stony meteorites in Antarctica

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    Weathering produces undesirable physical, chemical, and isotopic changes that might disturb the records of cosmochemical evolution that are sought in meteorites. Meteorites are physically disintegrated by crack propagation phenomena, including ice riving and secondary mineral riving, and are probably abraded by wind that is laden with ice crystals or dust particles. Chemical weathering proceeds by oxidation, hydration, carbonation, and solution and produces a variety of secondary minerals and mineraloids. Differential weathering under freezing conditions is discussed, as well as, the mineralogy of weathering products. Furthermore, the use of Antarctic alteration of meteorites could be used as an excellent analog for weathering on Mars or on cometary bodies.

  3. Indigenous Amino Acids in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  4. Enantiomer Ratios of Meteoritic Sugar Derivatives

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2012-01-01

    Carbonaceous meteorites contain a diverse suite of soluble organic compounds. Studies of these compounds reveal the Solar System's earliest organic chemistry. Among the classes of organic compounds found in meteorites are keto acids (pyruvic acid, etc.), hydroxy tricarboxylic acids (1), amino acids, amides, purines and pyrimidines. The Murchison and Murray meteorites are the most studied for soluble and insoluble organic compounds and organic carbon phases. The majority of (indigenous) meteoritic compounds are racemic, (i.e., their D/L enantiomer ratios are 50:50). However, some of the more unusual (non-protein) amino acids contain slightly more of one enantiomer (usually the L) than the other. This presentation focuses on the enantiomer analyses of three to six-carbon (3C to 6C) meteoritic sugar acids. The molecular and enantiomer analysis of corresponding sugar alcohols will also be discussed. Detailed analytical procedures for sugar-acid enantiomers have been described. Results of several meteorite analyses show that glyceric acid is consistently racemic (or nearly so) as expected of non-biological mechanisms of synthesis. Also racemic are 4-C deoxy sugar acids: 2-methyl glyceric acid; 2,4-dihydroxybutyric acid; 2,3-dihydroxybutyric acid (two diastereomers); and 3,4-dihydroxybutyric acid. However, a 4C acid, threonic acid, has never been observed as racemic, i.e., it possesses a large D excess. In several samples of Murchison and one of GRA 95229 (possibly the most pristine carbonaceous meteorite yet analyzed) threonic acid has nearly the same D enrichment. In Murchison, preliminary isotopic measurements of individual threonic acid enantiomers point towards extraterrestrial sources of the D enrichment. Enantiomer analyses of the 5C mono-sugar acids, ribonic, arabinonic, xylonic, and lyxonic also show large D excesses. It is worth noting that all four of these acids (all of the possible straight-chained 5C sugar acids) are present in meteorites, including the

  5. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.

    2009-01-01

    On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.

  6. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  7. Antarctic Meteorite Newsletter, Volume 11, Number 2, August 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Presented are classifications and descriptions of a large number of meteorites which include the last samples from the 1984 collection and the first samples from the 1987 collection. There is a particularly good selection of meteorites of special petrologic type in the 1987 collection. The achondrites include aubrites, ureilites, howardites, eucrites, and a diogenite. The howardites are particularly notable because of their size and previous scarcity in the Antarctic collection. Noteworthy among the 7 irons and 3 mesosiderities are 2 anamolous irons and 2 large mesosiderites. The carbonaceous chondrites include good suites of C2 and C4 meteorites, and 2 highly equilibrated carbonaceous chondrites tentatively identified as C5 and C6 meteorites. Also included are surveys of numerous meteorites for Al-26 and thermoluminescence. These studies provide information on the thermal and radiation histories of the meteorites and can be used as measures of their terrestrial ages.

  8. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate

    DOE PAGES

    Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; ...

    2017-03-06

    Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites havemore » experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H + -bearing whitlockite with implications for interpreting meteorites and the need for future sample return.« less

  9. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, C. T.; Tschauner, O.; Hausrath, E. M.

    Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites havemore » experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H + -bearing whitlockite with implications for interpreting meteorites and the need for future sample return.« less

  10. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate

    PubMed Central

    Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; Udry, A.; Luo, S. N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; Lin, C.

    2017-01-01

    Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H+-bearing whitlockite with implications for interpreting meteorites and the need for future sample return. PMID:28262701

  11. The Wold Cottage meteorite: Not just any ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Pillinger, C. T.; Pillinger, J. M.

    1996-09-01

    The Wold Cottage meteorite (fell, 1795), as is well known, played an important part in meteorites being accepted as stones from the sky. In most cases, the very select group of people who have been privileged to witness any meteorite fall, let alone one as important as Wold Cottage, enjoy a moment's fame but then disappear into obscurity. In this respect, Wold Cottage is very different; Edward Topham, the man who reported the fall and who became the meteorite's publicist, was already very well known for many other reasons. This fact contributed substantially to the evidence provided by his workmen being accepted, following two public exhibitions of the meteorite, the second after sworn testimonies were obtained. Here we explore Topham's background in order to reveal his character, particularly the value he placed on truth. When he passed the meteorite over to a public museum, he did so in the belief that he was acting for the benefit of posterity. At a time when the idea of meteorites being extraterrestrial was still controversial, the Wold Cottage stone vitally prompted the observation that specimens from different parts of the globe closely resembled each other, thus stimulating the crucial chemical analyses which verified that they were indeed related. During its first twenty years on Earth, the Wold Cottage meteorite was a prized specimen, a public attraction and sought after for scientific teaching purposes. In researching Wold Cottage, we have been able to discover information about many of the personalities who were involved in providing and studying the first few meteorites to become available for scientific research. The Wold Cottage story gives an interesting perspective on the cultural scene at the end of the eighteenth and beginning of the nineteenth centuries when there was no clear distinction between the arts and sciences, and meteoritics was the prerogative of often rather flamboyant gentlemen.

  12. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  13. The Mundrabilla Meteorite in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Carpenter, P. K.; Engel, H. P.

    2003-01-01

    Computed tomography (CT) using gamma radiation has revealed the interior structure of the anomalous iron meteorite, Mundrabilla. This meteorite is composed of 25 volume percent of iron sulfide with the remainder being iron-nickel. Both phases have been shown to be contiguous, and three dimensional models have been constructed using rapid prototyping techniques.

  14. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  15. A search for presolar organic matter in meteorite

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1985-01-01

    The D/H ratios and the C-13/C-12 ratios of acid-insoluble organic matter of 4 meteorites, Ochansk (H4), Plainview (H5), Gladstone (H6) and Odessa (IA), were measured. delta-D values for hydrogen extracted by stepwise combustion were negative, down to -280 deg/infinity. delta-C-13 values were also negative except in the case of the carbon coming off at the highest temperature steps for Plainview and Odessa meteorites. The concentrations of C-13-rich carbon were 3-5 orders of magnitude smaller than those found in Murchison meteorite, suggesting that relic grains of stellar condensates were mostly destroyed in the meteorites examined.

  16. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  17. Atmospheric heating of meteorites: Results from nuclear track studies

    NASA Technical Reports Server (NTRS)

    Jha, R.

    1984-01-01

    A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.

  18. Update (2012-2017) on lunar meteorites from Oman

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    2017-06-01

    This report presents bulk composition data for 10 lunar meteorite stones from Oman for which the names have been approved since June, 2012. On the basis of composition and reported find location, four new meteorites are represented among this group of stones. Data from neutron activation analysis of 371 subsamples of all lunar meteorites from Oman and Saudi Arabia analyzed in this laboratory are presented.

  19. Tracing meteorite source regions through asteroid spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  20. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajola, M.; Magrin, S.; Bertini, I.

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterizationmore » of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional

  1. Evidence for Microfossils in Ancient Rocks and Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, A. Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    The McKay et all. detection of chemical biomarkers and possible microfossils in an ancient meteorite from Mars (ALH84001) stimulated research in several areas of importance to the newly emerging field of Astrobiology. Their report resulted in a search for additional evidence of microfossils in ancient terrestrial rocks and meteorites. These studies of ancient rocks and meteorites were conducted independently (and later collaboratively) in the United States and Russia using the SEM, Environmental Scanning Electron Microscope (ESEM), and Field Emission Scanning Electron Microscope (FESEM). We have encountered in-situ in freshly broken carbonaceous chondrites a large number of complex microstructures that appear to be lithified microbial forms. The meteoritic microstructures have characteristics similar to the lithified remains of filamentous cyanobacteria and bacterial microfossils we have found in ancient phosphorites, ancient graphites and oil shales. Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis shows the possible microfossils have a distribution of chemical elements characteristic of the meteorite rock matrix, although many exhibit a superimposed carbon enhancement. We have concluded that the mineralized bodies encountered embedded in the rock matrix of freshly fractured meteoritic surfaces can not be dismissed as recent surface contaminants. Many of the forms found in-situ in the Murchison, Efremovka, and Orgueil carbonaceous meteorites are strikingly similar to microfossils of coccoid bacteria, cyanobacteria and fungi such as we have found in the Cambrian phosphorites of Khubsugul, Mongolia and high carbon Phanerozoic and Precambrian rocks of the Siberian and Russian Platforms.

  2. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  3. Amino acids in the Martian meteorite Nakhla.

    PubMed

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  4. Amino acids in the Martian meteorite Nakhla

    PubMed Central

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β-alanine, and γ-amino-n-butyric acid (γ-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the d/l ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth. PMID:10430856

  5. High-pressure minerals in shocked meteorites

    NASA Astrophysics Data System (ADS)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  6. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  7. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  8. Asteroidal Differentiation - The Record in Meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2010-01-01

    Early in solar system history, an intense energy source modified the small rocky bodies that had accreted from nebular condensates. The consensus view is that this energy source was the decay of short-lived 26Al, perhaps with a contribution from short-lived 60Fe. Differentiated meteorites and primitive achondrites preserve records of the states of asteroids as differentiation was ending. Reading these records provides clues to the nature of the energy source and the mechanisms of differentiation. I will examine the records from the acapulcoite-lordanite clan, ureilites, main-group pallasites, magmatic iron meteorite groups, brachinites and howardite-eucrite-diogenite (HED) clan meteorites. The acapulcoite-lodranite clan and the ureilites contain evidence that their parent asteroids reached temperatures where basaltic melts were produced. The mineralogies of lodranites and ureilites are dominantly olivine and low-Ca pyroxene, and these meteorites are highly depleted in incompatible lithophile elements. The acapulcoite-lodranite and ureilite parent bodies were heated to the point where on the order of 20-30% melting had taken place, but there is no evidence for more extensive melting. Assuming a 26Al energy source, the implication is that transport of the Al-rich basalt out of the mantle outpaced radiogenic heating, and thus shut down further differentiation. Main-group pallasites, magmatic iron meteorites and HED clan meteorites, on the other hand, provide evidence for total or near total melting of asteroids. The silicate phase of pallasites is magnesian olivine; their minor and trace element contents suggest that they are refractory melting residues. The degree of melting was high, perhaps on the order of 80%. The compositions of the most Ir-rich magmatic irons suggest near total melting of the metallic phase, and thus high degrees of melting on their parent asteroids. The compositions of basaltic eucrites are most consistent with them being residues from the

  9. Update on Terrestrial Ages of Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Nishiizumi, K.; Caffee, M. W.

    2000-01-01

    Terrestial ages are presented for 70 Antarctic meteorites, based on cosmogenic Be-10, Al-26 and Cl-36 in the metal phase. Also, results of leaching experiments are discussed to study possible contamination of stony meteorites with atmospheric Be-10

  10. Meteoritics and Planetary Science Supplement. Volume 35

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G. (Editor); Binzel, Richard P. (Editor); Gaffey, Michael J. (Editor); Kraehenbuehl, Urs (Editor); Pieters, Carle M. (Editor); Shaw, Denis (Editor); Wieler, Rainer (Editor); Brownlee, Donald E. (Editor); Goldstein, Joseph I. (Editor); Lyon, Ian C. (Editor)

    2000-01-01

    This special supplement of the Meteoritics and Planetary Science Society Journal contains the abstracts of 324 technical presentations, and the presentations of awards during the Annual meeting of the Meteoritical Society. The abstracts review current research on meteors and planetary sciences.

  11. Identification of new meteorite, Mihonoseki (L), from broken fragments in Japan

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Noma, Y.

    1993-01-01

    New meteorite of Mihonoseki fallen in Shimane-ken was identified by fine broken pieces by using an energy-dispersive scanning electron microprobe analyzer. It shows fusion-crust (i.e. Fe-Si melt), meteoritic minerals (kamacite, taenite, troilite, amorphous plagioclase etc.) and chrondrule with clear glassy rim. Mineralogical, and petrological data of several fine grains suggest that broken fragments of Mihonoseki are L3/4 chondritic meteorite which is the first identification in a Japanese fallen meteorite. The prompt identification method of meteorite-fragments will be applied to the next lunar, Martian and asteroid explorations, as well as meteorite falls on the terrestrial surface.

  12. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  13. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases

    PubMed Central

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules. PMID:21836052

  14. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.

    PubMed

    Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P

    2011-08-23

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  15. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of

  16. The carbon chemistry of meteorites: Relationships to comets

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1989-01-01

    The carbonaceous meteorites exhibiting alteration by liquid water bear a strong relationship to comets. Not only is their elemental composition closer to solar in relative abundances than other meteorites, they are water rich; and they contain isotopic compositions among refractory and volatile elements indicative of presolar components. Some of these isotopic anomalies occur in organic compounds and carbonaceous grains signifying the presence of discrete and identifiable carbon components derived from interstellar and circumstellar matter. Insofar as comets and meteorites are ultimately formed from interstellar gas and dust, and comets have been subjected to considerably less aqueous and thermal evolution than carbonaceous meteorites, the interstellar imprint should be much stronger and better preserved in comets.

  17. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers.

    PubMed

    Tait, Alastair W; Gagen, Emma J; Wilson, Siobhan A; Tomkins, Andrew G; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis

  18. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    PubMed Central

    Tait, Alastair W.; Gagen, Emma J.; Wilson, Siobhan A.; Tomkins, Andrew G.; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis

  19. Abstracts for the 54th Annual Meeting of the Meteoritical Society

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts of the papers presented at 54th Annual Meeting of the Meteoritic Society are compiled. The following subject areas are covered: Antarctic meteorites; nebula and parent body processing; primary and secondary SNC parent planet processes; enstatite chondrites and aubrites; achondrite stew; refractory inclusions; meteorite exposure ages and sizes; interstellar/meteorite connections; lunar origins, processes and meteorites; craters, cratering and tektites; cretaceous-tertiary impact(s); IDPs (LDEF, stratosphere, Greenland and Antarctica); chondrules; and chondrites.

  20. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A. (Editor); Whillans, I. M. (Editor)

    1990-01-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  1. The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Nakamura-Messenger, K.

    2012-01-01

    Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites.

  2. The planetary and interstellar components of meteorites - A review

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.

    1987-01-01

    Recent analyses show that, although most meteorites are collisional debris of asteroids, three meteorites collected on the Antarctic ice sheet were projected to earth from the highlands of the moon, and eight meteorites have chemical and isotopic compositions suggestive of derivation from Mars. Although meteorites are primarily of interest to planetary scientists for the abundance of clues they hold to the materials and processes that formed the solar system, they have begun to engage the attention of astrochemists because of isotopic and mineralogical indications that they contain interstellar components. Although each individual observation to this effect is inconclusive, the body of evidence is becoming ever more persuasive. This paper reviews the main classes of meteorites and their probable sources, with special emphasis on components that appear to be exotic to the solar system.

  3. The SNC Meteorites

    NASA Astrophysics Data System (ADS)

    Varela, M. E.

    2014-10-01

    The SNC (Shergotty-Nakhla-Chassigny) group, are achondritic meteorites. Of all SNC meteorites recognized up to date, shergottites are the most abundant group. The petrographic study of Shergotty began several years ago when Tschermak, (1872) identified this rock as an extraterrestrial basalt. Oxygen isotopes in SNC meteorites indicate that these rocks are from a single planetary body (Clayton and Mayeda, 1983). Because the abundance patterns of rare gases trapped in glasses from shock melts (e.g., Pepin, 1985) turned out to be very similar to the Martian atmosphere (as analyzed by the Viking landers, Owen, 1976), the SNC meteorites are believed to originate from Mars (e.g. McSween, 1994). Possibly, they were ejected from the Martian surface either in a giant impact or in several impact events (Meyer 2006). Although there is a broad consensus for nakhlites and chassignites being -1.3Ga old, the age of the shergottites is a matter of ongoing debates. Different lines of evidences indicate that these rocks are young (180Ma and 330-475Ma), or very old (> 4Ga). However, the young age in shergottites could be the result of a resetting of these chronometers by either strong impacts or fluid percolation on these rocks (Bouvier et al., 2005-2009). Thus, it is important to check the presence of secondary processes, such as re-equilibration or pressure-induce metamorphism (El Goresy et al., 2013) that can produce major changes in compositions and obscure the primary information. A useful tool, that is used to reconstruct the condition prevailing during the formation of early phases or the secondary processes to which the rock was exposed, is the study of glass-bearing inclusions hosted by different mineral phases. I will discuss the identification of extreme compositional variations in many of these inclusions (Varela et al. 2007-2013) that constrain the assumption that these objects are the result of closed-system crystallization. The question then arises whether these

  4. A gamma-ray spectroscopy survey of Omani meteorites

    NASA Astrophysics Data System (ADS)

    Weber, Patrick; Hofmann, Beda A.; Tolba, Tamer; Vuilleumier, Jean-Luc

    2017-06-01

    The gamma-ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani-Swiss meteorite search campaigns 2001-2008 were nondestructively measured using an ultralow background gamma-ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0-1 and low 14C terrestrial age and (2) weathering degree W3-4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is 120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass 4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of 115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma-ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.

  5. Previously unknown class of metalorganic compounds revealed in meteorites

    PubMed Central

    Ruf, Alexander; Kanawati, Basem; Hertkorn, Norbert; Yin, Qing-Zhu; Moritz, Franco; Harir, Mourad; Lucio, Marianna; Michalke, Bernhard; Wimpenny, Joshua; Shilobreeva, Svetlana; Bronsky, Basil; Saraykin, Vladimir; Gabelica, Zelimir; Gougeon, Régis D.; Quirico, Eric; Ralew, Stefan; Jakubowski, Tomasz; Haack, Henning; Gonsior, Michael; Jenniskens, Peter; Hinman, Nancy W.; Schmitt-Kopplin, Philippe

    2017-01-01

    The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]−, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies. PMID:28242686

  6. Sugar-Related Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry may be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets.

  7. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  8. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  9. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Restrictions on collection of meteorites in Antarctica. 674.4 Section 674.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No person may collect meteorites in...

  10. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Restrictions on collection of meteorites in Antarctica. 674.4 Section 674.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No person may collect meteorites in...

  11. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Restrictions on collection of meteorites in Antarctica. 674.4 Section 674.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No person may collect meteorites in...

  12. Evolution of gas-rich meteorites: Clues from cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1986-01-01

    The evolution of gas-rich meteorites in general, and the setting in which the observed solar-wind, solar-flare irradiation records were imprinted in individual components of these meteorites are understood only in qualitative terms, although contrary viewpoints do exist. The regolith irradiation hypothesis, bolstered by the observations of irradiation features in lunar regolith materials, similar to those observed in gas-rich meteorites, is accepted by many workers in this field. However, a close analysis of the problem suggests that the regolith irradiation may not be the dominant mode in producing the observed precompaction irradiation features in the gas-rich meteorites.

  13. A Peltier-based freeze-thaw device for meteorite disaggregation

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.

    2018-02-01

    A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.

  14. Mössbauer study of Slovak meteorites

    NASA Astrophysics Data System (ADS)

    Lipka, J.; Sitek, J.; Dekan, J.; Degmová, J.; Porubčan, V.

    2013-04-01

    57Fe Mössbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanová and Košice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanová meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe3 + ions corresponds probably to small superparamagnetic particles. The Košice meteorite was found near the town of Košice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Mössbauer parameters of the magnetic field corresponding to kamacite α-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe2 + phases such as olivine and pyroxene and traces of a Fe3 + phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  15. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  16. Organic Chemistry of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  17. Analyses of Rumanová meteorite

    NASA Astrophysics Data System (ADS)

    Lipka, J.; Sitek, J.; Dekan, J.; Sedlačková, K.

    2014-04-01

    Mössbauer spectroscopy was used as an analytical tool in investigation of iron containing compounds of Rumanová meteorite found on Slovak territory and it was classified as chondrite H. The results showed that the Mössbauer spectra consist of magnetic and non-magnetic components related to different iron-bearing phases. In non-magnetic part, olivine, pyroxene, and traces of Fe3 + phases have been identified. The magnetically ordered part of the Rumanová meteorite spectrum consists of kamacite, troilite and the third additional component corresponds to hydroxides originating from weathering due to being long time on the Earth surface. The weathering products can be recognised mainly as maghemite, however traces of other weathering components as akagaenite, goethite and magnetite cannot be excluded. On the contrary to Rumanová, no weathering products have been found in the sample of Košice meteorite which fell on the territory of Slovakia in February 2010 and has been investigated a few months after the fall.

  18. Antarctic Meteorite Newsletter, Volume 29, Number 1

    NASA Technical Reports Server (NTRS)

    Satterwhite, Cecilia (Editor); Righter, Kevin (Editor)

    2006-01-01

    This newsletter contains classifications for 597 new meteorites from the 2003 and 2004 ANtarctic Search for METeorites (ANSMET) seasons. They include samples from the Cumulus Hills, Dominion Range, Grosvenor Mountains, LaPaz Icefield, MacAlpine Hills, and the Miller Range. Macroscopic and petrographic descriptions are given for 25 of the new meteorites: 1 acapulcoite/Iodranite, 1 howardite, 1 diogenite, 2 eucrites, 1 enstatite chondrite, four L3 and two H3 chondrites, 2 CM, 3 CK and 1 CV chondrites, three R chondrites, and four impact melt breccias (with affinities for H and L). Likely the most interesting sample announced in this newsletter is LAP04840, with affinity to R chondrites. This meteorite contains approximately 15% horneblende, and has mineral compositional ranges and oxygen isotopic values similar to those of R chondrites. The presence of an apparently hydrous phase in this petrologic grade 6 chondrite is very unusual, and should be of great interest to many meteoriticists.

  19. Fused Bead Analysis of Diogenite Meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  20. Antarctic Meteorite Location and Mapping Project (AMLAMP): Antarctic meteorite location map series explanatory text and user's guide to AMLAMP data

    NASA Technical Reports Server (NTRS)

    Schutt, J.; Fessler, B.; Cassidy, W. A.

    1993-01-01

    This technical report is an update to LPI Technical Report 89-02, which contained data and information that was current to May 1987. Since that time approximately 4000 new meteorites have been collected, mapped, and characterized, mainly from the numerous ice fields in the Allan Hills-David Glacier region, from the Pecora Escarpment and Moulton Escarpment in the Thiel Mountains-Patuxent region, the Wisconsin Range region, and from the Beardmore region. Meteorite location maps for ice fields from these regions have been produced and are available. This report includes explanatory texts for the maps of new areas and provides information on updates of maps of the areas covered in LPI Technical Report 89-02. Sketch maps and description of locales that have been searched and have yielded single or few meteorites are also included. The meteorite listings for all the ice fields have been updated to include any classification changes and new meteorites recovered from ice fields in the Allan Hills-David Glacier region since 1987. The text has been reorganized and minor errors in the original report have been corrected. Computing capabilities have improved immensely since the early days of this project. Current software and hardware allow easy access to data over computer networks. With various commercial software packages, the data can be used many different ways, including database creation, statistics, and mapping. The databases, explanatory texts, and the plotter files used to produce the meteorite location maps are available through a computer network. Information on how to access AMLAMP data, its formats, and ways it can be used are given in the User's Guide to AMLAMP Data section. Meteorite location maps and thematic maps may be ordered from the Lunar and Planetary Institute. Ordering information is given in Appendix A.

  1. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No person may collect meteorites in Antarctica for other than scientific research purposes. ...

  2. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  3. The distribution of evaporitic weathering products on Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Velbel, Michael A.

    1987-01-01

    White evaporite deposits of terrestrial origin occur on some 5 percent of Antarctic meteorites. The few previous studies, and new mineralogical analyses, indicate that the deposits are predominately carbonates and/or sulfates of magnesium. The distribution of white evaporitic salt deposits differs among different meteorite compositional groups and weathering categories. Salts occur with unusual frequency on carbonaceous chondrites, and are especially common in carbonaceous chondrites of weathering categories A and B. Among achondrites, weathering categories A and A/B show the most examples of salt weathering. Unlike carbonaceous chondrites and achrondites, most salt-bearing ordinary (H and L) chondrites are from rustier meteorites of weathering categories B, and to a lesser degree, B/C and C. The LL chondrites are conspicuous by their complete lack or any salt-weathering product. Almost two-thirds of all evaporite-bearing meteorites belong to weathering categories, A, A/B, and B. Where chemical and/or mineralogical data are available, there is a persistent suggestion that evaporite formation is accompanied by elemental redistribution from meteorite interiors. Meteorites of weathering categories B, A/B, and even A may have experienced significant element redistribution and/or contamination as a result of terrestrial exposure.

  4. Terrestrial and exposure histories of Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  5. NASA Lunar and Meteorite Sample Disk Program

    NASA Technical Reports Server (NTRS)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  6. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  7. Bulk chemical compositions of Antarctic meteorites in the NIPR collection

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Imae, N.; Yamaguchi, A.; Haramura, H.; Kojima, H.

    2018-03-01

    Bulk chemical compositions of meteorites were traditionally analyzed by wet chemical analysis, and NIPR has data for 1162 meteorites as of September 2017. We discuss the classification of meteorites on the basis of these data. Chondrite data are distributed in an anomalously wide range of compositions on the Urey-Craig diagram. One of the reasons for such wide distribution is terrestrial weathering producing Fe2O3-bearing phases from Fe-Ni metal and sulfides. Another important factor affecting the bulk compositional data is brecciation. Our observations indicate that many brecciated chondrites contain anomalously abundant opaque minerals, or are depleted in them, resulting in unusual compositions. In case of enstatite and some carbonaceous chondrites, the bulk compositions are distributed in wider ranges than reported before. The bulk compositions of HED meteorites are consistent with their mineralogy and classification. Our study suggests that wet chemical data are still significant for the meteorite classification. However, petrographic observation is indispensable for evaluating the bulk chemistry and classification of meteorites.

  8. About 129Xe ∗ in meteoritic nanodiamonds

    NASA Astrophysics Data System (ADS)

    Fisenko, A. V.; Semjonova, L. F.

    2008-08-01

    The analysis of excess 129Xe in meteoritic nanodiamonds and the kinetics of its release during stepwise pyrolysis allow to suggest that (1) in the solar nebula 129I atoms were adsorbed onto nanodiamond grains and (or) chemisorbed by forming covalent bonds with carbon atoms. Most 129I atoms existed in a surface connected state, but a minor amount of them was in nanopores of the grains. At radioactive decay of 129I the formed 129Xe ( 129Xe ∗) was trapped by diamond grains due to nuclear recoil. (2) During thermal metamorphism or aqueous alteration, the surface-sited 129I atoms were basically lost. On the basis of these assumptions and calculated concentrations of 129Xe ∗ in meteoritic nanodiamonds it is shown that the minimum closing time of the I-Xe system for meteorites of different chemical classes and low petrologic types may be about one million years relative to the minimally thermally metamorphized CO3 meteorite ALHA 77307. With increasing metamorphic grade the closing time of the I-Xe system increases and can range up to several ten millions years. This tendency is in agreement with an onion-shell model of structure and cooling history of meteorite parent bodies where the temperature increases in the direction from surface to center of the asteroids.

  9. Antarctic meteorite newsletter. Volume 4: Number 1, February 1981: Antarctic meteorite descriptions, 1976, 1977, 1978, 1979

    NASA Technical Reports Server (NTRS)

    Stone, R.; Schwarz, C. M.; King, T. V. V.; Mason, B.; Bogard, D. D.; Gabel, E. M.

    1981-01-01

    This issue of the Newsletter is essentially a catalog of all antarctic meteorites in the collections of the Johnson Space Center Curation Facility and the Smithsonian except for 288 pebbles now being classed. It includes listings of all previously distributed data sheets plus a number of new ones for 1979. Indexes of samples include meteorite name/number, classification, and weathering category. Separate indexes list type 3 and 4 chondrites, all irons, all achondrites, and all carbonaceous chondrites.

  10. Oral histories in meteoritics and planetary science—XXV: Vagn F. Buchwald

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2014-07-01

    Vagn Buchwald (Fig. 1) was born in Copenhagen where he attended school and college. Then after 18 months of military service, he assumed a position at the Technical University of Copenhagen. A few years later, he was presented with a piece of the Cape York meteorite, which led to an interest in iron meteorites. Through a campaign of informed searching, Vagn found the 20 ton Agpalilik meteorite (part of the Cape York shower) on 31st July 1963 and by September 1967 had arranged its transport to Copenhagen. After sorting and describing the Danish collection, which included application of the Fe-Ni-P phase diagram to iron meteorite mineralogy, Vagn was invited to sort and describe other iron meteorite collections. This led to a 7 yr project to write his monumental Handbook of Iron Meteorites. Vagn spent 3 yr in the United States and visited most of the world's museums, the visit to Berlin being especially important since the war had left their iron meteorites in bad condition and without labels. During a further decade or more of iron meteorite research, he documented natural and anthropomorphic alterations experienced by iron meteorites, discovered five new minerals (roaldite, carlsbergite, akaganeite, hibbingite, and arupite); had a mineral (buchwaldite, NaCaPO4) and asteroid (3209 Buchwald 1982 BL1) named after him; and led expeditions to Chile, Namibia, and South Africa in search of iron meteorites and information on them. Vagn then turned his attention to archeological metal artifacts. This work resulted in many papers and culminated in two major books on the subject published in 2005 and 2008, after his retirement in 1998. Vagn Buchwald has received numerous Scandinavian awards and honors, and served as president of the Meteoritical Society in 1981-1982.

  11. Meteorites on Mars observed with Mars Exploration Rovers

    USGS Publications Warehouse

    Schroder, C.; Rodionov, D.S.; McCoy, T.J.; Jolliff, B.L.; Gellert, Ralf; Nittler, L.R.; Farrand, W. H.; Johnson, J. R.; Ruff, S.W.; Ashley, James W.; Mittlefehldt, D. W.; Herkenhoff, K. E.; Fleischer, I.; Haldemann, A.F.C.; Klingelhofer, G.; Ming, D. W.; Morris, R.V.; de Souza, P.A.; Squyres, S. W.; Weitz, C.; Yen, A. S.; Zipfel, J.; Economou, T.

    2008-01-01

    Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity's traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as 'Meridiani Planum.' Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. Chondrites have not been identified to date, which may be a result of their lower strengths and probability to survive impact at current atmospheric pressures. Impact craters directly associated with Heat Shield Rock, Barberton, or Santa Catarina have not been observed, but such craters could have been erased by eolian-driven erosion. Copyright 2008 by the American Geophysical Union.

  12. The Broken Belt: Meteorite Concentrations on Stranded Ice

    NASA Technical Reports Server (NTRS)

    Harvey, R. P.

    2003-01-01

    Since the first Antarctic meteorite concentrations were discovered more than 25 years ago, many theories regarding the role of iceflow in the production of meteorite concentrations have been put forward, and most agree on the basic principles. These models suggest that as the East Antarctic icesheet flows toward the margins of the continent, meteorites randomly located within the volume of ice are transported toward the icesheet margin. Where mountains or subsurface obstructions block glacial flow, diversion of ice around or over an obstruction reduces horizontal ice movement rates adjacent to the barriers and creates a vertical (upward) component of movement. If local mechanisms for ice loss (ablation) exist at such sites, an equilibrium surface will develop according to the balance between ice supply and loss, and the cargo of meteorites is exhumed on a blue ice surface. The result is a conceptual conveyor belt bringing meteorite-bearing volumes of ice from the interior of the continent to stagnant or slowmoving surfaces where ice is then lost and a precious cargo is left as a lag deposit. Cassidy et al. provides an excellent overview of how this model has been adapted to several Antarctic stranding surfaces.

  13. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  14. Amino Acids in the Antarctic Martian Meteorite MIL03346

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Aubrey, A.; Dworkin, J. P.; Botta, O.; Bada, J. L.

    2005-01-01

    The report by McKay et al. that the Martian meteorite ALH84001 contains evidence for life on Mars remains controversial. Of central importance is whether ALH84001 and other Antarctic Martian meteorites contain endogenous organic compounds. In any investigation of organic compounds possibly derived from Mars it is important to focus on compounds that play an essential role in biochemistry as we know it and that have properties such as chirality which can be used to distinguish between biotic versus abiotic origins. Amino acids are one of the few compounds that fulfill these requirements. Previous analyses of the Antarctic Martian meteorites ALH84001 and EETA79001 have shown that these meteorites contain low levels of terrestrial amino acid contamination derived from Antarctic ice meltwater. Here we report preliminary amino acid investigations of a third Antarctic Martian meteorite MIL03346 which was discovered in Antarctica during the 2003-04 ANSMET season. Additional information is included in the original extended abstract

  15. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  16. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organicmore » compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.« less

  17. AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar

    NASA Astrophysics Data System (ADS)

    Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff

    2017-09-01

    For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.

  18. The Thermal and Radiation Exposure History of Lunar Meteorites

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.; Symes, Steven J. K.

    1996-01-01

    We have measured the natural and induced thermoluminescence (TL) of seven lunar meteorites in order to examine their crystallization, irradiation, and recent thermal histories. Lunar meteorites have induced TL properties similar to Apollo samples of the same provenance (highland or mare), indicating similar crystallization and metamorphic histories. MacAlplne Hills 88104/5 has experienced the greatest degree of impact/regolith processing among the highland-dominated meteorites. The basaltic breccia QUE 94281 is dominated by mare component but may also contain a significant highland component. For the mare-dominated meteorites, EET 87521 may have a significant highland impact-melt component, while Asuka 881757 and Y-793169 have been heavily shocked. The thermal history of Y-793169 included slow cooling, either during impact processing or during its initial crystallization. Our natural TL data indicate that most lunar meteorites have apparently been irradiated in space a few thousand years, with most less than 15,000 a. Elephant Moraine 87521 has the lowest irradiation exposure time, being less than 1,000 a. Either the natural TL of ALHA81005, Asuka 881757 and Y-82192 was only partially reset by lunar ejection or these meteorites were in small perihelia orbits (less than or equal to 0.7 AU).

  19. Antarctic meteorite descriptions 1976-1977-1978-1979

    NASA Technical Reports Server (NTRS)

    Score, R.; Schwarz, C. M.; King, T. V. V.; Mason, B.; Bogard, D. D.; Gabel, E. M.

    1981-01-01

    All previously distributed meteorite data sheets, plus a number of new ones for 1979 chondrites are included. A comprehensive sample index listing meteorite name/number, classification, and weathering category is also included. Separate indexes listing all petrologic type 3 and type 4 chondrites, all irons, all achondrites, and all carbonaceous chondrites in the collection is provided.

  20. James Sowerby: meteorites and his meteoritic sword made for the Emperor of Russia, Alexander I, in 1814

    PubMed Central

    Henderson, Paul

    2013-01-01

    James Sowerby included meteorites in his publications of British and exotic natural history and so raised interest in their nature and origins at a time of much debate and involving the President of the Royal Society, Sir Joseph Banks. The celebrations over the defeat of France in 1814 prompted Sowerby to make a sword from the Cape of Good Hope iron meteorite to present to the Russian Emperor, Alexander I, at the time of his state visit to London in June 1814 and in recognition of his achievements in bringing peace to Europe. The story of its attempted presentation, its final reception and the following response, including publications, all helped to increase interest in meteorites and their properties. The rediscovery of the sword after a lengthy disappearance probably brings an unusual saga to a fitting close.

  1. Worldwide Weather Radar Imagery May Allow Substantial Increase in Meteorite Fall Recovery

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Matson, Robert; Schaefer, Jacob; Fries, Jeffery; Hankey, Mike; Anderson, Lindsay

    2014-01-01

    Weather radar imagery is a valuable new technique for the rapid recovery of meteorite falls, to include falls which would not otherwise be recovered (e.g. Battle Mountain). Weather radar imagery reveals about one new meteorite fall per year (18 falls since 1998), using weather radars in the United States alone. However, an additional 75 other nations operate weather radar networks according to the UN World Meteorological Organization (WMO). If the imagery of those radars were analyzed, the current rate of meteorite falls could be improved considerably, to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverage. Recently, the addition of weather radar imagery, seismometry and internet-based aggregation of eyewitness reports has improved the speed and accuracy of fresh meteorite fall recovery [e.g. 1,2]. This was demonstrated recently with the radar-enabled recovery of the Sutter's Mill fall [3]. Arguably, the meteorites recovered via these methods are of special scientific value as they are relatively unweathered, fresh falls. To illustrate this, a recent SAO/NASA ADS search using the keyword "meteorite" shows that all 50 of the top search results included at least one named meteorite recovered from a meteorite fall. This is true even though only 1260 named meteorite falls are recorded among the >49,000 individual falls recorded in the Meteoritical Society online database. The US NEXRAD system used thus far to locate meteorite falls covers most of the United States' surface area. Using a WMO map of the world's weather radars, we estimate that the total coverage of the other 75 national weather radar networks equals about 3.6x NEXRAD's coverage area. There are two findings to draw from this calculation: 1) For the past 16 years during which 18 falls are seen in US radar data, there should be an additional 65 meteorite falls recorded in worldwide radar imagery. Also: 2) if all of the world's radar data could be analyzed, the

  2. A Method for Estimating Meteorite Fall Mass from Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Laird, C.; Fries, M.; Matson, R.

    2017-01-01

    Techniques such as weather RADAR, seismometers, and all-sky cameras allow new insights concerning the physics of meteorite fall dynamics and fragmentation during "dark flight", the period of time between the end of the meteor's luminous flight and the concluding impact on the Earth's surface. Understanding dark flight dynamics enables us to rapidly analyze the characteristics of new meteorite falls. This analysis will provide essential information to meteorite hunters to optimize recovery, increasing the frequency and total mass of scientifically important freshly-fallen meteorites available to the scientific community. We have developed a mathematical method to estimate meteorite fall mass using reflectivity data as recorded by National Oceanic and Atmospheric Administration (NOAA) Next Generation RADAR (NEXRAD) stations. This study analyzed eleven official and one unofficial meteorite falls in the United States and Canada to achieve this purpose.

  3. Proceedings of a workshop on Differences Between Antarctic and Non-Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian (Editor); Cassidy, William A. (Editor)

    1989-01-01

    The known facts, together with new research results are reviewed, in order to examine apparent differences between the Antarctic and non-Antarctic populations. In view of the statistically significant number of Antarctic meteorites, and the existence of rare or previously unknown types of meteorites among the Antarctic meteorite collection, the question was really not so much whether there are differences, but to define which ones are significant and what their origin is. Two main causes for the possible differences have been suggested previously, namely differences in the meteorite parent populations and secondary effects (e.g., weathering). The workshop was structured to contain sessions on chemical, isotopic, petrological, and mineralogical studies of meteorites from the two collections; terrestrial age determinations; discussions on mass frequency distributions; relative abundances of meteorite types; and terrestrial meteorite flux rates and their possible changes with time.

  4. Meteorite heat capacities: Results to date

    NASA Astrophysics Data System (ADS)

    Consolmagno, G.; Macke, R.; Britt, D.

    2014-07-01

    Heat capacity is an essential thermal property for modeling asteroid internal metamorphism or differentiation, and dynamical effects like YORP or Yarkovsky perturbations. We have developed a rapid, inexpensive, and non-destructive method for measuring the heat capacity of meteorites at low temperature [1]. A sample is introduced into a dewar of liquid nitrogen and an electronic scale measures the amount of nitrogen boiled away as the sample is cooled from the room temperature to the liquid nitrogen temperature; given the heat of vaporization of liquid nitrogen, one can then calculate the heat lost from the sample during the cooling process. Note that heat capacity in this temperature range is a strong function of temperature, but this functional relation is essentially the same for all materials; the values we determine are equivalent to the heat capacity of the sample at 175 K. To correct for systematic errors, samples of laboratory-grade quartz are measured along with the meteorite samples. To date, more than 70 samples of more than 50 different meteorites have been measured in this way, including ordinary chondrites [1], irons [2], basaltic achondrites [3], and a limited number of carbonaceous chondrites [1]. In general, one can draw a number of important conclusions from these results. First, the heat capacity of a meteorite is a function of its mineral composition, independent of shock, metamorphism, or other physical state. Second, given this relation, heat capacity can be strongly altered by terrestrial weathering. Third, the measurement of heat capacity in small (less than 1 g) samples as done typically by commercial systems runs a serious risk of giving misleading results for samples that are heterogeneous on scales of tens of grams or more. Finally, we demonstrate that heat capacity is a useful tool for determining and classifying a sample, especially if used in conjunction with other intrinsic variables such as grain density and magnetic susceptibility

  5. Handling Heavenly Jewels - 35 Years of Antarctic Meteorite Processing at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Satterwhite, C. E.; McBridge, K. M.; Harrington, R.; Schwarz, C. M.

    2011-01-01

    The ANSMET program began in 1976, and since that time more than 18,000 meteorites have been processed in the Meteorite Processing Lab at Johnson Space Center in Houston, TX[1]. The meteorites are collected and returned to JSC on a freezer truck and remain frozen until they are initially processed. Initial Processing of Meteorites: Initial processing involves drying the meteorites in a nitrogen glove box for 24 to 48 hours, photographing, measuring, weighing and writing a description of the interior and exterior. The meteorite is broken and a representative sample is sent to the Smithsonian Institution for classification. Newsletter & Requests: Once initial processing has been complete and the meteorites have been classified, the information is published in the Antarctic Meteorite Newsletter[2,3]. The newsletter is published twice yearly and is sent electronically to researchers around the world and is also available on line. Researchers are asked to fill out a request form and submit it to the Meteorite Working Group secretary. All sample requests will be reviewed by either the meteorite curator or the Meteorite Working Group de-pending on the type of meteorite and the research being conducted. Processing for Sample Requests: In the meteorite processing lab, meteorite samples are prepared several different ways. Most samples are prepared as chips obtained by use of stainless steel chisels in a chipping bowl or rock splitter. In special situations where a researcher needs a slab the meteorite samples can be bandsawed in a dry nitrogen glove box with a diamond blade, no liquids are ever introduced into the cabinet. The last type of sample preparation is thin/thick sections. The meteorite thin section lab at JSC can prepare standard 30-micron thin sections, thick sections of variable thickness (100 to 200 microns), or demountable sections using superglue. Information for researchers: It is important that re-searchers fill the sample request form completely, in order

  6. Noble Gases in the Chelyabinsk Meteorites

    NASA Technical Reports Server (NTRS)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.

    2014-01-01

    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  7. Meteoritic parent bodies - Nature, number, size and relation to present-day asteroids

    NASA Technical Reports Server (NTRS)

    Lipschutz, Michael E.; Gaffey, Michael J.; Pellas, Paul

    1989-01-01

    The relationship between meteoritic parent bodies and the present-day asteroids is discussed. Results on oxygen isotopic signatures and chemical distinctions among meteorite classes indicate that meteorites derive from a small number of parent bodies relative to the number of asteroids. The spectral properties of the ordinary chondrites and similar inclusions in meteoritic breccias differ from those of the abundant S asteroids (with no process known that can account for these differences); the closest spectral analogs of these chondrites are the rare near-earth Q-type asteroids. These facts lead to the question of why abundant meteorites have rare asteroidal analogs, while the abundant asteroids have rare meteoritic analogs. This question constitutes a prime topic for future studies.

  8. Search for fullerenes in stone meteorites

    NASA Astrophysics Data System (ADS)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  9. Pigeonholing planetary meteorites: The lessons of misclassification of EET87521 and ALH84001

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Treiman, A. H.; Mittlefehldt, D. W.

    1994-01-01

    The last few years have provided two noteworthy examples of misclassifications of achondritic meteorites because the samples were new kinds of meteorites from planetary rather than asteroidal parent bodies. Basaltic lunar meteorite EET87521 was misclassified as a eucrite and SNC (martian) orthopyroxenite ALH84001 was misclassified as a diogenite. In classifying meteorites we find what we expect: we pigeonhole meteorites into known categories most of which were derived from the more common asteroidal meteorites. But the examples of EET8752 and ALH84001 remind us that planets are more complex than asteroids and exhibit a wider variety of rock types. We should expect variety in planetary meteorites and we need to know how to recognize them when we have them. Our intent here is to show that our asteroidal perspective is inappropriate for planetary meteorites.

  10. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  11. Re-Os dating of 3AB iron meteorites

    NASA Technical Reports Server (NTRS)

    Esat, Tezer M.; Bennett, Victoria

    1993-01-01

    Recently, Creaser et al., and Volkening and Heumann, have demonstrated the efficient production of large (approximately 10 exp -11 A) ion beams by negative thermal ionization mass spectrometry (NTIMS) using standard laboratory solutions of Os compounds. Horan et al., have applied NTIMS to a group of 7 IIA iron meteorites and obtained a Re-Os closure age of 4596 +/- 152 million years. The initial Os-187/Os-186 ratio was 0.8007 plus or minus 0.0029. In addition they analyzed 3 IIIA meteorite samples which indicated an age of 4554 +/- 180 million years and Os initial of 0.8120 +/- 0.0075 which does not overlap with the initial for the IIA irons. We have been independently pursuing a similar program with the direct aim of determining possible variations in the initial (Os-187)/(Os-186) ratio or Re-Os closure age of different classes of iron meteorite. We have applied NTIMS to Os extracted from the most common group of iron meteorites the IIIAB. These meteorites are believed to be of magmatic origin, formed by fractional crystallization of molten cores of asteroidal bodies. The present results point to a significantly lower initial (Os-187)/(Os-186) ratio of 0.7731 plus or minus 0.0050 than previously determined.

  12. Exchange of meteorites (and life?) between stellar systems.

    PubMed

    Melosh, H J

    2003-01-01

    It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.

  13. Origin of igneous meteorites and differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have

  14. The Martian sources of the SNC meteorites (two, not one), and what can and can't be learned from the SNC meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    1993-01-01

    The SNC meteorites, which almost certainly originate in the Martian crust, have been inferred to come from a single impact crater site, but no known crater fits all criteria. Formation at two separate sites (S from one, NC from the other) is more consistent with the sum of petrologic, geochronologic, and cosmochronologic data. If the source craters for the SNC meteorites can be located, Mars science will advance considerably. However, many significant questions cannot be answered by the SNC meteorites. These questions await a returned sample.

  15. A recent meteorite shower in Antarctica with an unusual orbital history

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    The Antarctic meteorite collection has proved to be a source of many important discoveries, including a number of previously unknown or very rare meteorite types. A thermoluminescence (TL) survey of meteorite samples recovered by the 1988/89 European expedition and pre-1988 American expeditions to the Allan Hills Main blue ice field resulted in the discovery of 15 meteorites with very high TL levels (greater than 100 krad at 250 C in the glow curve). It is likely that these samples are fragments of a single meteoroid body which: (1) fell very recently and (2) experienced a decrease in orbital perihelia from greater than or equal to 1.1 AU to 1 AU within the last 10(exp 5) yr. Carbon-14 data for two of the samples confirm their young terrestrial age compared to most Antarctic meteorites. Studies of the cosmogenic isotopes in at least one non-Antarctic meteorite which also has very high natural TL, Jilin, indicate that the meteorite experienced a multi-stage irradiation history, the most recent stage being 0.4 Ma in duration following a major break-up of the object. These meteorites, and the few equivalent modern falls, are the only documented samples from bodies which were recently in Earth-approaching (Amor) orbits (i.e., with perihelion greater than 1.0 AU), as opposed to the Earth-crossing (Apollo) orbits which are the source of most other meteorites. Their rarity indicates that such rapid orbit changes are unusual for meteoroid bodies and may be the result of isolated, large break-up events.

  16. Exposure Histories of Calcalong Creek and LEW 88516 Meteorites

    NASA Astrophysics Data System (ADS)

    Nishiizumi, K.; Arnold, J. R.; Caffee, M. W.; Finkel, R. C.; Southon, J.

    1992-07-01

    We report here preliminary results of cosmogenic radionuclides in lunar meteorite Calcalong Creek and shergottite LEW 88516 for study of exposure histories. Table 1 shows ^36Cl and ^10Be results for these two meteorites along with previous measurements of ^36Cl and ^10Be of SNC meteorites. The AMS measurements were performed at LLNL. Measured ^36Cl activities, in dpm/kg meteorite, were normalized to the target element concentration, dpm/kg (8Ca+Fe), for comparison and shown in the table. The ^36Cl saturation activity is ~22 +- 2 dpm/kg (8Ca+Fe) for 4-pi irradiation. Calcalong Creek: This is the first lunar meteorite found outside Antarctica (Hill et al., 1991; Marvin and Holmberg, 1992). ^36Cl and ^10Be activity levels are slightly (10-20%) higher than the production rate of these nuclides on the moon. One possibility is that the meteorite was ejected from near the surface (<70 g/cm^2) of the moon and transferred to the earth. The transition time from moon to earth was ~0.2 My. The other simple case is that the meteorite was ejected from deep (at least a few meters) in the moon, like Yamato 82192, and exposed to cosmic rays as a small body. The transition time in this case was ~2 My. The terrestrial age must be <70 ky for either case. Other cosmogenic nuclide measurements (in progress) are required to constrain the history further. LEW 88516: This meteorite was classified as a shergottite (Mason, 1991). The recovered mass is 13.2 g. We measured ^36Cl and ^10Be in 93.9 mg of homogenized bulk sample. All aspects of petrography and bulk chemical composition of LEW 88516 are remarkably similar to those of ALH 77005 (Boynton et al., 1992; Lindstrom et al., 1992). Since the ^10Be activities of ALH 77005 samples vary from 13.7 to 16.2 dpm/kg with increasing shielding depth (Nishiizumi et al., 1986a), the average of ^10Be in ALH 77005 is slightly lower than ^10Be in LEW 88516. The calculated ^10Be exposure age is ~3.0 My. The normalized ^36Cl activity of LEW 88516 is near

  17. Compositional differences between meteorites and near-Earth asteroids.

    PubMed

    Vernazza, P; Binzel, R P; Thomas, C A; DeMeo, F E; Bus, S J; Rivkin, A S; Tokunaga, A T

    2008-08-14

    Understanding the nature and origin of the asteroid population in Earth's vicinity (near-Earth asteroids, and its subset of potentially hazardous asteroids) is a matter of both scientific interest and practical importance. It is generally expected that the compositions of the asteroids that are most likely to hit Earth should reflect those of the most common meteorites. Here we report that most near-Earth asteroids (including the potentially hazardous subset) have spectral properties quantitatively similar to the class of meteorites known as LL chondrites. The prominent Flora family in the inner part of the asteroid belt shares the same spectral properties, suggesting that it is a dominant source of near-Earth asteroids. The observed similarity of near-Earth asteroids to LL chondrites is, however, surprising, as this meteorite class is relatively rare ( approximately 8 per cent of all meteorite falls). One possible explanation is the role of a size-dependent process, such as the Yarkovsky effect, in transporting material from the main belt.

  18. The dimension added by 3D scanning and 3D printing of meteorites

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  19. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  20. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry

    PubMed Central

    Pizzarello, Sandra; Shock, Everett

    2010-01-01

    Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. PMID:20300213

  1. 45 CFR 674.4 - Restrictions on collection of meteorites in Antarctica.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Restrictions on collection of meteorites in Antarctica. 674.4 Section 674.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION ANTARCTIC METEORITES § 674.4 Restrictions on collection of meteorites in Antarctica. No...

  2. The Production of Amino Acids in Interstellar Ices: Implications for Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, A.; Bernstein, M. P.; Dworkin, J. P.; Cooper, G. W.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Indigenous amino acids have been detected in a number of meteorites, over 70 in the Murchison meteorite alone. It has been generally accepted that the amino acids in meteorites formed in liquid water on an asteroid or comet parent-body. However, the water in the Murchison meteorite, for example, was depleted of deuterium, making the distribution of deuterium in organic acids in Murchison difficult to explain. Similarly, occasional but consistent meteoritic biases for non-terrestrial L amino acids cannot be reasonably rationalized by liquid water parent-body reactions. We will present the results of a laboratory demonstration showing that the amino acids glycine, alanine, and serine should result from the UV (ultraviolet) photolysis of interstellar ice grains. This suggests that some meteoritic amino acids may be the result of interstellar ice photochemistry, rather than having formed by reactions in liquid water. We will describe some of the potential implications of these findings for the organic materials found in primitive meteorites, in particular how interstellar ice synthesis might more easily accommodate the presence and distribution of deuterium, and the meteoritic bias for L amino acids.

  3. Thin-sectioning and analysis of fine-grained meteoritic materials

    NASA Technical Reports Server (NTRS)

    Brooks, Donald A. (Editor); Bradley, John P.

    1992-01-01

    The overall theme of the work was the identification of the sources and formation/aggregation mechanisms of the various classes of interplanetary dust particles (IDP's) and to clarify the relationship between IDP's and conventional meteorites. IDP's are believed to be derived from a much broader range of parent bodies than conventional meteorites. Some of these parent bodies (e.g., comets) have escaped that post accretional processing that has affected the parent bodies of meteorites. Therefore, IDP's are likely to preserve a record of early solar system and possibly presolar grain forming reactions. Using analytical electron microscopy (AEM) and more recently micro-infrared (IR) microspectroscopy to examine ultramicrotomed thin sections, we have addressed the questions of IDP formation mechanisms, sources, and their relationship to conventional meteorites. The following sections describe specific findings resulting from these studies.

  4. An anomalous basaltic meteorite from the innermost main belt.

    PubMed

    Bland, Philip A; Spurny, Pavel; Towner, Martin C; Bevan, Alex W R; Singleton, Andrew T; Bottke, William F; Greenwood, Richard C; Chesley, Steven R; Shrbeny, Lukas; Borovicka, Jiri; Ceplecha, Zdenek; McClafferty, Terence P; Vaughan, David; Benedix, Gretchen K; Deacon, Geoff; Howard, Kieren T; Franchi, Ian A; Hough, Robert M

    2009-09-18

    Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body. Although its orbit was almost entirely contained within Earth's orbit, modeling indicates that it originated from the innermost main belt. Because the meteorite parent body would likely be classified as a V-type asteroid, V-type precursors for basaltic meteorites unrelated to Vesta may reside in the inner main belt. This starting location is in agreement with predictions of a planetesimal evolution model that postulates the formation of differentiated asteroids in the terrestrial planet region, with surviving fragments concentrated in the innermost main belt.

  5. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  6. A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.

  7. Meteoritic material on the moon

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.

    1977-01-01

    Three types of meteoritic material are found on the moon: micrometeorites, ancient planetesimal debris from the "early intense bombardment," and debris of recent, craterforming projectiles. Their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distributed over the entire lunar surface, but is seen most clearly in mare soils. It has a primitive, C1-chondrite-like composition, and comprises 1 to 1.5 percent of mature soils. Apparently it represents cometary debris. The ancient component is seen in highland breccias and soils. Six varieties have been recognized, differing in their proportions of refractories (Ir, Re), volatiles (Ge, Sb), and Au. All have a fractionated composition, with volatiles depleted relative to siderophiles. The abundance patterns do not match those of the known meteorite classes. These ancient meteoritic components seem to represent the debris of an extinct population of bodies (planetisimals, moonlets) that produced the mare basins during the first 700 Myr of the moon's history. On the basis of their stratigraphy and geographic distribution, five of the six groups are tentatively assigned to specific mare basins: Imbrium, Serenitatis, Crisium, Nectaris, and Humorum or Nubium.

  8. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  9. Expected Geochemical and Mineralogical Properties of Meteorites from Mercury: Inferences from Messenger Data

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; McCoy, T. J.

    2016-01-01

    Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.

  10. Analysis of Chiral Carboxylic Acids in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  11. Probing the use of spectroscopy to determine the meteoritic analogues of meteors

    NASA Astrophysics Data System (ADS)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Vaubaillon, J.; Zanda, B.; Birlan, M.; Bouley, S.; Colas, F.; Eberhart, M.; Hermann, T.; Jorda, L.; Marmo, C.; Meindl, A.; Oefele, R.; Zamkotsian, F.; Zander, F.

    2018-05-01

    Context. Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an approach, however, is that the recovery rate of meteorite falls is low (<20%), implying that the meteoritic analogues of at least 80% of the observed falls remain unknown. Aims: Spectroscopic observations of incoming bolides may have the potential to mitigate this problem by classifying the incoming meteoritic material. Methods: To probe the use of spectroscopy to determine the meteoritic analogues of incoming bolides, we collected emission spectra in the visible range (320-880 nm) of five meteorite types (H, L, LL, CM, and eucrite) acquired in atmospheric entry-like conditions in a plasma wind tunnel at the Institute of Space Systems (IRS) at the University of Stuttgart (Germany). A detailed spectral analysis including a systematic line identification and mass ratio determinations (Mg/Fe, Na/Fe) was subsequently performed on all spectra. Results: It appears that spectroscopy, via a simple line identification, allows us to distinguish the three main meteorite classes (chondrites, achondrites and irons) but it does not have the potential to distinguish for example an H chondrite from a CM chondrite. Conclusions: The source location within the main belt of the different meteorite classes (H, L, LL, CM, CI, etc.) should continue to be investigated via fireball observation networks. Spectroscopy of incoming bolides only marginally helps precisely classify the incoming material (iron meteorites only). To reach a statistically significant sample of recovered meteorites along with accurate orbits (>100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial

  12. The Impact of International Scientific Teams on Investigations of Yugoslavian Meteorites

    NASA Astrophysics Data System (ADS)

    Kolomejceva-Jovanovic, L.

    2008-10-01

    Investigations of scientific heritage is very important for every country. The evidence concerning the meteorites which have fallen upon the territory of former Yugoslavia can be a nice example. The samples of Yugoslav meteorites can be found in the biggest world museums of natural history (in Washington, Moscow, Vienna, Paris, Budapest, Berlin, Prague and London). In such a way scientists engaged in the area of meteorites, cosmochemistry, cosmic mineralogy, astrochemistry, astrophysics and other multidisciplinary scientific branches have the possibility to study these meteorites. The huge impact on the study of Yugoslav meteorites is given by international teams from Institute of Physics (Belgrade), Joint Institute for Nuclear Investigations (Dubna, Russia), Naturhistorisches Museum (Vienna, Austria), Institute of Geochemistry and Analytical Chemistry (Moscow, Russia) and Museum of Natural History (Belgrade).

  13. Fluid inclusions in stony meteorites

    NASA Technical Reports Server (NTRS)

    Warner, J. L.; Ashwal, L. D.; Bergman, S. C.; Gibson, E. K., Jr.; Henry, D. J.; Lee-Berman, R.; Roedder, E.; Belkin, H. E.

    1983-01-01

    The fluid inclusions presently described for five stony meteorites brings to seven the number of such meteorites confirmed. Homogenization temperatures are reproducible in each inclusion, and range from 25 C to over 225 C, with some vapor plus liquid inclusions remaining at 225 C, the highest temperature in these microthermometric experiments. Upon cooling, the fluid in some inclusions appears to freeze, as indicated by deformation and immobilization of the vapor bubble at low temperatures. Melting temperatures are by contrast difficult to observe and are not reproducible. Microthermometric data for the fluid in diogenite ALPHA 77256 and inclusions in four chondrites suggest that the fluid is aqueous, with a high solute content.

  14. Lunar Meteorite Dhofar 026: A Second-Generation Impact Melt

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Taylor, L. A.; Nazarov, M.

    2001-03-01

    Petrology and mineral-chemistry of lunar highlands meteorite Dhofar 026 show that it is a crystalline impact melt of FAN-type material. Crystalline spherules within the meteorite are earlier impact melt fragments derived from a basaltic precursor.

  15. Meteorite falls in China and some related human casualty events

    NASA Technical Reports Server (NTRS)

    Yau, Kevin; Weissman, Paul; Yeomans, Donald

    1994-01-01

    Statistics of witnessed and recovered meteorite falls found in Chinese historical texts for the period from 700 B.C. to A.D. 1920 are presented. Several notable features can be seen in the binned distribution as a function of time. An apparent decrease in the number of meteorite reports in the 18th century is observed. An excess of observed meteorite falls in the period from 1840 to 1880 seems to correspond to a similar excess in European data. A chi sq probability test suggest that the association between the two data sets are real. Records of human casualities and structural damage resulting from meteorite falls are also given. A calculation based on the number of casualty events in the Chinese meteorite records suggests that the probability of a meteroite striking a human is far greater than previous estimates. However, it is difficult to verify the accuracy of the reported casualty events.

  16. The Influence of Terrestrial Environment on Meteorite Magnetic Records

    NASA Astrophysics Data System (ADS)

    Kohout, T.; Kletetschka, G.; Kobr, M.; Pruner, P.; Wasilewski, P. J.

    2003-04-01

    In early solar system history there are several electromagnetic processes expected that may be capable of magnetizing the primitive solid particles condensating from the Solar Nebula. The record of these magnetic events can be observed during laboratory studies of meteorites found on the Earth. Different terrestrial processes can affect the magneto mineralogy, can cause changes in magnetic parameters, and can overprint the primary magnetic record. The effect of surface heating (when falling through the atmosphere) was the subject of the study with the Murchison meteorite. Using the Allende meteorite we studied the effect of the shock pressure generated by the friction of the atmosphere during the meteorite fall. Some of the meteorites are found several days after the fall, some of them are deposited in the desert or on the Antarctic ice for thousands of years. Most of them contain visible traces of terrestrial oxidation and weathering. We used the sample of the LL chondrite found in the Libya desert (perhaps thousands years ago), sample of the iron meteorite Campo del Cielo (found in Argentina 5000 years after the fall), and sample of the H 5 Zebrak meteorite (found only several days after the fall) for weathering simulations. To document the results of our experiments we used low and high temperature measurements of magnetic susceptibility, measurements of magnetic remanence and its stability and hysteresis parameters. The results tell us, that the terrestrial processes are efficient factor in changing magnetic properties and can overprint the primary magnetic record. Therefore extreme care has to be taken when selecting samples for primary magnetic component study. Acknowledgements: This work is supported by Charles University Grant Agency, Czech Republic and would not be possible without the help of following people: Jakub Haloda, Petr Jakes, Marcela Bukovanska, Jaroslav Kadlec, Libuse Kohoutova, Vladimir Kohout.

  17. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  18. Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies

    NASA Astrophysics Data System (ADS)

    Allen, J.; Allen, C.

    2012-12-01

    The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system. Petrographic Thin Section Packages containing polished thin sections of samples from either the Lunar or Meteorite collections have been prepared. Each set of twelve sections of Apollo lunar samples or twelve sections of meteorites is available for loan from JSC. The thin sections sets are designed for use in domestic college and university courses in petrology. The loan period is very strict and limited to two weeks. Contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov Each set of slides is accompanied by teaching materials and a sample disk of representative lunar or meteorite samples. It is important to note that the samples in these sets are not exactly the same as the ones listed here. This list represents one set of samples. A key education resource available on the Curation website is Antarctic Meteorite Teaching Collection: Educational Meteorite Thin Sections, originally compiled by Bevan French, Glenn McPherson, and Roy Clarke and revised by Kevin Righter in 2010. Curation Websites College and university staff and students are encouraged to access the Lunar Petrographic Thin Section Set Publication and the Meteorite Petrographic Thin Section Package Resource which feature many thin section images and detailed descriptions of the samples, research results. http://curator.jsc.nasa.gov/Education/index.cfm Request research samples: http://curator.jsc.nasa.gov/ JSC-CURATION-EDUCATION-DISKS@mail.nasa.govLunar Thin Sections; Meteorite Thin Sections;

  19. Luminescence dating of the Wabar meteorite craters, Saudi Arabia

    USGS Publications Warehouse

    Prescott, J.R.; Robertson, G.B.; Shoemaker, C.; Shoemaker, E.M.; Wynn, J.

    2004-01-01

    Luminescence dating has been used to find the age of meteorite impact craters at Wabar (Al Hadida) in Saudi Arabia. The luminescence characteristics of the shocked material were determined. Using a variety of luminescence dating techniques applied to impactite formed by the meteorite, and to the underlying sand, the age is found to be 290 ± 38 years. A comparison is made with two possible historically recorded ages. An impact as young as this has implications for the assessment of hazards from the impact on Earth of small meteorites.

  20. Trace elements in Antarctic meteorites: Weathering and genetic information

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.

    1986-01-01

    Antarctic meteorite discoveries have created great scientific interest due to the large number of specimens recovered (approximately 7000) and because included are representatives of hitherto rare or unknown types. Antarctic meteorites are abundant because they have fallen over long periods and were preserved, transported, and concentrated by the ice sheets. The weathering effects on the Antarctic meteorites are described. Weathering effects of trace element contents of H5 chondrites were studied in detail. The results are examined. The properties of Antarctic finds and non-Antarctic falls are discussed.

  1. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  2. Determining the source locations of martian meteorites: Hapke mixture models applied to CRISM simulated data of igneous mineral mixtures and martian meteorites

    NASA Astrophysics Data System (ADS)

    Harris, Jennifer; Grindrod, Peter

    2017-04-01

    At present, martian meteorites represent the only samples of Mars available for study in terrestrial laboratories. However, these samples have never been definitively tied to source locations on Mars, meaning that the fundamental geological context is missing. The goal of this work is to link the bulk mineralogical analyses of martian meteorites to the surface geology of Mars through spectral mixture analysis of hyperspectral imagery. Hapke radiation transfer modelling has been shown to provide accurate (within 5 - 10% absolute error) mineral abundance values from laboratory derived hyperspectral measurements of binary [1] and ternary [2] mixtures of plagioclase, pyroxene and olivine. These three minerals form the vast bulk of the SNC meteorites [3] and the bedrock of the Amazonian provinces on Mars that are inferred to be the source regions for these meteorites based on isotopic aging. Spectral unmixing through the Hapke model could be used to quantitatively analyse the Martian surface and pinpoint the exact craters from which the SNC meteorites originated. However the Hapke model is complex with numerous variables, many of which are determinable in laboratory conditions but not from remote measurements of a planetary surface. Using binary and tertiary spectral mixtures and martian meteorite spectra from the RELAB spectral library, the accuracy of Hapke abundance estimation is investigated in the face of increasing constraints and simplifications to simulate CRISM data. Constraints and simplifications include reduced spectral resolution, additional noise, unknown endmembers and unknown particle physical characteristics. CRISM operates in two spectral resolutions, the Full Resolution Targeted (FRT) with which it has imaged approximately 2% of the martian surface, and the lower spectral resolution MultiSpectral Survey mode (MSP) with which it has covered the vast majority of the surface. On resampling the RELAB spectral mixtures to these two wavelength ranges it was

  3. Over 5,600 Japanese collection of Antarctic meteorites: Recoveries, curation and distribution

    NASA Technical Reports Server (NTRS)

    Yanai, K.; Kojima, H.

    1986-01-01

    The history of recovery of meteorite fragments in the Yamato Mountains, Allan Hills, and Victoria Land, Antarctica is reviewed. The Japanese collection of Antarctic meteorites were numbered, weighed, photographed, identified, and classified. Sample distribution of the Japanese Antarctic meteorites is described.

  4. Hydrogen in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hervig, R.; Irving, T.

    2017-01-01

    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  5. A Thermal Infrared Emission Spectra Library for Unpowdered Meteorites

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; Christensen, P. R.

    2007-12-01

    Mid-infrared thermal emission spectra have been obtained for whole-rock (unpowdered) samples of the following 25 meteorites: Abee, Admire, Allende, Bondoc, Brahin, Bruderheim, Canyon Diablo, Carichic, Clover Springs, Dhofar 007, Estherville, Holbrook, Juancheng, Kapoeta, Long Island, Marion, Modoc, ALH77225, ALH77233, ALH84082, LEW85322, ALH85025, ALH79029, ALH77004, and LEW86015. Meteorites were provided through the Center for Meteorite Studies at ASU, Johnson Space Center and the NASA Antarctic Meteorite Working Group, and from private collections. The database was prepared to aid in the on-going detection and interpretation of meteorites on Mars using the Miniature Thermal Emission Spectrometer (Mini-TES) instruments on both Mars Exploration Rovers. It therefore includes several specimens of low, moderate, and high weathering intensities, reflecting different levels of water exposure in desert and non-desert environments. Unweathered falls are also considered. Samples represent all three chondrite classes, stony irons (mesosiderites and pallasites), and select achondrites. Special consideration is given to dust-covered iron-nickel meteorites as part of a separate study designed to evaluate the Mini-TES spectra of iron-nickel meteorites on Mars. All samples were analyzed at or near a temperature of 80° C using a modified Nicolet Nexus 670 FT-IR spectrometer at the Mars Space Flight Facility at Arizona State University. Data were collected within the 2000 to 200 wavenumber (5 to 50 microns) mid-infrared range. The results show that many meteorite types display moderate to wide variability in the depth and position of prominent absorption features, making them easily distinguishable from each other. Most previous meteorite spectroscopy studies have either focused on near-infrared reflectance spectra [e.g. 1], and/or involved powdered samples to represent asteroid regoliths in the mid-infrared [e.g. 2 & 3]. Particle size- related issues are often at the heart of

  6. Ancient Uses of Meteoritic Metals as Precedent for Modern In-Situ Asteroid Mining

    NASA Astrophysics Data System (ADS)

    Mardon, Austin A.; Fawcett, Brett; Krispin, Daniel

    2016-05-01

    Given the strain on earth's supply of metal and the meteoritic content of meteorites, a prudent course would be to pursue in-situ asteroid mining of meteors for metal. There is a precedent for this going back to ancient Egypt; humans have always used the meteoritic content of meteorites to fashion everything from weapons to cosmetics.

  7. The Kosice meteorite

    NASA Astrophysics Data System (ADS)

    Toth, J.; Svoren, J.

    2012-01-01

    The glare of the bolide on the night of February 28, 2010, illuminated streets and interiors of apartments at some location in eastern Slovakia and northern Hungary. In addition, cannon-like bursts or series of low frequency blasts were heard. Due to bad weather, cloudy skies, and scattered showers, the Central European Fireball Network (operated by Dr. Pavel Spurny of the Czech Academy of Sciences) did not take direct optical records of the bolide and the Slovak Video Meteor Network (operated by the first author) was not operational that night. So, at first sight, it seemed that there were no scientific records of this event. Fortunately, fast photoelectric sensors on seven automated fireball stations in the Czech Republic (6) and Austria (1) detected the illumination of the sky caused by the bolide, which made it possible to determine exact time and duration of the bolide and estimate its brightness. The bolide reached its maximum brightness of at least magnitude -18 in one huge flare. Later on, several surveillance camera data were published showing the moment when the night turned into day for a second, but only two videos from Hungary (Orkeny village, Fazzi Daniella and Vass Gabor; Telki village, contact persons Sarneczky Krisztian, and Kiss Laszlo) actually captured the fireball itself. Thanks to calibration of videos by several members of the Hungarian Astronomical Association (MCSE, http://www.mcse.hu) contributing (in particular, Antal Igaz) and a trajectory analysis by Dr. Jiri Borovicka of the Czech Academy of Sciences gave the hope that significant numbers of meteorite fragments reached the surface. He also calculated the impact area, near the town of Kosice in eastern Slovakia. The data from the Local Seismic Network of Eastern Slovakia (project led by Professor Moczo of Comenius University) confirmed the atmospheric trajectory as well. The expedition consisting of scientists and graduate students of the Astronomical Institute of the Slovak Academy of

  8. Antarctic Meteorite Newsletter, volume 8, number 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Preliminary descriptions and classifications of meteorites examined since the July 1984 newsletter are presented. Each macroscopic description summarizes features that were visible to the eye (with, at most, 50X magnification). Each thin section description represents features that were found in a survey-level examination of a polished thin section that was prepared from a small (usually extrior) chip of the meteorite. Classification is based on microscopic petrography and reconnaissance-level electron-probe microanalyses.

  9. Mineral Composition and Structure of the Sverdlovsk Meteorite (H4-5)

    NASA Astrophysics Data System (ADS)

    Berzin, S. V.; Koroteev, V. A.; Ivanov, K. S.; Kleimenov, D. A.; Kiseleva, D. V.; Cherednichenko, N. V.

    2018-03-01

    A fragment of the Sverdlovsk Meteorite, which was found in 1985 in the Central Urals, is studied by modern analytical methods. It belongs to H chondrites of petrologic type 4-5; shock stage of meteorite is S1-2, terrestrial weathering is W1. The composition of minerals of the meteorite is studied. It is found for the first time that the metal and sulfides are concentrated in fine veinlets of the recrystallized matrix of the chondrite and are accompanied by segregations of metal and troilite inside these veinlets. The distribution of trace elements of the metal phase of the meteorite is studied.

  10. Invar alloys: information from the study of iron meteorites.

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.; Clarke, R.

    The iron meteorites were slow cooled (<108years) in their asteroidal bodies and are useful as indicators of the phase transformations which occur in Fe-Ni alloys. In the invar composition range, the iron meteorites contain a cloudy zone structure composed of an ordered tetrataenite phase and a surrounding honeycomb phase either of gamma or alpha phase. This structure is the result of a spinodal reaction below 350°C. The Santa Catharina iron meteorite has the typical invar composition of 36 wt% Ni and its structure is entirely cloudy zone although some of the honeycomb phase has been oxidized by terrestrial corrosion. Invar alloys would contain such a cloudy zone structure if more time was available for cooling. A higher temperature spinodal in the Fe-Ni phase diagram may be operative in invar alloys but has not been observed in the structure of the iron meteorites.

  11. Imino Acids in the Murchison Meteorite: Evidence of Strecker Reactions

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cooper, G. W.

    2003-01-01

    Both alpha-amino acids and alpha-hydroxy acids occur in aqueous extracts of the Murchison carbonaceous meteorite. The Strecker-cyanohydrin reaction, the reaction of carbonyl compounds, cyanide, and ammonia to produce amino and hydroxy acids, has been proposed as a source of such organic acids in meteorites. Such syntheses are consistent with the suggestion that interstellar precursors of meteoritic organic compounds accreted on the meteorite parent body together with other ices. Subsequent internal heating of the parent body melted these ices and led to the formation of larger compounds in synthetic reactions during aqueous alteration, which probably occurred at temperatures between 273K and 298K. In the laboratory, imino acids are observed as important by-products of the Strecker synthesis.

  12. SNC meteorites and their implications for reservoirs of Martian volatiles

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1993-01-01

    The SNC meteorites and the measurements of the Viking landers provide our only direct information about the abundance and isotopic composition of Martian volatiles. Indirect measurements include spectroscopic determinations of the D/H ratio of the Martian atmosphere. A personal view of volatile element reservoirs on Mars is presented, largely as inferred from the meteoritic evidence. This view is that the Martian mantle has had several opportunities for dehydration and is most likely dry, although not completely degassed. Consequently, the water contained in SNC meteorites was most likely incorporated during ascent through the crust. Thus, it is possible that water can be decoupled from other volatile/incompatible elements, making the SNC meteorites suspect as indicators of water inventories on Mars.

  13. Disaggregating meteorites by automated freeze thaw

    NASA Astrophysics Data System (ADS)

    Charles, Christopher R. J.

    2011-06-01

    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 MΩ water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ˜4.

  14. The age of the meteorite recovery surfaces of Roosevelt County, New Mexico, USA

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Rendell, Helen M.; Wilson, Ivan; Wells, Gordon L.

    1992-01-01

    We have obtained minimum age estimates for the sand units underlying the two largest meteorite deflation surfaces in Roosevelt County, New Mexico, USA, using thermoluminescence dating techniques. The dates obtained ranged from 53.5 (+/- 5.4) to 95.2 (+/- 9.5) ka, and must be considered lower limits for the terrestrial ages of the meteorites found within these specific deflation surfaces. These ages greatly exceed previous measurements from adjacent meteorite-producing deflation basins. We find that Roosevelt County meteorites are probably terrestrial contemporaries of the meteorites found at most accumulation zones in Antarctica. The apparent high meteorite accumulation rate reported for Roosevelt County by Zolensky et al. (1990) is incorrect, as it used an age of 16 ka for all Roosevelt County recovery surfaces. We conclude that the extreme variability of terrestrial ages of the Roosevelt County deflation surfaces effectively precludes their use for calculations of the meteorite accumulation rate at the Earth's surface.

  15. Remnants of altered meteorite in the Cretaceous-Paleogene clay boundary in Poland

    NASA Astrophysics Data System (ADS)

    Szopa, Krzysztof; Brachaniec, Tomasz; Karwowski, Łukasz; Krzykawski, Tomasz

    2017-04-01

    Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous-Paleogene (K-Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2-6 mm in size) and meteoritic dust are metallic-gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni-rich minerals with a total Ni amount of 2-3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni-rich magnetite, and Ni-rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K-Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.

  16. Laboratory spectroscopy of HED meteorites

    NASA Astrophysics Data System (ADS)

    Farina, M.; Coradini, A.; Carli, C.; Ammannito, E.; Consolmagno, G.; De sanctis, M.; Di Iorio, T.; Turrini, D.

    2011-12-01

    4 Vesta is one of the largest and the most massive asteroid in the Main Asteroid Belt. This asteroid possesses a basaltic surface and apparently formed and differentiated very early in the history of the solar system. There are strong evidences that indicate Vesta as the parent body of Howardites, Diogenites and Eucrites (HEDs). HED meteorites are a subgroup of achondrite meteorites and they are a suite of rocks that formed at high temperature and experienced igneous processing similar to the magmatic rocks found on Earth. The visible and near-infrared (VNIR) reflectance spectra of Vesta's surface show high similarity with the laboratory spectra of HED meteorites. Vesta and HEDs spectra have two crystal field absorption bands close to 0.9 μm and 1.9 μm indicative of the presence of ferrous iron in pyroxenes. The HEDs differ from each other primarily based on variation in pyroxene composition and the pyroxene-plagioclase ratio as well as rocks texture characteristics (e.g., size of crystals). These differences suggest that a combined VNIR spectra studies of Vesta and HED meteorites might reveal the different characteristics of the surface compositions and shed new light on the origin and the thermal history of Vesta. Moreover the link between Vesta and HEDs could provide a test bed to understand the short-lived radionuclide-driven differentiation of planetary bodies. Here we present preliminary result of a study of spectral characteristics of different HED samples, provided to us by the Vatican Observatory. Bidirectional reflectance spectra of slabs of meteorites are performed in the VNIR, between (0.35/2.50) μm, using a Fieldspec spectrometer mounted on a goniometer, in use at the SLAB (Spectroscopy laboratory, INAF, Rome). The spectra are acquired in standard conditions with an incidence angle i=30o and an emission angle e=0o, measuring a spot with a diameter of 5 mm. Different Howardite, Diogenite and Eucrite samples are "mapped" considering several spots on

  17. Petrographic studies of refractory inclusions from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Grossman, L.; Hashimoto, A.; Bar-Matthews, M.; Tanaka, T.

    1984-01-01

    Textural and mineral-chemical data on freeze-thaw disaggregated refractory inclusions from the Murchison meteorite are reported. The data were obtained with neutron activation analysis, SEM, and spectroscopy, the study revealed corundum-bearing inclusions, spinel-hibonite aggregates and spherules, and spinel-pyroxene and elivine-pyroxene inclusions. One of the three spinel-, pyroxene-, forsterite-rich inclusions had an amoeba-shaped spinel-pyroxene core, implying vapor-to-solid condensation and therefore crystallization from a melt. It is concluded that the meteorite formation encompassed diverse nebular materials, and that further studies of the meteorite will enhance the data base on the planetary nebular processes.

  18. Peology and Geochemistry of New Paired Martian Meteorites 12095 and LAR 12240

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Brandon, A. D.; Peslier, A.

    2015-01-01

    The meteorites LAR 12095 and LAR 12240 are believed to be paired Martian meteorites and were discovered during the Antarctic Search for Meteorites (ANSMET) 2012-2013 Season at Larkman Nunatak. The purpose of this study is to characterize these olivine-phyric shergottites by analyzing all mineral phases for major, minor and trace elements and examining their textural relationships. The goal is to constrain their crystallization history and place these shergottites among other Martian meteorites in order to better understand Martian geological history.

  19. A strongly hydrated microclast in the Rumuruti chondrite NWA 6828: Implications for the distribution of hydrous material in the solar system

    NASA Astrophysics Data System (ADS)

    Greshake, Ansgar

    2014-05-01

    Hydrous carbonaceous microclasts are by far the most abundant foreign fragments in stony meteorites and mostly resemble CI1-, CM2-, or CR2-like material. Their occurrence is of great importance for understanding the distribution and migration of water-bearing volatile-rich matter in the solar system. This paper reports the first finding of a strongly hydrated microclast in a Rumuruti chondrite. The R3-6 chondrite Northwest Africa 6828 contains a 420 × 325 μm sized angular foreign fragment exhibiting sharp boundaries to the surrounding R-type matrix. The clast is dominantly composed of magnetite, pyrrhotite, rare Ca-carbonate, and very rare Mg-rich olivine set in an abundant fine-grained phyllosilicate-rich matrix. Phyllosilicates are serpentine and saponite. One region of the clast is dominated by forsteritic olivine (Fa<2) supported by a network of interstitial Ca-carbonate. The clast is crosscut by Ca-carbonate-filled veins and lacks any chondrules, calcium-aluminum-rich inclusions, or their respective pseudomorphs. The hydrous clast contains also a single grain of the very rare phosphide andreyivanovite. Comparison with CI1, CM2, and CR2 chondrites as well as with the ungrouped C2 chondrite Tagish Lake shows no positive match with any of these types of meteorites. The clast may, thus, either represent a fragment of an unsampled lithology of the hydrous carbonaceous chondrite parent asteroids or constitute a sample from an as yet unknown parent body, maybe even a comet. Rumuruti chondrites are a unique group of highly oxidized meteorites that probably accreted at a heliocentric distance >1 AU between the formation regions of ordinary and carbonaceous chondrites. The occurrence of a hydrous microclast in an R chondrite attests to the presence of such material also in this region at least at some point in time and documents the wide distribution of water-bearing (possibly zodiacal cloud) material in the solar system.

  20. Microbiological investigation of two chondrite meteorites: Murchison and Polonnaruwa

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Lyu, Zhe; Whitman, William B.; LaBrake, Geneviev R.; Wallis, Jamie; Wickramarathne, Keerthi; Wickramasinghe, N. Chandra; Hoover, Richard B.

    2015-09-01

    The question of the contamination of meteorites by modern environmental microorganisms is an issue that has been raised since evidence for biological remains in carbonaceous meteorites was first published in the early 1960's.1-3 The contamination hypothesis has been raised for recent fossils of diatoms and filamentous cyanobacteria found embedded in the stones even though the nitrogen content of the fossils was below the 0.5% detection limit for Energy Dispersive X-ray Spectroscopy (EDS) of the Field Emission Scanning Electron Microscope. All modern biological contaminants should have nitrogen content in the detectable range of 2% to 20% indicating the remains are ancient fossils rather than living or Holocene cells. In our work, the possibility that extremophilic bacteria from our lab collection might be able to metabolize organic matter in the studied meteorites was tested. The potential toxic or inhibitory growth effects were also checked for different anaerobic cultures. UV exposed meteorite samples with consequent sterile extraction of the internal part were subjected to anaerobic cultivation techniques. As a result, eight anaerobic strains were isolated from internal and exterior parts of the studied meteorites. Preliminary results of their morphology, cytology, physiology, and molecular (16SrRNA sequencing) studies are presented and discussed in this article.

  1. Fe/Mn in olivine of carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Steele, Ian M.

    1993-01-01

    Olivines in primitive meteorites show a range of Fe/Mn both within one grain and among grains suggesting that they have recorded changing conditions during or after growth. Because olivine should be an early forming phase, Fe/Mn is used here to infer these earliest conditions. Initial Fe/Mn in cores of isolated, euhedral forsterite in both C2 and C3 meteorites ranges from 25 to 35 but differs at grain edge. Murchison (C2) forsterites show Fe/Mn approaching 1.0 at the grain edge while Ornans Fe/Mn is near 60 at grain edge. These values are lower than the matrix Fe/Mn for both meteorites and the distinct difference in zoning profile indicates different processes operating during and after grain growth. The Fe/Mn of bulk samples from a particular source such as the Moon is nearly constant. Individual samples show variation suggesting that there is some fractionation of Mn from Fe. Minerals have their individual ranges of Fe/Mn which has been used to recognize different types of olivine within one meteorite. Extreme values of Fe/Mn below 1.0 occur in forsterite from some IDP's, UOC matrix, and C1 meteorites. There are apparently no detailed studies of Fe/Mn variation within single olivine grains. Forsterite grains in C2 and C3 carbonaceous chondrites show complex zoning, and the nearly pure forsterites (Fo greater than approximately 99.5) have high levels of some minor elements including Ti, Al, V, and Sc. There is disagreement on the original source of these grains and both chondrule and vapor growth have been proposed. In addition, there is clear evidence that diffusion has affected the outer margins but in some cases the whole grain. Within the cores, the FeO range is limited, and if growing under constant conditions, the Fe/Mn should be near constant as there is little fractionation of Mn from Fe by forsterite. Additionally, there are apparently no co-crystallizing phases as evidenced by a lack of common inclusions in the forsterites. These observations are now

  2. The Nakhla Martian Meteorite is a Cumulate Igenous Rock. Comment on "Glass-Bearing Inclusions in Nakhla (SNC Meteorite) Augite: Heterogeneously Trapped Phases"

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    2003-01-01

    All the properties of the Nakhla Martian meteorite suggest that it is a cumulate igneous rock, formed from a basaltic parental magma. Anomalous magmatic inclusions in Nakhla s augite grains can be explained by disequilibrium processes during crystal growth, and have little significance in the geological history of the meteorite.

  3. The potential of Lake Karakul in the eastern Pamirs as a long-term climate archive

    NASA Astrophysics Data System (ADS)

    Mischke, S.; Rajabov, I.; Mustaeva, N.; Zhang, C.; Boomer, I.; Sherlock, S. C.; Myrbo, A.; Noren, A.; Brady, K.; Herzschuh, U.; Schudack, M. E.; Ito, E.

    2008-12-01

    Lake Karakul is a large closed-basin lake in the eastern Pamirs (NE Tajikistan) at an altitude of 3930 m. The lake fills a large basin about 45 km in diameter which may originate from a meteorite impact in the late Neogene. Exposed lake sediments at the northwestern shore 20 m above the lake display a bizarre Yardang relief indicating higher water levels in the past. Eroded remnants of lake, playa and fluvial sediments can be found on the northeastern slopes of the basin 200 m above the lake but their depositional age remains unknown. A field survey of the Lake Karakul region was conducted in July 2008 as a first attempt to evaluate the potential of the lake as a long-term climate archive in Central Asia. Sediment samples from the lake's bottom, water samples from the lake and inflowing streams, aquatic and terrestrial plant samples, and rock samples were collected to enable an interdisciplinary investigation of the lake and its catchment. A 1.04 m sediment core was obtained near the centre of the more shallow and flat eastern sub-basin of the lake at 19 m water depth. Corresponding to the lack of outlet and the resulting high pH (9.1) and electrical conductivity of the lake (10.3 mS/cm), fine aragonite needles constitute most of the sediments. Additionally, ostracod shells, aquatic plant fragments, detrital grains and Radix (Gastropoda) shells were recorded. First results of AMS 14C dating and ostracod analysis will be used to infer the environmental and climatic evolution of Lake Karakul in the Late Holocene.

  4. Did Martian Meteorites Come From These Sources?

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2007-01-01

    Large rayed craters on Mars, not immediately obvious in visible light, have been identified in thermal infrared data obtained from the Thermal Emission Imaging System (THEMIS) onboard Mars Odyssey. Livio Tornabene (previously at the University of Tennessee, Knoxville and now at the University of Arizona, Tucson) and colleagues have mapped rayed craters primarily within young (Amazonian) volcanic plains in or near Elysium Planitia. They found that rays consist of numerous chains of secondary craters, their overlapping ejecta, and possibly primary ejecta from the source crater. Their work also suggests rayed craters may have formed preferentially in volatile-rich targets by oblique impacts. The physical details of the rayed craters and the target surfaces combined with current models of Martian meteorite delivery and cosmochemical analyses of Martian meteorites lead Tornabene and coauthors to conclude that these large rayed craters are plausible source regions for Martian meteorites.

  5. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  6. Radioactivities in returned lunar materials and in meteorites

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1982-01-01

    Carbon-14 measurements were made for meteorites with a Van der Graaf accelerator. Accelerator C-14 dating improved the precision by a factor of ten, allowed the use of smaller sample sizes, and gave speedier results than C-14 dating with counters. A methodology for determining the terrestrial ages of several antarctic meteorites is described and the results are listed.

  7. Chondrites and the Protoplanetary Disk, Part 3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Nitrogen Isotopic Compositions in the Tagish Lake Meteorite: Products of Primitive Organic Reactions. Yet Another Chondrule Formation Scenario. CAIs are Not Supernova Condensates. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System. A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk. REE+Y Systematics in CC and UOC Chondrules. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions, and Modes of Condensation in the Solar Nebula. The I-Xe Record of Long Equilibration in Chondrules from the Unnamed Antarctic Meteorite L3/LL3. Early Stellar Evolution.

  8. Terrestrial microbes in martian and chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Airieau, S.; Piceno, Y.; Andersen, G.

    2007-08-01

    Good extraterrestrial analogs for microbiology are SNC meteorites as Mars analogs, and chondrites as early planet analogs. Chondrites and SNCs are used to trace processes in the early solar system and on Mars. Yet, questions about terrestrial contamination and its effects on the isotopic, chemical and mineral characteristics often arise. A wide biodiversity was found in 21 chondrites of groups CR, CV, CK, CO from ANSMET, CI and CM Falls, and 8 SNCs. Studies documented the alteration of meteorites by weathering and biology [1]-[6], and during aqueous extraction for oxygen isotopic analysis [7], visible biofilms grew in the meteorite solutions in days. To assess biological isotopic and chemical impacts, cultures were incubated 11 months and analyzed by PCR. The sequences for 2 isolates from EET 87770 and Leoville were of a good quality with long sequence reads. In EET 87770, the closest matches were in the genus Microbacterium. Soil and plant isolates were close relatives by sequence comparison. Bacillus, a common soil bacterial genus, grew in a Leoville culture. All SNCs exhibited biological activity measured independently by LAL but only 1 colony was successfully cultured from grains of the SNC Los Angeles. Isotopic analyses of samples with various amounts of microbial contamination could help quantified isotopic impact of microbes on protoplanetary chemistry in these rocks. References: [1] Gounelle, M.& Zolensky M. (2001) LPS XXXII, Abstract #999. [2] Fries, M. et al. (2005) Meteoritical Society Meeting 68, Abstract # 5201. [3] Burckle, L. H. & Delaney, J. S (1999) Meteoritics & Planet. Sci., 32, 475. [4] Whitby, C. et al. (2000) LPS XXXI, Abstract #1732. [5] Tyra M. et al., (2007) Geochim. Cosmochim. Acta, 71, 782 [6] Toporski, J. & Steele A., (2007) Astrobiology, 7, 389 [7]Airieau, S. et al (2005) Geochim. Cosmochim. Acta, 69, 4166.

  9. Fast delivery of meteorites to Earth after a major asteroid collision.

    PubMed

    Heck, Philipp R; Schmitz, Birger; Baur, Heinrich; Halliday, Alex N; Wieler, Rainer

    2004-07-15

    Very large collisions in the asteroid belt could lead temporarily to a substantial increase in the rate of impacts of meteorites on Earth. Orbital simulations predict that fragments from such events may arrive considerably faster than the typical transit times of meteorites falling today, because in some large impacts part of the debris is transferred directly into a resonant orbit with Jupiter. Such an efficient meteorite delivery track, however, has not been verified. Here we report high-sensitivity measurements of noble gases produced by cosmic rays in chromite grains from a unique suite of fossil meteorites preserved in approximately 480 million year old sediments. The transfer times deduced from the noble gases are as short as approximately 10(5) years, and they increase with stratigraphic height in agreement with the estimated duration of sedimentation. These data provide powerful evidence that this unusual meteorite occurrence was the result of a long-lasting rain of meteorites following the destruction of an asteroid, and show that at least one strong resonance in the main asteroid belt can deliver material into the inner Solar System within the short timescales suggested by dynamical models.

  10. Oriented Mineral Transformation in a Dark Inclusion from the Leoville Meteorite

    NASA Technical Reports Server (NTRS)

    Buchanan, P. C.; Zolensky, M. E.; Weisberg, M. K.; Hagiya, K.; Mikouchi, T.; Takenouchi, A.; Hasegawa, H.; Ono, H.; Higashi, K.; Ohsumi, K.

    2017-01-01

    Dark inclusions (DIs) in chondrites and achondrites are dark gray to black fragments that include a wide variety of materials that have experienced very different petrologic histories. Based on the law of inclusions, they are rocks that accreted prior to and are older than their host meteorites and possibly rep-resent an earlier generation of material. The origin of these inclusions and their relationship to their host meteorites is not always clear. They are interesting in that they represent lithologies that experienced different parent body histories than their host meteorites and are either exotic components or originated from different regions of the meteorite parent body. In many cases, DIs in CV chondrites have been altered to greater degrees than their host meteorites suggesting pre accretionary alteration [e.g., 1,2,3]. There is debate concerning whether or not these DIs record an earlier era of aqueous alteration and subsequent thermal metamorphism, and how these processes may have also affected the host CV materials. The present study is a description of a dark inclusion found in the Leoville meteorite (specifically, thin section USNM 3535-1). This inclusion has some interesting features that have considerable relevance for this discussion.

  11. The crust structure of the Morasko meteorite - a preliminary hypothesis

    NASA Astrophysics Data System (ADS)

    Stankowski, Wojciech T. J.

    2017-03-01

    A small piece of the Morasko meteorite, weighing 970 g, yields traces of its journey through the Earth's atmosphere and of its impact into a mineral substrate, such as reflected in the meteorite's crust. This is seen in the crust structure in the form of sintered as well as fusion and semi-fusion layers for which ablative niches are optimum sites. Subsequent weathering processes have resulted in significant mineralogical changes in the crusts. The meteorite crusts originated during polygenetic processes.

  12. Bench Crater Meteorite: Hydrated Asteroidal Material Delivered to the Moon

    NASA Technical Reports Server (NTRS)

    Joy, K. H.; Messenger, S.; Zolensky, M. E.; Frank, D. R.; Kring, D. A.

    2013-01-01

    D/H measurements from the lunar regolith agglutinates [8] indicate mixing between a low D/H solar implanted component and additional higher D/H sources (e.g., meteoritic/ cometary/volcanic gases). We have determined the range and average D/H ratio of Bench Crater meteorite, which is the first direct D/H analysis of meteoritic material delivered to the lunar surface. This result provides an important ground truth for future investigations of lunar water resources by missions to the Moon.

  13. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  14. Organic compounds in the Murchison meteorite.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1972-01-01

    Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.

  15. Zinc isotope anomalies. [in Allende meteorite

    NASA Technical Reports Server (NTRS)

    Volkening, J.; Papanastassiou, D. A.

    1990-01-01

    The Zn isotope composition in refractory-element-rich inclusions of the Allende meteorite are determined. Typical inclusions contain normal Zn. A unique inclusion of the Allende meteorite shows an excess for Zn-66 of 16.7 + or - 3.7 eu (1 eu = 0.01 percent) and a deficit for Zn-70 of 21 + or - 13 eu. These results indicate the preservation of exotic components even for volatile elements in this inclusion. The observed excess Zn-66 correlates with excesses for the neutron-rich isotopes of Ca-48, Ti-50, Cr-54, and Fe-58 in the same inclusion.

  16. The Chassigny meteorite - A cumulate dunite with hydrous amphibole-bearing melt inclusions

    NASA Technical Reports Server (NTRS)

    Floran, R. J.; Prinz, M.; Hlava, P. F.; Keil, K.; Nehru, C. E.; Hinthorne, J. R.

    1978-01-01

    The Chassigny meteorite, an iron-rich dunite (Fo 68), is a moderately shocked olivine achondrite or chassignite with features indicative of a cumulate origin with some subsolidus annealing. The evidence that the meteorite experienced shock pressures of approximately 150-200 kbar is described. Kaersutitic amphibole, found only in melt inclusions, represents the first extraterrestrial occurence of hydrous amphibole and the first meteoritic amphibole type other than fluorichterite. Fractionation data indicate that Chassigny formed under relatively more oxidizing conditions than most other achondrites, which implies that its parental melt could not have been directly derived from a chondritic composition in a simple single-stage process. Similarities and differences with the Brachina meteorite, the only other meteorite of the Chassigny type, are considered.

  17. Chemical compositional study of 35 iron meteorites and its application in taxonomy

    NASA Technical Reports Server (NTRS)

    Wang, D.; Malvin, D. J.; Wasson, J. T.

    1985-01-01

    Structural and compositional data are reported as a guide to the classification of 35 iron meteorites. The Xinjiang iron meteorite, previously classified as III AB, is reclassified as III E on the basis of its lower Ga/Ni and Ge/Ni ratios, its wider, swollen kamacite bands, and the ubiquitous presence of haxonite, (Fe,Ni)22C. The Dongling (III CD) appears not to be a new meteorite, but to be paired with the Nantan. Four Antarctic iron meteorites, IAB Allan Hills A77250, A77263, A77289, and A77290, are classified as a paired meteorite because of their similarities in structure and in concentrations of various elements. It is shown that Cu shares certain properties with Ga and Ge, which makes them excellent taxonomic parameters.

  18. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  19. Lake Superior as seen from Skylab

    NASA Image and Video Library

    1974-01-06

    SL4-139-3953 (7 Jan. 1974) --- An oblique view of a portion of the Middle West looking northeastward toward Lake Superior and Ontario, Canada, as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen with a hand-held 70mm Hasselblad camera using a 100mm lens. Most of the land mass in the foreground is Wisconsin. Iowa is in the lower left corner. Minnesota is at left and upper left. Ontario is in the far right background. Michigan is at right center. Note the circular-shaped feature at center left which was first observed by the Skylab 4 crewmen. The feature is 85 kilometers (55 miles) in diameter, and it is centered near 91.5 degrees west longitude and 44.5 degrees north latitude. The Mississippi River Valley forms the southwest side of the circular feature. The City of La Crosse, Wisconsin, is just south of the near side of the circle, and the Black River completes the southern and eastern part. The City of Eau Claire is at the north edge of the circle. The most likely origin of circular features of this magnitude are (1) volcanic, (2) structural, or (3) meteorite impact. The feature is not volcanic -- the rocks are the wrong type. Possibly it is structural, formed by slight warping of layered rocks into a basin or dome, followed by erosion of all but the most subtle trace of the structure. The feature could be a severely eroded meteorite impact crater. If so, a thorough study of the area may yield evidence of the extreme pressure and temperature the rocks were subjected to by the shock of an impacting meteorite. Photo credit: NASA

  20. Cosmic-ray-produced helium in the Keen Mountain and Casas Grandes meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J. H.; Nier, A. O.

    1960-03-01

    The He/sup 3/ and He/sup 4/ distributions were measured in the iron meteorites Keen Mountain and Casas Grandes. In the former, a small meteorite (6.75 kg), the He/sup 3/ and He/sup 4/ concentrations did not depend upon position. In the latter, a large meteorite (1550 kg), a "depth effect" was observed, and contours of constant He/sup 3/ and He/sup 4/ content could be drawn. An attempt is made to explain the results in terms of the model earlier presented in connection with similar work on the Grant meteorite.

  1. The Tissint Martian meteorite as evidence for the largest impact excavation.

    PubMed

    Baziotis, Ioannis P; Liu, Yang; DeCarli, Paul S; Melosh, H Jay; McSween, Harry Y; Bodnar, Robert J; Taylor, Lawrence A

    2013-01-01

    High-pressure minerals in meteorites provide clues for the impact processes that excavated, launched and delivered these samples to Earth. Most Martian meteorites are suggested to have been excavated from 3 to 7 km diameter impact craters. Here we show that the Tissint meteorite, a 2011 meteorite fall, contains virtually all the high-pressure phases (seven minerals and two mineral glasses) that have been reported in isolated occurrences in other Martian meteorites. Particularly, one ringwoodite (75 × 140 μm(2)) represents the largest grain observed in all Martian samples. Collectively, the ubiquitous high-pressure minerals of unusually large sizes in Tissint indicate that shock metamorphism was widely dispersed in this sample (~25 GPa and ~2,000 °C). Using the size and growth kinetics of the ringwoodite grains, we infer an initial impact crater with ~90 km diameter, with a factor of 2 uncertainty. These energetic conditions imply alteration of any possible low-T minerals in Tissint.

  2. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  3. Neuschwanstein and Pribram: Two solitaire meteorites or members of a stream?

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Spurny, P.; Heinlein, D.

    2003-04-01

    The fall of the Neuschwanstein enstatite chondrite EL6 at 20:20:17.7 UTC on April 6, 2002, in Southern Bavaria is well documented. Using photographic records obtained by the European Fireball Network (EN), the heliocentric orbit of the object before its collision with Earth could be determined [Spurny et al., Nature, submitted]. Surprisingly, its orbit is practically identical to that of another meteorite, which was photographed by the EN 43 years earlier: the Pribram H5-chondrite, which fell on April 7, 1959. The orbital elements are extremely similar indeed, as is indicated by a D-criterion of D=0.025. By analysis of the orbital elements of all available (approx. 200) ''meteorite candidates'', we estimate that the chances of finding two meteorites with orbital elements matching as well as in the case of Pribram and Neuschwanstein is 1:100,000. Therefore, we believe that the paired fall is not a coincidence and that the meteorites are members of a stream of objects. Considering Innisfree and Ridgedale, another paired fall, observed by the Canadian MORP (Meteorite Observation and Recovery Project), in 1977 and 1980 [Halliday, Icarus 69, 550-556, 1987], it appears that meteorite streams are not uncommon among Earth-approaching objects. On the basis of the observational efficiency of the EN, we estimate that the Pribram/Neuschwanstein meteorite stream contains approx. 10^9 members; all of them combined would form an asteroid with a minimum radius of 300m. From studies of cometary-type meteor streams it is known that these cometary stream members have separated from their parent body fairly recently. However, judging from the different classifications of the meteorites, and from their long cosmic exposure (Pribram has a cosmic ray age of 19 Million years) both, a common parent and a recent separation, are not very likely.

  4. Candidates source regions of martian meteorites as identified by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Quantin, C.; Bibring, J.-P.; Bishop, J. L.; Dyar, M. D.

    2015-09-01

    The objective of this study is to identify and map spectral analogues of some key martian meteorites (basaltic shergottites Los Angeles, Shergotty, QUE 94201, lherzolitic shergottite ALH A77005, Nakhla, Chassigny and the orthopyroxenite ALH 84001) in order to localize terrain candidates for their source regions. We develop a best fit procedure to reproduce the near-infrared (NIR) spectral properties of the martian surface as seen by the hyperspectral imaging spectrometer OMEGA/MEx from the NIR spectra of the martian meteorites. The fitting process is tested and validated, and Root Mean Square (RMS) global maps for each meteorite are obtained. It is found that basaltic shergottites have NIR spectral properties the most representative of the martian surface with the best spectral analogues found in early Hesperian volcanic provinces. Sites with spectral properties similar to those of ALH A77005 are scarce. They are mainly localized in olivine-bearing regions such as Nili Fossae and small Noachian/early Hesperian terrains. The only plausible source region candidate for Chassigny is the Nili Patera caldera dated to 1.6 Ga. Widespread spectral analogues for the ALH 84001 meteorite are found northeast of Syrtis Major and northwest of the Hellas basin. While this distribution is in agreement with the low-calcium-pyroxene-rich composition and old age (4.1 Ga) of this meteorite, the modal mineralogy of these candidates is not consistent with that of this meteorite. No convincing spectral analogue is found for the Amazonian-aged Nakhla meteorite suggesting that its olivine/high-calcium-pyroxene-rich composition could be representative of the Amazonian terrains buried under dust. Finally, some young rayed craters are proposed as possible candidates for source craters of the studied martian meteorites.

  5. No Martian soil component in shergottite meteorites

    NASA Astrophysics Data System (ADS)

    Barrat, J. A.; Jambon, A.; Ferrière, L.; Bollinger, C.; Langlade, J. A.; Liorzou, C.; Boudouma, O.; Fialin, M.

    2014-01-01

    We report on the major and trace element geochemistry of the impact melts contained in some shergottite meteorites. It has been previously proposed that some of these impact melts formed from a mixture of the host rock and a Martian soil component (e.g., Rao et al., 1999) or from partially weathered portions of the host rock (Chennaoui Aoudjehane et al., 2012). Our results contradict both of these theories. Trace element abundances of a glass pod from the EETA 79001A meteorite are identical to those of the host lithology, and indicate that no additional component is required in this case. The impact melts in Tissint share the same trace element features as the host rock, and no secondary phases produced by Martian secondary processes are involved. The light rare earth enrichments displayed by two small samples of Tissint (Chennaoui Aoudjehane et al., 2012) are possibly the result of some contamination of small stones on desert soil before the recovery of the meteorites.

  6. The Orbits of Meteorites from Natural Thermoluminescence. Attachment 5

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1997-01-01

    The natural thermoluminescence (TL) of meteorites reflects their irradiation and thermal histories. Virtually all ordinary chondrites have been irradiated long enough to reach saturation natural TL levels, and thus natural TL levels in these meteorites are determined largely by thermal history. The primary heat source for most meteorites is the Sun, and thus natural TL levels are determined primarily by the closest approach to the Sun, i.e., perihelion. By converting natural TL levels to perihelia, using an assumed albedo typical of meteoroid bodies, it is found that most ordinary chondrites had perihelia of 0.85 to 1.0 AU prior to reaching Earth. This range is similar to that calculated from meteor and fireball observations. All common classes of ordinary chondrites exhibit similar perihelia distributions; however, H and LL chondrites that fell in the local morning differ in their natural TL distribution from those that fell in the local afternoon or evening. This is consistent with earlier suggestions that time of fall reflects orbital distribution. The data also suggest that the orbits of some of the H chondrites cluster and may have come from a debris 'stream' of meteoroids. If meteorites can exist in "orbital groups," significant changes in the types and number of meteorites reaching Earth could occur on the less than 10(exp 5)-year time scale.

  7. Sensing and data classification for a robotic meteorite search

    NASA Astrophysics Data System (ADS)

    Pedersen, Liam; Apostolopoulos, Dimi; Whittaker, William L.; Benedix, Gretchen; Rousch, Ted

    1999-01-01

    Upcoming missions to Mars and the mon call for highly autonomous robots with capability to perform intra-site exploration, reason about their scientific finds, and perform comprehensive on-board analysis of data collected. An ideal case for testing such technologies and robot capabilities is the robotic search for Antarctic meteorites. The successful identification and classification of meteorites depends on sensing modalities and intelligent evaluation of acquired data. Data from color imagery and spectroscopic measurements are used to identify terrestrial rocks and distinguish them from meteorites. However, because of the large number of rocks and the high cost and delay of using some of the sensors, it is necessary to eliminate as many meteorite candidates as possible using cheap long range sensors, such as color cameras. More resource consuming sensor will be held in reserve for the more promising samples only. Bayes networks are used as the formalism for incrementally combing data from multiple sources in a statistically rigorous manner. Furthermore, they can be used to infer the utility of further sensor readings given currently known data. This information, along with cost estimates, in necessary for the sensing system to rationally schedule further sensor reading sand deployments. This paper address issues associated with sensor selection and implementation of an architecture for automatic identification of rocks and meteorites from a mobile robot.

  8. Enantiomeric and Isotopic Analysis of Sugar Derivatives in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George; Asiyo, Cynthia; Turk, Kendra; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Several classes of organic compounds are found in carbonaceous meteorites including amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in the origin of life. Likewise, sugar derivatives are critical to all known lifeforms. Recent analyses of the Murchison and Murray carbonaceous meteorites revealed a diverse suite of such derivatives, i.e., sugar alcohols, and sugar acids. This presentation will focus primarily on the analysis of individual sugar acids - their enantiomeric and isotopic composition. Analysis of these compounds may reveal the nature of past (or present) meteoritic sugars themselves. For example, if parent sugars decomposed (by well-known mechanisms) to give the present acids, were their enantiomeric ratios preserved? Combined with other evidence, the enantiomeric composition of such compounds as glyceric acid and (especially) rare acids may help to answer such questions. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) as a group revealed that they were indigenous to the meteorite. Preliminary C-13 analysis of glyceric acid shows that it is also extraterrestrial.

  9. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-01-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  10. Meteoritics and cosmology among the Aboriginal cultures of Central Australia

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-03-01

    The night sky played an important role in the social structure, oral traditions, and cosmology of the Arrernte and Luritja Aboriginal cultures of Central Australia. A component of this cosmology relates to meteors, meteorites, and impact craters. This paper discusses the role of meteoritic phenomena in Arrernte and Luritja cosmology, showing not only that these groups incorporated this phenomenon in their cultural traditions, but that their oral traditions regarding the relationship between meteors, meteorites and impact structures suggests the Arrernte and Luritja understood that they are directly related.

  11. Dynamical evidence regarding the relationship between asteroids and meteorites

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1978-01-01

    Meteorites are fragments of small solar system bodies transferring into the vicinity of earth from the inner edge of the asteroid belt. Photometric measurements support an association between Apollo objects and chondritic meteorites. Dynamical arguments indicate that most Apollo objects are devolatilized comet residues, however; petrographic and cosmogonical reasons argue against this conclusion.

  12. Multiple Cosmic Sources for Meteorite Macromolecules?

    PubMed Central

    Watson, Jonathan S.; Meredith, William; Love, Gordon D.; Gilmour, Iain; Snape, Colin E.

    2015-01-01

    Abstract The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter. Key Words: Abiotic organic synthesis—Carbonaceous chondrite—Cosmochemistry—Meteorites. Astrobiology 15, 779–786. PMID:26418568

  13. Identifying Asteroidal Parent Bodies of the Meteorites: The Last Lap

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    2000-01-01

    Spectral studies of asteroids and dynamical models have converged to yield, at last, a clear view of asteroid-meteorite linkages. Plausible parent bodies for most meteorite types have either been identified or it has become evident where to search for them.

  14. Terrestrial Chemical Alteration of Hot Desert Meteorites

    NASA Astrophysics Data System (ADS)

    Crozaz, G.; Floss, C.

    2001-12-01

    Large numbers of meteorites have recently been recovered from terrestrial hot deserts. They include objects whose study holds the promise of significantly increasing our knowledge of the origin and petrogenesis of rare groups of meteorites (e.g., martian and lunar rocks, ureilites, etc). However, these meteorites have typically been exposed to harsh desert conditions for more than 10,000 yr since their fall on earth. A number of alterations have been described, including mineralogical and chemical changes (e.g., Crozaz and Wadhwa, 2001, and references therein). Through weathering, Fe-bearing minerals are progressively altered into clays and iron oxides and hydroxides, which often fill cracks and mineral fractures, together with terrestrial quartz and carbonates. In addition, for whole rock samples, elevated Ba, Sr, and U seem to be the telltale signs of terrestrial contamination (e.g., Barrat et al., 1999). In our work, we use the rare earth elements (REE) as monitors of terrestrial alteration. These elements are important because they are commonly used to decipher the petrogenesis and chronology of meteorites. We have made in-situ concentration measurements, by secondary ion mass spectrometry (SIMS), of individual grains in shergottites (assumed to have formed on Mars), lunar, and angritic meteorites. Terrestrial contamination, in the form of LREE enrichment and Ce anomalies, is encountered in the olivine and pyroxene, the two minerals with the lowest REE concentrations, of all objects analyzed. However, the contamination is highly heterogeneous, affecting some grains and not others of a given phase. Therefore, provided one uses a measurement technique such as SIMS to obtain data on individual grains and to identify the unaltered ones, it is still possible to obtain geochemical information about the origins of hot desert meteorites. On the other hand, great caution must be exercised if one uses data for whole rocks or mineral separates. The U-Pb, Rb-Sr and Sm

  15. Meteorite Impacts and Planetary Habitability: The Good, the Bad, and the Ugly

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2012-12-01

    It is now widely accepted that meteorite impacts negatively affect life on a planet, as evidenced by the deleterious effects associated with the formation of the Chicxulub impact structure, Mexico, 65 Myr. ago and its link to the Cretaceous-Paleogene mass extinction event. This impact event had a profound affect on the evolution of life on Earth by ending the age of the dinosaurs and paving the way for mammals to ascend to dominance. In terms of the origin of life, despite the controversy over when exactly life appeared on Earth, it is likely that it did so during one of the harshest, most inhospitable times in Earth history: the Late Heavy Bombardment Period ~4.0-3.8 Ga. During this time, asteroid and comet impacts were ~10-20 times as frequent as they are at the present day. This may seem counterintuitive until one considers that these cataclysmic, initially destructive impact events may also have had beneficial effects with respect to life. This contribution will present a synthesis of information concerning the role that meteorite impacts may have played in the origin and evolution of life on Earth and, by analogy, with other planetary bodies throughout the Universe. It will hopefully be demonstrated that impact events do not just frustrate life, but that impact craters, once formed, may represent protected niches where life can survive and evolve and, potentially, where life may have originated. It is proposed that the geological, biological, and environmental changes known to be caused by an impact allow for the formulation of key cross-cutting hypotheses concerning the potential deleterious and beneficial effects of meteorite impact events. Most notably, it is proposed that impact events produce new, unique habitats for life and, therefore, can have an overall positive effect on planetary habitability. Habitats include: 1) impact-generated hydrothermal systems, which could provide habitats for thermophilic and hyperthermophilic microorganisms, 2) impact

  16. Cosmogenic radionuclides in stone meteorites

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

  17. LU-HF Age of Martian Meteorite Larkman Nunatek 06319

    NASA Technical Reports Server (NTRS)

    Shafer, J. T.; Brandon, A. D.; Lapen, T. J.; Righter, M.; Beard, B.; Peslier, A. H.

    2009-01-01

    Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s).

  18. Buddha from space - An ancient object of art made of a Chinga iron meteorite fragment

    NASA Astrophysics Data System (ADS)

    Buchner, Elmar; Schmieder, Martin; Kurat, Gero; Brandstńtter, Franz; Kramar, Utz; Ntaflos, Theo; Kröchert, Jörg

    2012-09-01

    The fall of meteorites has been interpreted as divine messages by multitudinous cultures since prehistoric times, and meteorites are still adored as heavenly bodies. Stony meteorites were used to carve birds and other works of art; jewelry and knifes were produced of meteoritic iron for instance by the Inuit society. We here present an approximately 10.6 kg Buddhist sculpture (the “iron man”) made of an iron meteorite, which represents a particularity in religious art and meteorite science. The specific contents of the crucial main (Fe, Ni, Co) and trace (Cr, Ga, Ge) elements indicate an ataxitic iron meteorite with high Ni contents (approximately 16 wt%) and Co (approximately 0.6 wt%) that was used to produce the artifact. In addition, the platinum group elements (PGEs), as well as the internal PGE ratios, exhibit a meteoritic signature. The geochemical data of the meteorite generally match the element values known from fragments of the Chinga ataxite (ungrouped iron) meteorite strewn field discovered in 1913. The provenance of the meteorite as well as of the piece of art strongly points to the border region of eastern Siberia and Mongolia, accordingly. The sculpture possibly portrays the Buddhist god Vaiśravana and might originate in the Bon culture of the eleventh century. However, the ethnological and art historical details of the “iron man” sculpture, as well as the timing of the sculpturing, currently remain speculative.

  19. Meteorite Infall and Transport in Antarctica: An Analysis of Icefields as Accumulation Surfaces

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1997-01-01

    Over 10,000 meteorite fragments have been collected on only a dozen or so small icefields in Antarctica. The terrestrial history of these meteorites is important, both from the perspective of the effects of their ambient environment on the meteorites themselves, and on the information that can be derived in relation to ice flow and ice stability over periods of time up to 1 million years. We discuss the relative importance of meteorite infall, and ice and aeolian transport in creating meteorite accumulations and the importance of ice and aeolian transport and weathering in removing meteorites at various icefields in Antarctica. The present analysis is confined to equibrated ordinary chondrites. We use the natural thermoluminescence (TL) to to examine the effects of weathering. Natural TL is used in combination with size analysis to gauge the effects of aeolian transport. Some icefields, especially the Lewis Cliff Ice Tongue, are dominated by wind-transported fragments, while others, including the Far Western field at Allan Hills, have lost fragments. It appears that most Antarctic icefields preserve meteorite collections on time scales of a few tens of thousands of years.

  20. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  1. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    NASA Astrophysics Data System (ADS)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    Introduction: Iron meteorites are considered to have experienced a complex history, which is indicated by the variations in trace element chemistry (e.g., [1]). Among iron meteorite groups, the so called nonmagmatic groups, such as IAB, IIE, and IIICD, may have passed through different formation paths compared to others. Nitrogen isotopes can be a useful tool to understand the origin and formation processes of iron meteorites. Nikogen isotopes in a number of iron meteorites are measured [2,3], although trapping sites of nitrogen in iron meteorites are not yet clear. This is an important issue because nitrogen, a typical mobile element, may well reflect thermal history of their parent bodies (c.f., [4]). Generally, a major portion of nitrogen in iron meteorites is expected to be in a solid solution in Fe-Ni, especially in f.c.c. Fe-Ni (taenite). Franchi et al. [3] report that at least 25 to 35% of nitrogen in magmatic iron meteorites is in acid insoluble phases, however, not in those of non-magmatic meteorites. This result contradicts with the result [5] who report that a significant portion of nitrogen seems to be trapped in acid residues not only of magmatic meteorites but also of non- magmatic meteorites. To resolve the contradiction described above, and to identify the trapping site, we started measuring nitrogen isotopes in acid residues of iron metcorites. We report here preliminary results on acid residues of Canyon Diablo (IA). Procedures: Acid residues were prepared by Dr. J.-I. Matsuda and his colleagues. Different blocks of Canyon Diablo, "Can-1" and "Can-2" were treated by 14M HCl, 10M-HF + 1M-HCl, 1M-HCl, and by aqua regia, which destroyed Fe-Ni, sulfides, silicates, and shreibersite. Acid residues of these two blocks, "Can-1bn" and "Can-2b," yielded 0.102 wt% and 0.299 wt% of their original masses, respectively These residues seem to consist mostly of graphite No diamond was detected by powder X-ray analysis [6]. Preliminary Results: A predominant

  2. Interstellar water in meteorites?

    NASA Astrophysics Data System (ADS)

    Deloule, Etienne; Robert, François

    1995-11-01

    D/H ratios of two meteorites (Renazzo CR and Semarkona LL3 ), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion microprobe. Correlations between the D/H ratios and the chemical compositions (H 2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo: 870 × 10 -6 ≥ D/H ≥ 670 x 10 -6 (+4600 ≥ δD ≥ 3300%‰) and ≥ 320 × 10 -6 (6D ≥ 1050%‰), respectively. Hydrogen is also present in the chondrules of these two deuteriumrich meteorites. The large differences in D/H ratios between matrix (up to 700 × 10 -6 δD up to +35005‰) and chondrules (from 120 × 10 -6 (δD = -230%‰) to 230 × 10 -6 (δD = +475%‰)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water-bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e., involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140 K are presently the only conceivable mechanisms capable of yielding such isotopic enrichments. Water in these meteorites should no longer be considered as a simple product of nebular condensation under equilibrium thermodynamic conditions at T ≥ 160 K.

  3. Rhenium-osmium-isotope constraints on the age of iron meteorites

    NASA Technical Reports Server (NTRS)

    Horan, M. F.; Morgan, J. W.; Walker, R. J.; Grossman, J. N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately +/-31 million years for meteorites about 4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of Re-187, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  4. Rhenium-osmium isotope constraints on the age of iron meteorites

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately ??31 million years for meteorites ???4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of 187Re, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  5. The enrichment of the ISM: Evolved stars and meteorites

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1995-01-01

    Small inclusions (diameters ranging from 0.001 microns to 10 microns) of isotopically anomalous material within meteorites were almost certainly produced in mass-losing stars. These solid particles preserved their individual identities as they passed through the interstellar medium and the pre-solar nebular. The relationship between studies of meteorites and mass-losing red giants is explored.

  6. Meteorite spectroscopy and characterization of asteroid surface materials

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1991-01-01

    The analysis of visible and near-infrared reflectance spectra is the primary means to determine surface mineralogy and petrology of individual asteroids. These individual studies provide the data to investigate the broader relationships between the asteroids and meteorites and between asteroids at different heliocentric distances. The main purpose is to improve the understanding of the origin, evolution, and inter-relationships of the asteroids; of their relationships to the meteorites; and of the processes active and the conditions present in the early inner solar system. Empirical information from the study of asteroids and the meteorites is essential to the adequate development and testing of the theoretical models for the accretion of the terrestrial planets, and for their early post-accretionary evolution. The recent results are outined in the following sections: (1) asteroid igneous processes, and (2) spinel-bearing asteroids and the nebular compositional gradient.

  7. In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Folco, Luigi; Rochette, Pierre; Gattacceca, JéRôMe; Perchiazzi, Natale

    2006-03-01

    We report on the effectiveness of using magnetic measurements in the search for meteorites on the Antarctic ice sheet, which is thus far the Earth's most productive terrain. Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non-destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to crosscheck the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar

  8. Meteoritical Society Annual Meeting, 57th, Prague, Czech Republic, July 25-29, 1994. [Abstracts only

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Ranging in size from mere grains and palm-size stones to boulders and many-mile- wide hunks of rock, meteorites hold many secrets of our solar system, and indeed of our universe. The 57th Annual Meeting of the Meteoritical Society discussed many aspects of this fascinating 'chunk' of the evolution of the Solar System. Topics covered included: chemical composition, meteorite types, meteorite age determination, meteorite origins, and find locations, as well as a multitude of other important subjects.

  9. Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence A. J.; Rai, Ashwin; Johnston, Joel; Borkowski, Luke; Datta, Siddhant; Chattopadhyay, Aditi; Morris, Melissa A.

    2016-10-01

    Measuring the strengths of asteroidal materials is important for developing mitigation strategies for potential Earth impactors and for understanding properties of in situ materials on asteroids during human and robotic exploration. Studies of asteroid disruption and fragmentation have typically used the strengths determined from terrestrial analog materials, although questions have been raised regarding the suitability of these materials. The few published measurements of meteorite strength are typically significantly greater than those estimated from the stratospheric breakup of meter-sized meteoroids. Given the paucity of relevant strength data, the scale-varying strength properties of meteoritic and asteroidal materials are poorly constrained. Based on our uniaxial failure studies of centimeter-sized cubes of a carbonaceous and ordinary chondrite, we develop the first Weibull failure distribution analysis of meteorites. This Weibull distribution projected to meter scales, overlaps the strengths determined from asteroidal airbursts and can be used to predict properties of to the 100 m scale. In addition, our analysis shows that meter-scale boulders on asteroids are significantly weaker than small pieces of meteorites, while large meteorites surviving on Earth are selected by attrition. Further, the common use of terrestrial analog materials to predict scale-dependent strength properties significantly overestimates the strength of meter-sized asteroidal materials and therefore is unlikely well suited for the modeling of asteroid disruption and fragmentation. Given the strength scale-dependence determined for carbonaceous and ordinary chondrite meteorites, our results suggest that boulders of similar composition on asteroids will have compressive strengths significantly less than typical terrestrial rocks.

  10. The 10Be contents of SNC meteorites

    NASA Technical Reports Server (NTRS)

    Pal, D. K.; Tuniz, C.; Moniot, R. K.; Savin, W.; Vajda, S.; Kruse, T.; Herzog, G. F.

    1986-01-01

    Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC meteorites have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC meteorites. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC meteorites would have formed on the Martian surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC meteorites. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC meteorites.

  11. The discovery of iron barringerite in lunar meteorite Y-793274

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstatter, F.; Kurat, G.; Koeberl, C.

    1991-04-01

    The higher phosphide barringerite, (Fe,Ni){sub 2}P, has been found in a thin section of the Y-793274 lunar meteorite. This meteorite originated from a highlands/mare boundary and contains mare and highlands components in a 2:1 ratio. The original report of barringerite was from the Ollague pallasite; however, there is uncertainty where the barringerite in this pallasite may have formed terrestrially. Terrestrial weathering or artificial heating as the source of the barringerite in the lunar meteorite can be excluded. Therefore, Y-793274 seems to contain the first unambiguous extraterrestrial occurrence of barringerite.

  12. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R.

    2008-03-01

    The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.

  13. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite.

    PubMed

    Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R

    2008-03-11

    The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.

  14. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  15. 14C Terrestrial Ages of Meteorites from Desert Regions: Algeria and Australia

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.; Wlotzka, F.; Bevan, A. W. R.; Brown, S. T.; Donahue, D. J.

    1993-07-01

    The terrestrial age or residence time on the Earth's surface is important in determining the history of a meteorite. Carbon-14 has been used for a terrestrial-age indicator since 1962 [1,2]. Since 1984, small samples of meteorites of 0.1 to 0.5 g have been dated using accelerator mass spectrometry [3-5]. The precision of terrestrial age estimates is limited by the accuracy to which the saturated activity of ^14C in the meteorite is known. Jull et al. [4,5] used Bruderheim and some other chondrites to establish a saturated activity reference level. It is important to be aware that ^14C can vary with the depth and size of the object, and ^14C as a function of accurate depth has so far been measured only for one object, Knyahinya [7]. Carbon-14 is of particular interest in warmer climatic regions, where the storage time before a meteorite weathers away is expected to be much less than other locations, for example, Antarctica. This view was originally based on the work of Boeckl [7], who determined a "weathering half life" of some 3500 yr for chondrites from the southwestern U.S. This work was reinvestigated [5] and it was determined that the ^14C age distribution of the meteorites was longer than the earlier report. We have studied ^14C ages of meteorites from Roosevelt County, New Mexico [8], and from the western Libyan desert [9]. In both these areas meteorites of ages as old as 35,000 yr are observed, and the mean survival time at both locations is well over 10,000 yr. We have studied the ^14C age distribution of a large number of meteorites from Acfer, Algeria, and the Nullarbor Plain, Australia. Figure 1 presents the ^14C age distribution of Acfer samples compared to some other locations where a substantial number of ^14C ages have been obtained. The Algerian site shows a simple exponential dependence of terrestrial age vs. time, and no meteorites of >25 K.y. age. This is in contrast to the results from the southwestern U.S. [7] and from Roosevelt County [8]. One

  16. A new family of extraterrestrial amino acids in the Murchison meteorite.

    PubMed

    Koga, Toshiki; Naraoka, Hiroshi

    2017-04-04

    The occurrence of extraterrestrial organic compounds is a key for understanding prebiotic organic synthesis in the universe. In particular, amino acids have been studied in carbonaceous meteorites for almost 50 years. Here we report ten new amino acids identified in the Murchison meteorite, including a new family of nine hydroxy amino acids. The discovery of mostly C 3 and C 4 structural isomers of hydroxy amino acids provides insight into the mechanisms of extraterrestrial synthesis of organic compounds. A complementary experiment suggests that these compounds could be produced from aldehydes and ammonia on the meteorite parent body. This study indicates that the meteoritic amino acids could be synthesized by mechanisms in addition to the Strecker reaction, which has been proposed to be the main synthetic pathway to produce amino acids.

  17. Meteorite concentration mechanisms in Antarctica

    NASA Technical Reports Server (NTRS)

    Annexstad, J. O.

    1986-01-01

    The location of most Antarctic meteorite finds is on stagnant, highly ablative surfaces known as blue ice. The role of blue ice as transporter, concentrator, and preserver of specimens from the time of fall until find is discussed.

  18. The occurrence and origin of lamellar troilite in iron meteorites

    USGS Publications Warehouse

    Brett, R.; Henderson, E.P.

    1967-01-01

    A number of iron meteorites contain elongated inclusions consisting predominantly of troilite, which have been termed Reichenbach lamellae. Two types of inclusions exist, the first up to 6 cm long and 0??2 mm wide, the second up to 2 cm long and 3 mm wide. The first type contains troilite with subordinate daubreelite and is commonly rimmed by schreibersite and swathing kamacite; the second consists largely of troilite with daubreelite and rare graphite and silicate grains. Both types formed from a residual sulfide melt after the solidification of Ni{single bond}Fe metal. Swatching kamacite surrounding troilite in iron meteorites formed by nucleation at the troilite-metal interface during the formation of the Widmansta??tten texture. Meteorites containing troilite inclusions of the second type appear to have cooled more rapidly than most iron meteorites. In view of the confusion surrounding the use of the term Reichenbach lamella, it is suggested that the term be dropped from the literature. ?? 1967.

  19. Connecting Lunar Meteorites to Source Terrains on the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Carpenter, P. K.; Korotev, R. L.; North-Valencia, S. N.; Wittmann, A.; Zeigler, R. A.

    2014-01-01

    The number of named stones found on Earth that have proven to be meteorites from the Moon is approx. 180 so far. Since the Moon has been mapped globally in composition and mineralogy from orbit, it has become possible to speculate broadly on the region of origin on the basis of distinctive compositional characteristics of some of the lunar meteorites. In particular, Lunar Prospector in 1998 [1,2] mapped Fe and Th at 0.5 degree/pixel and major elements at 5 degree/pixel using gamma ray spectroscopy. Also, various multispectral datasets have been used to derive FeO and TiO2 concentrations at 100 m/pixel spatial resolution or better using UV-VIS spectral features [e.g., 3]. Using these data, several lunar meteorite bulk compositions can be related to regions of the Moon that share their distinctive compositional characteristics. We then use EPMA to characterize the petrographic characteristics, including lithic clast components of the meteorites, which typically are breccias. In this way, we can extend knowledge of the Moon's crust to regions beyond the Apollo and Luna sample-return sites, including sites on the lunar farside. Feldspathic Regolith Breccias. One of the most distinctive general characteristics of many lunar meteorites is that they have highly feldspathic compositions (Al2O3 approx. 28% wt.%, FeO <5 wt.%, Th <1 ppm). These compositions are significant because they are similar to a vast region of the Moon's farside highlands, the Feldspathic Highlands Terrane, which are characterized by low Fe and Th in remotely sensed data [4]. The meteorites provide a perspective on the lithologic makeup of this part of the Moon, specifically, how anorthositic is the surface and what, if any, are the mafic lithic components? These meteorites are mostly regolith breccias dominated by anorthositic lithic clasts and feldspathic glasses, but they do also contain a variety of more mafic clasts. On the basis of textures, we infer these clasts to have formed by large impacts

  20. Molecular Isotopic Characterization of the ALH 85013.50 Meteorite: Defining the Extraterrestrial Organic Compounds

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Huang, Y.

    2003-01-01

    The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.

  1. Noble Gases in the Lunar Meteorites Calcalong Creek and QUE 93069

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.; Burkland, M. K.; Grier, J. A.

    1995-09-01

    Although the world's collections contain comparable numbers of martian and lunar meteorites (about 10 each), their ejection histories seem to be quite different [1]. We have sampled no more than four martian craters, but almost every one of the lunar meteorites apparently represents a separate cratering event. Furthermore, most lunar meteorites were apparently ejected from the top meter of the surface, unlike any of the martian meteorites. We have measured noble gases in two bulk samples of the lunar meteorite QUE93069 and three of Calcalong Creek, ranging in size from 7 to 15 mg. Averaged results are given in Table 1. Both meteorites contain solar-wind-implanted noble gas. QUE 93069, which is a mature anorthositic regolith breccia [2], contains amounts comparable to the most gas-rich lunar meteorites. The relatively low 40Ar/36Ar ratios of both meteorites suggest surface exposures no more than 2.5 Ga ago [3]. Calcalong Creek has readily observable spallogenic gas. The 131Xe/126Xe ratio of 4.8+/-0.3 corresponds to an average shielding depth of slightly more than 40 gm/cm^2 [4]. In common with many lunar breccias, Calcalong Creek has been exposed to cosmic rays for several hundred Ma (calculations based on [4] and [5]). The 3He apparent exposure age is much shorter, suggesting diffusive loss of He. To determine the detailed exposure history, it is necessary to have measurements of cosmogenic radionuclides. Our samples were too small to measure 81Kr, but [6] have measured 10Be, 26Al and 36Cl. Their data are consistent with either extended exposure at <70 gm/cm^2 in the lunar regolith followed by a short (200,000 years) transit to Earth, or with ejection from several meters depth about 2 Ma ago [6]. Our data, requiring several hundred Ma of exposure at an average depth of 40-50 gm/cm^2, are clearly more consistent with the first scenario. The only other lunar meteorite which could have been ejected at the same time is MAC 88104/5 [1], but the chemical differences

  2. Antarctic Meteorite Newsletter, volume 7, number 2: Sample requests and allocations

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A listing of meteorites found in Antarctica is provided, along with a description of some of the less common types. Petrographic and physical descriptions, weight data, and locations of the less common meteorites are given.

  3. Methods for determining the preatmospheric dimensions of meteorites

    NASA Astrophysics Data System (ADS)

    Ustinova, G. K.; Alekseev, V. A.; Lavrukhina, A. K.

    1988-10-01

    Methods are proposed for the determination of the preatmospheric size of a meteorite on the basis of data on its cosmogenic radionuclides. Optimal conditions for the application of each of these methods are presented together with the demonstration of their effectiveness. Estimates of relative dimensions determined by these methods are presented for the Harleton, St. Severin, Lost City, Peace River, Pribram, Dhajala, Innisfree, Bruderheim, Ehole, and Gorlovka chondrites and for the Iardymly, Boguslavka, Treysa, and Sikhote-Alin' iron meteorites.

  4. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  5. Matrices of carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.; Hua, Xin

    1993-01-01

    The morphology, classification, and chemistry of the matrices of carbonaceous chondrite (CC) meteorites is reviewed based on recent research results. The various kinds of CCs are examined in terms of their matrix mineralogy. Alteration processes in CCs are discussed.

  6. Antarctic iron meteorites: An unexpectedly high proportion of falls of unusual interest

    NASA Technical Reports Server (NTRS)

    Clarke, R. S., Jr.

    1986-01-01

    The inhabited and explored areas of Earth have contributed 725 iron meteorites, accounting for 28% of the 2611 authenticated meteorites known of all types. Observed fall statistics give a much different view of relative abundance. The 42 historic iron meteorite falls spanning 230 years suggests a frequency of one fall per 5.6 years and represents only 4.9% of the total 853 known falls. Antarctic iron meteorite recoveries offer promise of providing a new perspective on the influx problem. At least 42 iron meteorite specimens were found during the last 25 years by various field teams working in Antarctica. Most of these specimens were not described in detail, but the available data indicates that 21 separate falls are represented, 50% of the number of recovered specimens. Twelve of the 21 falls were both structurally classified and placed into chemical groups. They are listed in order of increasing structural complexity and/or Ni content.

  7. Detection and rapid recovery of the Sutter's Mill meteorite fall as a model for future recoveries worldwide

    NASA Astrophysics Data System (ADS)

    Fries, Marc; Le Corre, Lucille; Hankey, Mike; Fries, Jeff; Matson, Robert; Schaefer, Jake; Reddy, Vishnu

    2014-11-01

    The Sutter's Mill C-type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.

  8. The Virtual Museum for Meteorites: an Online Tool for Researchers Educators and Students

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2013-09-01

    The Virtual Museum for Meteorites (Figure 1) was created as a tool for students, educators and researchers [1, 2]. One of the aims of this online resource is to promote the interest in meteorites. Thus, the role of meteorites in education and outreach is fundamental, as these are very valuable tools to promote the public's interest in Astronomy and Planetary Sciences. Meteorite exhibitions reveal the fascination of students, educators and even researchers for these extraterrestrial rocks and how these can explain many key questions origin and evolution of our Solar System. However, despite the efforts related to the origin and evolution of our Solar System. However, despite the efforts of private collectors, museums and other institutions to organize meteorite exhibitions, the reach of these is usually limited. The Virtual Museum for Meteorites takes advantage of HTML and related technologies to overcome local boundaries and offer its contents for a global audience. A description of the recent developments performed in the framework of this virtual museum is given in this work.

  9. Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites: Indigenous Microfossils, Minerals, or Modern Bio-Contaminants?

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2011-01-01

    Large complex filaments have been detected in freshly fractured interior surfaces of a variety of carbonaceous meteorites. Many exhibit the detailed morphological and morphometric characteristics of known filamentous trichomic prokaryotic microorganisms. In this paper we review prior studies of filamentous microstructures encountered in the meteorites along with the elemental compositions and characteristics of the, fibrous evaporite minerals and filamentous cyanobacteria and homologous trichomic sulfur bacteria. The meteorite images and elemental compositions will compared with data obtained with the same instruments for abiotic microstructures and living and fossil microorganisms in order to evaluate the relative merits of the alternate hypotheses that have been advanced to explain the nature and characteristics of the meteorite filaments. The possibiility that the filaments found in the meteorites may be comprise modern bio-contaminants will be evaluated in light of their observed elemental compositions and data by other researchers on the detection of indigenous complex organic biosignatures, and extraterrestrial amino acids and nucleobases found in the Murchison CM2 and the Orgueil CI1 carbonaceous meteorites.

  10. Accelerator experiments on the contribution of secondary particles to the production of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Dragovitsch, P.; Englert, P.

    1985-01-01

    Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites.

  11. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  12. Discovery of a main-belt asteroid resembling ordinary chondrite meteorites.

    PubMed

    Binzel, R P; Xu, S; Bus, S J; Skrutskie, M F; Meyer, M R; Knezek, P; Barker, E S

    1993-12-03

    Although ordinary chondrite material dominates meteorite falls, the identification of a main-belt asteroid source has remained elusive. From a new survey of more than 80 small main-belt asteroids comes the discovery of one having a visible and near-infrared reflectance spectrum similar to L6 and LL6 ordinary chondrite meteorites. Asteroid 3628 BoZnemcová has an estimated diameter of 7 kilometers and is located in the vicinity of the 3:1 Jovian resonance, a predicted meteorite source region. Although the discovery of a spectral match may indicate the existence of ordinary chondrite material within the main asteroid belt, the paucity of such detections remains an unresolved problem.

  13. Crystal fractionation in the SNC meteorites: Implications for sample selection

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1988-01-01

    Almost all rock types in the SNC meteorites are cumulates, products of magma differentiation by crystal fractionation (addition or removal of crystals). If the SNC meteorites are from the surface of Mars or near subsurface, then most of the igneous units on Mars are differentiated. Basaltic units probably experienced minor to moderate differientation, but ultrabasic units probably experienced extreme differentiation. Products of this differentiation may include Fe-rich gabbro, pyroxenite, periodotite (and thus serpentine), and possibly massive sulfides. The SNC meteorites include ten lithologies (three in EETA79001), eight of which are crystal cumulates. The other lithologies, EETA79001 A and B are subophitic basalts.

  14. Vigie-Ciel : a french citizen network to study meteors and meteorites

    NASA Astrophysics Data System (ADS)

    Bouley, S.; Zanda, B.; Colas, F.; Vaubaillon, J.; Marmo, C.; Vernazza, P.; Gattacceca, J.

    2013-12-01

    Vigie Ciel is a french citizen network supported by the Muséum National d'Histoire Naturelle (MNHN) and the Université Paris-Sud (UPsud). It is based on the scientific FRIPON program developed by Paris Observatory (Fireball Recovery and Planetary Inter Observation Network) which has for main goal to (i) determine the source region(s) of the various meteorite classes, (ii) collect both fresh and rare meteorite types and (iii) perform scientific outreach. This will be achieved by building the densest camera network in the world, based on state of the art technologies and associated with a participative network for meteorite recovery. We propose to install a network of 100 digital cameras covering the entire French territory to compute impact locations with accuracy of the order of one kilometer. Considering that there are 5 to 25 falls over France per year (~15 on average), during the same time, we will observe ~50 falls out of which we realistically expect to find 10 meteorites. Our project is original in several ways. (i) It is inter-disciplinary, involving experts in meteoritics, asteroidal science as well as fireball observation and dynamics. It will thus create new synergies between prominent institutions and/or laboratories, namely between MNHN, Paris Observatory and Université Paris-Sud in the Parisian region; and between CEREGE and LAM in the Provence region. Overall, scientists from over 25 laboratories will be involved, covering a mix of scientific disciplines and all the regions of France. (ii) It will generate a large body of data, feeding databases of interest to several disciplines (e.g. bird migration, variations of the luminosity of the brightest stars, observation of space debris, meteorology...). (iii) It will for the first time involve the general public (including schools) in the search for the meteorite falls, thus boosting the interest in meteorite and asteroid related science.

  15. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  16. A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.

    2012-01-01

    Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.

  17. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, Alyssa K.; Pudritz, Ralph E., E-mail: cobbak@mcmaster.ca, E-mail: pudritz@physics.mcmaster.ca

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 andmore » CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.« less

  18. The natural thermoluminescence of meteorites. 7: Ordinary chondrites from the Elephant Moraine region, Antarctica

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Roth, J.; Sears, H.; Sears, D. W. G.

    1994-01-01

    We report natural and induced thermoluminescence (TL) measurements for meteorites from the Elephant Moraine region (76 deg 17 min S, 157 deg 20 min E) of Antarctica. We use our data to identify fragmented meteorites (i.e., 'pairings'); our dataset of 107 samples represents at most 73 separate meteorite falls. Pairing groups are generally confined to single icefields, or to adjacent icefields, but a small proportion cross widely separated icefields in the region, suggesting that the fields can be considered as a single unit. Meteorites from this region have high natural TL levels, which indicates that they have small terrestrial surface exposure ages (less than 12,500 years). There do not appear to be significant differences in natural TL levels (and hence surface exposure ages) between individual blue icefields in the region. The proportion of reheated meteorites from the Elephant Moraine region is similar to that of other Antarctic sites and modern falls, consistent with the uniformity of the meteoritic flux in this regard. An unusual subset of H-chondrites, with high induced TL peak temperatures, is absent among the data for meteorites collected in the Elephant Moraine region, which stresses their similarity to modern falls. We suggest that the Elephant Moraine region, which stresses their similarity to modern falls. We suggest that the Elephant Moraine icefields formed through shallow ablation of the ice. Unlike the Allan Hills sites to the south, lateral transport is probably less important relative to the infall of meteorites in concentrating meteorites on these icefields.

  19. On the primordial condensation and accretion environment and the remanent magnetization of meteorites

    NASA Technical Reports Server (NTRS)

    Brecher, A.

    1973-01-01

    In the context of various models for the early evolution of a solar nebula, the possible roles assigned to ambient magnetic fields and the paleointensities required to establish the stable natural remanent magnetization observed in meteorites, are discussed. It is suggested that the record of paleofields present during condensation, growth, and accumulation of grains is likely to have been preserved as chemical or thermochemical remanence in unaltered meteoritic material. Fine particle theories appear adequate for treating meteoritic remanence, if models based on corresponding types of permanent magnet materials, e.g., powder ferrites for chondrites and diffusion hardened alloys for iron meteorites, are adopted.

  20. Paleo-Magnetic Field Recorded in the Parent Body of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Páchová, H.

    2014-12-01

    Murchison meteorite is a carbonaceous chondrite containing small amount of chondrules, various inclusions, and matrix with occasional porphyroblasts of olivine and/or pyroxene. We applied magnetic efficiency method (Kletetschka et al 2005, Kohout et al, 2008) in order to get the demagnetization spectra for several randomly oriented fragments of Murchison meteorite. Our method detected not only viscous magnetization removable in low fields, but also very persistent magnetizations in all meterorite fragments. Data suggest that magnetic carriers within the Murchison meteorite were grown in a paleofield of 450 - 850 nT. Meteorite record in other fragments contains an existence of antipodal fields that may be tied to an event of magnetic reversal within the nebular magnetic field or parent asteroid body. Other meteorites show stable record over its entire spectrum, giving magnetic paleofield of 1100 - 1900 nT. Magnetic record in Murchison meteorite comes from magnetite, pyrrhotite and Iron Nickel alloy. Pyrrhotite is suggested to be the main carrier of the paleofield in Murchison. Iron-Nickel alloy generate observable zigzag pattern when magnetically saturated. Kletetschka, G., Kohout, T., Wasilewski, P., and Fuller, M. D., 2005, Recognition of thermal remanent magnetization in rocks and meteorites, The IAGA Scientific Assembly, Volume GAI10: Toulouse, IAGA, p. IAGA2005-A-00945. Kohout, T., Kletetschka, G., Donadini, F., Fuller, M., and Herrero-Bervera, E., 2008, Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra: Studia Geophysica Et Geodaetica, v. 52, no. 2, p. 225-235.

  1. What we have learned about Mars from SNC meteorites

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the

  2. Lunar sample analysis. [Allende meteorite

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1985-01-01

    Recent results on the antarctic meteorite ALPHA 77003 which contribute to understanding the alteration processes which produced matrix in unequilibrated chondrites are presented. Also included are additional scanning electron microscope results confirming that the matrix in Allende was formed by in situ alteration.

  3. Composition and Morphology of Iron Meteorites Found in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Meslin, P.-Y.; Wellington, D. F.; Johnson, J. R.; Fraeman, A.; Gasnault, O.; Maurice, S.; Forni, O.; Beck, P.; Cohen, B. A.; Newsom, H. E.; Bridges, J. C.; Sautter, V.; Gasda, P.; Lanza, N.; Ollila, A.; Johnstone, S. E.; Fairen, A.

    2017-07-01

    Two iron meteorites including a possible ataxite ( 17 wt. % Ni) have been analyzed by MSL/ChemCam on Mars. Two other large and several small candidate iron meteorites have been observed by Mastcam. Finds observed so far appear relatively unweathered.

  4. Investigation of Effective Material Properties of Stony Meteorites

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  5. Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Gussone, N.; Mezger, K.; Krause, J.

    2018-04-01

    The Ca isotope composition of meteorites and their components may vary due to mass-dependent and/or -independent isotope effects. In order to evaluate the origin of these effects, five amoeboid olivine aggregates (AOAs), three calcium aluminum inclusions (CAIs), five chondrules (C), a dark inclusion from Allende (CV3), two dark fragments from North West Africa 753 (NWA 753; R3.9), and a whole rock sample of Orgueil (CI1) were analyzed. This is the first coupled mass-dependent and -independent Ca isotope dataset to include AOAs, a dark inclusion, and dark fragments. Where sample masses permit, Ca isotope data are reported with corresponding petrographic analyses and rare earth element (REE) relative abundance patterns. The CAIs and AOAs are enriched in light Ca isotopes (δ44/40Ca -5.32 to +0.72, where δ44/40Ca is reported relative to SRM 915a). Samples CAI 5 and AOA 1 have anomalous Group II REE patterns. These REE and δ44/40Ca data suggest that the CAI 5 and AOA 1 compositions were set via kinetic isotope fractionation during condensation and evaporation. The remaining samples show mass-dependent Ca isotope variations which cluster between δ44/40Ca +0.53 and +1.59, some of which are coupled with unfractionated REE abundance patterns. These meteoritic components likely formed through the coaccretion of the evaporative residue and condensate following Group II CAI formation or their chemical and isotopic signatures were decoupled (e.g., via nebular or parent-body alteration). The whole rock sample of Orgueil has a δ44/40Ca +0.67 ± 0.18 which is in agreement with most published data. Parent-body alteration, terrestrial alteration, and variable sampling of Ca-rich meteoritic components can have an effect on δ44/40Ca compositions in whole rock meteorites. Samples AOA 1, CAI 5, C 2, and C 4 display mass-independent 48/44Ca anomalies (ε48/44Ca +6 to +12) which are resolved from the standard composition. Other samples measured for these effects (AOA 5, CAI 1, CAI 2

  6. Oral Histories in Meteoritics and Planetary Science—XIX: Klaus Keil

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2012-12-01

    Abstract- Klaus Keil (Fig. 1) grew up in Jena and became interested in meteorites as a student of Fritz Heide. His research for his Dr. rer. nat. became known to Hans Suess who--with some difficulty--arranged for him to move to La Jolla, via Mainz, 6 months before the borders of East Germany were closed. In La Jolla, Klaus became familiar with the electron microprobe, which has remained a central tool in his research and, with Kurt Fredriksson, he confirmed the existence of Urey and Craig's chemical H and L chondrite groups, and added a third group, the LL chondrites. Klaus then moved to NASA Ames where he established a microprobe laboratory, published his definitive paper on enstatite chondrites, and led in the development of the Si(Li) detector and the EDS method of analysis. After 5 years at Ames, Klaus became director of the Institute of Meteoritics at the University of New Mexico where he built up one of the leading meteorite research groups while working on a wide variety of projects, including chondrite groups, chondrules, differentiated meteorites, lunar samples, and Hawai'ian basalts. The basalt studies led to a love of Hawai'i and a move to the University of Hawai'i in 1990, where he has continued a wide variety of meteorite projects, notably the role of volcanism on asteroids. Klaus Keil has received honorary doctorates from Friedrich-Schiller University, Jena, and the University of New Mexico, Albuquerque. He was President of the Meteoritical Society in 1969-1970 and was awarded the Leonard Medal in 1988.

    Klaus Keil at the University of Hawai'i at Manoa, 2007.

  7. Petrography and Geochemistry of Feldspathic Lunar Meteorite Larkman Nunatak 06638

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.; Korotev, R. L.

    2013-01-01

    LAR 06638 is a glassy-matrix lunar regolith breccia based on the presence of glass spherules, which also contains prominent clasts of a feldspathic fragmental breccia lithology. The similarity in composition of the two lithologies is unsurprising given the observed similarities in the clast populations and mineral compositions in both lithologies. The small differences in composition are likely explained by the incorporation of small amounts of more diverse material into the regolith breccia lithologies, e.g., KREEPy glass clasts to account for the higher siderophile and ITE concentrations and excess plagioclase to account for the lower concentrations of mafic elements and increased Na concentrations. Given the relatively small masses analyzed (approx.120 mg of each lithology), these small compositional differences could also be sampling effects. The presense of multiple generations of glass coatings on LAR 06638 is, to our knowledge, unique among lunar meteorites. The more mafic, schlieren and nanophase Fe bearing glass is similar in morphology to the South Ray Crater glass coatings at the Apollo 16 site [3] and likely has a similar origin. The outer, more feldspathic glass has a morphology typical of fusion crust observed on other feldspathic lunar meteorites. It is unclear at this time whether the partially melted glass area represents a partially formed fusion crust or incipient melting due to heating on the lunar surface, likely from an overlying (and possibly ablated) glass splash coating. LAR 06638 is unlikely to be source-crater paired with any other lunar meteorites. For all elements, it plots right in the range of "typical feldspathic lunar meteorites" [4]. Among lunar meteorites from Antarctica, LAR 06638 most closely resembles MAC 88104/5 in composition, although it is slightly more feldspathic and 1.8 richer in siderophile elements. Compositionally it is more similar to hot-desert meteorites like Dhofar 490/1084 and NWA 2200 [4].

  8. Remanence carrying minerals in meteorites: a journey through an exotic jungle

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Uehara, M.

    2011-12-01

    Well-known remanence carrying minerals in meteorites are magnetite and pyrrhotite, familiar on Earth, and Fe-Ni metal alloys. In Fe-Ni metal the difficulty in interpreting paleomagnetic data is due to the presence of multiple metastable phases which follow complex transformation paths during thermal treatment. A minor phase, tetrataenite (ordered Fe0.5Ni0.5), usually carries most of the remanence [1]. It is intimately mixed with high susceptibility phases (kamacite and taenite), implying strong interaction effects. FeNi phosphide and carbide (schreibersite and cohenite), often associated with metal, are usually overlooked although they may be responsible for the remanence of enstatite chondrites and some lunar basalts, with Tc around 200°C. They are also likely responsible for the claim of "magnetic carbon" found in Canyon Diablo meteorite [2]. Sulfides, a wide variety of which occurs in meteorites, provide even more thrill. Concerning pyrrhotite, there is still imperfect understanding of the observation that not monoclinic but hexagonal pyrrhotite is the ferromagnetic phase present in some martian meteorites and Rumuruti chondrites. The most common sulfide in meteorites, troilite (FeS), is an antiferromagnet (TN= 320°C), showing a susceptibility anomaly at 140°C. Recently a transition toward weak ferromagnetism has been proposed below 60-70 K [3]. However it has been shown subsequently that this weak ferromagnetism is due to impurities of chromite [4] an ubiquitous phase in meteorites that becomes ferromagnetic below a Tc of 40 to 150 K (a wide range linked to the various possible substitutions). Other sulfides found in meteorites show low temperature transitions. Alabandite ( (Fe,Mn)S) and Daubreelite (FeCr2S4) have been reviewed in [3]. Chalcopyrite (FeCuS2), an antiferromagnet at room temperature, shows magnetic ordering of Cu+ ions at 50 K with appearance of weak ferromagnetism [5]. Magnetic properties of cubanite (Fe2CuS3), a RT ferrimagnet found in CI

  9. The 1984-1985 Antarctic Search for Meteorites (ANSMET) Field Program

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1986-01-01

    The purpose of the 1984-1985 ANSMET (Antarctic Search for Meteorites) expedition was to recover meteorites from the Main, Near Western, Middle Western, and Far Western icefields in the Allan Hills area and to carry out a reconnaissance of other nearby blue icefields. A brief summary of the locations and maps visited are provided.

  10. Exposure Histories of Lunar Meteorites Northwest Africa 032 and Dhofar 081

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Caffee, M. W.

    2001-01-01

    We measured cosmogenic nuclides, Cl-36, Al-26, and Be-10 in Northwest Africa 032 and Dhofar 081 lunar meteorites. The ejection depths, exposure ages, and terrestrial ages of two lunar meteorites were investigated. Additional information is contained in the original extended abstract.

  11. Geochemistry of Martian Meteorites and the Petrologic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2002-01-01

    Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.

  12. In Situ Investigation of Iron Meteorites at Meridiani Planum Mars

    NASA Technical Reports Server (NTRS)

    Fleischer, I.; Klingelhoefer, G.; Schroeder, C.; Morris, R. V.; Golombek, M.; Ashley, J. W.

    2010-01-01

    The Mars Exploration Rover Opportunity has encountered four iron meteorites at its landing site in Meridiani Planum. The first one, informally named "Heat Shield Rock", measuring approx.30 by 15 cm, was encountered in January 2005 [1, 2] and officially recognized as the first iron meteorite on the martian surface with the name "Meridiani Planum" after the location of its find [3]. We will refer to it as "Heat Shield Rock" to avoid confusion with the site. Between July and October 2009, separated approx.10 km from Heat Shield Rock, three other iron meteorite fragments were encountered, informally named "Block Island" (approx.60 cm across), "Shelter Island" (approx.50 by 20 cm), and "Mackinac Island" (approx.30 cm across). Heat Shield Rock and Block Island, the two specimens investigated in detail, are shown in Figure 1. Here, we focus on the meteorites chemistry and mineralogy. An overview in the mission context is given in [4]; other abstracts discuss their morphology [5], photometric properties [6], and their provenance [7].

  13. U-Pb systematics in iron meteorites - Uniformity of primordial lead

    NASA Astrophysics Data System (ADS)

    Gopel, C.; Manhes, G.; Allegre, C. J.

    1985-08-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA, and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2 percent and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. The results of this study support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.

  14. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes.

    PubMed

    Saladino, Raffaele; Botta, Lorenzo; Di Mauro, Ernesto

    2018-02-22

    Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth's tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.

  15. Yes, Kakangari is a unique chondrite. [meteoritic composition

    NASA Technical Reports Server (NTRS)

    Davis, A. M.; Grossman, L.; Ganapathy, R.

    1977-01-01

    The position of the Kakangari chondrite as the representative of a new class of chondrites is considered, taking into account the results of the analysis of a 17.1-mg piece of Kakangari for 20 elements. Elemental concentration data are compared for Kakangari and other meteorite groups. Data for the most similar groups, C2, C3(V), L, and E4 chondrites are represented in a graph along with Kakangari data. It is found that pronounced differences exist between Kakangari and the other meteorite classes.

  16. Distribution and enantiomeric composition of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Engel, M. H.; Nagy, B.

    1982-01-01

    Studies of the amino acid contents and enantiomeric compositions of a single stone from the Murchison meteorite are reported. Water-extracted and 6M HCl-extracted samples from the meteorite interior of meteorite fragments were analyzed by gas chromatography and combined gas chromatography-chemical ionization mass spectrometry. Examination of the D/L ratios of glutamic acid, aspartic acid, proline, leucine and alanine reveals those amino acids extractable by water to be partially racemized, whereas the acid-extracted amino acids were less racemized. The amino acid composition of the stone is similar to those previously reported, including the absence of serine, threonine, tyrosine phenylalanine and methionine and the presence of unusual amino acids including such as isovaline, alpha-aminoisobutyric acid and pseudoleucine. It is concluded that the most likely mechanism accounting for the occurrence of nonracemic amino acid mixtures in the Murchison meteorite is by extraterrestrial stereoselective synthesis or decomposition reactions.

  17. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  18. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  19. HYDROCARBON MATERIALS OF LIKELY INTERSTELLAR ORIGIN FROM THE PARIS METEORITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouane, S.; Djouadi, Z.; D'Hendecourt, L. Le Sergeant

    2012-09-10

    We have examined some grains from the Paris meteorite through infrared and Raman micro-spectroscopy in order to investigate their carbonaceous and mineralogical components. In the mid- as well as far-infrared regions, the raw and global spectra of Paris resemble those of CM meteorites. However, we have obtained rather peculiar infrared spectra for some aromatic-rich micron-sized fragments of Paris displaying a very good match between its organic signatures both in the 3.4 {mu}m and 6 {mu}m regions, and the ones observed from the diffuse interstellar medium infrared sources toward the Galactic center, suggesting that this meteorite may have indeed preserved somemore » organic matter of interstellar origin.« less

  20. Fractionation and Accretion of Meteorite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2005-01-01

    Senior Scientist Stuart J. Weidenschilling presents his final administrative report for the research program on which he was the Principal Investigator. The research program resulted in the following publications: 1) Particle-gas dynamics and primary accretion. J. N. Cuzzi and S. J . Weidenschilling. To appear in Meteorites and the Early Solar System 11 (D. Lauretta et a]., Eds.), Univ. Arizona Press. 2005; 2) Timescales of the solar protoplanetary disk. S. Russell, L. Hartmann, J . N. Cuzzi, A. Krot, M. Gounelle and S. J. Weidenschilling. To appear in Meteorites and the Early Solar System II (D. Lauretta et al., Eds.), Univ. Arizona Press, 2005; 3) Nebula evolution of thermally processed solids: Reconciling astrophysical models and chondritic meteorites. J. N. Cuzzi, F. J. Ciesla, M. I. Petaev, A. N. Krot, E. R. D. Scott and S . J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et a]., Eds.), ASP Conference Series, 2005; 4) Possible chondrule formation in planetesimal bow shocks: Physical processes in the near vicinity of the planetesimal. L. L. Hood, F. J. Ciesla and S. J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et al., Eds.), ASP Conference Series, 2005; 5) From icy grains to comets. In Comets II (M. Festou et al., Eds.), Univ. Arizona Press, pp. 97- 104, 2005; 6) Evaluating planetesimal bow shocks as sites for chondrule formation. F. J . Ciesla, L. L. Hood and S. J. Weidenschilling. Meteoritics & Planetary Science 39, 1809-1 821, 2004; and 7) Radial drift of particles in the solar nebula: Implications for planetesimal formation. Icarus 165, 438-442, 2003.

  1. Analyses from Near (Meteorites) and Far (Spacecraft): Complementary Approaches to Planetary Geochemistry

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.

    2013-12-01

    Spacecraft missions have transformed planets from astronomical objects into geologic worlds, but geochemical remote sensing has limits. Considerably greater geologic insights are possible for a few bodies to which we can confidently assign meteorite samples. Mars and asteroid 4 Vesta demonstrate the advances provided by coupling spacecraft remote sensing data and laboratory analyses of meteorites. Martian meteorites sample at least 7 as-yet unidentified sites but are strongly biased towards young crystallization ages compared to Martian surface ages. Geochemical comparison with generally older rocks analyzed by Mars rovers APXS reveals evolutionary differences [1] that might be explained by water or redox state. Trace elements and radiogenic isotopes, readily measured in Martian meteorites but not yet possible by remote sensing, constrain the planet's volatile inventory, the chronology of magmatism, and the compositions of mantle source regions and the bulk planet [2]. The origin and geochemical cycling of water that orbiters indicate once sculpted Mars' geomorphology and now resides in the Martian subsurface is revealed by measurements of stable isotopes and of apatite OH in meteorites. Although sedimentary rocks are nearly absent from the Martian meteorite collection, determining the processes that produced the regolith and the nature and source of organic matter on Mars are facilitated by comparing rover analyses of soils with meteorite data. In a similar way, analyses of Vesta by the Dawn orbiting spacecraft [3] are leveraged by laboratory analyses of the howardite, eucrite, diogenite (HED) meteorites [4]. Visible/near-infrared spectra of HEDs provide the calibration necessary for lithologic mapping of Vesta's surface, revealing an ancient eucrite crust, diogenite excavated from a huge crater, and a pervasive regolith of howardite. Gamma-ray and neutron data from Vesta are similarly interpreted by comparison with meteorite elemental abundances. The unexpected

  2. Oral histories in meteoritics and planetary science—XVI: Donald D. Bogard

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2012-03-01

    Donald D. Bogard (Don, Fig. 1) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA's Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar-Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don's many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA-HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA's Scientific Achievement and Exceptional Service Medals and the Meteoritical Society's Leonard Medal.

  3. Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Pizzarello, S.; Cronin, J. R.; Yuen, G. U.

    1991-01-01

    A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper.

  4. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  5. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.

    PubMed

    Burton, Aaron S; Stern, Jennifer C; Elsila, Jamie E; Glavin, Daniel P; Dworkin, Jason P

    2012-08-21

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return missions.

  6. Variability in Abundances of Meteorites in the Ordovician

    NASA Astrophysics Data System (ADS)

    Heck, P. R.; Schmitz, B.; Kita, N.

    2017-12-01

    The knowledge of the flux of extraterrestrial material throughout Earth's history is of great interest to reconstruct the collisional evolution of the asteroid belt. Here, we present a review of our investigations of the nature of the meteorite flux to Earth in the Ordovician, one of the best-studied time periods for extraterrestrial matter in the geological record [1]. We base our studies on compositions of extraterrestrial chromite and chrome-spinel extracted by acid dissolution from condensed marine limestone from Sweden and Russia [1-3]. By analyzing major and minor elements with EDS and WDS, and three oxygen isotopes with SIMS we classify the recovered meteoritic materials. Today, the L and H chondrites dominate the meteorite and coarse micrometeorite flux. Together with the rarer LL chondrites they have a type abundance of 80%. In the Ordovician it was very different: starting from 466 Ma ago 99% of the flux was comprised of L chondrites [2]. This was a result of the collisional breakup of the parent asteroid. This event occurred close to an orbital resonance in the asteroid belt and showered Earth with >100x more L chondritic material than today during more than 1 Ma. Although the flux is much lower at present, L chondrites are still the dominant type of meteorites that fall today. Before the asteroid breakup event 467 Ma ago the three groups of ordinary chondrites had about similar abundances. Surprisingly, they were possibly surpassed in abundance by achondrites, materials from partially and fully differentiated asteroids [3]. These achondrites include HED meteorites, which are presumably fragments released during the formation of the Rheasilvia impact structure 1 Ga ago on asteroid 4 Vesta. The enhanced abundance of LL chondrites is possibly a result of the Flora asteroid family forming event at 1 Ga ago. The higher abundance of primitive achondrites was likely due to smaller asteroid family forming events that have not been identified yet but that did

  7. Antarctic Meteorite Newsletter, volume 9, no. 2

    NASA Technical Reports Server (NTRS)

    Gooding, J. L. (Editor)

    1986-01-01

    Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.

  8. Comet and meteorite traditions of Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-06-01

    This research contributes to the disciplines of cultural astronomy (the academic study of how past and present cultures understand and utilise celestial objects and phenomena) and geomythology (the study of geological events and the formation of geological features described in oral traditions). Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science.

  9. Mapping the Iron Oxidation State in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Treimann, A. H.; Righter, K.

    2017-01-01

    Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.

  10. Mechanical Properties of Fe-Ni Meteorites

    NASA Astrophysics Data System (ADS)

    Roberta, Mulford; El Dasher, B.

    2010-10-01

    Iron-nickel meteorites exhibit a unique lamellar microstructure, Widmanstatten patterns, consisting of small regions with steep-iron-nickel composition gradients.1,2 The microstructure arises as a result of extremely slow cooling in a planetary core or other large mass. Mechanical properties of these structures have been investigated using microindentation, x-ray fluorescence, and EBSD. Observation of local mechanical properties in these highly structured materials supplements bulk measurements, which can exhibit large variation in dynamic properties, even within a single sample. 3 Accurate mechanical properties for meteorites may enable better modeling of planetary cores, the likely origin of these objects. Appropriate values for strength are important in impact and crater modeling and in understanding the consequences of observed impacts on planetary crusts. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens.4 This was ascribed to the extreme work-hardening evident in the EBSD measurements. This particular specimen exhibited only residual Widmanstatten structures, and may have been heated and deformed during its traverse of the atmosphere. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and examples from the Muonionalusta meteorite and Gibeon fall ( both IVA, fine octahedrite), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure. 1. A. Christiansen, et.al., Physica Scripta, 29 94-96 (1984.) 2. Goldstein and Ogilvie, Geochim Cosmochim Acta, 29 893-925 (1965.) 3. M. D. Furnish, M.B. Boslough, G.T. Gray II, and J.L. Remo, Int. J. Impact Eng

  11. Investigations into an unknown organism on the martian meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D. T.; Stapleton, D.; Toporski, J. K.; Peters, V.; Bassinger, V.; Sharples, G.; Wynn-Williams, D. D.; McKay, D. S.

    2000-01-01

    Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.

  12. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  13. In Situ Thermal Imagery of Antarctic Meteorites and Their Stability on the Ice Surface

    NASA Technical Reports Server (NTRS)

    Harvey, R. P.; Righter, M.; Karner, J. M.; Hyneck, B.; Keller, L.; Meshik, A.; Mittlefehldt, D.; Radebaugh, J.; Rougeux, B.; Schutt, J.

    2017-01-01

    The mechanisms behind Antarctic meteorite concentrations remain enigmatic nearly 5 decades after the first recoveries, and much of the research in this direction has been based on anedcotal evidence. While these observations suggest many plausible processes that help explain Antarctic meteorite concentrations, the relative importance of these various processes (which can result in either an increase or decrease of specimens) is a critical component of any more robust model of how these concentrations form. During the 2016-2017 field season of the US Antarctic Search for Meteorites program we aquired in situ thermal imagery of meteorites specimens that provide semi-quantitative assesment of the relative temperature of these specimens and the ice. These provide insight into one hypothesized loss mechanism, the downward thermal tunnelling of meteorites warmed in the sun.

  14. Radioisotope studies of the farmville meteorite using γγ-coincidence spectrometry.

    PubMed

    Howard, Chris; Ferm, Megan; Cesaratto, John; Daigle, Stephen; Iliadis, Christian

    2014-12-01

    Radionuclides are cosmogenically produced in meteorites before they fall to the surface of the Earth. Measurement of the radioactive decay of such nuclides provides a wealth of information on the irradiation conditions of the meteorite fragment, the intensity of cosmic rays in the inner solar system, and the magnetic activity of the Sun. We report here on the detection of (26)Al using a sophisticated spectrometer consisting of a HPGe detector and a NaI(Tl) annulus. It is shown that modern γ-ray spectrometers represent an interesting alternative to other detection techniques. Data are obtained for a fragment of the Farmville meteorite and compared to results from Geant4 simulations. In particular, we report on optimizing the detection sensitivity by using suitable coincidence gates for deposited energy and event multiplicity. We measured an (26)Al activity of 48.5±3.5dpm/kg for the Farmville meteorite, in agreement with previously reported values for other H chondrites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites.

    PubMed

    Cooper, George; Rios, Andro C

    2016-06-14

    Biological polymers such as nucleic acids and proteins are constructed of only one-the d or l-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers.

  16. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    PubMed Central

    Cooper, George; Rios, Andro C.

    2016-01-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers. PMID:27247410

  17. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Cooper, George; Rios, Andro C.

    2016-06-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (˜4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.

  18. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  19. Aioun el Atrouss - Evidence for thermal recrystallization of a eurite breccia. [meteoritic mineralogy

    NASA Technical Reports Server (NTRS)

    Duke, M. B.

    1978-01-01

    The Aioun el Atrouss meteorite is a breccia consisting largely of angular fragments of green orthopyroxene and containing scattered clasts of basaltic composition (mostly pigeonite and calcic plagioclase). It appears to be a physical mixture of two meteorite types - diogenite (hypersthene achondrite) and eucrite (basaltic achondrite). The results of a mineral analysis are tabulated, and typical pyroxene compositions in orthopyroxene (diogenite), subophitic and granoblastic portions of the meteorite are presented.

  20. Effects of bulk composition on production rates of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Masarik, Jozef; Reedy, Robert C.

    1993-01-01

    The bulk chemical composition of meteorites has been suggested as a main factor influencing the production of cosmogenic nuclides. Numerical simulations with Los Alamos Monte Carlo production and transport codes were done for Ne-21/Ne-22 ratios and Ar-38 production rates in meteorites with a wide range of compositions. The calculations show that an enhanced flux of low-energy secondary particles in metal-rich phases is the essential key for the explanation of experimentally observed differences in nuclide production processes in various meteorite classes.

  1. Evidence for a meteoritic origin of the September 15, 2007, Carancas crater

    NASA Astrophysics Data System (ADS)

    Le Pichon, A.; Antier, K.; Cansi, Y.; Hernandez, B.; Minaya, E.; Burgoa, B.; Drob, D.; Evers, L. G.; Vaubaillon, J.

    2008-11-01

    On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear-Test-Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and back-azimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded.

  2. Experimental simulation of marine meteorite impacts: Implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Suga, H.; Sekine, T.; Kobayashi, T.; Furukawa, Y.; Kakegawa, T.

    2016-12-01

    Early oceans on planets which had liquid water (e.g. Earth, Mars) might have contained certain amounts of organic compounds such as amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment (LHB). Therefore, it is necessary to know chemical reactions and products of amino acids in aqueous solution under shock conditions in order to elucidate the prebiotic chemistry and evolution of amino acids through marine meteorite impacts. In our study, we performed shock recovery experiments in order to simulate shock reactions of marine meteorite impacts among olivine as meteorite components and water and amino acids as oceanic components (Umeda et al., 2016). The analytical results on shocked products in the recovered sample showed (i) the formation of carbon-rich substances derived from amino acids and (ii) morphological changes of olivine to fiber and features of lumpy surfaces affected by hot water. These results suggest that marine meteorite impacts might be able to occur the formation of carbon-rich substances from amino acids and the interaction between minerals and water. Hereafter, we will conduct more detailed analyses to investigate the chemical bonding and the chemical composition of carbon-rich substances as the experimental product from amino acids by Scanning Transmission X-ray Microscopy (STXM) and to identify the morphological change of olivine by Scanning Transmission Electron Microscope (STEM). These informations such as the chemical bonding and the composition of carbon-rich substances may be useful to make the reaction and the transformation of amino acids under shock conditions clear in more detail. As a further implication, carbon-rich substances have been also found in solar system (e.g. comets, meteorites) as important materials related to origin of life, although the origin (precursors) and the formation mechanism (what kinds of reactions) of them are still unknown well. If carbon-rich substances between

  3. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    -Tuttle, and Leo Minorids to 1739 Zanotti. Geminids were related to asteroid 3200 Phaeton, considered to be an "extinct comet." Spurny [9], using ablation coefficient and penetration depth criteria, found that Geminids (frequently) and Taurids (rarely) contain bolides of types I and II. This may indicate that meteoric showers from "comets" on AAA orbits contain some portion of "rocky" material comparable to chondrites. These observations revive Opik's (1963) idea that comets may be captured in the asteroid belt on AAA orbits and may contain (and supply) chondritic meteorites to the Earth [10]. If the relationship among large solid particles "native to the asteroid belt" and those from the outer solar system can be established, they can be scaled and applied to IDPs. We have studied the records of 292 bolides (Prairie and European networks) with measured terminal velocities. We attempt to use the terminal velocity, calculated density, estimated terminal mass, and mechanical strength to correlate features with the meteorite features. We compare the meteorite fall frequency [11] with the bolide features. Two extreme hypotheses (Table 1) are examined: (A) bolides of types IIIa and IIIb do not have equivalents among the meteorites and (B) all four bolide types have meteoritic equivalents, and only IDPs do not produce bolides (fireballs). If the entry parameters of meteoroids are similar, bodies with lower density should reach terminal velocity at higher altitudes than those with higher density. If it is assumed that fragmentation is the same for dense (I and II) and less dense bodies (IIIa and IIIb), the calculated terminal altitudes show that among the bolides exist materials with lower densities than those of recovered meteorites and that model A of the correlation between meteorite falls and bolide observations is likely [12]. If, however, the less dense bodies were more easily fragmented than denser bodies, the correlation is better for hypothesis B. Table 1, which in the hard

  4. Experimental Simulation of Shock Reequilibration of Fluid Inclusions During Meteorite Impact

    NASA Technical Reports Server (NTRS)

    Madden, M. E. Elwood; Hoerz, R. J.; Bodnar, R. J.

    2003-01-01

    Fluid inclusions are microscopic volumes of fluid trapped within minerals as they precipitate. Fluid inclusions are common in terrestrial minerals formed under a wide array of geological settings from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are the rule rather than the exception, only few fluid inclusion-bearing meteorites have been documented. The rarity of fluid inclusions in meteoritic material may be explained in two ways. First, it may reflect the absence of fluids (water?) on meteorite parent bodies. Alternatively, fluids may have been present when the rock formed, but any fluid inclusions originally trapped on the parent body were destroyed by the extreme P-T conditions meteorites often experience during impact events. Distinguishing between these two possibilities can provide significant constraints on the likelihood of life on the parent body. Just as textures, structures, and compositions of mineral phases can be significantly altered by shock metamorphism upon hypervelocity impact, fluid inclusions contained within component minerals may be altered or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. Reequilibration may occur when external pressure-temperature conditions differ significantly from internal fluid isochoric conditions, and result in changes in fluid inclusion properties and/or textures. Shock metamorphism and fluid inclusion reequilibration can affect both the impacted target material and the meteoritic projectile. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteoritic samples.

  5. Consortium Study of the Chelyabinsk Meteorite

    NASA Technical Reports Server (NTRS)

    Righter, K.; Fries, M. D.; Gibson, E. K.; Harrington, R.; Keller, L. P.; McCoy, T. J.; Morris, R. V.; Nagao, K.; Nakamura-Messenger, K.; Niles, P.; hide

    2013-01-01

    On February 15, 2013 approximately 17 m asteroid hit Earth, causing shock waves and air blasts over a portion of Russia. A significant amount of material has been recovered from this meteorite fall, officially named Chelyabinsk.

  6. Noble-gas-rich separates from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Ott, U.; Mack, R.; Chang, S.

    1981-01-01

    Predominantly carbonaceous HF/HCl-resistant residues from the Allende meteorite are studied. Samples are characterized by SEM/EDXA, X-ray diffraction, INAA, C, S, H, N, and noble gas analyses. Isotopic data for carbon show variations no greater than 5%, while isotopic data from noble gases confirm previously established systematics. Noble gas abundances correlate with those of C and N, and concomitant partial loss of C and normal trapped gas occur during treatments with oxidizing acids. HF/HCl demineralization of bulk meteorite results in similar fractional losses of C and trapped noble gases, which leads to the conclusion that various macromolecular carbonaceous substances serve as the main host phase for normal trapped noble gases and anomalous gases in acid-resistant residues, and as the carrier of the major part of trapped noble gases lost during HF/HCl demineralization. Limits on the possible abundances of dense mineralic host phases in the residues are obtained, and considerations of the nucleogenetic origin for CCF-XE indicate that carbonaceous host phases and various forms of organic matter in carbonaceous meteorites may have a presolar origin.

  7. Discovery of meteorites on a blue-ice field near the Frontier Mountains, North Victoria Land, Antarctica

    NASA Technical Reports Server (NTRS)

    Delisle, G.; Hoefle, H. C.; Thierbach, R.; Schultz, L.

    1986-01-01

    A high concentration of meteorites were discovered on a blue ice field northeast of the Frontier Mountains. As a result of a systematic search, a total of 42 meteorites were recovered. The current glacial situation has evolved through various stages, which are discussed in relationship to the concentration of meteorites. Ice flow patterns are summarized. The chemical composition and terrestrial ages of the meteorites are discussed.

  8. Small-scale hydrous pyrolysis of macromolecular material in meteorites

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    1998-12-01

    The hydrous pyrolysis method, usually performed on several hundred grams of terrestrial rock sample, has been scaled down to accommodate less than two grams of meteorite sample. This technique makes full use of the high yields associated with hydrous pyrolysis experiments and permits the investigation of the meteorite macromolecular material, the major organic component in carbonaceous meteorites. The hydrous pyrolysis procedure transforms the high molecular weight macromolecular material into low molecular weight fragments. The released entities can then be extracted with supercritical fluid extraction. In contrast to the parent structure, the pyrolysis products are amenable for analysis by gas chromatography-based techniques. When subjected to hydrous pyrolysis, two carbonaceous chondrites (Orgueil and Cold Bokkeveld) released generally similar products, which consisted of abundant volatile aromatic and alkyl-substituted aromatic compounds. These results revealed the ability of small-scale hydrous pyrolysis to dissect extraterrestrial macromolecular material and thereby reveal its organic constitution.

  9. Pre-terrestrial origin of rust in the Nakhla meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1990-01-01

    The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.

  10. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  11. Mid-infrared study of stones from the Sutter's Mill meteorite

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Sandford, Scott A.; Flynn, George J.; Wirick, Susan

    2014-11-01

    The Sutter's Mill meteorite fell in northern California on April 22, 2012. Several fragments of the meteorite were recovered, some of them shortly after the fall, others several days later after a heavy rainstorm. In this work, we analyzed several samples of four fragments―SM2, SM12, SM20, and SM30―from the Sutter's Mill meteorite with two infrared (IR) microscopes operating in the 4000-650 cm-1 (2.5-15.4 μm) range. Spectra show absorption features associated with minerals such as olivines, phyllosilicates, carbonates, and possibly pyroxenes, as well as organics. Spectra of specific minerals vary from one particle to another within a given stone, and even within a single particle, indicating a nonuniform mineral composition. Infrared features associated with aliphatic CH2 and CH3 groups associated with organics are also seen in several spectra. However, the presence of organics in the samples studied is not clear because these features overlap with carbonate overtone bands. Finally, other samples collected within days after the rainstorm show evidence for bacterial terrestrial contamination, which indicates how quickly meteorites can be contaminated on such small scales.

  12. Magnetism of Tissint Martian meteorite

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Hewins, R.; Lagroix, F.; Uehara, M.; Cournede, C.; Chennaoui Aoudjehane, H.; Zanda, B.; Bernstein Scorzelli, R.

    2012-12-01

    The Tissint meteorite, an olivine-phyric shergottite that fell in July 2010 in Morocco, is only the fifth Martian meteorite fall. It offers the opportunity to study the magnetic mineralogy and the paleomagnetic signal of a pristine sample from Mars. We have performed such a magnetic study of 35 samples from the Tissint meteorite, with mass ranging from 30 mg to 30 g. We have measured a variety of magnetic properties (natural remanence an its behaviour upon thermal and alternating field demagnetization, hysteresis parameters at room and low temperatures, anisotropy of magnetic susceptibility, unblocking temperature spectrum etc). Less conventional experiments include magneto-optical imaging (coupled with electron microprobe analyses) and Mössbauer spectroscopy. The magnetic mineralogy of Tissint consists of 0.6 wt.% of metastable hexagonal ferrimagnetic pyrrhotite, and 0.1 wt.% of low Ti titanomagnetite formed by oxidation/exsolution of ulvöspinel grains. The magnetic mineralogy of Tissint consists of 0.6 wt.% of metastable hexagonal ferrimagnetic pyrrhotite, and 0.1 wt.% of low Ti titanomagnetite formed by oxidation/exsolution of ulvöspinel grains, for those minerals that are ferromagnetic at temperatures encountered at the Martian surface. Chromite (with a Curie temperature of 70K) is present with an abundance of 0.5 wt.%. Overall, these properties are in broad agreement with the other pyrrhotite-bearing basaltic shergottites, but the presence of magnetite exsolution in ulvöspinel has rarely been documented in other shergottites. We show for the first time that the magnetic fabric is homogeneous in direction in the meteorite, and may well be a proxy to the Martian paleohorizontal at the time of crystallization. The natural remanent magnetization of Tissint was acquired during post-impact cooling in a stable ambient field of about 1 μT of crustal origin. It is noteworthy that the oxides in Tissint are not magnetized, indicating that they were formed at low

  13. Measuring fracture properties of meteorites: 3D scans and disruption experiments

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, D.; Asphaug, E.; Morris, M.; Garvier, L.

    2014-07-01

    Many meteorite studies are focused on chemical and isotopic composition, which provide insightful information regarding the age, formation, and evolution of the Solar System. However, their fundamental mechanical properties have received less attention. It is important to determine these properties as they are related to disruption and fragmentation of bolides and asteroids, and activities related to sample return and hazardous asteroid mitigation. Here we present results from an ongoing suite of measurements and experiments focusing on maps of surface texture that connect to the dynamic geological properties of a diverse range of meteorites from the Center for Meteorite Studies (CMS) collection at Arizona State University (ASU). Results will include high-resolution 3D color-shape models and texture maps from which we derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of rock, and to macroscopic optical properties, and to rubble friction and cohesion. Selected meteorites, in particular Tamdakht (H5), Allende (CV3), and Chelyabinsk (LL5), will subsequently be disrupted in catastrophic hypervelocity impact experiments. The fragments obtained from these experiments will be scanned, and the results compared with the fragments obtained in numerical hydrocode simulations, whose initial conditions are set up precisely from 3D scans of the original meteorite. By attaining the best match we will obtain key parameters for models of asteroid and bolide disruption.

  14. Infrared (2.08-14 micron) spectra of powered stony meteorites

    NASA Technical Reports Server (NTRS)

    Salisbury, J. W.; Daria, D. M.; Jarosewich, E.

    1991-01-01

    Infrared biconical reflectance spectra of 60 powdered meteorite samples, representing 50 different stony meteorites, were measured as analogues of asteroidal regolith. Representative samples were measured in directional hemispherical reflectance to assure that Kirchhoff's Law can be used to predict relative emissivity from the reflectance spectra. These spectral data confirm that the O-H fundamental absorption band near 2.9 microns is an extremely sensitive indicator of incipient alteration, which often has taken place in powdered meteorite samples exposed only to water vapor in the air. Such non-carbonaceous samples typically contain less than 1 percent water by weight. Likewise, the C-H fundamental absorption bands near 3.4 and 3.5 microns are equally sensitive indicators of contamination with volatile hydrocarbons, which can also be absorbed from the air. The heavy, macromolecular hydrocarbons native to chondrites do not display such heavy bands, making detection of these bands in remote sensing of asteroids unlikely. Despite the spectral artifacts introduced by alteration and hydrocarbon contamination, powdered stony meteorites display a wide variety of real spectral features that can be used for their identification, including residual reststrahlen bands, absorption bands, and the Christiansen feature. Researchers found that the wavelengths of the peaks or troughs of each of these spectral features can be used independently to infer meteorite composition, but the best results are obtained when the entire spectral curve is used, or at least the portion of it encompassed by the 8 to 14 micron atmospheric window, in a digital search library.

  15. Asteroid-Meteorite Links: The Vesta Conundrum(s)

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Binzel, R.; Bogard, D.; Hiroi, T.; Mittlefehldt, D. W.; Nyquist, L.; Rivkin, A.; Takeda, H.

    2006-01-01

    Although a direct link between the HED meteorites and the asteroid 4 Vesta is generally acknowledged, several issues continue to be actively examined that tie Vesta to early processes in the solar system. Vesta is no longer the only basaltic asteroid in the Main belt. In addition to the Vestoids of the Vesta family, the small asteroid Magnya is basaltic but appears to be unrelated to Vesta. Similarly, diversity now identified in the collection of basaltic meteorites requires more than one basaltic parent body, consistent with the abundance of differentiated parent bodies implied by iron meteorites. The timing of the formation of the Vestoids (and presumably the large crater at the south pole of Vesta) is unresolved. Peaks in Ar-Ar dates of eucrites suggest this impact event could be related to a possible late heavy bombardment at least 3.5 Gyr ago. On the other hand, the optically fresh appearance of both Vesta and the Vestoids requires either a relatively recent resurfacing event or that their surfaces do not weather in the same manner thought to occur on other asteroids such as the ordinary chondrite parent body. Diversity across the surface of Vesta has been observed with HST and there are hints of compositional variations (possibly involving minor olivine) in near-infrared spectra.

  16. Meteorite fractures and the behavior of meteoroids in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bryson, K.; Ostrowski, D. R.; Sears, D. W. G.

    2015-12-01

    Arguably the major difficulty faced to model the atmospheric behavior of objects entering the atmosphere is that we know very little about the internal structure of these objects and their methods of fragmentation during fall. In a study of over a thousand meteorite fragments (mostly hand-sized, some 40 or 50 cm across) in the collections of the Natural History Museums in Vienna and London, we identified six kinds of fracturing behavior. (1) Chondrites usually showed random fractures with no particular sensitivity to meteorite texture. (2) Coarse irons fractured along kamacite grain boundaries, while (3) fine irons fragmented randomly, c.f. chondrites. (4) Fine irons with large crystal boundaries (e.g. Arispe) fragmented along the crystal boundaries. (5) A few chondrites, three in the present study, have a distinct and strong network of fractures making a brickwork or chicken-wire structure. The Chelyabinsk meteorite has the chicken-wire structure of fractures, which explains the very large number of centimeter-sized fragments that showered the Earth. Finally, (6) previous work on Sutter's Mill showed that water-rich meteorites fracture around clasts. To scale the meteorite fractures to the fragmentation behavior of near-Earth asteroids, it has been suggested that the fracturing behavior follows a statistical prediction made in the 1930s, the Weibull distribution, where fractures are assumed to be randomly distributed through the target and the likelihood of encountering a fracture increases with distance. This results in a relationship: σl = σs(ns/nl)α, where σs and σl refers to stress in the small and large object and ns and nl refer to the number of cracks per unit volume of the small and large object. The value for α, the Weibull coefficient, is unclear. Ames meteorite laboratory is working to measure the density and length of fractures observed in these six types of fracture to determine values for the Weibull coefficient for each type of object.

  17. Above detection limits - Prebiotic organics in comets and carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Martin, M. G.; Dworkin, J. P.

    2009-12-01

    The delivery of organic compounds such as amino acids and nucleobases by comets, asteroids, and their fragments may have contributed feedstock for prebiotic chemistry leading to the first self-replicating systems of the early Earth. In order to determine the isotopic composition, distribution, and abundance of prebiotic organic compounds in extraterrestrial samples we have recently optimized a highly sensitive liquid chromatography tandem quadupole mass spectrometer (LC-QqQ-MS) and a gas chromatography mass spectrometer coupled with an isotope ratio mass spectrometer (GC-MS/IRMS). This suite of instruments not only allows us to identify and quantify extremely trace amounts of organics of astrobiological interest, but also to confirm their extraterrestrial origins by stable isotopic measurements. The amino acid glycine was detected upon preliminary examinations of foils from NASA’s Stardust mission, which returned cometary material from comet 81P/Wild 2. To rule out the possibility of terrestrial contamination as the source of the glycine, the carbon isotopic ratio was measured. The δ13C value for glycine was determined to be +29 ± 6‰, well outside the terrestrial range for organic carbon of +6 ‰ to -40 ‰. The Stardust glycine δ13C value falls in the range previously reported for glycine (+22‰ to +41‰) in the carbonaceous meteorites Murchison and Orgueil. This represents the first detection of glycine or any other amino acid in a comet. Recent investigations of carbonaceous meteorite organic matter have revealed the presence of several nucleobases in the Murchison meteorite and several Antarctic CR meteorites never before analyzed for nucleobases using LC-QqQ-MS. This analytical tool is a sensitive and highly selective method for measuring the trace amounts of these organics in meteorites. In particular, the unusual Antarctic C2 meteorite, LON 94102, shows high abundances of guanine, hypoxanthine, and xanthine with concentrations ranging from 70 to

  18. Magnetite as Possible Template for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.

    2014-01-01

    The main goal of the Japanese Aerospace Ex-ploration Agency (JAXA) Hayabusa-2 mission is to visit and return to Earth samples of a C-type asteroid (162173) 1999 JU3 in order to understand the origin and nature of organic materials in the Solar System. Life on Earth shows preference towards the set of organics with particular spatial arrangements, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life 'determines' to use the left- (L-) form over the right- (D-) form of amino acids, resulting in a L-enantiomeric excess (ee). Recent studies have shown that L-ee is found within the alpha-methyl amino acids in meteorites [1, 2], which are amino acids with rare terrestrial occurrence, and thus point towards a plausible abiotic origin for ee. One of the proposed origins of chiral asymmetry of amino acids in meteorites is their formation with the presence of asymmetric catalysts [3]. The catalytic mineral grains acted as a surface at which nebular gases (CO, H2 and NH3) were allowed to condense and react through Fisher Tropsch type (FTT) syntheses to form the organics observed in meteorites [4]. Magnetite is shown to be an effective catalyst of the synthesis of amino acids that are commonly found in meteorites [5]. It has also taken the form as spiral magnetites (a.k.a. 'plaquettes'), which were found in various carbonaceous chondrites (CCs), including C2s Tagish Lake and Esseibi, CI Orgueil, and CR chondrites [e.g., 6, 7, 8]. In addition, L-ee for amino acids are common in the aqueously altered CCs, as opposed to the unaltered CCs [1]. It seems possible that the synthesis of amino acids with chiral preferences is correlated to the alteration process experienced by the asteroid parent body, and related to the configuration of spiral magnetite catalysts. Since C-type asteroids are considered to be enriched in organic matter, and the spectral data of 1999 JU3 indicates a certain de-gree of aqueous alteration [9], the Hayabusa-2 mission serves as

  19. The Orgueil meteorite: 150 years of history

    NASA Astrophysics Data System (ADS)

    Gounelle, Matthieu; Zolensky, Michael E.

    2014-10-01

    The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of "organized" elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon-rich compounds, which help address the question of organo-synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent-body within the first few million years of the solar system; their study is essential to our

  20. The cali meteorite fell: A new H/L ordinary chondrite

    USGS Publications Warehouse

    Rodriguez, J.M.T.; Llorca, J.; Rubin, A.E.; Grossman, J.N.; Sears, D.W.G.; Naranjo, M.; Bretzius, S.; Tapia, M.; Sepulveda, M.H.G.

    2009-01-01

    The fall of the Cali meteorite took place on 6 July 2007 at 16 h 32 ?? 1 min local time (21 h 32 ?? 1 min UTC). A daylight fireball was witnessed by hundreds of people in the Cauca Valley in Colombia from which 10 meteorite samples with a total mass of 478 g were recovered near 3??24.3'N, 76??30.6'W. The fireball trajectory and radiant have been reconstructed with moderate accuracy. From the computed radiant and from considering various plausible velocities, we obtained a range of orbital solutions that suggest that the Cali progenitor meteoroid probably originated in the main asteroid belt. Based on petrography, mineral chemistry, magnetic susceptibility, fhermoluminescence, and bulk chemistry, the Cali meteorite is classified as an H/L4 ordinary chondrite breccia.

  1. The New Lunar Meteorite DEW 12007

    NASA Astrophysics Data System (ADS)

    Collareta, A.; D'Orazio, M.; Gemelli, M.; Pack, A.; Folco, L.

    2014-09-01

    The new lunar meteorite DEW 12007 was found in Antarctica in January 2013 by PNRA. DEW 12007 has been classified as a regolithic breccia of mingled composition. In our abstract we present its first-order geochemical and petrographic features.

  2. Cosmogenic Radionuclides in Antarctic Meteorites: Preliminary Results on Terrestrial Ages and Temporal Phenomena

    NASA Astrophysics Data System (ADS)

    Michlovich, E.; Vogt, S.; Wolf, S. F.; Elmore, D.; Lipschutz, M. E.

    1993-07-01

    Since 1969, more than 15,000 meteorites have been recovered from various sites in Antarctica. Differences have been reported between the Antarctic populations and the population of non-Antarctic meteorites in volatile trace- element content, thermoluminescence properties, physical size, and relative distribution of meteorite type [1]. Lipschutz and Samuels [2] developed a method based upon multivariate linear and logistic regression that they applied to interpret trace-element content in Antarctic and non-Antarctic meteorites, showing that the two populations can be chemically distinguished. Since Antarctic meteorites have, on the whole, much longer terrestrial ages than non-Antarctic falls, such differences have been used to support the notion that the flux of meteorites sampled by the Earth has changed in the recent past. A subsequent study [3] showed a statistically significant difference in trace-element content between meteorites from Victoria Land and those found in Queen Maud Land, two groups that seem to have different terrestrial age distributions. Changes in meteorite flux patterns on the order of 60 yr are indicated from a study of Cluster 1 vs. non-Cluster 1 falls [4]. Rapid fluctuations would almost certainly require the existence of co-orbital meteoroid streams, an idea that has been criticized by some [5] on dynamical grounds. To quantify the discussion of a temporal dependence of meteorite flux patterns, and to continue systematic study of Antarctic meteorites, we have measured the contents of the cosmogenic radionuclides ^10Be and ^26Al in the bulk phase, and ^36Cl in the metal phase, of 40 Antarctic specimens that are from the same suite of samples analyzed in the trace-element studies and that were chosen to minimize any chances of paired meteorites. The means and standard deviations of ^10Be and ^26Al activities are 16.4 +/- 3.5 and 48 +/- 8 dpm/kg respectively. Correction for cosmic ray exposure [6,7] and terrestrial ages allows us to estimate

  3. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  4. On possible parent bodies of Innisfree, Lost City and Prgibram meteorites.

    NASA Astrophysics Data System (ADS)

    Rozaev, A. E.

    1994-12-01

    Minor planets 1981 ET3 and Seleucus are possible parent bodies of Innisfree and Lost City meteorites, asteroid Mithra is the most probable source of Prgibram meteorite. The conclusions are based on the Southworth - Hawkins criterion with taking into account of the motion constants (Tisserand coefficient, etc.) and minimal distances between orbits at present time.

  5. Spectral analysis of meteorites ablated in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.

    2017-09-01

    Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.

  6. History of meteorites from the moon collected in antarctica.

    PubMed

    Eugster, O

    1989-09-15

    In large asteroidal or cometary impacts on the moon, lunar surface material can be ejected with escape velocities. A few of these rocks were captured by Earth and were recently collected on the Antarctic ice. The records of noble gas isotopes and of cosmic ray-produced radionuclides in five of these meteorites reveal that they originated from at least two different impact craters on the moon. The chemical composition indicates that the impact sites were probably far from the Apollo and Luna landing sites. The duration of the moon-Earth transfer for three meteorites, which belong to the same fall event on Earth, lasted 5 to 11 million years, in contrast to a duration of less than 300,000 years for the two other meteorites. From the activities of cosmic ray-produced radionuclides, the date of fall onto the Antarctic ice sheet is calculated as 70,000 to 170,000 years ago.

  7. Workshop on the Issue Martian Meteorites: Where do we Stand and Where are we Going?

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The presentations in this workshop discuss the composition of Martian meteorites. Many of the talks were on a specific meteorite, i.e., Allan Hills 84001 (ALH84001). The discovery earlier of carbonates in ALH84001 lead some researchers to suggest that there was evidence of martian life. Other possible explanations for this phenomena are given. Other papers discuss methods to sterilize martian samples, the existence of water on Mars, the facilities of the Meteorite Processing Laboratory at Johnson Space Center, comparative analyses of geologic processes and the gathering of meteorites.

  8. Exposure History of Lunar Meteorites Queen Alexandra Range 93069 and 94269

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Caffee, M. W.; Jull, A. J. T.; Reedy, R. C.

    1996-01-01

    Cosmic-ray produced C-14 (t(sub 1/2) = 5730 years), 36Cl (3.01 x 10(exp 5 years), Al-26 (7.05 x 10(exp 5 years), and Be-10 (1.5 x 10(exp 6 years) in the recently discovered lunar meteorites Queen Alexandra Range 93069 (QUE 93069) and 94269 (QUE 94269) were measured by accelerator mass spectrometry. The abundance pattern of these four cosmogenic radionuclides and of noble gases indicates QUE 93069 and QUE 94269 were a paired fall and were exposed to cosmic rays near the surface of the Moon for at least several hundred million years before ejection. After the meteorite was launched from the Moon, where it had resided at a depth of 65-80 g/cm square, it experienced a short transition time, approximately 20-50 ka, before colliding with the Earth. The terrestrial age of the meteorite is 5-10 ka. Comparison ofthe cosmogenic nuclide concentrations in QUE 93069/94269 and MAC 88104/88105 clearly shows that these meteorites were not ejected by a common event from the Moon.

  9. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  10. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce themore » efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.« less

  11. Complexities of Focused Ion Beam Preparation of Electron-Transparent Sections for Meteorite Studies

    NASA Astrophysics Data System (ADS)

    Ishii, H. A.; Bradley, J. P.; Teslich, N.

    2012-09-01

    Focused Ion Beam is increasingly used to prepare site-specific, electron-transparent sections for meteorite micro-texture and -chemistry studies. We discuss technical challenges and frequently-overlooked FIB artifacts relevant to meteorite analyses.

  12. Historical Uses of Meteoritic Metals as Precedent for Modern In-Situ Asteroid Mining

    NASA Astrophysics Data System (ADS)

    Krispin, D.; Mardon, A. A.; Fawcett, B. G.

    2016-08-01

    The strain on earth's resources of metal and the metallic density of meteorites mean that in situ asteroid mining is advisable. This has precedent: Use of meteoritic metal dates back to ancient times.

  13. Educating the Public about Meteorites and Impacts through Virtual Field Trips and Classroom Experience Boxes

    NASA Astrophysics Data System (ADS)

    Ashcraft, Teresa; Hines, R.; Minitti, M.; Taylor, W.; Morris, M. A.; Wadhwa, M.

    2014-01-01

    With specimens representing over 2,000 individual meteorites, the Center for Meteorite Studies (CMS) at Arizona State University (ASU) is home to the world's largest university-based meteorite collection. As part of our mission to provide educational opportunities that expand awareness and understanding of the science of meteoritics, CMS continues to develop new ways to engage the public in meteorite and space science, including the opening of a new Meteorite Gallery, and expansion of online resources through upgrades to the CMS website, meteorites.asu.edu. In 2008, CMS was the recipient of a philanthropic grant to improve online education tools and develop loanable modules for educators. These modules focus on the origin of meteorites, and contain actual meteorite specimens, media resources, a user guide, and lesson plans, as well as a series of engaging activities that utilize hands-on materials geared to help students develop logical thinking, analytical skills, and proficiency in STEM disciplines. In 2010, in partnership with the ASU NASA Astrobiology Institute team, CMS obtained a NASA EPOESS grant to develop Virtual Field Trips (VFTs) complemented by loanable “Experience Boxes” containing lesson plans, media, and hands-on objects related to the VFT sites. One VFT-Box pair focuses on the record of the oldest multicellular organisms on Earth. The second VFT-Box pair focuses on the Upheaval Dome (UD) structure, a meteorite impact crater in Utah’s Canyonlands National Park. UD is widely accepted as the deeply eroded remnant of a ~5 kilometer impact crater (e.g. Kriens et al., 1999). The alternate hypothesis that the Dome was formed by the upwelling of salt from a deposit underlying the region (e.g. Jackson et al., 1998) makes UD an ideal site to learn not only about specific scientific principles present in the Next Generation Science Standards, but also the process of scientific inquiry. The VFTs are located on an interactive website dedicated to VFTs, vft

  14. Laboratory mid-IR spectra of equilibrated and igneous meteorites. Searching for observables of planetesimal debris

    NASA Astrophysics Data System (ADS)

    de Vries, B. L.; Skogby, H.; Waters, L. B. F. M.; Min, M.

    2018-06-01

    Meteorites contain minerals from Solar System asteroids with different properties (like size, presence of water, core formation). We provide new mid-IR transmission spectra of powdered meteorites to obtain templates of how mid-IR spectra of asteroidal debris would look like. This is essential for interpreting mid-IR spectra of past and future space observatories, like the James Webb Space Telescope. First we present new transmission spectra of powdered ordinary chondrite, pallasite and HED meteorites and then we combine them with already available transmission spectra of chondrites in the literature, giving a total set of 64 transmission spectra. In detail we study the spectral features of minerals in these spectra to obtain measurables used to spectroscopically distinguish between meteorite groups. Being able to differentiate between dust from different meteorite types means we can probe properties of parent bodies, like their size, if they were wet or dry and if they are differentiated (core formation) or not. We show that the transmission spectra of wet and dry chondrites, carbonaceous and ordinary chondrites and achondrite and chondrite meteorites are distinctly different in a way one can distinguish in astronomical mid-IR spectra. Carbonaceous chondrites type < 3 (aqueously altered) show distinct features of hydrated silicates (hydrosilicates) compared to the olivine and pyroxene rich ordinary chondrites (dry and equilibrated meteorites). Also the iron concentration of the olivine in carbonaceous chondrites differs from ordinary chondrites, which can be probed by the wavelength peak position of the olivine spectral features. The transmission spectra of chondrites (not differentiated) are also strongly different from the achondrite HED meteorites (meteorites from differentiated bodies like 4 Vesta), where the latter show much stronger pyroxene signatures. The two observables that spectroscopically separate the different meteorites groups (and thus the different

  15. Carbon Isotopic Heterogeneity of Graphite in the San Juan Mass of the Campo Del Cielo IAB Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Maruoka, T.; Kurat, G.; Zinner, E.; Varela, M. E.; Ametrano, S. J.

    2003-01-01

    The origin of IAB iron meteorites is still a matter of debate. It is generally believed that iron meteorites originated from molten cores in small planetesimals because the fractionation trend of trace elements (e.g., Ir, Ge, Ga, etc. vs. Ni) for most iron meteorites can be more or less explained by fractional crystallization from metal melts. However, this process cannot produce trace element characteristics of the IAB (and other) iron meteorites. To explain these trace element abundance patterns, several models have been proposed. Although most of these models require a high temperature, clear evidence has recently been obtained for a sub-solidus formation of IAB iron meteorites from noble gas analyses. Moreover, heterogeneous distributions of some trace elements in metal and other phases also suggest a low temperature origin of at least some IAB iron meteorites. Here we use the carbon isotopic compositions of graphite to constrain the origin of IAB iron meteorites. Our data confirm a possible low temperature origin of IAB iron meteorites.

  16. Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Cheng, S.; Gooding, J. L.; Velbel, M. A.

    1988-01-01

    Nesquehonite, a hydrous magnesium carbonate, occurs as a weathering product on the surface of the Antarctic meteorite LEW 85320 (H5 chondrite). Isotopic measurements of delta(C-13) and delta(O-18) indicate that the nesquehonite formed at near freezing temperatures by reaction of meteoritic minerals with terrestrial water and carbon dioxide. Results from carbon-14 dating suggest that, although the meteorite has been in Antarctica for at least 32,000 to 33,000 years, the nesquehonite formed after AD 1950.

  17. Coordinated in Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Gibson, E. K.

    2013-01-01

    The Sutter's Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Here we report in-situ analyses of organic nanoglobules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS).

  18. Isotopic characteristics of simulated meteoritic organic matter. I - Kerogen-like material

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.; Mariner, Ruth; Flores, Jose; Chang, Sherwood

    1989-01-01

    Carbonaceous residues from a variety of laboratory syntheses yield release patterns for C and H isotopes during stepwise combustion that fail to mimic the striking patterns characteristic of meteoritic kerogen-like residues that otherwise superficially resemble them. It seems likely that the meteoritic material comprises a complex mixture of substances having different origins and/or synthesis conditions.

  19. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  20. Science in 60 – The Hunt for Antarctic Meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina

    2015-12-08

    She's the "coolest" thing in science, searching the ice sheets of Antarctica for meteorites from outer space. Los Alamos National Laboratory scientist Nina Lanza has signed up to spend nearly six weeks in a tent on the Antarctic ice sheet. Why would anyone do such a thing? For science, obviously! In the premiere episode of Los Alamos National Laboratory's "Science in 60" video series, Lanza gives us the low-down in 60 seconds on the why and how of hunting meteorites on the ice.

  1. Clay-mineraloid weathering products in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1986-01-01

    The production of clay mineraloids (CMs) in the weathering of stony meteorites recovered in the Allan Hills and Elephant Moraine areas of Antarctica is investigated, applying electron microbeam analysis, pyrolysis/mass spectroscopy, X-ray diffractometry, and differential scanning calorimetry to whole-rock chips from two eucrites, two diogenites, and an H5 chondrite. The data are presented in tables, graphs, and photomicrographs and characterized in detail. Massive to incipient-vermicular CM formations with smectitelike or micalike compositions and indications of poor crystallization are observed and attributed to hydrocryogenic diagenesis (with little or no liquid water) on time scales of 10-1000 kyr. The need to take the compositional effects of weathering into account before attempting to reconstruct the preterrestrial histories of meteorites is stressed.

  2. Stardust in meteorites.

    PubMed

    Davis, Andrew M

    2011-11-29

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  3. Stardust in meteorites

    PubMed Central

    Davis, Andrew M.

    2011-01-01

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261

  4. Analysis of Košice Meteorite by Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Dekan, Július; Sedlačková, Katarína

    2016-07-01

    The 57Fe Mössbauer spectroscopy method was used to investigate iron-containing compounds in town Košice meteorite fallen on the territory of Slovakia in February 2010. The results showed that the Mössbauer spectra consisted of magnetic and non-magnetic components related to different iron-bearing phases. The non-magnetic phase includes olivine, pyroxene and traces of Fe3+ phase and the magnetic component comprises troilite (FeS) and iron-rich Fe-Ni alloy with hyperfine magnetic field typical for kamacite. Samples from meteorite were obtained in powder from different depths to inspect its heterogeneous composition. The content of kamacite increases to the detriment of troilite from the surface toward the centre of the sample. Measurements at liquid nitrogen temperature confirmed phase composition of investigated meteorite. Main constituent elements of studied samples were also determined by X-ray fluorescence analysis.

  5. Metallographic Cooling Rates of IAB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Haack, H.; Jensen, S. K.; Ulff-Moller, F.; Rasmussen, K. L.

    1995-09-01

    Non-metals can play an important role for the diffusion-controlled growth of the Widmanstatten structure in iron meteorites. The presence of P significantly changes the diffusivity and equilibrium concentration of Ni in kamacite and taenite [1,2], and the effects of P have therefore been included in metallographic cooling rate calculations for many years. The presence of C probably increases the diffusivity of Ni in taenite up to a factor of two, which is considerably smaller than the effect of P that increases the Ni diffusivity by up to a factor of 10 [3,1]. On the other hand, C partitions strongly into taenite leaving kamacite essentially C-free (<10 micrograms/g [4]) and significantly reduces the equilibrium Ni-concentration in taenite [5]. Therefore, the effect of C should be included in metallographic cooling rate calculations of C-rich iron meteorites [6]. IAB iron meteorites have much higher bulk C-concentrations than most other iron meteorites and the metallic phases of the IAB irons were probably saturated with C soon after kamacite nucleation commenced. Since C is expected to decrease the solubility of P in taenite [7] we have based our cooling rate estimate of Toluca (IAB) on the Fe-Ni-C system rather than the Fe-Ni-P system. Previous metallographic cooling rates determined for IAB irons, including the effect of P, are low (1-10 degrees C/My [8] and 30-70 degrees C/My [9]). Fractional crystallization of S-rich cores [10, 11] and impact generated melt pools [12] have been proposed as origins of the IAB iron meteorites. Since we expect melt pools near the surface to have cooled significantly faster than the core of a differentiated parent body, the metallographic cooling rates may be used to discriminate between the two models. We have performed thermodynamic calculations on the C-saturated Fe-Ni-C-system at temperatures above 400 degrees C [13]. The results agree with earlier experimental work [5] and indicate that C, to the same degree as P, reduces the

  6. PF120916 Piecki fireball and Reszel meteorite fall

    NASA Astrophysics Data System (ADS)

    Olech, A.; Żołądek, P.; Tymiński, Z.; Stolarz, M.; Wiśniewski, M.; Bęben, M.; Lewandowski, T.; Polak, K.; Raj, A.; Zaręba, P.

    2017-06-01

    On September 12, 2016, at 21:44:07 UT, a -9.2±0.5 mag fireball appeared over northeastern Poland. The precise orbit and atmospheric trajectory of the event are presented, based on the data collected by six video stations of the Polish Fireball Network (PFN). The PF120916 Piecki fireball entered the Earth's atmosphere with the velocity of 16.7±0.3 km/s and started to shine at a height of 81.9 ± 0.3 km. Clear deceleration started after first three seconds of the flight, and the terminal velocity of the meteor was only 5.0±0.3 km/s at a height of 26.0 ± 0.2 km. Such a low value of the terminal velocity indicates that fragments with the total mass of around 10-15 kg could survive the atmospheric passage and cause fall of the meteorites. The predicted area of possible meteorite impact is computed and it is located south of Reszel city at the Warmian-Masurian region. The impact area was extensively searched by experienced groups of meteorite hunters, but without any success.

  7. hwhap_Ep30_Infamous Meteorites

    NASA Image and Video Library

    2018-02-01

    Gary Jordan (Host): Houston, We Have A Podcast. Welcome to the official podcast of the NASA Johnson Space Center, Episode 30, Infamous Meteorites. I'm Gary Jordan, and I'll be your host today. So on this podcast, we bring in the experts, NASA scientists, engineers, astronauts, all to let you know the coolest stuff about what's going on right here at NASA. So today, we're talking about some of the more unique findings that have been discovered in meteorites with David Mittlefehldt, goes by Duck. He's a planetary scientist here at the NASA Johnson Space Center in Houston, Texas, and we had a great discussion about curious findings in meteorites, and the adventures that are endured to procure them. So, with no further delay, let's go lightspeed and jump right ahead to our talk with Dr. Duck Mittlefehldt. Enjoy! [ Music & Radio Transmissions ] Host: Duck, thanks for coming to the podcast today. I know we've -- we've talked about searching for life and meteorites before, and it's -- it's such a fascinating topic, but I really wanted to dive deeper, just into like the meteorites portion. We really -- we really actually had a great conversation with Dr. Aaron Burton and -- and Dr. Marc Fries, not too long ago, actually, about life, but really just about the meteorites themselves. There's a -- there's a big story there, and you're one of the explorers that are going down and actually finding these meteorites, huh? Dr. Duck Mittlefehldt: Yeah, yeah. I've done that on a number of occasions. Host: Yeah. And it's -- is it -- is it mostly in Antarctica, or are you going other places? Dr. Duck Mittlefehldt: Well, okay, so most of the times I've been searching for meteorites has been in Antarctica, so I've been down there five times, meteorite collecting expeditions, but I -- I've [pause] -- I was on vacation in Israel once, and I met up with a couple of geologists at a coffee house, and one of them had just published a paper where they -- he described, you know, old surfaces in

  8. Mid-Infrared Study of Samples from Several Stones from the Sutter's Mill Meteorite

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Nuevo, Michel; Flynn, George J.; Wirick, Sue

    2013-01-01

    On April 22, 2012, a fireball was observed over California and Nevada, and the falling fragments of the meteorite were detected by weather radar near small townships in the El Dorado County, California. Some of these stones were collected at Sutter s Mill, in the historic site where the California gold rush was initiated, giving the name to this meteorite. Thus far, 77 pieces of the meteorite have been collected, for a total mass of 943 g, with the biggest stone weighing 205 g [1].

  9. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  10. Mineralogy of dark clasts in primitive versus differentiated meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.

    1993-01-01

    The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.

  11. De Magnete et Meteorite: Cosmically Motivated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, LH; Pinkerton, FE; Bordeaux, N

    2014-01-01

    Meteorites, likely the oldest source of magnetic material known to mankind, are attracting renewed interest in the science and engineering community. Worldwide focus is on tetrataenite, a uniaxial ferromagnetic compound with the tetragonal L1(0) crystal structure comprised of nominally equiatomic Fe-Ni that is found naturally in meteorites subjected to extraordinarily slow cooling rates, as low as 0.3 K per million years. Here, the favorable permanent magnetic properties of bulk tetrataenite derived from the meteorite NWA 6259 are quantified. The measured magnetization approaches that of Nd-Fe-B (1.42 T) and is coupled with substantial anisotropy (1.0-1.3 MJ/m(3)) that implies the prospect formore » realization of technologically useful coercivity. A highly robust temperature dependence of the technical magnetic properties at an elevated temperature (20-200 degrees C) is confirmed, with a measured temperature coefficient of coercivity of -0.005%/ K, over one hundred times smaller than that of Nd-Fe-B in the same temperature range. These results quantify the extrinsic magnetic behavior of chemically ordered tetrataenite and are technologically and industrially significant in the current context of global supply chain limitations of rare-earth metals required for present-day high-performance permanent magnets that enable operation of a myriad of advanced devices and machines.« less

  12. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    NASA Technical Reports Server (NTRS)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  13. Anomalous Enantiomer Ratios in Meteoritic Sugar Derivatives

    NASA Astrophysics Data System (ADS)

    Cooper, G.; Sant, M.; Asiyo, C.

    2009-03-01

    The enantiomer (mirror-image) ratios of sugar acids in carbonaceous meteorites have been measured. D-enantiomer excesses are found in all acids measured thus far. This includes rare as well as common compounds.

  14. A search for isotopic anomalies in uranium. [in chondritic meteorites and terrestrial basalt

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1980-01-01

    The U-238/U-235 ratios for nine bulk chondritic meteorites and a terrestrial basalt were measured. The total range in U-238/U-235 determined for both total meteorites and for acid leaches was from 137.2 terrestrial U. The typical errors in a single determination are plus or minus 6 per thousand (2 sigma m) for a 2 ng U sample from a chondrite. Taking the extreme values of delta U-235 for each measurement the maximum amount of excess U-235 that can be allowed to be present ranges from 200 million to 2 billion atoms per gram of bulk meteorite. These results do not support the claims of variations in U-238/U-235 at the percentage levels or number of excess U-235 atoms in some of the same meteorites as reported by several other previous workers.

  15. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life

  16. Nature of Reduced Carbon in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  17. The amino acid and hydrocarbon contents of the Paris meteorite, the most primitive CM chondrite

    NASA Astrophysics Data System (ADS)

    Martins, Zita; Modica, Paola; Zanda, Brigitte; Le Sergeant d'Hendecourt, Louis

    2015-04-01

    The Paris meteorite is reported to be the least aqueously altered CM chondrite [1,2], and to have experienced only weak thermal metamorphism [2-5]. The IR spectra of some of Paris' fragments suggest a primitive origin for the organic matter in this meteorite, similar to the spectra from solid-state materials in molecular clouds [6]. Most of the micron-sized organic particles present in the Paris matrix exhibit 0 < δD <2000‰ [7,8]. In order to understand the effect of aqueous alteration and thermal metamorphism on the abundance and distribution of meteoritic soluble organic matter, we have analyzed for the first time the amino acid and hydrocarbon contents of the Paris meteorite [9]. Extensive aqueous alteration in the parent body of carbonaceous meteorites may result in the decomposition of α-amino acids and the synthesis of β- and γ-amino acids. When plotted with several CM chondrites, Paris has the lowest relative abundance of β-alanine/glycine (0.15) for a CM chondrite, which fits with the relative abundance of β-alanine/glycine increasing with increasing aqueous alteration [10,11]. In addition, our results show that the isovaline detected in this meteorite is racemic (D/L= 0.99 ± 0.08; L-enantiomer excess (%) = 0.35 ± 0.5; corrected D/L = 1.03; corrected L-enantiomer excess (%) = -1.4 ± 2.6). Although aqueous alteration does not create by itself an isovaline asymmetry, it may amplify a small enantiomeric excess. Therefore, our data may support the hypothesis that aqueous alteration is responsible for the high L-enantiomer excess of isovaline observed in the most aqueously altered carbonaceous meteorites [12,13]. Paris has n-alkanes ranging from C16 to C25 and 3- to 5-ring non-alkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be related to the low degree of aqueous alteration on its parent body [9,14]. The extra-terrestrial aliphatic and aromatic hydrocarbon content of Paris may have an interstellar origin

  18. Meteoritical Implications of the Vesta Asteroid Family

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    1993-07-01

    The discovery of a large dynamical family of basaltic asteroids associated with Vesta and extending to the 3:1 Jupiter resonance [1] provides firm evidence at last that Vesta is the actual parent body of the basaltic achondrite meteorites [2]. This discovery raises several interesting questions. The Vesta family demonstrates that objects as large as ~10km can be ejected from large asteroids at velocities up to 500 m/sec, which is adequate to deliver material to a strong resonance from almost anywhere in the asteroid belt. However, most other asteroid families show a much smaller range of ejection velocities and a more symmetrical distribution of the fragments in orbital element space. These families probably come from complete disruption of parent bodies, which would therefore appear to be the dominant process. Meteoritical evidence is also relevant. There are at least six large dunite (A-class) asteroids, only one of which is providing brachinites to the Earth. Even more striking, the Nysa asteroid family is predominantly composed of the mysterious F-class asteroids, which have no meteorite analog at all. The evidence suggests that the Vesta event is atypical and that there is considerable bias in meteorite delivery. The family is extended in a but narrowly confined in e and i. Curiously, Vesta is not at one end but in the middle. The very narrow sunward leg of the family contains a rare pure-olivine (Class A) asteroid among the many eucrites (Class V) and diogenites (Class J), while in the more diffuse anti-sunward leg no olivine objects have yet been found. This mineral distribution mimics the mineral map of Vesta derived from telescopic spectroscopy [3], in which a small olivine spot is semi-antipodal to a large diogenite patch. This suggests that the sunward leg is direct ejecta from a large crater, while the anti-sunward leg (and the populartion of HEDs reaching Earth) is composed of crustal fragments spalled off by focused shock waves. This mechanism is well

  19. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  20. The Enantiomeric Ratios of Meteoritic Organic Compounds: Their Possible Roles in the Origin of Life

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2012-01-01

    This talk will give an overview of the enantiomer (mirror-image) ratios of organic compounds in meteorites and also describe the results of the present work in my lab. The primary focus will be on sugar derivatives (sugar acids) of carbonaceous meteorites. Our work begins to address questions associated with chirality, i.e., the origins of homochirality. On Earth, biological monomers (amino acids, sugars, etc.) are usually found with one of the enantiomers more abundant than the other. However, biological polymers (proteins, nucleic acids, etc.) are only composed of one enantiomer i.e., they are homochiral. There are hints in meteorites that some organic molecules may also exist in homochiral forms. The talk will address questions such as: did extraterrestrial sources aid in the beginning of this homochirality? Do the increasing size and apparent enantiomer excesses of some meteoritic compounds also extend to larger meteoritic compounds and polymers?