Sample records for tahoe basin management

  1. 78 FR 70012 - Lake Tahoe Basin Management Unit, California, Land Management Plan Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Land Management Plan Revision AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA. ACTION: Notice of... for the Lake Tahoe Basin Management Unit (LTBMU) Land Management Plan Revision available for the 60...

  2. 77 FR 21522 - Lake Tahoe Basin Management Unit and Tahoe National Forest, CA; Calpeco 625 and 650 Electrical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit and Tahoe National... hereby given that the USDA Forest Service (USFS), Lake Tahoe Basin Management Unit (LTBMU), together with... reliable electrical transmission system for the north Lake Tahoe area, while accommodating currently...

  3. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  4. 76 FR 67132 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on November 18, 2011 at the Lake Tahoe Basin Management Unit, 35 College Drive...

  5. 77 FR 42696 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on August 9, 2012 at the Lake Tahoe Basin Management Unit, 35 College Drive...

  6. 76 FR 61074 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on October 21 or 24, 2011 at the Lake Tahoe Basin Management Unit, 35 College...

  7. 76 FR 62038 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting cancellation. SUMMARY: The Lake Tahoe Federal Advisory Committee meeting that was to be held on October 21 or 24, 2011 at the Lake Tahoe Basin Management...

  8. Hydrogeology of the Lake Tahoe Basin, California and Nevada

    USGS Publications Warehouse

    Plume, Russell W.; Tumbusch, Mary L.; Welborn, Toby L.

    2009-01-01

    Ground water in the Lake Tahoe basin is the primary source of domestic and municipal water supply and an important source of inflow to Lake Tahoe. Over the past 30-40 years, Federal, State, and local agencies, and research institutions have collected hydrologic data to quantify the ground-water resources in the Lake Tahoe basin. These data are dispersed among the various agencies and institutions that collected the data and generally are not available in a format suitable for basin-wide assessments. To successfully and efficiently manage the ground-water resources throughout the Lake Tahoe basin, the U.S. Geological Survey (USGS) in cooperation with the U.S. Forest Service (USFS) compiled and evaluated the pertinent geologic, geophysical, and hydrologic data, and built a geodatabase incorporating the consolidated and standardized data for the Lake Tahoe basin that is relevant for examining the extent and characteristics of the hydrogeologic units that comprise the aquifers. The geodatabase can be accessed at http://water.usgs.gov/lookup/getspatial?SIM3063.

  9. 78 FR 9883 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice; Solicitation of nominees to the Lake Tahoe Basin Federal Advisory Committee. SUMMARY: In accordance with the...) announces solicitation of nominees to fill vacancies on the Lake Tahoe Basin Federal Advisory Committee...

  10. 75 FR 6348 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  11. 76 FR 7809 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee will hold a meeting on February 28, 2011 at the Lake Tahoe Community College, Aspen Room, 1 College...

  12. 76 FR 15935 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee (LTFAC) will hold meetings on March 31, 2011, April 6, 2011, and April 19, 2011 at the Lake Tahoe Basin...

  13. The Lake Tahoe Basin Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  14. 75 FR 13252 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory... Lake Tahoe, CA 96150. This Committee, established by the Secretary of Agriculture on December 15, 1998...

  15. 77 FR 73411 - Lake Tahoe Basin Federal Advisory Committee (LTBFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTBFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee will meet in South Lake Tahoe, California. This Committee, established by the Secretary of...

  16. 76 FR 23276 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory... Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES: The meeting...

  17. Historical Orthoimagery of the Lake Tahoe Basin

    USGS Publications Warehouse

    Soulard, Christopher E.; Raumann, Christian G.

    2008-01-01

    The U.S. Geological Survey (USGS) Western Geographic Science Center has developed a series of historical digital orthoimagery (HDO) datasets covering part or all of the Lake Tahoe Basin. Three datasets are available: (A) 1940 HDOs for the southern Lake Tahoe Basin, (B) 1969 HDOs for the entire Lake Tahoe Basin, and (C) 1987 HDOs for the southern Lake Tahoe Basin. The HDOs (for 1940, 1969, and 1987) were compiled photogrammically from aerial photography with varying scales, camera characteristics, image quality, and capture dates. The resulting datasets have a 1-meter horizontal resolution. Precision-corrected Ikonos multispectral satellite imagery was used as a substitute for HDOs/DOQs for the 2002 imagery date, but these data are not available for download in this series due to licensing restrictions. The projection of the HDO data is set to UTM Zone 10, NAD 1983. The data for each of the three available dates are clipped into files that spatially approximate the 3.75-minute USGS quarter quadrangles (roughly 3,000 to 4,000 hectares), and have roughly 100 pixels (or 100 meters) of overlap to facilitate combining the files into larger regions without data gaps. The files are named after 3.75-minute USGS quarter quadrangles that cover the same general spatial extent. These files are available in the ERDAS Imagine (.img) format.

  18. 77 FR 2948 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES: The meeting...

  19. 77 FR 11485 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  20. 76 FR 39068 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... of the Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the...

  1. 77 FR 29314 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  2. 76 FR 46269 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... of the Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the...

  3. Estimated flood flows in the Lake Tahoe basin, California and Nevada

    USGS Publications Warehouse

    Crompton, E. James; Hess, Glen W.; Williams, Rhea P.

    2002-01-01

    Lake Tahoe, the largest alpine lake in North America, covers about 192 square miles (mi2) of the 506-mi2 Lake Tahoe Basin, which straddles the border between California and Nevada (Fig. 1). In cooperation with the Nevada Department of Transportation (NDOT), the U.S. Geological Survey (USGS) estimates the flood frequencies of the streams that enter the lake. Information about potential flooding of these streams is used by NDOT in the design and construction of roads and highways in the Nevada portion of the basin. The stream-monitoring network in the Lake Tahoe Basin is part of the Lake Tahoe Interagency Monitoring Program (LTIMP), which combines the monitoring and research efforts of various Federal, State, and regional agencies, including both USGS and NDOT. The altitude in the basin varies from 6,223 feet (ft) at the lake's natural rim to over 10,000 ft along the basin's crest. Precipitation ranges from 40 inches per year (in/yr) on the eastern side to 90 in/yr on the western side (Crippen and Pavelka, 1970). Most of the precipitation comes during the winter months as snow. Precipitation that falls from June through September accounts for less than 20 percent of the annual total.

  4. Surface ozone in the Lake Tahoe Basin

    Treesearch

    Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska

    2015-01-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50–55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...

  5. Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.

    PubMed

    Zhang, Qi; Carroll, John J; Dixon, Alan J; Anastasio, Cort

    2002-12-01

    Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest

  6. Structural Constraints and Earthquake Recurrence Estimates for the West Tahoe-Dollar Point Fault, Lake Tahoe Basin, California

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Driscoll, N. W.; Kent, G.; Brothers, D. S.; Baskin, R. L.; Babcock, J. M.; Noble, P. J.; Karlin, R. E.

    2011-12-01

    Previous work in the Lake Tahoe Basin (LTB), California, identified the West Tahoe-Dollar Point Fault (WTDPF) as the most hazardous fault in the region. Onshore and offshore geophysical mapping delineated three segments of the WTDPF extending along the western margin of the LTB. The rupture patterns between the three WTDPF segments remain poorly understood. Fallen Leaf Lake (FLL), Cascade Lake, and Emerald Bay are three sub-basins of the LTB, located south of Lake Tahoe, that provide an opportunity to image primary earthquake deformation along the WTDPF and associated landslide deposits. We present results from recent (June 2011) high-resolution seismic CHIRP surveys in FLL and Cascade Lake, as well as complete multibeam swath bathymetry coverage of FLL. Radiocarbon dates obtained from the new piston cores acquired in FLL provide age constraints on the older FLL slide deposits and build on and complement previous work that dated the most recent event (MRE) in Fallen Leaf Lake at ~4.1-4.5 k.y. BP. The CHIRP data beneath FLL image slide deposits that appear to correlate with contemporaneous slide deposits in Emerald Bay and Lake Tahoe. A major slide imaged in FLL CHIRP data is slightly younger than the Tsoyowata ash (7950-7730 cal yrs BP) identified in sediment cores and appears synchronous with a major Lake Tahoe slide deposit (7890-7190 cal yrs BP). The equivalent age of these slides suggests the penultimate earthquake on the WTDPF may have triggered them. If correct, we postulate a recurrence interval of ~3-4 k.y. These results suggest the FLL segment of the WTDPF is near its seismic recurrence cycle. Additionally, CHIRP profiles acquired in Cascade Lake image the WTDPF for the first time in this sub-basin, which is located near the transition zone between the FLL and Rubicon Point Sections of the WTDPF. We observe two fault-strands trending N45°W across southern Cascade Lake for ~450 m. The strands produce scarps of ~5 m and ~2.7 m, respectively, on the lake

  7. The Effectiveness of Cattlemans Detention Basin, South Lake Tahoe, California

    USGS Publications Warehouse

    Green, Jena M.

    2006-01-01

    Lake Tahoe (Nevada-California) has been designated as an 'outstanding national water resource' by the U.S. Environmental Protection Agency, in part, for its exceptional clarity. Water clarity in Lake Tahoe, however, has been declining at a rate of about one foot per year for more than 35 years. To decrease the amount of sediment and nutrients delivered to the lake by way of alpine streams, wetlands and stormwater detention basins have been installed at several locations around the lake. Although an improvement in stormwater and snowmelt runoff quality has been measured, the effectiveness of the detention basins for increasing the clarity of Lake Tahoe needs further study. It is possible that poor ground-water quality conditions exist beneath the detention basins and adjacent wetlands and that the presence of the basins has altered ground-water flow paths to nearby streams. A hydrogeochemical and ground-water flow modeling study was done at Cattlemans detention basin, situated adjacent to Cold Creek, a tributary to Lake Tahoe, to determine whether the focusing of storm and snowmelt runoff into a confined area has (1) modified the ground-water flow system beneath the detention basin and affected transport of sediment and nutrients to nearby streams and (2) provided an increased source of solutes which has changed the distribution of nutrients and affected nutrient transport rates beneath the basin. Results of slug tests and ground-water flow modeling suggest that ground water flows unrestricted northwest across the detention basin through the meadow. The modeling also indicates that seasonal flow patterns and flow direction remain similar from year to year under transient conditions. Model results imply that about 34 percent (0.004 ft3/s) of the total ground water within the model area originates from the detention basin. Of the 0.004 ft3/s, about 45 percent discharges to Cold Creek within the modeled area downstream of the detention basin. The remaining 55 percent

  8. The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Theiss, Sandra

    The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors

  9. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  10. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  11. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  12. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  13. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  14. Vegetation management in sensitive areas of the Lake Tahoe Basin: A workshop to evaluate risks and advance existing strategies and practices [Independent review panel report

    Treesearch

    William Elliot; Wally Miller; Bruce Hartsough; Scott Stephens

    2009-01-01

    Elected officials, agency representatives and stakeholders representing many segments of the Lake Tahoe Basin community have all raised concerns over the limited progress in reducing excess vegetation biomass in Stream Environment Zones (SEZ) and on steep slopes (collectively referred to as sensitive areas) in the Lake Tahoe Basin. Limited access, the potential for...

  15. Groundwater quality in the Tahoe and Martis Basins, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  16. Direct and indirect evidence for earthquakes; an example from the Lake Tahoe Basin, California-Nevada

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Noble, P. J.; Driscoll, N. W.; Kent, G.; Schmauder, G. C.

    2012-12-01

    High-resolution seismic CHIRP data can image direct evidence of earthquakes (i.e., offset strata) beneath lakes and the ocean. Nevertheless, direct evidence often is not imaged due to conditions such as gas in the sediments, or steep basement topography. In these cases, indirect evidence for earthquakes (i.e., debris flows) may provide insight into the paleoseismic record. The four sub-basins of the tectonically active Lake Tahoe Basin provide an ideal opportunity to image direct evidence for earthquake deformation and compare it to indirect earthquake proxies. We present results from high-resolution seismic CHIRP surveys in Emerald Bay, Fallen Leaf Lake, and Cascade Lake to constrain the recurrence interval on the West Tahoe Dollar Point Fault (WTDPF), which was previously identified as potentially the most hazardous fault in the Lake Tahoe Basin. Recently collected CHIRP profiles beneath Fallen Leaf Lake image slide deposits that appear synchronous with slides in other sub-basins. The temporal correlation of slides between multiple basins suggests triggering by events on the WTDPF. If correct, we postulate a recurrence interval for the WTDPF of ~3-4 k.y., indicating that the WTDPF is near its seismic recurrence cycle. In addition, CHIRP data beneath Cascade Lake image strands of the WTDPF that offset the lakefloor as much as ~7 m. The Cascade Lake data combined with onshore LiDAR allowed us to map the geometry of the WTDPF continuously across the southern Lake Tahoe Basin and yielded an improved geohazard assessment.

  17. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Treesearch

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  18. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  19. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    USGS Publications Warehouse

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands

  20. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Treesearch

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  1. Finding balance between fire hazard reduction and erosion control in the Lake Tahoe Basin, California–Nevada

    Treesearch

    Nicolas M. Harrison; Andrew P. Stubblefield; J. Morgan Varner; Eric E. Knapp

    2016-01-01

    The 2007 Angora Fire served as a stark reminder of the need for fuel reduction treatments in the Lake Tahoe Basin, California–Nevada, USA. Concerns exist, however, that the corresponding removal of forest floor fuels could increase erosion rates, negatively affecting the clarity of Lake Tahoe. To quantify trade-offs between fuel reduction and erosion, we conducted...

  2. Concentrations and distribution of manmade organic compounds in the Lake Tahoe Basin, Nevada and California, 1997-99

    USGS Publications Warehouse

    Lico, Michael S.; Pennington, Nyle

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine

  3. Secondary Pollutants in the Lake Tahoe Basin, USA

    NASA Astrophysics Data System (ADS)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Burley, J. D.

    2013-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant problems in air quality and declining water clarity. In July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone, secondary organic aerosol (SOA) and ammonium nitrate. Four strategic sampling sites were selected inside the Basin; two of these sites were located at high elevation (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period we collected canister samples for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds and honeycomb denuder/filter pack samples for measurement of concentrations of ammonia, nitrous acid, nitric acid, and fine particulate ammonium nitrate. We also collected PM2.5 Teflon and quartz filter samples for measurements of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest in all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC, depending on the site and sampling period. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the

  4. Lake Tahoe watershed assessment: volume II.

    Treesearch

    Dennis D. Murphy; Christopher M. Knopp

    2000-01-01

    This watershed assessment of the Lake Tahoe basin in northern California and Nevada is the first attempt to collate, synthesize, and interpret available scientific information with a comprehensive view toward management and policy outcomes. The seven-chapter report presents new and existing information in subject areas pertinent to policy development and land and...

  5. Lake Tahoe watershed assessment: volume I

    Treesearch

    Dennis D. Murphy; Christopher M. Knopp

    2000-01-01

    This watershed assessment of the Lake Tahoe basin in northern California and Nevada is the first attempt to collate, synthesize, and interpret available scientific information with a comprehensive view toward management and policy outcomes. The seven-chapter report presents new and existing information in subject areas pertinent to policy development and land and...

  6. Land use change and effects on water quality and ecosystem health in the Lake Tahoe basin, Nevada and California

    USGS Publications Warehouse

    Forney, William; Richards, Lora; Adams, Kenneth D.; Minor, Timothy B.; Rowe, Timothy G.; Smith, J. LaRue; Raumann, Christian G.

    2001-01-01

    Human activity in the Lake Tahoe Basin has increased substantially in the past four decades, causing significant impacts on the quality and clarity of the lake's famous deep, clear water. Protection of Lake Tahoe and the surrounding environment has become an important activity in recent years. A variety of agencies, including the Tahoe Regional Planning Agency, Tahoe Research Group of the University of California at Davis, Desert Research Institute of the University and Community College System of Nevada, U.S. Geological Survey (USGS), and a host of State (both Nevada and California) and local agencies have been monitoring and conducting research in the Basin in order to understand how the lake functions and to what extent humans have affected its landscape and ecosystem processes. In spite of all of these activities, there remains a lack of comprehensive land use change data and analysis for the Basin. A project is underway that unites the land cover mapping expertise of the USGS National Mapping Discipline with the hydrologic expertise of the Water Resources Discipline to assess the impacts of urban growth and land use change in the Lake Tahoe Basin. Three activities are planned over the next 3 years: (1) mapping the current and historic state of the land surface, (2) conducting analysis to document patterns, rates, and trends in urbanization, land use change, and ecosystem health, and (3) assessing the causes and consequences of land use change with regard to water quality and ecosystem health. We hypothesize that changes in the extent of urban growth and the corresponding increases in impervious surfaces and decreases in natural vegetation have resulted in severe impacts on ecosystem health and integrity, riparian zones and water quality over time. We are acting on multiple fronts to test this hypothesis through the quantification of landscape disturbances and impacts.

  7. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be

  8. 21 Years of Investing in a Clear, Healthy Lake Tahoe

    EPA Pesticide Factsheets

    Community Information Fact Sheet with information about Lake Tahoe's history, the roles of EPA, state, and local government in protecting the Lake Tahoe Basin, priorities for the next 20 years, as well as actions that you can take to protect Lake Tahoe.

  9. Measurements of Ozone Precursors in the Lake Tahoe Basin, USA

    NASA Astrophysics Data System (ADS)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Rayne, S.; Burley, J. D.

    2014-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant environmental pollution problems, including declining water clarity and air quality issues. During the period of July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone and secondary organic aerosol (SOA). Four sites were selected; two were located at high elevations (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period canister samples were collected for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds, PM2.5 Teflon and quartz filter samples for determination of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest at all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. All four sites showed maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with

  10. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  11. Projections and downscaling of 21st century temperatures, precipitation, radiative fluxes and winds for the southwestern US, with focus on the Lake Tahoe basin

    USGS Publications Warehouse

    Dettinger, Michael D.

    2013-01-01

    Recent projections of global climate changes in response to increasing greenhouse-gas concentrations in the atmosphere include warming in the Southwestern US and, especially, in the vicinity of Lake Tahoe of from about +3°C to +6°C by end of century and changes in precipitation on the order of 5-10 % increases or (more commonly) decreases, depending on the climate model considered. Along with these basic changes, other climate variables like solar insolation, downwelling (longwave) radiant heat, and winds may change. Together these climate changes may result in changes in the hydrology of the Tahoe basin and potential changes in lake overturning and ecological regimes. Current climate projections, however, are generally spatially too coarse (with grid cells separated by 1 to 2° latitude and longitude) for direct use in assessments of the vulnerabilities of the much smaller Tahoe basin. Thus, daily temperatures, precipitation, winds, and downward radiation fluxes from selected global projections have been downscaled by a statistical method called the constructed-analogues method onto 10 to 12 km grids over the Southwest and especially over Lake Tahoe. Precipitation, solar insolation and winds over the Tahoe basin change only moderately (and with indeterminate signs) in the downscaled projections, whereas temperatures and downward longwave fluxes increase along with imposed increases in global greenhouse-gas concentrations.

  12. Improving erosion modeling on forest roads in the Lake Tahoe Basin: Small plot rainfall simulations to determine saturated hydraulic conductivity and interrill erodibility

    Treesearch

    N. S. Copeland; R. B. Foltz

    2009-01-01

    Lake Tahoe is renowned for its beauty and exceptionally clear water. The Tahoe basin economy is dependent upon the protection of this beauty and the continued availability of recreational opportunities in the area; however, scientists estimate that the continued increase in fine sediment and nutrient transport to the lake threatens to diminish this clarity in as little...

  13. Nutrient and sediment transport in streams of the Lake Tahoe basin: a 30-year retrospective

    Treesearch

    Robert Coats

    2004-01-01

    Lake Tahoe, widely renowned for its astounding clarity and deep blue color, lies at an elevation of 1,898 meters (m) in the central Sierra Nevada, astride the California-Nevada border. The volume of the lake is 156 cubic kilometers (km3), and its surface area is 501 square kilometers (km2), 38 percent of the total basin...

  14. Application of digital image processing techniques and information systems to water quality monitoring of Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.; Blackwell, R. J.

    1981-01-01

    The Tahoe basin occupies over 500 square miles of territory located in a graben straddling the boundary between California and Nevada. Lake Tahoe contains 126 million acre-feet of water. Since the 1950's the basin has experienced an ever increasing demand for land development at the expense of the natural watershed. Discharge of sediment to the lake has greatly increased owing to accelerated human interference, and alterations to the natural drainage patterns are evident in some areas. In connection with an investigation of the utility of a comprehensive system that takes into account the causes as well as the effects of lake eutrophication, it has been attempted to construct an integrated and workable data base, comprised of currently available data sources for the Lake Tahoe region. Attention is given to the image based information system (IBIS), the construction of the Lake Tahoe basin data base, and the application of the IBIS concept to the Lake Tahoe basin.

  15. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  16. Photographic technology development project: Timber typing in the Tahoe Basin using high altitude panoramic photography

    NASA Technical Reports Server (NTRS)

    Ward, J. F.

    1981-01-01

    Procedures were developed and tested for using KA-80A optical bar camera panoramic photography for timber typing forest land and classifying nonforest land. The study area was the south half of the Lake Tahoe Basin Management Unit. Final products from this study include four timber type map overlays on 1:24,000 orthophoto maps. The following conclusions can be drawn from this study: (1) established conventional timber typing procedures can be used on panoramic photography if the necessary equipment is available, (2) The classification and consistency results warrant further study in using panoramic photography for timber typing; and (3) timber type mapping can be done as fast or faster with panoramic photography than with resource photography while maintaining comparable accuracy.

  17. 43 CFR 44.41 - How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.41 Section 44.41 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.41 How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe Basin? (a) The Department...

  18. 43 CFR 44.41 - How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.41 Section 44.41 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.41 How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe Basin? (a) The Department...

  19. 43 CFR 44.41 - How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.41 Section 44.41 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.41 How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe Basin? (a) The Department...

  20. 43 CFR 44.41 - How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.41 Section 44.41 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.41 How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe Basin? (a) The Department...

  1. 43 CFR 44.41 - How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.41 Section 44.41 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.41 How does the Department calculate payments for lands in the Redwood National Park or Lake Tahoe Basin? (a) The Department...

  2. A report from Lake Tahoe: Observation from an ideal platform for adaptive management

    Treesearch

    Dennis D. Murphy; Patricia N. Manley

    2009-01-01

    The Lake Tahoe basin is in environmenal distress. The lake is still one of the world’s most transparent bodies of water, but its fabled clarity has declined by half since discovery of the high-mountain lake basin by explorers a century and a half ago. At that time, incredibly, objects could be observed on the lake’s bottom a hundred feet down. Two-thirds of the lake’s...

  3. Elytroderma disease reduces growth and vigor, increases mortality of Jeffrey pines at Lake Tahoe Basin, California

    Treesearch

    Robert R Scharpf; Robert V. Bega

    1981-01-01

    A disease of Jeffrey pines (Pinus jeffreyi Grev. and Balf.) at Lake Tahoe Basin, California, caused by Elytrodenna disease (Elytroderma deformans) was studied for 7 years after a severe outbreak ofthe fungus in 1971. Among 607 Jeffrey pines on six plots, about one-half were heavily infected and about one-half were moderately or lightly infected in 1971. No uninfected...

  4. Streamflow and water-quality data for selected watersheds in the Lake Tahoe basin, California and Nevada, through September 1998

    USGS Publications Warehouse

    Rowe, T.G.; Saleh, D.K.; Watkins, S.A.; Kratzer, C.R.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency, and the University of California, Davis-Tahoe Research Group, has monitored tributaries in the Lake Tahoe Basin since 1988. This monitoring has characterized streamflow and has determined concentrations of nutrients and suspended sediment, which may have contributed to loss of clarity in Lake Tahoe. The Lake Tahoe Interagency Monitoring Program was developed to collect water-quality data in the basin. In 1998, the tributary-monitoring program included 41 water-quality stations in 14 of the 63 watersheds totaling half the area tributary to Lake Tahoe. The monitored watershed areas range from 1.08 square miles for First Creek to 56.5 square miles for the Upper Truckee River.Annual and unit runoff for 20 primary and secondary streamflow gaging stations in 10 selected watersheds are described. Water years 1988-98 were used to compare runoff data. The Upper Truckee River at South Lake Tahoe, Calif., had the highest annual runoff and Logan House Creek near Glenbrook, Nev., had the lowest. Blackwood Creek near Tahoe City, Calif., had the highest unit runoff and Logan House Creek had the lowest. The highest instantaneous peak flow was recorded at Upper Truckee River at South Lake Tahoe during the January 2, 1997, flood event.Certain water-quality measurements were made in the field. Ranges and median values of those measurements are described for 41 stations. Water temperature ranged from 0 to 23?C. Specific conductance ranged from 13 to 900 microsiemens per centimeter at 25?C. pH ranged from 6.7 to 10.6. Dissolved-oxygen concentrations ranged from 5.2 to 12.6 mg/L and from 70 to 157 percent of saturation.Loads, yields, and trends of nutrients and suspended sediment during water years 1988-98 at the streamflow gaging stations also are described. The Upper Truckee River at South Lake Tahoe had the largest median monthly load for five of the six measured nutrients and of suspended sediment

  5. Fugitive dust emissions from paved road travel in the Lake Tahoe basin.

    PubMed

    Zhu, Dongzi; Kuhns, Hampden D; Brown, Scott; Gillies, John A; Etyemezian, Vicken; Gertler, Alan W

    2009-10-01

    The clarity of water in Lake Tahoe has declined substantially over the past 40 yr. Causes of the degradation include nitrogen and phosphorous fertilization of the lake waters and increasing amounts of inorganic fine sediment that can scatter light. Atmospheric deposition is a major source of fine sediment. A year-round monitoring study of road dust emissions around the lake was completed in 2007 using the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) system developed at the Desert Research Institute (DRI). Results of this study found that, compared with the summer season, road dust emissions increased by a factor of 5 in winter, on average, and about a factor of 10 when traction control material was applied to the roads after snow events. For winter and summer, road dust emission factors (grams coarse particulate matter [PM10] per vehicle kilometer traveled [g/vkt]) showed a decreasing trend with the travel speed of the road. The highest emission factors were observed on very low traffic volume roads on the west side of the lake. These roads were composed of either a 3/8-in. gravel material or had degraded asphalt. The principle factors influencing road dust emissions in the basin are season, vehicle speed (or road type), road condition, road grade, and proximity to other high-emitting roads. Combined with a traffic volume model, an analysis of the total emissions from the road sections surveyed indicated that urban areas (in particular South Lake Tahoe) had the highest emitting roads in the basin.

  6. The no-project alternative analysis: An early product of the Tahoe Decision Support System

    USGS Publications Warehouse

    Halsing, David L.; Hessenflow, Mark L.; Wein, Anne

    2005-01-01

    We report on the development of a No-project alternative analysis (NPAA) or “business as usual” scenario with respect to a 20-year projection of 21 indicators of environmental and socioeconomic conditions in the Lake Tahoe Basin for the Tahoe Regional Planning Agency (TRPA). Our effort was inspired by earlier work that investigated the tradeoffs between an environmental and an economic objective. The NPAA study has implications for a longer term goal of building a Tahoe Decision Support System (TDSS) to assist the TRPA and other Basin agencies in assessing the outcomes of management strategies. The NPAA assumes no major deviations from current management practices or from recent environmental or societal trends and planned Environmental Improvement Program (EIP) projects. Quantitative “scenario generation” tools were constructed to simulate site-specific land uses, various population categories, and associated vehicle miles traveled. Projections of each indicator’s attainment status were made by building visual conceptual models of the relevant natural and social processes, extrapolating trends, and using available models, research, and expert opinion. We present results of the NPAA, projected indicator status, key factors affecting the indicators, indicator functionality, and knowledge gaps. One important result is that current management practices may slow the loss or degradation of environmental qualities but not halt or reverse it. Our analysis also predicts an increase in recreation and commuting into and within the basin, primarily in private vehicles. Private vehicles, which are a critical mechanism by which the Basin population affects the surrounding environment, are a key determinant of air-quality indicators, a source of particulate matter affecting Secchi depth, a source of noise, and a factor in recreational and scenic quality, largely owing to congestion. Key uncertainties in the NPAA include climate change, EIP project effectiveness, and

  7. Response of visitors to the Rainbow Trail: an evaluation of an interpretive area in the Lake Tahoe Basin, California

    Treesearch

    Richard A. Kuehner; Gary H. Elsner

    1978-01-01

    Behavior of visitors on the Rainbow Trail, a Forest Service Interpretive Area in the Lake Tahoe Basin, California, was surveyed by observation and by interview. Some significant differences between trail visitors and other kinds of outdoor recreation enthusiasts were discovered. Enjoyment was high, and learning, while moderate, exceeded expectations. The Stream Profile...

  8. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  9. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe Basin, USA

    Treesearch

    Ken Hubbert; Matt Busse; Steven Overby; Carol Shestak; Ross Gerrard

    2015-01-01

    Thinning of conifers followed by pile burning has become a popular treatment to reduce fuel loads in the Lake Tahoe Basin. However, concern has been voiced about burning within or near riparian areas because of the potential effect on nutrient release and, ultimately, lake water quality. Our objective was to quantify the effects of pile burning on soil physical and...

  10. Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines

    USGS Publications Warehouse

    Lico, M.S.

    2004-01-01

    On June 1, 1999, carbureted two-stroke engines were banned on waters within the Lake Tahoe Basin of California and Nevada. The main gasoline components MTBE (methyl tert-butyl ether) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were present at detectable concentrations in all samples taken from Lake Tahoe during 1997-98 prior to the ban. Samples taken from 1999 through 2001 after the ban contained between 10 and 60 percent of the pre-ban concentrations of these compounds, with MTBE exhibiting the most dramatic change (a 90 percent decrease). MTBE and BTEX concentrations in water samples from Lake Tahoe and Lower Echo Lake were related to the amount of boat use at the sampling sites. Polycyclic aromatic hydrocarbon (PAH) compounds are produced by high-temperature pyrolytic reactions. They were sampled using semipermeable membrane sampling devices in Lake Tahoe and nearby Donner Lake, where carbureted two-stroke engines are legal. PAHs were detected in all samples taken from Lake Tahoe and Donner Lake. The number of PAH compounds and their concentrations are related to boat use. The highest concentrations of PAH were detected in samples from two heavily used boating areas, Tahoe Keys Marina and Donner Lake boat ramp. Other sources of PAH, such as atmospheric deposition, wood smoke, tributary streams, and automobile exhaust do not contribute large amounts of PAH to Lake Tahoe. Similar numbers of PAH compounds and concentrations were found in Lake Tahoe before and after the ban of carbureted two-stroke engines. ?? by the North American Lake Management Society 2004.

  11. Population biology of sugar pine (Pinus lambertiana Dougl.) with reference to historical disturbances in the Lake Tahoe Basin: implications for restoration

    Treesearch

    Patricia E. Maloney; Detlev R. Vogler; Andrew J. Eckert; Camille E. Jensen; David B. Neale

    2011-01-01

    Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10...

  12. ARkStorm@Tahoe: Stakeholder perspectives on vulnerabilities and preparedness for an extreme storm event in the greater Lake Tahoe, Reno, and Carson City region

    USGS Publications Warehouse

    Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen

    2014-01-01

    Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency

  13. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  14. Lake Tahoe

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, list of partner agencies.

  15. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California

  16. Preliminary Vertical Slip Rate for the West Tahoe Fault from six new Cosmogenic 10Be Exposure Ages of Late Pleistocene Glacial Moraines at Cascade Lake, Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Pierce, I. K. D.; Wesnousky, S. G.; Kent, G. M.; Owen, L. A.

    2015-12-01

    The West Tahoe Fault is the primary range bounding fault of the Sierra Nevada at the latitude of Lake Tahoe. It is a N-NW striking, east dipping normal fault that has a pronounced onshore quaternary scarp extending from highway 50 southwest of Meyers, CA to Emerald Bay. At Cascade Lake, the fault cuts and progressively offsets late Pleistocene right lateral moraines. The fault vertically offsets the previously mapped Tahoe moraine ~83 m and the Tioga moraine ~23 m, measured from lidar data. Seventeen samples were collected for 10Be cosmogenic age analysis from boulders on both the hanging and footwalls of the fault along the crests of these moraines.We report here the initial analysis of 6 of these boulders and currently await processing of the remainder. The 10Be exposure ages of 3 boulders each on the younger Tioga and older Tahoe moraines range from 12.7 +/- 1.6 to 20.7 +/- 3.3 ka and 13.3 +/- 2.1 to 72.5 +/- 8.8 ka, respectively. Using the oldest ages as minima, these preliminary results suggest that the slip rate has averaged ~1 mm/yr since the penultimate glaciation, in accord with estimates of previous workers, and place additional bounds on the age of glaciation in the Lake Tahoe basin. The Last Glacial Maxima and penultimate glaciation near Lake Tahoe thus appear to coincide with the Tioga and Tahoe II glaciations of the Eastern Sierra.

  17. Prescription Fire and Anion Retention in Tahoe Forest Soils

    USDA-ARS?s Scientific Manuscript database

    Prescribed burning is a possible option to reduce fire potential in the Lake Tahoe Basin (California and Nevada). However, subsequent nutrient loading to the lake is a major concern. The effect of residual ash on anion leaching, primarily O-PO4 and SO42-, was studied in both the field and laboratory...

  18. The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson; Crescenti, Neil

    2013-01-01

    This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include

  19. Integrated monitoring and assessment of soil restoration treatments in the Lake Tahoe Basin.

    PubMed

    Grismer, M E; Schnurrenberger, C; Arst, R; Hogan, M P

    2009-03-01

    Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.

  20. Chemistry of runoff and shallow ground water at the Cattlemans Detention basin site, South Lake Tahoe, California, August 2000-November 2001

    USGS Publications Warehouse

    Prudic, David E.; Sager, Sienna J.; Wood, James L.; Henkelman, Katherine K.; Caskey, Rachel M.

    2005-01-01

    A study at the Cattlemans detention basin site began in November 2000. The site is adjacent to Cold Creek in South Lake Tahoe, California. The purpose of the study is to evaluate the effects of the detention basin on ground-water discharge and changes in nutrient loads to Cold Creek, a tributary to Trout Creek and Lake Tahoe. The study is being done in cooperation with the Tahoe Engineering Division of the El Dorado County Department of Transportation. This report summarizes data collected prior to and during construction of the detention basin and includes: (1) nutrient and total suspended solid concentrations of urban runoff; (2) distribution of unconsolidated deposits; (3) direction of ground-water flow; and (4) chemistry of shallow ground water and Cold Creek. Unconsolidated deposits in the area of the detention basin were categorized into three classes: fill material consisting of a red-brown loamy sand with some gravel and an occasional cobble that was placed on top of the meadow; meadow deposits consisting of gray silt and sand with stringers of coarse sand and fine gravel; and a deeper brown to yellow-brown sand and gravel with lenses of silt and sand. Prior to construction of the detention basin, ground water flowed west-northwest across the area of the detention basin toward Cold Creek. The direction of ground-water flow did not change during construction of the detention basin. Median concentrations of dissolved iron and chloride were 500 and 30 times higher, respectively, in ground water from the meadow deposits than dissolved concentrations in Cold Creek. Median concentration of sulfate in ground water from the meadow deposits was 0.4 milligrams per liter and dissolved oxygen was below the detection level of 0.3 milligrams per liter. The relatively high concentrations of iron and the lack of sulfate in the shallow ground water likely are caused by chemical reactions and biological microbial oxidation of organic matter in the unconsolidated deposits

  1. Late Holocene subalpine lake sediments record a multi-proxy shift to increased aridity at 3.65 kyr BP, following a millennial-scale neopluvial interval in the Lake Tahoe watershed and western Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane

    2016-04-01

    A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant

  2. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.

    PubMed

    Bisiaux, Marion M; Edwards, Ross; Heyvaert, Alan C; Thomas, James M; Fitzgerald, Brian; Susfalk, Richard B; Schladow, S Geoffrey; Thaw, Melissa

    2011-03-15

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runoff into the lake with rBC concentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpected aggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean.

  3. Estimating Sediment Losses Generated from Highway Cut and Fill Slopes in the Lake Tahoe Basin

    DOT National Transportation Integrated Search

    2014-12-01

    Lake Tahoes famed water clarity has gradually declined over the last 50 years, partially as a result of fine sediment particle (FSP, < 16 micrometers in diameter) contributions from urban stormwater. Of these urban sources, highway cut and fill sl...

  4. Ecology, biodiversity, management, and restoration of aspen in the Sierra Nevada

    Treesearch

    Wayne D. Shepperd; Paul C. Rogers; David Burton; Dale L. Bartos

    2006-01-01

    This report was commissioned by the USDA Forest Service Lake Tahoe Basin Management Unit to synthesize existing information on the ecology and management of aspen (Populus tremuloides) in the Sierra Nevada of California and surrounding environs. It summarizes available information on aspen throughout North America from published literature, internal...

  5. Lake Tahoe Ca-Nv USA to Climate Change

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.; Coats, R. N.

    2011-12-01

    Observational studies indicate that climate at Lake Tahoe (CA-NV) basin is changing at faster rate. The impact of climate change on the lake was investigated using a suite of models and bias-corrected downscaled climate dataset generated from global circulation models. Our results indicate an increase of air temperature, a shift of snow to rainfall, a decrease of wind speed, and an onset of earlier snowmelt during the 21st Century. Combined, these changes could affect lake dynamics, ecosystems, water supply, and the winter recreational sport industry. The lake may fail to mix completely by the middle of this Century due to lake warming. Under this condition bottom dissolved oxygen would not be replenished leading to the significant release of bio-stimulatory ammonium-nitrogen and soluble phosphorus from the sediment. Both these nutrients are known to cause increased algal growth in the lake and would likely result in major changes to the lake's water quality and food web. Lake warming also increases water loss through evaporation, resulting in less available water for downstream domestic supply, agriculture, and recreation. Population growth and increased human demand for water will compound severity of problems in water quantity and quality. Thus, watershed planning and management should assess vulnerability to climatic variations through the application of basin-wide hydro-climatology, watershed soils, and lake response models to (1) improve drought, flood, and forest-fire forecasting, (2) assess hydrological trends, (3) estimate the potential effects of climate change on surface runoff and pollutant loads, and (4) evaluate response from various adaptation strategies.

  6. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    USGS Publications Warehouse

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  7. Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia

    2016-01-01

    Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.

  8. Map Showing Limits of Tahoe Glaciation in Sequoia and Kings Canyon National Parks, California

    USGS Publications Warehouse

    Moore, James Gregory; Mack, Gregory S.

    2008-01-01

    The latest periods of extensive ice cover in the Sierra Nevada include the Tahoe glaciation followed by the Tioga glaciation, and evidence for these ice ages is widespread in the Sequoia and Kings Canyon National Parks area. However, the timing of the advances and retreats of the glaciers during the periods of glaciation continues to be a matter of debate. A compilation of existing work (Clark and others, 2003) defines the Tioga glaciation at 14-25 thousand years ago and splits the Tahoe glaciation into two stages that range from 42-50 and 140-200 thousand years ago. The extent of the Tahoe ice mass shown in the map area is considered to represent the younger Tahoe stage, 42-50 thousand years ago. Evidence of glaciations older than the Tahoe is limited in the southern Sierra Nevada. After the Tioga glaciation, only minor events with considerably less ice cover occurred. The Tioga glaciation was slightly less extensive than the Tahoe glaciation, and each covered about half of the area of Sequoia and Kings Canyon National Parks. The Tahoe glaciers extended 500-1,000 ft lower and 0.5-1.2 mi farther down valleys. Evidence for the Tahoe glacial limits is not as robust as that for Tioga, but the extent of the Tahoe ice is mapped because it covered a larger area and the ice did leave prominent moraines (piles of sediment and boulders deposited by glaciers as they melted at their margins) lower on the east front of the range. Current Sierra redwood (Sequoiadendron giganteum) groves occur in a belt on the west side of the Sierra Nevada, generally west of the area of Tahoe glaciation.

  9. Tsunami-generated boulder ridges in Lake Tahoe, California-Nevada

    USGS Publications Warehouse

    Moore, J.G.; Schweickert, R.A.; Robinson, J.E.; Lahren, M.M.; Kitts, Christopher A.

    2006-01-01

    An array of east-trending ridges 1-2 m high and up to 2 km long occurs on the Tahoe City shelf, a submerged wave-cut bench <15 m deep in the northwest sector of the lake. The shelf is just north of the amphitheater of the giant subaqueous 10 km3 McKinney Bay landslide, which originated on the west wall of Lake Tahoe. Images from a submersible camera show that the ridges are composed of loose piles of boulders and cobbles that lie directly on poorly consolidated, fine-bedded lake beds deposited in an ancestral Lake Tahoe. Dredge hauls from landslide distal blocks, as well as from the walls of the re-entrant of the landslide, recovered similar lake sediments. The McKinney Bay landslide generated strong currents, which rearranged previous glacial-derived debris into giant ripples creating the boulder ridges. The uncollapsed part of the sediment bench, including the Tahoe City shelf, poses a hazard because it may fail again, producing a landslide and damaging waves. ?? 2006 Geological Society of America.

  10. Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2017-12-01

    Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by

  11. 78 FR 39997 - Safety Zone; Fourth of July Fireworks Display, Tahoe City, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Zone; Fourth of July Fireworks Display, Tahoe City, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... Fireworks Display, Tahoe City, CA in the Captain of the Port, San Francisco area of responsibility during... launch site off of Tahoe City, CA in approximate position 39[deg]10'09'' N, 120[deg]08'16'' W (NAD 83...

  12. 78 FR 71026 - Environmental Impact Statement for the Lake Tahoe Passenger Ferry Project, Placer and El Dorado...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Lake Tahoe Passenger Ferry Project, Placer and El Dorado Counties and City of South Lake Tahoe... Statement (EIS) for the proposed Lake Tahoe Passenger Ferry Project. The project consists of a cross- lake ferry service with a South Shore Ferry Terminal at the Ski Run Marina in South Lake Tahoe, El Dorado...

  13. The aquatic optics of Lake Tahoe, California-Nevada

    NASA Astrophysics Data System (ADS)

    Swift, Theodore John

    The causes of visual clarity decline and variability in Lake Tahoe, USA, were investigated within the framework of hydrologic optics theory. Ultra-oligotrophic subalpine (1898 m elevation) Lake Tahoe is among the world's clearest, deepest (499 m) and largest (500 km2), representing a unique environmental and economic resource. University of California Davis has documented a ˜0.3 m y-1 trend of decreasing Secchi depth, with ˜3 m interannual variations. Previous work strongly suggested two seasonal modes due to independent processes: A June minimum is due primarily to tributary sediment discharge during snowmelt. A December minimum is due to the deepening mixed layer bringing up phytoplankton and other particles that form a deep particle maximum (DCM) well below the summer mixed layer and Secchi depth stratum. SEM and elemental analysis confirmed as much as 60 percent of near-surface suspended particles were of terrestrial inorganic origin in summer, with inorganic particles minimal (˜20 percent) in winter. Chromophoric dissolved organic matter (CDOM) light absorption in Tahoe is extremely low, comparable to pelagic marine waters, and plays a minor role in clarity loss in Tahoe. However, CDOM reduces ultraviolet light penetration. Mean absorption is 0.040 +/- 0.003 m-1 at 400 nm with 0.023 +/- 0.004 nm-1 exponential slope. The CDOM appears to be autochthonous (phytoplankton), rather than allocthonous (terrestrial humic substances). Chlorophyll-specific particulate absorption is similar to that found for temperate oceans, implying that ocean color models can be successfully applied to Lake Tahoe. Chlorophyll-specific diffuse attenuation along with increased scattering by sediments has caused an upward shift of the DCM from 60--90 m (early 1970s) to 40--70 m recently. Increased attenuation will reduce benthic relative to pelagic primary production. Since measurements in 1971, the lake's color has shifted slightly from blue towards green, though more seasonal

  14. New insights into North America-Pacific Plate boundary deformation from Lake Tahoe, Salton Sea and southern Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel Stephen

    Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on

  15. Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Beutel, Marc W.; Horne, Alexander J.

    2018-03-01

    A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.

  16. Duration and severity of Medieval drought in the Lake Tahoe Basin

    USGS Publications Warehouse

    Kleppe, J.A.; Brothers, D.S.; Kent, G.M.; Biondi, F.; Jensen, S.; Driscoll, N.W.

    2011-01-01

    Droughts in the western U.S. in the past 200 years are small compared to several megadroughts that occurred during Medieval times. We reconstruct duration and magnitude of extreme droughts in the northern Sierra Nevada from hydroclimatic conditions in Fallen Leaf Lake, California. Stands of submerged trees rooted in situ below the lake surface were imaged with sidescan sonar and radiocarbon analysis yields an age estimate of ∼1250 AD. Tree-ring records and submerged paleoshoreline geomorphology suggest a Medieval low-stand of Fallen Leaf Lake lasted more than 220 years. Over eighty more trees were found lying on the lake floor at various elevations above the paleoshoreline. Water-balance calculations suggest annual precipitation was less than 60% normal from late 10th century to early 13th century AD. Hence, the lake’s shoreline dropped 40–60 m below its modern elevation. Stands of pre-Medieval trees in this lake and in Lake Tahoe suggest the region experienced severe drought at least every 650–1150 years during the mid- and late-Holocene. These observations quantify paleo-precipitation and recurrence of prolonged drought in the northern Sierra Nevada.

  17. 78 FR 39597 - Safety Zone; “Lights on the Lake” Fourth of July Fireworks, South Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Zone; ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA AGENCY: Coast Guard, DHS... the ``Lights on the Lake'' Fourth of July Fireworks display, South Lake Tahoe, CA in the Captain of...) for the ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA in 33 CFR 165.1191...

  18. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  19. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  20. Floor of Lake Tahoe, California and Nevada

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2011-01-01

    Lake-floor depths shown by color, from light tan (shallowest) to blue (deepest). Arrows on map (C) show orientations of perspective views. A, view toward McKinney Bay over blocks tumbled onto the lake floor by a massive landslide 10s to 100s of thousands of years ago; dark triangular block near center is approximately 1.5 km (0.9 mi) across and 120 m (390 ft) high. B, view toward South Lake Tahoe and Emerald Bay (on right) over sediment waves as much as 10 m (30 ft) high, created by sediment flowing down the south margin of the lake. Slopes appear twice as steep as they are. Lake-floor imagery from U.S. Geological Survey (USGS) multibeam bathymetric data and U.S. Army Corps of Engineers bathymetric lidar data. Land imagery generated by overlaying USGS digital orthophoto quadrangles (DOQs) on USGS digital elevation models (DEMs). All data available at http://tahoe.usgs.gov/.

  1. South Tahoe: A Model for Career Tech

    ERIC Educational Resources Information Center

    Kisel, James

    2012-01-01

    With the help of close to $30 million in grant monies from Career Technical Education (CTE) and Overcrowding Relief grants, and Joint-Use and High Performance grants, Lake Tahoe Unified School District and architect LPA, Inc., have already completed a CTE "Green" Construction and Transportation Academy, a new classroom building and the…

  2. Concerning KAr dating of a basalt flow from the Tahoe-Tioga interglaciation, Sawmill Canyon, southeastern Sierra Nevada, California

    USGS Publications Warehouse

    Dalrymple, G.B.; Burke, R.M.; Birkeland, P.W.

    1982-01-01

    New KAr ages for a basalt flow interbedded with Tahoe and Tioga tills in Sawmill Canyon, southeastern Sierra Nevada, slightly refine previously published ages for the flow and provide an estimate of 53,000 ± 44,000 yr for the Tahoe-Tioga interglaciation.

  3. 76 FR 37646 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA AGENCY... annual safety zone for the Fourth of July Fireworks, Lake Tahoe, California, located off Incline Village...,000 foot safety zone for the annual Fourth of July Fireworks Display in 33 CFR 165.1191 on July 4...

  4. Fire near South Lake Tahoe, California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A destructive forest fire that broke out June 24, 2007 near South Lake Tahoe, Calif., continued to burn June 27 when this image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra satellite. As of June 28, the fire had destroyed about 230 residences and other buildings. In all, about 2,000 people were evacuated, according to South Lake Tahoe Police. The blaze has charred more than 3,100 acres -- about 4.8 square miles -- and was 60 percent contained on June 28. In this ASTER image, the burned area is in gray, a combination of burned forest and some smoke, between Fallen Leaf Lake and the Tahoe Airport.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 15 by 15 kilometers (9.3 by 9.3 miles

  5. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    USGS Publications Warehouse

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  6. Groundwater Quality Data for the Tahoe-Martis Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 460-square-mile Tahoe-Martis study unit was investigated in June through September 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the Tahoe-Martis study unit (Tahoe-Martis) and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 52 wells in El Dorado, Placer, and Nevada Counties. Forty-one of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 11 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, strontium isotope ratio, and stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 240 constituents and water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at 12 percent of the wells, and the

  7. Configuration Management Plan for K Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, W.R.; Laney, T.

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93,more » {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.« less

  8. 36 CFR 261.50 - Orders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in Areas Designated by Order § 261.50 Orders. (a) The Chief, each Regional Forester, each Experiment... Forester, each Experiment Station Director, the Administrator of the Lake Tahoe Basin Management Unit and...

  9. 36 CFR 261.50 - Orders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in Areas Designated by Order § 261.50 Orders. (a) The Chief, each Regional Forester, each Experiment... Forester, each Experiment Station Director, the Administrator of the Lake Tahoe Basin Management Unit and...

  10. 36 CFR 261.50 - Orders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in Areas Designated by Order § 261.50 Orders. (a) The Chief, each Regional Forester, each Experiment... Forester, each Experiment Station Director, the Administrator of the Lake Tahoe Basin Management Unit and...

  11. 36 CFR 261.50 - Orders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in Areas Designated by Order § 261.50 Orders. (a) The Chief, each Regional Forester, each Experiment... Forester, each Experiment Station Director, the Administrator of the Lake Tahoe Basin Management Unit and...

  12. Angora Fire, Lake Tahoe

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  13. Back to the Basics: Lake Tahoe, California/Nevada--Spatial Measurement

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2006-01-01

    "Back to the Basics: South Lake Tahoe, California/Nevada" continues the series of exercises on teaching foundational map reading and spatial differentiation skills. It is the third published exercise from the Back to the Basics series developed by the Wetland Education through Maps and Aerial Photography (WETMAAP) Program. The current…

  14. NASA Images Show Decreased Clarity in Lake Tahoe Water

    NASA Image and Video Library

    2002-08-06

    Images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer aboard NASA's Terra satellite, launched in 1999, illustrate the state of gradually decreasing water clarity at Lake Tahoe, one of the clearest lakes in the world. The images are available at: http://asterweb.jpl.nasa.gov/default.htm. In the image on the left, acquired in November 2000, vegetation can be seen in red. The image on the right, acquired at the same time by a different spectral band of the instrument, is color-coded to show the bottom of the lake around the shoreline. Where the data are black, the bottom cannot be seen. Scientists monitoring the lake's water clarity from boat measurements obtained since 1965 have discovered that the lake along the California-Nevada border has lost more than one foot of visibility each year, according to the Lake Tahoe Watershed Assessment, a review of scientific information about the lake undertaken at the request of President Clinton and published in February 2000. The most likely causes are increases in algal growth, sediment washed in from surrounding areas and urban growth and development. http://photojournal.jpl.nasa.gov/catalog/PIA03854

  15. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  16. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Denman, K. L.; Powell, T. M.; Richerson, P. J.; Richards, R. C.; Goldman, C. R.

    1984-01-01

    Chlorophyll-temperature profiles were measured across Lake Tahoe about every 10 days from April through July 1980. Analysis of the 123 profiles and associated productivity and nutrient data identified three important processes in the formation and dynamics of the deep chlorophyll maximum (DCM): turbulent diffusion, nutrient supply rate, and light availability. Seasonal variation in these three processes resulted in three regimes: a diffusion-dominated regime with a weak DCM, a variable-mixing regime with a pronounced, nutrient supply-dominated DCM, and a stable regime with a deep, moderate light availability-dominated DCM. The transition between the first two regimes occurred in about 10 days, the transition between the last two more gradually over about 3 weeks. The degree of spatial variability of the DCM was highest in the second regime and lowest in the third. These data indicate that the DCM in Lake Tahoe is constant in neither time nor space.

  17. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases

  18. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Treesearch

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  19. Evaluating a Lake Tahoe nearshore assessment strategy: A circumnavigation survey, August 2011

    EPA Science Inventory

    We had the opportunity to apply a high-resolution nearshore sampling strategy, developed in the US/Canadian Laurentian Great Lakes, to Lake Tahoe. The strategy uses towed in situ sensors (physico-chemistry and biology) oscillated from near surface to near bottom while a vessel i...

  20. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 3 - BASIN BEST MANAGEMENT PRACTICES

    EPA Science Inventory

    This manual provides design guidelines for a group of stormwater management (SWM) best management practices (BMPs) broadly referred to as basin or pond BMPs. Basin BMPs are the mainstay of stormwater management. Water resources engineers have designed small and large ponds for ma...

  1. Elytroderm disease in young, planted Jeffrey pine, South Lake Tahoe, California

    Treesearch

    Robert F. Scharpf; Robert V. Bega

    1988-01-01

    Little is known about Elytrodema disease (Elytroderma deformans [Weir] Darker) in seedlings or very young trees. Of 100, 2-0 Jeffrey pine (Pinus jeffreyi Grev. & Balf.) seedlings planted in the Taylor Creek area of South Lake Tahoe, about half survived from 1973 to 1987. During this period about two thirds of the surviving...

  2. Early Pleistocene(?) pollen spectra from near Lake Tahoe, California

    USGS Publications Warehouse

    Adam, David P.

    1973-01-01

    Fossil pollen was recovered at Tahoe City, Calif., from beneath a 1.9-m.y.-old volcanic flow. Pollen counts of four fossil samples are compared with soil-surface pollen samples from the Sierra Nevada. The presence of Picea (spruce) pollen in the fossil samples suggests that summer drought conditions in the central Sierra Nevada were less severe prior to 1.9 m.y. ago than they are now.

  3. Traveltime for the Truckee River between Tahoe City, California, and Vista, Nevada, 2006 and 2007

    USGS Publications Warehouse

    Crompton, E. James

    2008-01-01

    Traveltime measurements were made during 2006 and 2007 along the Truckee River between Tahoe City, Calif., and Vista, Nev. Fluorescent rhodamine WT dye was injected at various locations along the river during streamflows ranging from 143 to 2,660 cubic feet per second. The resulting data, presented in tabular and graphic form, may be useful to water-quality modelers or water-resources managers concerned with predicting the movement of soluble contaminants accidentally spilled into the Truckee River. The data provided in this report also could be used to determine the dispersion-related characteristics (duration and magnitude of pollutant concentrations) that may be expected in the Truckee River.

  4. South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions" explains how the City of South Lake Tahoe used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  5. 75 FR 35649 - Safety Zone; Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Zone; Fourth of July Fireworks, Lake Tahoe, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Fourth of July Fireworks safety zone from 9... Fourth of July Fireworks Display in 33 CFR 165.1191 on July 3, 2010. The fireworks launch site is...

  6. Effects of urban development on ant communities: implications for ecosystem services and management

    Treesearch

    M.P. Sanford; Patricia N. Manley; Dennis D. Murphy

    2009-01-01

    Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient...

  7. Chapter 6: Ecology and Biodiversity

    Treesearch

    Patricia N. Manley; Dennis D. Murphy; Seth Bigelow; Sudeep Chandra

    2010-01-01

    The integrity of animal and plant communities serves as a critical measure of the effectiveness of policies designed to protect and restore ecosystem processes in the Lake Tahoe basin. The conservation of plants and animals in the Tahoe basin is utterly dependent on the conservation of its terrestrial and aquatic ecosystems; so, in many ways, the research agenda that...

  8. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  9. My Favorite Assignment: Selections from the ABC 2008 Annual Convention, Lake Tahoe, Nevada

    ERIC Educational Resources Information Center

    Whalen, D. Joel, Ed.

    2009-01-01

    At the 2008 Association for Business Communication (ABC) annual convention in Lake Tahoe, Nevada, many attendees stood at the back of a crowded room to hear over a dozen teachers describe "My Favorite Assignment." As is customary in these lively sessions, the chair, Dan Dieterich, orchestrated a fast, efficient presentation pace; each…

  10. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  11. The Lake Forest Tuff Ring, Lake Tahoe, CA: Age and Geochemistry of a Post-arc Phreatomagmatic Eruption

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Henry, C. D.; Pauly, B. D.

    2007-12-01

    The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help

  12. 78 FR 33047 - Humboldt-Toiyabe National Forest, Carson Ranger District Mt. Rose Ski Tahoe-Atoma Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... the effects of a proposal from Mt. Rose Ski Tahoe (Mt. Rose) to expand its lift and terrain network... to create the Atoma lift and trail ``Pod'' to the north of the Mt. Rose Highway. The proposed Atoma... facilitate construction and [[Page 33048

  13. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  14. How widely applicable is river basin management? An analysis of wastewater management in an arid transboundary case.

    PubMed

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  15. How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case

    NASA Astrophysics Data System (ADS)

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  16. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  17. Cyst acquisition rate for Giardia lamblia in backcountry travelers to Desolation Wilderness, Lake Tahoe

    USGS Publications Warehouse

    Zell, S.C.; Sorenson, S.K.

    1993-01-01

    The objective of this study was to determine the incidence of Giardia lamblia acquisition in back-country travelers to a wilderness area, provide longitudinal follow-up on the incidence of symptomatic gastrointestinal illness and relate such information to concentrations of Giardia cysts in water samples from a high-use area. A prospective cohort non-interventional study of 41 healthy adult backcountry travelers from age 19 to 71 years in Desolation Wilderness, Lake Tahoe Basin was carried out. The incidence of Giardia cyst acquisition in backcountry travelers was only 5.7% (95% CI 0.17–20.2%). Mild, self-limiting gastrointestinal illness occurred in 16.7% of subjects (95% CI 4.9%–34.50%), none of whom demonstrated G. lamblia infection. Water sampling from three popular stream sites revealed cyst contamination to be generally at low levels with cyst concentrations in the single digit range for every 100 gallons filtered. G. lamblia contamination of water occurs, but at low levels. Acquisition of this parasite may be infrequent in backcountry recreationalists. Symptomatic gastrointestinal illness following wilderness travel can be due to other etiologies. Our findings may not be representative of all wilderness areas, but suggest that in the absence of documented G. lamblia infection, persons symptomatic following travel may suffer a self-limiting gastrointestinal illness. In such circumstances, empiric therapy for giardiasis is tempting but difficult to justify.

  18. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  19. Nutrient concentrations in Upper and Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and associated outlet streams, California and Nevada, 2002-03

    USGS Publications Warehouse

    Lico, Michael S.

    2004-01-01

    Five lakes and their outlet streams in the Lake Tahoe Basin were sampled for nutrients during 2002-03. The lakes and streams sampled included Upper Echo, Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and Echo, Taylor, and Marlette Creeks. Water samples were collected to determine seasonal and spatial concentrations of dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen, dissolved orthophosphate, total phosphorus, and total bioreactive iron. These data will be used by Tahoe Regional Planning Agency in revising threshold values for waters within the Lake Tahoe Basin. Standard U.S. Geological Survey methods of sample collection and analysis were used and are detailed herein. Data collected during this study and summary statistics are presented in graphical and tabular form.

  20. HYDICE data from Lake Tahoe: comparison to coincident AVIRIS and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. J.

    1996-11-01

    Coordinated flights of two calibrated airborne imaging spectrometers, HYDICE and AVIRIS, were conducted on June 22, 1995 over Lake Tahoe. As part of HYDICE's first operational mission, one objective was to test the system performance over the dark homogeneous target provided by the clear deep waters of the lake. The high altitude and clear atmosphere makes Lake Tahoe a simpler test target than near-shore marine environments, where large aerosols complicate atmospheric correction and sediment runoff and high chlorophyll levels make interpretation of he data difficult. Calibrated data from both runoff and high chlorophyll levels make interpretation of the data difficult. Calibrated data from both sensors was provided in physical units of radiance. The atmospheric radiative transfer code, MODTRAN was used to remove the path radiance between the ground and sensor and the skylight reflected from the water surface. The resulting water-leaving spectrometer, and with values calculated form in-water properties using the HYDROLIGHT radiative transfer code. The agreement of the water-leaving radiance for the HYDICE data, the ground-truth spectral measurements, and the results of the radiative transfer code are excellent for wavelengths greater than 0.45 micrometers . The AVIRIS flight took place more than an hour closer to noon, which makes the radiance measurements not directly comparable. Comparisons to radiative transfer output for this later time indicate that the AVIRIS data is strongly by sun glint. Because water-leaving radiance is dependent upon the characteristics of the water, it can be analyzed for some of those properties. Using the CZCS algorithm based on the water-leaving radiance at two wavelengths, the chlorophyll content of Lake Tahoe was computed from the HYDICE and ground-truth data. Resulting values are slightly higher than measurements made two weeks earlier from water samples, indicating a growth in the phytoplankton population which is very plausible

  1. 77 FR 28770 - Safety Zone; Red, White, and Tahoe Blue Fireworks, Incline Village, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... of Obexer's Marina in Homewood, CA at position 39[deg]04'55'' N, 120[deg]09'25'' W (NAD 83). From 5 a... off of Incline Village, CA at position 39[deg]14'14'' N, 119[deg]56'56'' W (NAD 83) where it will...,000 feet at position 39[deg]14'14'' N, 119[deg]56'56'' W (NAD 83) for the Red, White, and Tahoe Blue...

  2. Foundations of the participatory approach in the Mekong River basin management.

    PubMed

    Budryte, Paulina; Heldt, Sonja; Denecke, Martin

    2018-05-01

    Integrated Water Resource Management (IWRM) was acknowledged as a leading concept in the water management for the last two decades by academia, political decision-makers and experts. It strongly promotes holistic management and participatory approaches. The flexibility and adaptability of IWRM concept are especially important for large, transboundary river basins - e.g. the Mekong river basin - where natural processes and hazards, as well as, human-made "disasters" are demanding for a comprehensive approach. In the Mekong river basin, the development and especially the enforcement of one common strategy has always been a struggle. The past holds some unsuccessful experiences. In 2016 Mekong River Commission published IWRM-based Basin Development Strategy 2016-2020 and The Mekong River Commission Strategic Plan 2016-2020. They should be the main guiding document for the Mekong river development in the near future. This study analyzes how the concept of public participation resembles the original IWRM participatory approach in these documents. Therefore, IWRM criteria for public participation in international literature and official documents from the Mekong river basin are compared. As there is often a difference between "de jure" and "de facto" implementation of public participation in management concepts, the perception of local stakeholders was assessed in addition. The results of social survey give an insight if local people are aware of Mekong river basin development and present their dominant attitudes about the issue. The findings enable recommendations how to mitigate obstacles in the implementation of common development strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The role of Natural Flood Management in managing floods in large scale basins during extreme events

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David

    2016-04-01

    There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water

  4. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  5. U.S. National forests adapt to climate change through science-management partnerships

    Treesearch

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran

    2011-01-01

    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  6. Development of an information data base for watershed monitoring

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.; Blackwell, R. J.

    1980-01-01

    Landsat multispectral scanner data, Defense Mapping Agency digital terrain data, conventional maps, and ground data were integrated to create a comprehensive information data base (the Image Based Information System), to monitor the water quality of the Lake Tahoe Basin. Landsat imagery was used as the planimetric base to which all other data were registered. A georeference image plane, which provided an interface between all data planes for the Lake Tahoe Basin data base, was created from the drainage basin map. The data base was used to extract each drainage basin for separate display. The Defense Mapping Agency-created elevation image was processed with VICAR software to produce a component representing slope magnitude, which was cross-tabulated with the drainage basin georeference table. Future applications of the data base include the development of precipitation modeling, surface runoff models, and classification of drainage basin cover types.

  7. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  8. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  9. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  10. River Basin Scale Management and Governance: Competing Interests for Western Water

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is

  11. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and

  12. Post-fire grazing management in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Increasing wildfire size and frequency in the Great Basin call for post-fire grazing management practices that ensure sagebrush steppe communities are productive and resilient to disturbances such as drought and species invasions. We provide guidelines for maintaining productive sagebrush steppe co...

  13. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  14. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... structure and is aligned with water management activities during recent flood and drought events in the... operating activities concerned with water management within the Greater Mississippi River Basin. The Greater... require coordination of basin-wide water management activities. b. To serve as a forum for discussion of...

  15. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.

    2017-12-01

    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  16. 75 FR 10754 - Humboldt-Toiyabe National Forests; Santa Rosa Ranger District; Martin Basin Rangeland Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...-Toiyabe National Forests; Santa Rosa Ranger District; Martin Basin Rangeland Management Project AGENCY.... The Project Area is located in Humboldt County, Nevada. The preparation of this SEIS is needed because the Record of Decision issued on October 30, 2009 for the Martin Basin Rangeland Management Project...

  17. A coupled modeling framework for sustainable watershed management in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  18. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  19. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Treesearch

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  20. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Treesearch

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  1. Adaptive Management of Land Subsidence and Ground Fissuring in the Chino Groundwater Basin, California

    NASA Astrophysics Data System (ADS)

    Malone, A.; Rolfe, T.; Wildermuth, M.; Kavounas, P.

    2014-12-01

    The Chino Basin, located in southern California, is a large alluvial groundwater basin with storage in excess of five million acre-feet. The basin has a long history of groundwater development for various uses dating back to the early 1900s. As a result, piezometric heads declined basin-wide during the past century - in some areas by more than 200 feet. Declines of this magnitude typically cause irreversible aquifer-system compaction, which in turn results in subsidence at the ground surface. In portions of Chino Basin, land subsidence has been differential and accompanied by ground fissuring, which damaged existing infrastructure and poses concerns for new and existing development.Chino Basin Watermaster, the agency responsible for groundwater basin management, has recognized that land subsidence and ground fissuring should be minimized to the extent possible. At the same time, Watermaster is implementing aggressive groundwater-supply programs that include controlled overdraft and the possibility of causing head declines in areas prone to subsidence and fissuring. The groundwater-supply programs must also address the subsidence and fissuring phenomena.From 2001 to 2005, Watermaster conducted a technical investigation to characterize the extent, rate, and mechanisms of subsidence and fissuring. The investigation employed InSAR and ground-level surveying of benchmarks to monitor ground-surface deformation, and borehole extensometers and piezometric monitoring to establish the relationships between groundwater production, piezometric levels, and aquifer-system deformation. Based on the results of the investigation, Watermaster developed: (i) subsidence-management criteria for the areas experiencing acute subsidence and fissuring, and (ii) an adaptive management program to minimize the potential for future subsidence and fissuring across the entire Chino Basin. The science-based program includes ongoing monitoring, which now includes sophisticated fissure

  2. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Treesearch

    Chris Maser; Jack Ward Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  3. 77 FR 39670 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List a Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... by habitat loss due primarily to residential development and recreational encroachment (Big Wildlife... Great Basin ecosystem (Big Wildlife and NoBearHuntNV.org 2011, p. 13). The petition asserts that loss of... hair) from two American black bear populations: Lake Tahoe Basin, Nevada, and Yosemite National Park...

  4. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Decentralized water resources management in Mozambique: Challenges of implementation at the river basin level

    NASA Astrophysics Data System (ADS)

    Inguane, Ronaldo; Gallego-Ayala, Jordi; Juízo, Dinis

    In the context of integrated water resources management implementation, the decentralization of water resources management (DWRM) at the river basin level is a crucial aspect for its success. However, decentralization requires the creation of new institutions on the ground, to stimulate an environment enabling stakeholder participation and integration into the water management decision-making process. In 1991, Mozambique began restructuring its water sector toward operational decentralized water resources management. Within this context of decentralization, new legal and institutional frameworks have been created, e.g., Regional Water Administrations (RWAs) and River Basin Committees. This paper identifies and analyzes the key institutional challenges and opportunities of DWRM implementation in Mozambique. The paper uses a critical social science research methodology for in-depth analysis of the roots of the constraining factors for the implementation of DWRM. The results obtained suggest that RWAs should be designed considering the specific geographic and infrastructural conditions of their jurisdictional areas and that priorities should be selected in their institutional capacity building strategies that match local realities. Furthermore, the results also indicate that RWAs have enjoyed limited support from basin stakeholders, mainly in basins with less hydraulic infrastructure, in securing water availability for their users and minimizing the effect of climate variability.

  6. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  7. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: management practices and options.

    Treesearch

    Frederick C. Hall

    1985-01-01

    Management practices and options to provide habitat for wildlife in the Great Basin of southeastern Oregon deal with both vegetation treatment and protection, livestock management, maintenance or distribution of water developments, protection of wildlife areas through road closures or fencing, and direct manipulation of wildlife through hunting, trapping, or other...

  8. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  9. Highlighted scientific findings of the Interior Columbia Basin Ecosystem Management Project.

    Treesearch

    Thomas M. Quigley; Heidi Bigler Cole

    1997-01-01

    Decisions regarding 72 million acres of Forest Service- and Bureau of Land Management- administered lands will be based on scientific findings brought forth in the Interior Columbia Basin Ecosystem Management Project. Some highlights of the scientific findings are presented here. Project scientists drew three general conclusions: (1) Conditions and trends differ widely...

  10. The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.

    2017-12-01

    The last 50+ years of agricultural, urban and industrial land and water use practices have accelerated the degradation of groundwater quality in the upper portions of many major aquifer systems upon which much of the world relies for water supply. In the deepest and most extensive systems (e.g., sedimentary basins) that typically have the largest groundwater production rates and hold fresh groundwaters on decadal to millennial time scales, most of the groundwater is not yet contaminated. Predicting the long-term future groundwater quality in such basins is a grand scientific challenge. Moreover, determining what changes in land and water use practices would avert future, irreversible degradation of these massive freshwater stores is a grand challenge both scientifically and societally. It is naïve to think that the problem can be solved by eliminating or reducing enough of the contaminant sources, for human exploitation of land and water resources will likely always result in some contamination. The key lies in both reducing the contaminant sources and more proactively managing recharge in terms of both quantity and quality, such that the net influx of contaminants is sufficiently moderate and appropriately distributed in space and time to reverse ongoing groundwater quality degradation. Just as sustainable groundwater quantity management is greatly facilitated with groundwater flow management models, sustainable groundwater quality management will require the use of groundwater quality management models. This is a new genre of hydrologic models do not yet exist, partly because of the lack of modeling tools and the supporting research to model non-reactive as well as reactive transport on large space and time scales. It is essential that the contaminant hydrogeology community, which has heretofore focused almost entirely on point-source plume-scale problems, direct it's efforts toward the development of process-based transport modeling tools and analyses capable

  11. Public perceptions of land management in the Great Basin

    Treesearch

    Susan Wilmot; Mark Brunson

    2008-01-01

    The Great Basin is undergoing significant landscape change due to an array of natural and anthropogenic factors. Land management strategies intended to address these problems will require landscape-scale solutions that can reduce, reverse, or mitigate ecosystem degradation while remaining economically feasible and socially acceptable. The latter criterion may be...

  12. Interactive Development of Regional Climate Web Pages for the Western United States

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Redmond, K. T.

    2013-12-01

    Weather and climate have a pervasive and significant influence on the western United States, driving a demand for information that is ongoing and constantly increasing. In communications with stakeholders, policy makers, researchers, educators, and the public through formal and informal encounters, three standout challenges face users of weather and climate information in the West. First, the needed information is scattered about the web making it difficult or tedious to access. Second, information is too complex or requires too much background knowledge to be immediately applicable. Third, due to complex terrain, there is high spatial variability in weather, climate, and their associated impacts in the West, warranting information outlets with a region-specific focus. Two web sites, TahoeClim and the Great Basin Weather and Climate Dashboard were developed to overcome these challenges to meeting regional weather and climate information needs. TahoeClim focuses on the Lake Tahoe Basin, a region of critical environmental concern spanning the border of Nevada and California. TahoeClim arose out of the need for researchers, policy makers, and environmental organizations to have access to all available weather and climate information in one place. Additionally, TahoeClim developed tools to both interpret and visualize data for the Tahoe Basin with supporting instructional material. The Great Basin Weather and Climate Dashboard arose from discussions at an informal meeting about Nevada drought organized by the USDA Farm Service Agency. Stakeholders at this meeting expressed a need to take a 'quick glance' at various climate indicators to support their decision making process. Both sites were designed to provide 'one-stop shopping' for weather and climate information in their respective regions and to be intuitive and usable by a diverse audience. An interactive, 'co-development' approach was taken with sites to ensure needs of potential users were met. The sites were

  13. A Novel Approach to River Basin Management that Utilizes a Multi-Day Forum to Educate Stakeholders

    NASA Astrophysics Data System (ADS)

    Langston, M. A.

    2015-12-01

    Large scale river basin management has long been a challenging task. Stakeholder involvement has often been posited as a means to provide a broad base of input and support for management decisions. This has been successful in some situations and not in others. The Desert Landscape Conservation Cooperative (LCC) has proposed a novel approach to large scale watershed management for conservation purposes by stakeholders. This approach involves conducting a multi-day stakeholder forum to gather interested parties, provide them science-based information about the watershed, and solicit their input regarding the research and management needs within the basin. Included within this forum is a Water Tournament patterned after those being developed by the U.S. Army Corps of Engineers' Institute for Water Resources. These tournaments bring stakeholders (such as the various water users, agencies, conservation organizations, and others) in small teams that develop watershed management scenarios (within appropriate constraints) that are then judged based on their merit for addressing the various issues within the basin. These tournaments serve to educate participants and to sensitize them to the perspectives of other participants. Another goal of the forum is to recruit a representative group of stakeholders who will provide guidance for further research to meet the basins management needs. The South Central Climate Science Center (SC CSC) has partnered with the Desert, Southern Rockies, Gulf Coast Prairie, Great Plains, and Gulf Coastal Plains and Ozarks LCCs to implement this approach in the Rio Grande and the Red River Basins. The LCCs are well positioned to convene stakeholders from across political boundaries and throughout these basins. The SC CSC's roles will be providing leadership, funding climate science for the effort, and evaluating the effectiveness of the forum-centered approach.

  14. Stakeholder views on flood risk management in Hungary's Upper Tisza Basin.

    PubMed

    Vari, Anna; Linnerooth-Bayer, Joanne; Ferencz, Zoltan

    2003-06-01

    With escalating costs of flood mitigation and relief, a challenge for the Hungarian government is to develop a flood mitigation and insurance/relief system that is viewed as efficient and fair by the many stakeholders involved. To aid policymakers in this task, this article reports on a recent study to elicit stakeholder views on flood risk management in the Upper Tisza Basin, including views on appropriate means of reducing losses and for transferring the residual losses from the direct victims to taxpayers or an insurance pool. This study is part of a project to develop an integrated approach to flood risk management coordinated by the International Institute of Applied Systems Analysis (IIASA) in collaboration with Swedish and Hungarian researchers. The discussion begins by describing the background of flood risk management problems in the Upper Tisza Basin. The results of interviews carried out with selected key stakeholders and the results of a public survey eliciting views on flood risk management are reported. The final section draws conclusions on incorporating stakeholder views into a flood risk management model, which will be used to illustrate policy paths at an upcoming stakeholder workshop. The conclusions are also of direct interest to Hungarian policymakers.

  15. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    / reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.

  16. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2014-01-01

    One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.

  17. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  18. Collaborative management and research in the Great Basin - examining the issues and developing a framework for action

    Treesearch

    Jeanne C. Chambers; Nora Devoe; Angela Evenden

    2008-01-01

    The Great Basin is one of the most imperiled regions in the United States. Sustaining its ecosystems, resources, and human populations requires strong collaborative partnerships among the region's research and management organizations. This GTR is the product of a workshop on "Collaborative Watershed Research and Management in the Great Basin" held in...

  19. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  20. Ten key questions about the management of water in the Yellow River basin.

    PubMed

    Barnett, Jon; Webber, Michael; Wang, Mark; Finlayson, Brian; Dickinson, Debbie

    2006-08-01

    Water is scarce in many regions of the world, clean water is difficult to find in most developing countries, there are conflicts between irrigation needs and urban demands, and there is wide debate over appropriate means of resolving these problems. Similarly, in China, there is limited understanding of the ways in which people, groups, and institutions contribute to, are affected by, and respond to changes in water quantity and quality. We use the example of the Yellow River basin to argue that these social, managerial, and policy dimensions of the present water problems are significant and overshadow the physical ones. Despite this, they receive relatively little attention in the research agenda, particularly of the lead agencies in the management of the Yellow River basin. To this end, we ask ten research questions needed to address the policy needs of water management in the basin, split into two groups of five. The first five relate to the importance of water in this basin and the changes that have affected water problems and will continue to do so. The second five questions represent an attempt to explore possible solutions to these problems.

  1. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  2. Extending WEPP technology to predict fine sediment and phosphorus delivery from forested hillslopes

    Treesearch

    William Elliot; Erin Brooks; Drea Em Traeumer; Mariana Dobre

    2015-01-01

    In many watersheds, including the Great Lakes and Lake Tahoe Basins, two basins where the land cover is dominated by forests, the pollutants of concern are fine sediments and phosphorus. Forest runoff is generally low in nitrogen, and coarse sediment does not adversely impact the quality of lake waters. Predictive tools are needed to estimate not simply sediment, but...

  3. Surface- and ground-water characteristics in the Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, July-December 1996

    USGS Publications Warehouse

    Rowe, T.G.; Allander, Kip K.

    2000-01-01

    The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a

  4. Integrated Forecast-Decision Systems For River Basin Planning and Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.

    2005-12-01

    A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE - STORMWATER MANAGEMENT INC., CATCH BASIN STORMFILTER®

    EPA Science Inventory

    Verification testing of the Stormwater Management CatchBasin StormFilter® (CBSF) was conducted on a 0.16 acre drainage basin at the City of St. Clair Shores, Michigan Department of Public Works facility. The four-cartridge CBSF consists of a storm grate and filter chamber inlet b...

  6. Detecting Montane Meadows in the Tahoe National Forest Using LiDAR and ASTER Imagery

    NASA Astrophysics Data System (ADS)

    Lorenz, A.; Blesius, L.; Davis, J. D.

    2016-12-01

    In the Sierra Nevada mountains, meadows provide numerous hydraulic and ecosystem functions such as flood attenuation, groundwater storage, and wildlife habitat. However, many meadows have been degraded from historical land use such as water diversion, grazing, and logging. Land managers have altered management strategies for restoration purposes, but there is a lack of comprehensive data on meadow locations. Previous attempts to inventory Sierra Nevada meadows have included several remote sensing techniques including heads up digitizing and pixel based image analysis, but this has been challenging due to geographic variability, seasonal changes, and meadow health. I present a remote sensing method using multiple return LiDAR (Light Detection and Ranging) and ASTER imagery to detect montane meadows in a subset of the Tahoe National Forest. The project used LiDAR data to create a digital terrain model and digital surface model. From these models, I derived canopy height, surface slope, and watercourse for the entire study area. Literature queries returned known values for canopy height and surface slope characteristic of montane meadows. These values were used to select for possible meadows within the study area. To filter out noise, only contiguous areas greater than one acre that satisfied the queries were used. Finally, 15-meter ASTER imagery was used to de-select for areas such as dirt patches or gravel bars that might have satisfied the previous queries and meadow criteria. When using high resolution aerial imagery to assess model accuracy, preliminary results show user accuracy of greater than 80%. Further validation is still needed to improve the accuracy of modeled meadow delineation. This method allows for meadows to be inventoried without discriminating based on geographic variability, seasonal changes, or meadow health.

  7. Assessing Portuguese Guadiana Basin water management impacts under climate change and paleoclimate variability

    NASA Astrophysics Data System (ADS)

    Maia, Rodrigo; Oliveira, Bruno; Ramos, Vanessa; Brekke, Levi

    2014-05-01

    The water balance in each reservoir and the subsequent, related, water resource management decisions are, presently, highly information dependent and are therefore often limited to a reactive response (even if aimed towards preventing future issues regarding the water system). Taking advantage of the availability of scenarios for climate projections, it is now possible to estimate the likely future evolution of climate which represents an important stepping stone towards proactive, adaptative, water resource management. The purpose of the present study was to assess the potential effects of climate change in terms of temperature, precipitation, runoff and water availability/scarcity for application in water resource management decisions. The analysis here presented was applied to the Portuguese portion of the Guadiana River Basin, using a combination of observed climate and runoff data and the results of the Global Climate Models. The Guadiana River Basin was represented by its reservoirs on the Portuguese portion of the basin and, for the future period, an estimated value of the inflows originating in the Spanish part of the Basin. The change in climate was determined in terms of relative and absolute variations of climate (precipitation and temperature) and hydrology (runoff and water balance related information). Apart from the previously referred data, an hydrological model and a water management model were applied so as to obtain an extended range of data regarding runoff generation (calibrated to observed data) and water balance in the reservoirs (considering the climate change impacts in the inflows, outflows and water consumption). The water management model was defined in order to represent the reservoirs interaction including upstream to downstream discharges and water transfers. Under the present climate change context, decision-makers and stakeholders are ever more vulnerable to the uncertainties of climate. Projected climate in the Guadiana basin

  8. SimBasin: A serious gaming framework for integrated and cooperative decision-making in water management

    NASA Astrophysics Data System (ADS)

    Angarita, H.; Craven, J.; Caggiano, F.; Corzo, G.

    2016-12-01

    An Integrated approach involving extensive stakeholder dialogue is widely advocated in sustainable water management. However, it requires a social learning process in which scientist and stakeholders become aware of the relationship between their own frames of reference and those of others, differences can be dealt with constructively, and shared ideas can be used to facilitate cooperation. Key obstacles in this process are heritage systems, attitudes and processes, factually wrong, incomplete or unshared mental models, and lack of science-policy dialogue (Pahl-Wostl et al., 2005) To overcome these barriers, a space is required which is free of heritage systems, where mental models can be safely and easily compared and corrected, and where scientists and policy-makers can come together. A "serious game" can serve as such a space - Serious games are games or simulations used to achieve an organizational or educational goal, and such games have already been used to facilitate stakeholder cooperation in the water management sector (Rusca et al., 2005). As well as bringing stakeholders together, they can be an accessible interface between scientific models and non-experts. Here we present SimBasin, a multiplayer serious game framework and development engine. The engine allows to easily create a simulated multiplayer basin management game using WEAP water resources modelling software (SEI, 1992-2015), to facilitate the communication of the complex, long term and wide range relationships between hydrologic, climate, and human systems present in river basins, and enable dialogue between policy-makers and scientists. Different games have been created using the Sim-Basin engine and used in various contexts. Here are discussed experiences with stakeholders at a national forum in Bogotá, flood risk management agencies in the lower Magdalena River Basin in Colombia and with water professionals in Bangkok. The experience shows that the game is a useful tool for enabling

  9. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    NASA Astrophysics Data System (ADS)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  10. Estimating snow load in California for three recurrence intervals

    Treesearch

    David L. Azuma

    1985-01-01

    A key to designing facilities in snowbound areas is knowing what the expected snow load levels are for given recurrence intervals. In California, information about snow load is available only for the Lake Tahoe Basin. About 280 snow courses in the State were analyzed, and snow load estimated and related to elevation on a river basin and statewide level. The tabulated...

  11. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.

    1999-01-01

    The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.

  12. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: mule deer.

    Treesearch

    Donavin A. Leckenby; Dennis P. Sheehy; Carl H. Nellis; Richard J. Scherzinger; Ira D. Luman; Wayne Elmore; James C. Lemos; Larry Doughty; Charles E. Trainer

    1982-01-01

    Relationships of mule deer behavior and physiology to management of shrub steppe plant communities in the Great Basin of southeastern Oregon are presented for application in land-use planning and habitat management. Communities are considered as they are used by mule deer for thermal cover, hiding cover, forage, fawning, and fawn rearing.

  13. Linking Governance to Sustainable Management Outcomes: Applying Dynamic Indicator Profiles to River Basin Organization Case Studies around the World.

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Bouckaert, F. W.

    2017-12-01

    Institutional best practice for integrated river basin management advocates the river basin organisation (RBO) model as pivotal to achieve sustainable management outcomes and stakeholder engagement. The model has been widely practiced in transboundary settings and is increasingly adopted at national scales, though its effectiveness remains poorly studied. A meta-analysis of four river basins has been conducted to assess governance models and linking it to evaluation of biophysical management outcomes. The analysis is based on a Theory of Change framework, and includes functional dynamic governance indicator profiles, coupled to sustainable ecosystem management outcome profiles. The governance and outcome profiles, informed by context specific indicators, demand that targets for setting objectives are required in multiple dimensions, and trajectory outlines are a useful tool to track progress along the journey mapped out by the Theory of Change framework. Priorities, trade-offs and objectives vary in each basin, but the diagnostics tool allows comparison between basins in their capacity to reach targets through successive evaluations. The distance between capacity and target scores determines how program planning should be prioritized and resources allocated for implementation; this is a dynamic process requiring regular evaluations and adaptive management. The findings of this study provide a conceptual framework for combining dimensions of integrated water management principles that bridge tensions between (i) stakeholder engagement and participatory management (bottom-up approach) using localized knowledge and (ii) decision-making, control-and-command, system-scale, accountable and equitable management (top-down approach).The notion of adaptive management is broadened to include whole-of-program learnings, rather than single hypothesis based learning adjustments. This triple loop learning combines exploitative methods refinement with explorative evaluation of

  14. Sustainable Land Management in the Lim River Basin

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  15. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment

  16. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  17. From information to participation and self-organization: Visions for European river basin management.

    PubMed

    Euler, Johannes; Heldt, Sonja

    2018-04-15

    The European Union Water Framework Directive (EU WFD, 2000) calls for active inclusion of the public in the governance of waterbodies to enhance the effectiveness and legitimacy of water management schemes across the EU. As complex socio-ecological systems, river basins in western Europe could benefit from further support for inclusive management schemes. This paper makes use of case studies from Germany, England and Spain to explore the potential opportunities and challenges of different participatory management approaches. Grounded in theoretical considerations around participation within ecological management schemes, including Arnstein's Ladder of Participation and commons theories, this work provides an evaluation of each case study based on key indicators, such as inclusivity, representativeness, self-organization, decision-making power, spatial fit and temporal continuity. As investors and the public develop a heightened awareness for long-term sustainability of industrial projects, this analysis supports the suggestion that increased participatory river basin management is both desirable and economically feasible, and should thus be considered a viable option for future projects aiming to move beyond current requirements of the European Union Water Framework Directive. Copyright © 2017. Published by Elsevier B.V.

  18. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  19. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  20. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  1. Opportunities for visual resource management in the Southern Appalachian Coal Basin

    Treesearch

    John W. Simpson

    1979-01-01

    This paper outlines the opportunities for visual resource management (VRM) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses upon VRM as a regulatory activity that works to insure the proper enforcement of the law and effective development of its implementation programs. VRM for Appalachian surface mining...

  2. Participatory Planning for the improvement of water management in uncertain conditions: Case study of the Souss-Massa basin in Morocco

    NASA Astrophysics Data System (ADS)

    Imani, Yasmina; Lahlou, Ouiam; Slimani, Imane; Joyce, Brian

    2016-04-01

    Due to its geographical location and to the natural features of its climate, Morocco is known as a drought prone and water scarce country. However, the country now faces, in the current context of Climate Change, an increasing and alarming water scarcity due to the combined effects of a strong decline of precipitations and a growing pressure on water resources induced by the economic development and demographic growth. Aware of this pressing issue, Morocco implemented a national water strategy based on the decentralization of water management at the river basin level and the establishment of Integrated Water Resources Management master plans for each basin. Unfortunately, these plans often underestimate the impact of uncertainty and this may lead to inefficient and unsustainable water management strategies. In this context, the aim of this study is to develop an innovative approach for robust decision making in uncertain conditions by coupling the WEAP (Water Evaluation and Planning System) model and the "XLRM" robust decision making framework to support the evaluation of management options and promote long-term sustainable integrated water management strategies at the basin level. The Souss-Massa basin, located in the south-western part of the country was retained as a case study because of its strategic importance but also because it now faces, as a consequence of the irrational use of water resources during the last decades significant water resources management challenges mainly due to the overexploitation of ground water resources, the increased of water demand due to the irrigation development, the urban and industrial growth and the expansion of tourism. Thus, in this study, a three step methodology was developed. First, the WEAP model were developed and calibrated for the Souss-Massa basin. In a second step, a XLRM participatory workshop gathering the basin main stakeholders were organized in order to identify the EXogenous factors (key uncertainties

  3. A landscape approach for ecologically based management of Great Basin shrublands

    Treesearch

    Michael J. Wisdom; Jeanne C. Chambers

    2009-01-01

    Native shrublands dominate the Great Basin of western of North America, and most of these communities are at moderate or high risk of loss from non-native grass invasion and woodland expansion. Landscape-scale management based on differences in ecological resistance and resilience of shrublands can reduce these risks. We demonstrate this approach with an example that...

  4. Surgical management of sentinel lymph node biopsy outside major nodal basin in patients with cutaneous melanoma.

    PubMed

    Caracò, Corrado; Marone, Ugo; Di Monta, Gianluca; Aloj, Luigi; Caracò, Corradina; Anniciello, Annamaria; Lastoria, Secondo; Botti, Gerardo; Mozzillo, Nicola

    2014-01-01

    To assess the incidence of nonmajor lymphatic basin sentinel nodes in patients with cutaneous melanoma in order to propose a correct nomenclature and inform appropriate surgical management. This was a retrospective review of 1,045 consecutive patients with cutaneous melanoma who underwent sentinel lymph node biopsy and dynamic lymphoscintigraphy to identify sentinel node site. Nonmajor drainage sites were classified as uncommon (located in a minor lymphatic basin along the lymphatic drainage to a major classical nodal basin) or interval (located anywhere along the lymphatics between the primary tumor site and the nearest lymphatic basin) sentinel nodes. Nonclassical sentinel nodes were identified in 32 patients (3.0 %). Uncommon sentinel nodes were identified in 3.2 % (n = 17) of trunk melanoma primary disease and in 1.5 % (n = 7) of upper and lower extremity sites. Interval sentinel nodes were identified in 1.3 % (n = 7) of trunk primary lesions, with none from upper and lower extremities melanomas. The incidence of tumor-positive sentinel nodes was 24.1 % (245 of 1,013) in classical sites and 12.5 % (4 of 32) in uncommon/interval sites. The definition of uncommon and interval sentinel nodes allows the identification of different lymphatic pathways and inform appropriate surgical treatment. Wider experience with uncommon/interval sentinel nodes will better clarify the clinical implications and surgical management to be adopted in the management of uncommon and interval sentinel node sites.

  5. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four

  6. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    USGS Publications Warehouse

    Flug, Marshall; Scott, John F.; Abt, Steven R.; Young-Pezeshk, Jayne; Watson, Chester C.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  7. Lessons for Integrated Water Resources Management from the San Pedro HELP Basin on the U.S.-Mexico Border

    NASA Astrophysics Data System (ADS)

    Browning, A.; Goodrich, D.; Varady, R.; Richter, H.

    2007-12-01

    The San Pedro Basin sits within an intermountain ecotone with the Sonoran and Chihuahuan Deserts to the west and east and the Rocky Mountain and Sierra Madre Mountain habitats to the north and south. The headwaters of the basin originate in northern Sonora and flow north into southeast Arizona. As the region's only remaining perennial stream, the San Pedro River serves as an international flyway for over 400 bird species. It is one of the western hemisphere's most ecologically diverse areas with some 20 different biotic communities, and "possesses one of the richest assemblages of land mammal species in the world." Large mining, military, and municipal entities are major users of the same groundwater resources that maintain perennial flow in the San Pedro. This presentation describes empirical evidence of the positive impacts on watershed management of scientists and policy researchers working closely with water managers and elected officials in a functioning HELP basin. We posit that when hydrologists help watershed groups understand the processes controlling water quality and quantity, and when managers and stakeholders connect these processes to social, economic and legal issues then transboundary cooperation in policymaking and water management is most effective. The distinctive physical and socioeconomic characteristics of the basin as well as differences in institutional regulations, water law issues, and their local implementations in Arizona and Sonora are discussed. We illustrate how stakeholders and scientific researchers in both countries strive to balance ecosystem needs with human demands to create new, integrated basin management. Finally, we describe how the accomplishments of the San Pedro collaborative process, including the use of environmental-conflict-resolution tools, have contributed to the UNESCO HELP (Hydrology for the Environment, Life, and Policy) agenda.

  8. Comparison of microbial communities in Lake Tahoe surface sample with Tonga Trench water column samples using High Pressure Liquid Chromatography - Electrospray Ionization - Mass Spectroscopy (HPLC - ESI - MS) and Global Natural Products Social Molecular Network (GNPS)

    NASA Astrophysics Data System (ADS)

    Belmonte, M. A.

    2015-12-01

    Intact polar lipids (IPLs) are lipids composed of a head group, a glycerol, and a fatty acid chain that make up the lipid bilayer of cell membranes in living cells; and the varying head groups can be indicative of the type of microbes present in the environment (Van Mooy 2010). So by distinguishing and identifying the IPL distribution in an environment one can make inferences about the microbial communities in the said environment. In this study, we used High Pressure Liquid Chromatography-Electrospray Ionization- Mass Spectroscopy (HPLC-ESI-MS) and Global Natural Products Social Molecular Networking (GNPS) to compare the IPL distributions of two oligotrophic environments: surface waters of Lake Tahoe in the Sierra Nevada Mountains, and the water column of the Tonga Trench in the South Pacific. We hypothesized that the similar nutrient dynamics of the two oligotrophic environments would result in similar eukaryotic and prokaryotic communities, which would be reflected in the IPL composition of suspended particulate organic matter (POM). For simplicity we focused on the classes of IPLs most commonly observed in the marine environment: phosphotidylglycerol (PG), phosphotidylethanolamine (PE), diacylglyceryl-trimethyl-homoserine (DGTS), diacylglyceryl-hydroxymethyl-trimethylalanine (DGTA), sulfoquinovosyldiacylglycerol (SQDG), monoglycosyldiacylglycerol (MGDG) and diglycosyldiacylglycerol (DGDG). Our results showed that all of the marine IPLs of interest were present in Lake Tahoe which confirms that there are many of the same microbial communities in the fresh waters of Lake Tahoe and the salt waters Tonga Trench.

  9. Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.

    2016-12-01

    In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable

  10. Integrated water resources management : A case study in the Hehei river basin, China

    NASA Astrophysics Data System (ADS)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  11. The institutionalization of River Basin Management as politics of scale - Insights from Mongolia

    NASA Astrophysics Data System (ADS)

    Houdret, Annabelle; Dombrowsky, Ines; Horlemann, Lena

    2014-11-01

    River Basin Management (RBM) as an approach to sustainable water use has become the dominant model of water governance. Its introduction, however, entails a fundamental realignment and rescaling of water-sector institutions along hydrological boundaries. Creating such a new governance scale is inherently political, and is being described as politics of scale. This paper analyzes how the politics of scale play out in the institutionalization of RBM in Mongolia. It furthermore scrutinizes the role of the broader political decentralization process in the introduction of RBM, an issue that has so far received little attention. Finally, it assesses whether the river basin is an adequate water management scale in Mongolia. This article finds that institutionalizing RBM in Mongolia is indeed a highly political negotiation process that does not only concern the choice of the governance scale, but also its detailed institutional design. It furthermore reveals that Mongolia's incomplete political decentralization process has for a long time negatively impacted the decentralization of water-related tasks and the implementation of RBM. However, the 2011 Budget Law and the 2012 Water Law provide for a fiscal strengthening of local governments and clearer sharing of responsibilities among the various different institutions involved in water management. Nevertheless, only if the 2012 Water Law is complemented by adequate by-laws - and if the newly created river basin institutions are adequately equipped - can RBM be effectively put into practice. This article confirms the usefulness of a politics-of-scale approach to understand scalar practices and changes in water management. However, the article also argues for a broadening of the analytical perspective to take the interdependencies between changes in water governance and other political processes, such as decentralization, into account.

  12. An urban runoff model designed to inform stormwater management decisions.

    PubMed

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret

    2017-05-15

    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.

  13. Small-scale studies on low intensity chemical dosing (LICD) for treatment of highway runoff.

    DOT National Transportation Integrated Search

    2006-04-01

    In the Tahoe Basin, strict surface water discharge limits of 20 NTU for turbidity and 0.1 mg/L : for total phosphorus are due to come into effect in 2008. The main concern in terms of water : quality is the discharge of fine particles and nutrients i...

  14. Evaluating the State of Water Management in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina

    2017-04-01

    Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.

  15. The response of Lake Tahoe to climate change

    USGS Publications Warehouse

    Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M.

    2013-01-01

    Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model - the Lake Clarity Model (LCM) - together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3-4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.

  16. Legacy phosphorus accumulation and management in the global context: insights from long-term analysis of major river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Burt, T. P.; Chan, N. I.; Elser, J. J.; Haygarth, P. M.; Howden, N. J. K.; Jarvie, H. P.; Peterson, H. M.; Shen, J.; Worrall, F.; Sharpley, A. N.

    2014-12-01

    Phosphorus (P) is closely linked to major societal concerns including food security and water quality, and human activities strongly control the modern global P cycle. Current knowledge of the P cycle includes many insights about relatively short-term processes, but a long-term and landscape-level view may be needed to understand P status and optimize P management towards P sustainability. We reconstructed long-term (>40 years) P mass balances and rates of P accumulation in three major river basins where excess P pollution is demanding improvements in P management at local, national, and international levels. We focus on: Maumee River Basin, a major source of agricultural P to Lake Erie, the southernmost and shallowest of the Laurentian Great Lakes; Thames River Basin, where fluxes of effluent P from the London, England metropolitan area have declined following improvements in wastewater treatment; Yangtze (Changjiang) River Basin, the largest in China, which is undergoing rapid economic development. The Maumee and Thames are intensively monitored, and show long-term declines in basin P inputs that represent a step towards P sustainability. However, river P outputs have been slower to decline, consistent with the hypothesis that legacy P is mobilizing from soils or from within the river network. Published data on the Yangtze indicate the P flux from land to water has clearly increased with industrialization and population growth. Historical trajectories of P accumulation and depletion in major river basins are providing new understanding about the long-term impacts of P management, including watershed P legacies and response times, that may inform future policy towards local, national, and global P sustainability.

  17. Development of perspective-based water management strategies for the Rhine and Meuse basins.

    PubMed

    van Deursen, W P A; Middelkoop, H

    2005-01-01

    Water management is surrounded by uncertainties. Water management thus has to answer the question: given the uncertainties, what is the best management strategy? This paper describes the application of the perspectives method on water management in the Rhine and Meuse basins. In the perspectives method, a structured framework to analyse water management strategies under uncertainty is provided. Various strategies are clustered in perspectives according to their underlying assumptions. This framework allows for an analysis of current water management strategies, but also allows for evaluation of the robustness of proposed future water strategies. It becomes clear that no water management strategy is superior to the others, but that inherent choices on risk acceptance and costs make a real political dilemma which will not be solved by further optimisation.

  18. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  19. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.

    PubMed

    Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta

    2011-02-01

    The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models

  20. Climate Change Impacts on Hydrology and Water Management of the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.

    2005-12-01

    Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.

  1. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: pronghorns.

    Treesearch

    Robert R. Kindschy; Charles S. Undstrom; James D. Yoakum

    1982-01-01

    The sagebrush steppe of the Great Basin in southeastern Oregon is peripheral habitat for pronghorns, but the quality of the habitat can be improved through rangeland management. The relationship between pronghorns and their habitat components—the availability of water, type of forage, barriers that restrict the movement of herds, and the effect of grazing by livestock-...

  2. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  3. Runoff water quality from a sierran upland forest, transition ecotone, and riparian wet meadow

    USDA-ARS?s Scientific Manuscript database

    High concentrations of inorganic N, P, and S have been reported in overland and litter interflow within forested uplands of the Tahoe basin and surrounding watersheds. In this study we compared runoff nutrient concentration and load as well as soil nutrient fluxes at three watershed locations; an up...

  4. Technical knowledge and water resources management: A comparative study of river basin councils, Brazil

    NASA Astrophysics Data System (ADS)

    Lemos, Maria Carmen; Bell, Andrew R.; Engle, Nathan L.; Formiga-Johnsson, Rosa Maria; Nelson, Donald R.

    2010-06-01

    Better understanding of the factors that shape the use of technical knowledge in water management is important both to increase its relevance to decision-making and sustainable governance and to inform knowledge producers where needs lie. This is particularly critical in the context of the many stressors threatening water resources around the world. Recent scholarship focusing on innovative water management institutions emphasizes knowledge use as critical to water systems' adaptive capacity to respond to these stressors. For the past 15 years, water resources management in Brazil has undergone an encompassing reform that has created a set of participatory councils at the river basin level. Using data from a survey of 626 members of these councils across 18 river basins, this article examines the use of technical knowledge (e.g., climate and weather forecasts, reservoir streamflow models, environmental impact assessments, among others) within these councils. It finds that use of knowledge positively aligns with access, a more diverse and broader discussion agenda, and a higher sense of effectiveness. Yet, use of technical knowledge is also associated with skewed levels of power within the councils.

  5. Selecting quantitative water management measures at the river basin scale in a global change context

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Caballero, Yvan; Pulido-Velazquez, Manuel

    2013-04-01

    One of the main challenges in the implementation of the Water Framework Directive (WFD) in the European Union is the definition of programme of measures to reach the good status of the European water bodies. In areas where water scarcity is an issue, one of these challenges is the selection of water conservation and capacity expansion measures to ensure minimum environmental in-stream flow requirements. At the same time, the WFD calls for the use of economic analysis to identify the most cost-effective combination of measures at the river basin scale to achieve its objective. With this respect, hydro-economic river basin models, by integrating economics, environmental and hydrological aspects at the river basin scale in a consistent framework, represent a promising approach. This article presents a least-cost river basin optimization model (LCRBOM) that selects the combination of quantitative water management measures to meet environmental flows for future scenarios of agricultural and urban demand taken into account the impact of the climate change. The model has been implemented in a case study on a Mediterranean basin in the south of France, the Orb River basin. The water basin has been identified as in need for quantitative water management measures in order to reach the good status of its water bodies. The LCRBOM has been developed using GAMS, applying Mixed Integer Linear Programming. It is run to select the set of measures that minimizes the total annualized cost of the applied measures, while meeting the demands and minimum in-stream flow constraints. For the economic analysis, the programme of measures is composed of water conservation measures on agricultural and urban water demands. It compares them with measures mobilizing new water resources coming from groundwater, inter-basin transfers and improvement in reservoir operating rules. The total annual cost of each measure is calculated for each demand unit considering operation, maintenance and

  6. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  7. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    NASA Astrophysics Data System (ADS)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  8. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  9. Challenging Futures Studies To Enhance Participatory River Basin Management

    NASA Astrophysics Data System (ADS)

    van der Helm, R.

    Can the field of futures research help advance participatory management of river basins? This question is supposed to be answered by the present study of which this paper will mainly address the theoretical and conceptual point of view. The 2000 EU Framework directive on water emphasises at least two aspects that will mark the future management of river basins: the need for long-term planning, and a demand for participation. Neither the former nor the latter are new concepts as such, but its combination is in some sense revolutionary. Can long-term plans be made (and implemented) in a participative way, what tools could be useful in this respect, and does this lead to a satisfactory situation in terms of both reaching physical targets and enhancing social-institutional manageability? A possibly rich way to enter the discussion is to challenge futures research as a concept and a practice for enabling multiple stakeholders to design appropriate policies. Futures research is the overall field in which several methods and techniques (like scenario analysis) are mobilised to systematically think through and/or design the future. As such they have proven to be rich exercises to trigger ideas, stimulate debate and design desirable futures (and how to get there). More importantly these exercises have the capability to reconstitute actor relations, and by nature go beyond the institutional boundaries. Arguably the relation between futures research and the planning process is rather distant. Understandably commitments on the direct implementation of the results are hardly ever made, but its impact on changes in the capabilities of the network of actors involved may be large. As a hypothesis we consider that the distant link between an image of the future and the implementation in policy creates sufficient distance for actors to participate (in terms of responsibilities, legal constraints, etc.) and generate potentials, and enough degrees of freedom needed for a successful

  10. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA

    USGS Publications Warehouse

    Huang, Shengli; Ramirez, Carlos; Conway, Scott; Kennedy, Kama; Kohler, Tanya; Liu, Jinxun

    2016-01-01

    High-resolution site index (SI) and mean annual increment (MAI) maps are desired for local forest management. We integrated field inventory, Landsat, and ecological variables to produce 30 m SI and MAI maps for the Tahoe National Forest (TNF) where different tree species coexist. We converted species-specific SI using adjustment factors. Then, the SI map was produced by (i) intensifying plots to expand the training sets to more climatic, topographic, soil, and forest reflective classes, (ii) using results from a stepwise regression to enable a weighted imputation that minimized the effects of outlier plots within classes, and (iii) local interpolation and strata median filling to assign values to pixels without direct imputations. The SI (reference age is 50 years) map had an R2 of 0.7637, a root-mean-square error (RMSE) of 3.60, and a mean absolute error (MAE) of 3.07 m. The MAI map was similarly produced with an R2 of 0.6882, an RMSE of 1.73, and a MAE of 1.20 m3·ha−1·year−1. Spatial patterns and trends of SI and MAI were analyzed to be related to elevation, aspect, slope, soil productivity, and forest type. The 30 m SI and MAI maps can be used to support decisions on fire, plantation, biodiversity, and carbon.

  11. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    NASA Astrophysics Data System (ADS)

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-10-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  12. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  13. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    USDA-ARS?s Scientific Manuscript database

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  14. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface

  15. An assessment of ecosystem components in the interior Columbia basin and portions of the Klamath and Great Basins: volume 1.

    Treesearch

    Thomas M. Quigley; Sylvia J. Arbelbide

    1997-01-01

    The Assessment of Ecosystem Components in the Interior Columbia Basin and Portions of the Klamath and Great Basins provides detailed information about current conditions and trends for the biophysical and social systems within the Basin. This information can be used by land managers to develop broad land management goals and priorities and provides the context for...

  16. Sustainable water use and management options in a water-stressed river basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  17. 43 CFR 419.4 - What specific provisions govern operations of the reservoirs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... water rights, imported water, remaining water of the Truckee River, and emergencies Sections 1.A through... Sections 4.A through 4.G. Operation of Floriston Rate and Project Water Sections 5.A through 5.E. Truckee River and Lake Tahoe Basin Allocation and Accounting Sections 6.A through 6.E. Credit Water...

  18. 43 CFR 419.4 - What specific provisions govern operations of the reservoirs?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water rights, imported water, remaining water of the Truckee River, and emergencies Sections 1.A through... Sections 4.A through 4.G. Operation of Floriston Rate and Project Water Sections 5.A through 5.E. Truckee River and Lake Tahoe Basin Allocation and Accounting Sections 6.A through 6.E. Credit Water...

  19. Great Basin insect outbreaks

    Treesearch

    Barbara Bentz; Diane Alston; Ted Evans

    2008-01-01

    Outbreaks of native and exotic insects are important drivers of ecosystem dynamics in the Great Basin. The following provides an overview of range, forest, ornamental, and agricultural insect outbreaks occurring in the Great Basin and the associated management issues and research needs.

  20. Great Basin aspen ecosystems

    Treesearch

    Dale L. Bartos

    2008-01-01

    The health of quaking aspen (Populus tremuloides) in the Great Basin is of growing concern. The following provides an overview of aspen decline and die-off in areas within and adjacent to the Great Basin and suggests possible directions for research and management.

  1. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions

  2. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  3. Leachate Geochemical Results for Ash Samples from the June 2007 Angora Wildfire Near Lake Tahoe in Northern California

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Adams, Monique; Lamothe, Paul J.; Todorov, Todor I.; Anthony, Michael W.

    2008-01-01

    This report releases leachate geochemical data for ash samples produced by the Angora wildfire that burned from June 24 to July 2, 2007, near Lake Tahoe in northern California. The leaching studies are part of a larger interdisciplinary study whose goal is to identify geochemical characteristics and properties of the ash that may adversely affect human health, water quality, air quality, animal habitat, endangered species, debris flows, and flooding hazards. The leaching study helps characterize and understand the interactions that occur when the ash comes in contact with rain or snowmelt, and helps identify the constituents that may be mobilized as run-off from these materials. Similar leaching studies were conducted on ash and burned soils from the October 2007 southern California wildfires (Hageman and others, 2008; Plumlee and others, 2007).

  4. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  5. Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin

    NASA Astrophysics Data System (ADS)

    Carmona, María.; Máñez Costa, María.; Andreu, Joaquín.; Pulido-Velazquez, Manuel; Haro-Monteagudo, David; Lopez-Nicolas, Antonio; Cremades, Roger

    2017-07-01

    South-east Spain is a drought prone area, characterized by climate variability and water scarcity. The Jucar River Basin, located in Eastern Spain, has suffered many historical droughts with significant socio-economic impacts. For nearly a hundred years, the institutional and non-institutional strategies to cope with droughts have been successful through the development of institutions and partnerships for drought management including multiple actors. In this paper, we show how the creation and institutionalisation of Multi-Sector Partnerships (MSPs) has supported the development of an efficient drought management. Furthermore, we analyze the performance of one of the suggested instruments by the partnership related to drought management in the basin. Two methodologies are used for these purposes. On one hand, the Capital Approach Framework to analyze the effectiveness of the governance processes in a particular partnership (Permanent Drought Commission), which aims to highlight the governance strength and weakness of the MSP for enhancing drought management in the Jucar River Basin. Through a dynamic analysis of the changes that the partnership has undergone over time to successfully deal with droughts, its effectiveness on drought management is demonstrated. On the other hand, an econometric approach is used to analyze the economic efficiency of the emergency drought wells as one of the key drought mitigation measures suggested by the Permanent Drought Commission and implemented. The results demonstrate the potential and efficiency of applying drought wells as mitigation measures (significant reduction of economic losses, around 50 M€ during the drought period, 2005-2008).

  6. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    PubMed

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  7. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions

  8. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    NASA Astrophysics Data System (ADS)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  9. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copping, Andrea E.; Yang, Zhaoqing; Voisin, Nathalie

    2013-12-01

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  10. Status of the interior Columbia Basin: summary of scientific findings.

    Treesearch

    Forest Service. U.S. Department of Agriculture

    1996-01-01

    The Status of the Interior Columbia Basin is a summary of the scientific findings from the Interior Columbia Basin Ecosystem Management Project. The Interior Columbia Basin includes some 145 million acres within the northwestern United Stales. Over 75 million acres of this area are managed by the USDA Forest Service or the USDI Bureau of Land Management. A framework...

  11. Ephemeral rivers and their development: testing an approach to basin management committees on the Kuiseb River, Namibia

    NASA Astrophysics Data System (ADS)

    Botes, A.; Henderson, J.; Nakale, T.; Nantanga, K.; Schachtschneider, K.; Seely, M.

    Ephemeral rivers are located in the world’s drylands where aridity and climate variability are key environmental determinants. The Kuiseb River is one of two diversely developed ephemeral rivers in western-central Namibia. From up to down stream, freehold-tenure farmers, a national park, communal farmers and the port and municipality of Walvis Bay all derive water from this source. Upstream farmers impound surface water during brief rainfall periods while remaining stakeholders’ abstract water from the alluvial aquifer. The draft Water Resources Management Act for Namibia devotes one chapter to basin management committees as mechanisms to ensure more equitable, efficient and effective sharing of water resources and their benefits. Two pilot committees are being established in Namibia, one of which is in the Kuiseb basin. The Environmental Learning and Action in the Kuiseb project, implemented by the Desert Research Foundation of Namibia in close consultation with Namibia’s Water Resources Management Review with funding from the European Union, has brought all stakeholders together. The Department of Water Affairs, NamWater and the Gobabeb Training and Research Centre are contributing information to enhance understanding of the river’s functions and services provided. All stakeholders are sharing information concerning their needs, expectations and contributions toward integrated management of the Kuiseb. After negotiation for one-and-a-half years, a formal committee is established and mechanisms for its functioning and sustainability are being identified. The main benefit to date is the dialogue, good will and interest that have been established amongst the stakeholders. If the momentum is maintained, this will lead to a new, more integrated approach to resource management in the entire basin.

  12. Problematising and conceptualising local participation in transboundary water resources management: The case of Limpopo river basin in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Fatch, Joanna J.; Manzungu, Emmanuel; Mabiza, Collin

    IWRM-led water reforms in southern Africa have emphasised the creation of new stakeholder institutions with little explanation of how they will operate at different levels, especially at the local level. A case in point is the subsidiarity principle, which advocates for water management to be undertaken at the lowest appropriate level. The main objective of the study was to investigate the conceptualisation and application of the subsidiarity principle in the Limpopo river basin in Zimbabwe. This was done by analysing how state-led frameworks at the regional, basin, national and local level provided for local participation. These frameworks were compared to a bottom-up approach based on action research in three second tier local government administrative units (wards) in Shashe subcatchment of Mzingwane catchment. The catchment represents the entirety of the Limpopo basin in Zimbabwe. Data collection was based on document reviews, key informants, focus group discussions and participatory observations. In general the top-down efforts were found to express intent but lacked appropriately conceptualised implementation guidelines. Views of local people regarding how they could meaningfully participate in transboundary water resource management were based on practical considerations rather than theoretical abstractions. This was shown by a different conceptualisation of stakeholder identification and representation, demarcation of boundaries, role of intermediate institutions, and direct participation of local people at the basin level. The paper concludes that a bottom-up institutional model can enhance the conceptualisation and application of the subsidiarity principle. It also provides evidence that prescriptive approaches may not be the best way to achieve participatory governance in transboundary water resource management.

  13. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    NASA Astrophysics Data System (ADS)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  14. A Physical Assessment of the Opportunities for Improved Management of the Water Resources of the Bi-National Rio Grande/Rio Bravo Basin

    NASA Astrophysics Data System (ADS)

    Aparicio, J.; McKinney, D.; Valdes, J.; Guitron, A.; Thomas, G.

    2007-05-01

    The hydro-physical opportunities for expanding the beneficial uses of the fixed water supply in the Rio Grande/Bravo Basin to better satisfy an array of water management goals are examined. These include making agriculture more resilient to periodic conditions of drought, improving the reliability of supplies to cities and towns, and restoring lost environmental functions in the river system. This is a comprehensive, outcome-neutral, model- based planning exercise performed by some 20 technical, primarily non-governmental institutions from both countries, aimed at proposing strategies that can reduce future conflicts over water throughout the entire basin. The second track consists in generating a set of future water management scenarios that respond to the needs and objectives of the basin stakeholders in each segment and each country. An array of scenarios for improved water management has been developed for the lower Rio Grande/Rio Bravo basin in Texas and the Mexican state of Tamaulipas. Another set under development will focus on the Rio Conchos and the El Paso/Juarez region. Eventually, scenarios will be generated such that will comprehend the entire basin on both sides of the border. These scenarios are the product of consultations with agricultural water districts, governmental organizations and environmental NGOs. They include strategies for reducing the physical losses of water in the system, conservation transfers, improvements in the operations of the Mexican and international reservoirs, improvements in environmental flow conditions, improvements in reliability of water supplies, and drought coping strategies.These scenarios will be evaluated for hydrologic feasibility by the basin-wide model and the gaming exercises. Modeling is necessary to understand how these options will affect the entire system and how they can be crafted to maximize the benefits and avoid unintended or uncompensated effects. The scenarios that have the potential to provide large

  15. Establishment of a non-governmental regional approach to La Plata River Basin integrated watershed management promoted throughout three international workshops supported by UN and Japanese agencies, led by ILEC

    NASA Astrophysics Data System (ADS)

    Calcagno, Alberto; Yamashiki, Yosuke; Mugetti, Ana

    2002-08-01

    The La Plata River Basin is one of the largest international river basins in the world, with an area of about 3 million km2. It spreads across five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), and its water resources are essential for their economic development. Together with reservoir development, extensive deforestation, intensive agriculture practices and large urban developments took place in the Paraná, Paraguay and Uruguay basins, affecting environmental conditions and raising important issues concerning water resources use and conservation. Therefore, the need to promote participatory and cooperative efforts among water resources stakeholders, as well as the systematic exchange of information and experiences on common regional problems among organizations and experts from throughout the basin who are devoted to water resources use and management, was reported by researchers and managers gathered at the First and Second International Workshops on Regional Approaches for Reservoir Development and Management in the La Plata River Basin (held in 1991 and 1994). As a concrete response to this need, the efforts of a number of organizations from various countries within the basin, with the support of international and national governmental organizations, resulted in the foundation of La Plata River Basin Environmental Research and Management Network (RIGA) in March 2001. This was within the framework of the Third International Workshop, which was precisely one of the short-term activities included in the RIGA Action Plan. During the preparatory processes for the RIGA Network, the presence of Japanese cooperation supporting the La Plata River Basin Workshops through a non-governmental international organization (ILEC) played an important role in stimulating such an organization-based joint approach in the basin. This outcome, although not originally planned, constituted a welcomed byproduct of its main specific interest in the region, which was the

  16. Modeling climate and fuel reduction impacts on mixed-conifer forest carbon stocks in the Sierra Nevada, California

    Treesearch

    Matthew D. Hurteau; Timothy A. Robards; Donald Stevens; David Saah; Malcolm North; George W. Koch

    2014-01-01

    Quantifying the impacts of changing climatic conditions on forest growth is integral to estimating future forest carbon balance. We used a growth-and-yield model, modified for climate sensitivity, to quantify the effects of altered climate on mixed-conifer forest growth in the Lake Tahoe Basin, California. Estimates of forest growth and live tree carbon stocks were...

  17. A Decision Support System for Demand Management of the Rio Conchos Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Stewart, S.; Valdes, J.; Gastelum, J.; Brookshire, D.; Aparicio, J.; Hidalgo, J.; Velazco, I.

    2003-12-01

    that will provide a tool to simulate hydrological profiles, ecosystem variability, changes in irrigation technology, and changes in management regimes within the basin and will serve to inform decision-makers of the water demand and supply changes necessary to meet the needs of international obligations and growing populations in the short and long term. The initial set of available management options include water banking and water trading within each country as well as irrigation standards, application efficiency, and water banking across borders.

  18. Multi-resolution integrated modeling for basin-scale water resources management and policy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Hoshin V.; Brookshire, David S.; Springer, E. P.

    Approximately one-third of the land surface of the Earth is considered to be arid or semi-arid with an annual average of less than 12-14 inches of rainfall. The availability of water in such regions is of course, particularly sensitive to climate variability while the demand for water is experiencing explosive population growth. The competition for available water is exerting considerable pressure on the water resources management. Policy and decision makers in the southwestern U.S. increasingly have to cope with over-stressed rivers and aquifers as population and water demands grow. Other factors such as endangered species and Native American water rightsmore » further complicate the management problems. Further, as groundwater tables are drawn down due to pumping in excess of natural recharge, considerable (potentially irreversible) environmental impacts begin to be felt as, for example, rivers run dry for significant portions of the year, riparian habitats disappear (with consequent effects on the bio-diversity of the region), aquifers compact resulting in large scale subsidence, and water quality begins to suffer. The current drought (1999-2002) in the southwestern U.S. is raising new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. The water stressed nature of arid and semi-arid environments means that competing water uses of various kinds vie for access to a highly limited resource. If basin-scale water sustainability is to be achieved, managers must somehow achieve a balance between supply and demand throughout the basin, not just for the surface water or stream. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers and water markets, and for accurate hydrologic information to sustain such institutions [Matthews et al. 2002; Brookshire et al

  19. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  20. A social–ecological perspective for riverscape management in the Columbia River Basin

    USGS Publications Warehouse

    Hand, Brian K.; Flint, Courtney G.; Frissell, Chris A.; Muhlfeld, Clint C.; Devlin, Shawn P.; Kennedy, Brian P.; Crabtree, Robert L.; McKee, W. Arthur; Luikart, Gordon; Stanford, Jack A.

    2018-01-01

    Riverscapes are complex, landscape-scale mosaics of connected river and stream habitats embedded in diverse ecological and socioeconomic settings. Social–ecological interactions among stakeholders often complicate natural-resource conservation and management of riverscapes. The management challenges posed by the conservation and restoration of wild salmonid populations in the Columbia River Basin (CRB) of western North America are one such example. Because of their ecological, cultural, and socioeconomic importance, salmonids present a complex management landscape due to interacting environmental factors (eg climate change, invasive species) as well as socioeconomic and political factors (eg dams, hatcheries, land-use change, transboundary agreements). Many of the problems in the CRB can be linked to social–ecological interactions occurring within integrated ecological, human–social, and regional–climatic spheres. Future management and conservation of salmonid populations therefore depends on how well the issues are understood and whether they can be resolved through effective communication and collaboration among ecologists, social scientists, stakeholders, and policy makers.

  1. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management

    PubMed Central

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484

  2. Hydrometeorology Testbed in the American River Basin of Northern California

    NASA Astrophysics Data System (ADS)

    Kingsmill, D.; Lundquist, J.; Jorgensen, D.; McGinley, J.; Werner, K.

    2006-12-01

    In California, most precipitation occurs in the winter, as a mixture of rain at lower elevations and snow in the higher mountains. Storms from the Pacific carry large amounts of moisture, and put people and property at risk from flooding because of the vast urban development and infrastructure in low-lying areas of the central valley of California. Improved flood prediction at finer spatial and temporal resolutions can help minimize these risks. The first step is to accurately measure and predict spatially-distributed precipitation. This is particularly true for river basins with complex orography where the processes that lead to the development of precipitation and determine its distribution and fate on the ground are not well understood. To make progress in this important area, the U.S. National Oceanic and Atmospheric Administration (NOAA) is leading a Hydrometeorology Testbed (HMT) effort designed to accelerate the testing and infusion of new technologies, models, and scientific results from the research community into daily forecasting operations. HMT is a national effort (http://hmt.noaa.gov) that will be implemented in different regions of the U.S. over the next decade. In each region, the focus will be on individual experimental test basins. The first full-scale implementation of HMT, called HMT-West, targets northern California's flood-vulnerable American River Basin (4740 km2) on the west slopes of the Sierra Nevada between Sacramento and Lake Tahoe. The deployment strategy is focused on the North Fork of the basin (875 km2), which is the least- controlled portion of the entire catchment. This basin was selected as a test basin because it has reliable streamflow records dating back to 1941 and has been well characterized by prior field studies (e.g. the Sierra Cooperative Pilot Project) and modeling efforts, focusing on both short-term operations and long-term climate scenarios. Intensive field activities in the North Fork of the American River started in

  3. The "WFD-effect" on upstream-downstream relations in international river basins - insights from the Rhine and the Elbe basins

    NASA Astrophysics Data System (ADS)

    Moellenkamp, S.

    2007-06-01

    The upstream-downstream relationship in international river basins is a traditional challenge in water management. Water use in upstream countries often has a negative impact on water use in downstream countries. This is most evident in the classical example of industrial pollution in upstream countries hindering drinking water production downstream. The European Water Framework Directive (WFD) gives new impetus to the river basin approach and to international co-operation in European catchments. It aims at transforming a mainly water quality oriented management into a more integrated approach of ecosystem management. After discussing the traditional upstream-downstream relationship, this article shows that the WFD has a balancing effect on upstream-downstream problems and that it enhances river basin solidarity in international basins. While it lifts the downstream countries to the same level as the upstream countries, it also leads to new duties for the downstream states. Following the ecosystem approach, measures taken by downstream countries become increasingly more important. For example, downstream countries need to take measures to allow for migrating fish species to reach upstream stretches of river systems. With the WFD, fish populations receive increased attention, as they are an important indicator for the ecological status. The European Commission acquires a new role of inspection and control in river basin management, which finally also leads to enhanced cooperation and solidarity among the states in a basin. In order to achieve better water quality and to mitigate upstream-downstream problems, also economic instruments can be applied and the WFD does not exclude the possibility of making use of financial compensations, if at the same time the polluter pays principle is taken into account. The results presented in this article originate from a broader study on integrated water resources management conducted at Bonn University and refer to the Rhine and

  4. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management

    NASA Astrophysics Data System (ADS)

    Hartmann, Heike; Snow, Julie A.; Su, Buda; Jiang, Tong

    2016-12-01

    Since the 1950s, the population in the arid to hyperarid Tarim River basin has grown rapidly concurrent with an expansion of irrigated agriculture. This threatens the Tarim River basin's natural ecosystems and causes water shortages, even though increased discharges in the headwaters have been observed more recently. These increases have mainly been attributed to receding glaciers and are projected to cease when the glaciers are unable to provide sufficient amounts of meltwater. Under these circumstances water management will face a serious challenge in adapting its strategies to changes in river discharge, which to a greater extent will depend on changes in precipitation. In this paper, we aim to develop accurate seasonal predictions of precipitation to improve water resources management. Possible predictors of precipitation for the Tarim River basin were either downloaded directly or calculated using NCEP/NCAR Reanalysis 1 and NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b data in monthly resolution. To evaluate the significance of the predictors, they were then correlated with the monthly precipitation dataset GPCCv6 extracted for the Tarim River basin for the period 1961 to 2010. Prior to the Spearman rank correlation analyses, the precipitation data were averaged over the subbasins of the Tarim River. The strongest correlations were mainly detected with lead times of four and five months. Finally, an artificial neural network model, namely a multilayer perceptron (MLP), and a multiple linear regression (LR) model were developed each in two different configurations for the Aksu River subbasin, predicting precipitation five months in advance. Overall, the MLP using all predictors shows the best performance. The performance of both models drops only slightly when restricting the model input to the SST of the Black Sea and the Siberian High Intensity (SHI) pointing towards their importance as predictors.

  5. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Treesearch

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  6. A system dynamics approach for integrated management of the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Rubio-Martin, Adria; Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2017-04-01

    System dynamics (SD) is a modelling approach that allows the analysis of complex systems through the mathematical definition of variables and their relationships. Based on systems thinking, SD is suitable for interdisciplinary studies of the management of complex systems. Over the past 50 years, SD tools have been applied to fields as diverse as economics, ecology, politics, sociology and resource management. Its application to the field of water resources has grown significantly over the last two decades, facilitating the enhancement of models by adding social, economic and ecological components. However, its application to the operation of complex multireservoir systems has been very limited so far. In this contribution, we have developed a SD model for the Jucar River Basin, one of the most vulnerable basins in the western Mediterranean region with regard to droughts. The system has three main reservoirs, which allows for a multiannual management of the storage that compensates the highly variable streamflow from upstream. Our SD model of the Jucar River Basin is able to capture the complexity of the water resource system. The model developed consists of five interlinked subsystems: a) Topology of the system network, including the 3 main reservoirs, water seepage and evaporation, inflows and catchments. b) Monthly operating rules of each reservoir. The rules were derived from the expert knowledge eluded from the operators of the reservoirs. c) Monthly urban, agricultural and environmental water demands. d) State index of the system and drought mitigation measures triggered depending on the state index. e) Mancha Oriental aquifer and stream-aquifer interaction with the Jucar River. The comparison between observed and simulated series showed that the model provides a good representation of the observed reservoir operation and total deficits. The interdisciplinary and open nature of the methodology allows to add new variables and dynamics to the model that are

  7. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of

  8. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    NASA Astrophysics Data System (ADS)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  9. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  10. Co-management as a Catalyst: Pathways to Post-colonial Forestry in the Klamath Basin, California.

    PubMed

    Diver, Sibyl

    2016-01-01

    Co-management frameworks are intended to facilitate sustainable resource management and more equitable power sharing between state agencies and Indigenous communities. However, there is significant debate about who benefits from co-management in practice. This article addresses two competing perspectives in the literature, which alternately portrays co-management as an instrument for co-optation or for transformation. Through a case study of co-management negotiations involving the Karuk Tribe and the U.S. Forest Service in the Klamath Basin of Northern California, this study examines how Indigenous communities use co-management to build greater equity in environmental decision-making, despite its limitations. The concept of pivot points is developed to describe how Indigenous communities like the Karuk Tribe are simultaneously following existing state policies and subverting them to shift federal forest management. The pivot point analytic demonstrates one mechanism by which communities are addressing Indigenous self-determination goals and colonial legacies through environmental policy and management.

  11. The aqueous geochemistry of uranium in a drainage containing uraniferous organic-rich sediments, Lake Tahoe area, Nevada, USA

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1988-01-01

    Anomalously uraniferous waters occur in a small (4.2 km2) drainage in the west-central Carson Range, Nevada, on the eastern side of Lake Tahoe. The waters transport uranium from local U-rich soils and bedrock to organic-rich valley-fill sediments where it is concentrated, but weakly bound. The dissolved U and the U that is potentially available from coexisting sediments pose a threat to the quality of drinking water that is taken from the drainage. The U concentration in samples of 6 stream, 11 spring and 7 near-surface waters ranged from 0.1 V). Possible precipitation of U(IV) minerals is predicted under the more reducing conditions that are particularly likely in near-surface waters, but the inhibitory effects of sluggish kinetics or organic complexing are not considered. These combined results suggest that a process such as adsorption or ion exchange, rather than mineral saturation, is the most probable mechanism for uranium fixation in the sediments. -Authors

  12. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  13. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    USGS Publications Warehouse

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    Groundwater withdrawals began in 1992 from the Langford Basin within the Fort Irwin National Training Center (NTC), California. From April 1992 to December 2010, approximately 12,300 acre-feet of water (averaging about 650 acre-feet per year) has been withdrawn from the basin and transported to the adjacent Irwin Basin. Since withdrawals began, water levels in the basin have declined by as much as 40 feet, and the quality of the groundwater withdrawn from the basin has deteriorated. The U.S. Geological Survey collected geohydrologic data from Langford Basin during 1992–2011 to determine the quantity and quality of groundwater available in the basin. Geophysical surveys, including gravity, seismic refraction, and time-domain electromagnetic induction surveys, were conducted to determine the depth and shape of the basin, to delineate depths to the Quaternary-Tertiary interface, and to map the depth to the water table and changes in water quality. Data were collected from existing wells and test holes, as well as 11 monitor wells that were installed at 5 sites as part of this study. Water-quality samples collected from wells in the basin were used to determine the groundwater chemistry within the basin and to delineate potential sources of poor-quality groundwater. Analysis of stable isotopes of oxygen and hydrogen in groundwater indicates that present-day precipitation is not a major source of recharge to the basin. Tritium and carbon-14 data indicate that most of the basin was recharged prior to 1952, and the groundwater in the basin has an apparent age of 12,500 to 30,000 years. Recharge to the basin, estimated to be less than 50 acre-feet per year, has not been sufficient to replenish the water that is being withdrawn from the basin. A numerical groundwater-flow model was developed for the Langford Basin to better understand the aquifer system used by the Fort Irwin NTC as part of its water supply, and to provide a tool to help manage groundwater resources at

  14. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    NASA Astrophysics Data System (ADS)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the

  15. Turn Basin Construction

    NASA Image and Video Library

    2017-06-14

    Modifications are underway at the Launch Complex 39 turn basin wharf at NASA's Kennedy Space Center in Florida to prepare for the arrival of the agency's massive Space Launch System (SLS) core stage aboard the barge Pegasus. In the foreground is Tammy Kelly, site manager, with Southeast Cherokee Construction Inc. A crane will be used to lift up precast concrete poles and position them to be driven to a depth of about 70 feet into the bedrock below the water around the turn basin. The upgrades are necessary to accommodate the increased weight of the core stage along with ground support and transportation equipment aboard the modified barge Pegasus. The Ground Systems Development and Operations Program is overseeing the upgrades to the turn basin wharf.

  16. Soil heating during burning of forest slash piles and wood piles

    Treesearch

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  17. Research and management of soil, plant, animal, and human resources in the Middle Rio Grande Basin

    Treesearch

    Deborah M. Finch

    1996-01-01

    The Rocky Mountain Forest and Range Experiment Station initiated a research program in 1994 called. "Ecology, diversity, and sustainability of soil, plant, animal, and human resources of the Rio Grande Basin". This program is funded by an Ecosystem Management grant from Forest Service Research. Its mission focuses on the development and application of new...

  18. Assessing and managing water scarcity within the Nile River Transboundary Basin

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  19. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  20. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  1. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    NASA Astrophysics Data System (ADS)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    The Magdalena-Cauca macrobasin covers 24% of the land area of Colombia, and provides more than half of the country's economic potential. The basin is also home a large proportion of Colombia's biodiversity. These conflicting demands have led to problems in the basin, including a dramatic fall in fish populations, additional flooding (such as the severe nationwide floods caused by the La Niña phenomenon in 2011), and habitat loss. It is generally believed that the solution to these conflicts is to manage the basin in a more integrated way, and bridge the gaps between decision-makers in different sectors and scientists. To this end, inter-ministerial agreements are being formulated and a decision support system is being developed by The Nature Conservancy Colombia. To engage stakeholders in this process SimBasin, a "serious game", has been developed. It is intended to act as a catalyst for bringing stakeholders together, an illustration of the uncertainties, relationships and feedbacks in the basin, and an accessible introduction to modelling and decision support for non-experts. During the game, groups of participants are led through a 30 year future development of the basin, during which they take decisions about the development of the basin and see the impacts on four different sectors: agriculture, hydropower, flood risk, and environment. These impacts are displayed through seven indicators, which players should try to maintain above critical thresholds. To communicate the effects of uncertainty and climate variability, players see the actual value of the indicator and also a band of possible values, so they can see if their decisions have actually reduced risk or if they just "got lucky". The game works as a layer on top of a WEAP water resources model of the basin, adapted from a basin-wide model already created, so the fictional game basin is conceptually similar to the Magdalena-Cauca basin. The game is freely available online, and new applications are being

  2. Science for the changing Great Basin

    USGS Publications Warehouse

    Beever, Erik; Pyke, David A.

    2004-01-01

    The U.S. Geological Survey (USGS), with its multidisciplinary structure and role as a federal science organization, is well suited to provide integrated science in the Great Basin of the western United States. A research strategy developed by the USGS and collaborating partners addresses critical management issues in the basin, including invasive species, status and trends of wildlife populations and communities, wildfire, global climate change, and riparian and wetland habitats. Information obtained through implementation of this strategy will be important for decision-making by natural-resource managers.

  3. Web-Based Water Accounting Scenario Platform to Address Uncertainties in Water Resources Management in the Mekong : A Case Study in Ca River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Apirumanekul, C.; Purkey, D. R.; Pudashine, J.; Seifollahi-Aghmiuni, S.; Wang, D.; Ate, P.; Meechaiya, C.

    2017-12-01

    Rapid economic development in the Mekong Region is placing pressure on environmental resources. Uncertain changes in land-use, increasing urbanization, infrastructure development, migration patterns and climate risks s combined with scarce water resources are increasing water demand in various sectors. More appropriate policies, strategies and planning for sustainable water resource management are urgently needed. Over the last five years, Vietnam has experienced more frequent and intense droughts affecting agricultural and domestic water use during the dry season. The Ca River Basin is the third largest river basin in Vietnam with 35% of its area located in Lao PDR. The delta landscape comprises natural vegetation, forest, paddy fields, farming and urban areas. The Ca River Basin is experiencing ongoing water scarcity that impacts on crop production, farming livelihoods and household water consumption. Water scarcity is exacerbated by uncertainties in policy changes (e.g. changes in land-use, crop types), basin development (e.g. reservoir construction, urban expansion), and climate change (e.g. changes in rainfall patterns and onset of monsoon). The Water Evaluation And Planning (WEAP) model, with inputs from satellite-based information and institutional data, is used to estimate water supply, water use and water allocation in various sectors (e.g. household, crops, irrigation and flood control) under a wide range of plausible future scenarios in the Ca River Basin. Web-Based Water Allocation Scenario Platform is an online implementation of WEAP model structured in terms of a gaming experience. The online game, as an educational tool, helps key agencies relevant to water resources management understand and explore the complexity of integrated system of river basin under a wide range of scenarios. Performance of the different water resources strategies in Ca River Basin (e.g. change of dam operation to address needs in various sectors, construction of dams, changes

  4. Vulnerability of supply basins to demand from multiple cities

    NASA Astrophysics Data System (ADS)

    Padowski, J. C.; Gorelick, S.

    2013-12-01

    Humans have appropriated more than half of the world's available water resources, and continued population growth and climate change threaten to put increasing pressure on remaining supplies. Many cities have constructed infrastructure to collect, transport from and store water at distant locations. Supply basins can become vulnerable if there are multiple users depending on the same supply system or network. Basin vulnerability assessments often only report the impacts of local demands on system health, but rarely account future stress from multi-urban demands. This study presents a global assessment of urban impacts on supply basins. Specifically, hydrologic and regulatory information are used to quantify the level of supply basin stress created by demand from multiple cities. The aim is to identify at-risk basins. This study focuses on large urban areas (generally over 1 million people) that use surface water (n=412). The stress on supply water basins by urban demand was based on three parameters: 1) the number of cities using a basin for water supply, 2) the number of alternative urban sources (e.g. lakes, reservoirs, rivers) within the supply basin, and 3) the percent of available surface water in each basin that is required to meet the total of urban and environmental demands. The degree of management within each basin is assessed using information on federal water policies and local basin management plans.

  5. An evaluation of public participation in UK river basin management planning

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Benson, D.

    2012-04-01

    The EU Water Framework Directive is reshaping multi-level environmental governance structures in many Member States. One area where re-structuring should be highly visible is in regards to public participation in water management. The Directive legally mandates that implementing agencies should make information publicly available relating to river basin management planning, include the public in the planning process and encourage the active involvement of 'interested parties' both during and after the planning stage. Yet critical questions arise over the extent to which these requirements have actually been met in Member States and the outcomes of participatory processes on the ground. In this study, public participation was evaluated in England and Wales by conducting: a) a broad based quantitative survey of the implementation strategy undertaken across all 11 River Basin Districts (RBDs); and, b) an in-depth analysis of the Anglian RBD drawing on theoretical notions of social learning; a critical measure of participatory processes. Results from the survey showed all RBDs complied with the minimum regulatory requirements on public access to information and written consultation, and even went further with provisions for oral consultation and stakeholder engagement. But the focus was clearly on stakeholder groups with little public involvement beyond minimal legally mandated requirements. Analysis of case study data provided some evidence of social learning at every level (instrumental, communicative and transformative) and beyond the individual scale (wider community and organisational learning). Learning was however significantly limited by participant's high level of expertise and environmental awareness. Also apparent was the influence of other factors, operating at various institutional scales, in shaping learning. The paper then speculates on the implications of the findings for both future research and policy, particularly in light of the European Commission

  6. Turn Basin Construction

    NASA Image and Video Library

    2017-06-14

    Modifications are underway at the Launch Complex 39 turn basin wharf at NASA's Kennedy Space Center in Florida to prepare for the arrival of the agency's massive Space Launch System (SLS) core stage aboard the barge Pegasus. Tammy Kelly, in the center, site manager, with Southeast Cherokee Construction Inc. talks with construction workers. A crane will be used to lift up precast concrete poles and position them to be driven to a depth of about 70 feet into the bedrock below the water around the turn basin. The upgrades are necessary to accommodate the increased weight of the core stage along with ground support and transportation equipment aboard the modified barge Pegasus. The Ground Systems Development and Operations Program is overseeing the upgrades to the turn basin wharf.

  7. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this

  8. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment AGENCY: Forest Service... 2009 Prairie Dog Management Strategy. The amendment is being proposed to address continuing concerns regarding prairie dog management, raised by the [[Page 56651

  9. Coupled SWAT-MODFLOW Model Development for Large Basins

    NASA Astrophysics Data System (ADS)

    Aliyari, F.; Bailey, R. T.; Tasdighi, A.

    2017-12-01

    Water management in semi-arid river basins requires allocating water resources between urban, industrial, energy, and agricultural sectors, with the latter competing for necessary irrigation water to sustain crop yield. Competition between these sectors will intensify due to changes in climate and population growth. In this study, the recently developed SWAT-MODFLOW coupled hydrologic model is modified for application in a large managed river basin that provides both surface water and groundwater resources for urban and agricultural areas. Specific modifications include the linkage of groundwater pumping and irrigation practices and code changes to allow for the large number of SWAT hydrologic response units (HRU) required for a large river basin. The model is applied to the South Platte River Basin (SPRB), a 56,980 km2 basin in northeastern Colorado dominated by large urban areas along the front range of the Rocky Mountains and agriculture regions to the east. Irregular seasonal and annual precipitation and 150 years of urban and agricultural water management history in the basin provide an ideal test case for the SWAT-MODFLOW model. SWAT handles land surface and soil zone processes whereas MODFLOW handles groundwater flow and all sources and sinks (pumping, injection, bedrock inflow, canal seepage, recharge areas, groundwater/surface water interaction), with recharge and stream stage provided by SWAT. The model is tested against groundwater levels, deep percolation estimates, and stream discharge. The model will be used to quantify spatial groundwater vulnerability in the basin under scenarios of climate change and population growth.

  10. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    USGS Publications Warehouse

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  11. Sagebrush ecosystem conservation and management: Ecoregional assessment tools and models for the Wyoming Basins

    USGS Publications Warehouse

    Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, Cameron L.

    2011-01-01

    The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.

  12. Integrated river basin management, ICT and DSS: Challenges and needs

    NASA Astrophysics Data System (ADS)

    Gourbesville, Philippe

    River basin management is a complex task. Therefore, instruments that help to assess the present situation and assist in the development and evaluation of solutions may be important. Since several decades and after the implementation of the first compulsory legal environments and institutional organizations for IWRM and IRBM, the need for an efficient support in the different decision-making processes has emerged. After several experiences, the demonstration of the interest of ICT and DSS systems is obvious in the water resources management domain. However and until now, most of the efforts have been focused on the theoretical aspects with very few integrations into operational approaches. The implementation of the new European water framework directive (2000) represents today one key example from which some lessons can be learned in the way of definition and use of ICT and DSS systems for IWRM and IRBM. The paper presents the concepts available through ICT and DSS. The example of the WFD is used to underline the challenges and the difficulties for the elaboration of new tools - DSSs - which could be able to answer of the challenges of IWRM and IRBM.

  13. Biological science in the Great Basin

    USGS Publications Warehouse

    ,

    2005-01-01

    The Great Basin is an expanse of desert and high moun-tains situated between the Rocky Mountains and the Sierra Nevada of the western United States. The most explicit description of the Great Basin is that area in the West where surface waters drain inland. In other words, the Great Basin is comprised of many separate drainage areas - each with no outlet. What at first glance may appear as only a barren landscape, the Great Basin upon closer inspection reveals island mountains, sagebrush seas, and intermittent aquatic habitats, all teeming with an incredible number and variety of plants and animals. Biologists at the USGS are studying many different species and ecosystems in the Great Basin in order to provide information about this landscape for policy and land-management decision-making. The following stories represent a few of the many projects the USGS is conducting in the Great Basin.

  14. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  15. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Water Accounting Plus for sustainable water management in the Volta river basin, West Africa

    NASA Astrophysics Data System (ADS)

    Dembélé, Moctar; Schaefli, Bettina; Mariéthoz, Grégroire; Ceperley, Natalie; Zwart, Sander J.

    2017-04-01

    Water Accounting Plus (WA+) is a standard framework that provides estimates of manageable and unmanageable water flows, stocks, consumption among users, and interactions with land use. The water balance terms are estimated based on remotely sensed data from online open access databases. The main difference with other methods is the use of spatiotemporal data, limiting the errors due to the use of static data. So far, no studies have incorporated climate change scenarios in the WA+ framework to assess future water resources, which would be desirable for developing mitigation and adaptation policies. Moreover WA+ has been implemented using remote sensing data while hydrological models data can also be used as inputs for projections on the future water accounts. This study aims to address the above challenges by providing quantified information on the current and projected state of the Volta basin water resources through the WA+ framework. The transboundary Volta basin in West Africa is vulnerable to floods and droughts that damage properties and take lives. Residents are dependent on subsistence agriculture, mainly rainfed, which is sensitive to changes and variation in the climate. Spatially, rainfall shows high spatiotemporal variability with a south-north gradient of increasing aridity. As in many basins in semi-arid environments, most of the rainfall in the Volta basin returns to the atmosphere. The competition for scarce water resources will increase in the near future due to the combined effects of urbanization, economic development, and rapid population growth. Moreover, upstream and downstream countries do not agree on their national priorities regarding the use of water and this brings tensions among them. Burkina Faso increasingly builds small and medium reservoirs for small-scale irrigation, while Ghana seeks to increase electricity production. Information on current and future water resources and uses is thus fundamental for water actors. The adopted

  17. Water reform in the Murray-Darling Basin

    NASA Astrophysics Data System (ADS)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  18. Concept for a Wireless Sensor Network to support GIS based water and land resource management in the Aksu-Tarim Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Doluschitz, Reiner; Feike, Til

    2013-04-01

    Farmers in the oases along the Aksu-Tarim River suffer from severe seasonal water shortage caused by high fluctuations of river run-off. The uncertainty of water availability makes the planning of crop production and related investments extremely difficult. As a consequence farm management is often sub-optimal, manifesting in low input efficiencies, and the value generated in the agricultural sector being way below its potential. The "Tarim Basin Water Resource Bureau" (TBWRB) was founded in the 1990s. Its major task is to implement a basin wide water resources management plan, which involves fair allocation of water resources among the farmers in the different administrative units along the river. Among others, the lack of reliable and timely information on water quantities and qualities within the major water bodies of the basin hinders the implementation of an effective water management plan. Therefore we introduce the concept of a wireless sensor network (WSN) that provides reliable instantaneous information on the status of all important water resources within the basin. In the first step a GIS including all vital geospatial data, like river courses, channel and reservoir network and capacities, soil and land use map, is built. In the second step a WSN that monitors all important parameters at essential positions throughout the basin needs to be established. Measured parameters comprise meteorological data, river run-off, water levels of reservoirs, groundwater levels, and salinity levels of water resources. All data is centrally collected and processed by the TBWRB. Apart from generating a prompt and complete picture of currently available water resources, the TBWRB can use the system to record actual water allocation, and develop an early warning system for upcoming droughts or floods. Finally an integrated water and land management scheme can be established that allocates resources maximizing the benefits at basin level. Financed by public funding, the data

  19. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    PubMed

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  20. Climate change impact on the management of water resources in the Seine River basin, France

    NASA Astrophysics Data System (ADS)

    Dorchies, David; Thirel, Guillaume; Chauveau, Mathilde; Jay-Allemand, Maxime; Perrin, Charles; Dehay, Florine

    2013-04-01

    It is today commonly accepted that adaptation strategies will be needed to cope with the hydrological consequences of projected climate change. The main objective of the IWRM-Net Climaware project is to design adaptation strategies for various socio-economic sectors and evaluate their relevance at the European scale. Within the project, the Seine case study focuses on dam management. The Seine River basin at Paris (43800km²) shows major socio-economic stakes in France. Due to its important and growing demography, the number of industries depending on water resources or located on the river sides, and the developed agricultural sector, the consequences of droughts and floods may be dramatic. To mitigate the extreme hydrological events, a system of four large multi-purpose reservoirs was built in the upstream part of the basin between 1949 and 1990. The IPCC reports indicate modifications of the climate conditions in northern France in the future. An increase of mean temperature is very likely, and the rainfall patterns could be modified: the uncertainty on future trends is still high, but summer periods could experience lower quantities of rainfall. Anticipating these changes are crucial: will the present reservoirs system be adapted to these conditions? Here we propose to evaluate the capacity of the Seine River reservoirs to withstand future projected climate conditions using the current management rules. For this study a modeling chain was designed. We used two hydrological models: GR4J, a lumped model used as a benchmark, and TGR, a semi-distributed model. TGR was tuned to explicitly account for reservoir management rules. Seven climatic models forced by the moderate A1B IPCC scenario and downscaled using a weather-type method (DSCLIM, Pagé et al., 2009), were used. A quantile-quantile type method was applied to correct bias in climate simulations. A model to mimic the way reservoirs are managed was also developed. The evolution of low flows, high flows and

  1. Scaling issues in multi-criteria evaluation of combinations of measures for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg

    2016-05-01

    In integrated river basin management, measures for reaching the environmental objectives can be evaluated at different scales, and according to multiple criteria of different nature (e.g. ecological, economic, social). Decision makers, including responsible authorities and stakeholders, follow different interests regarding criteria and scales. With a bottom up approach, the multi criteria assessment could produce a different outcome than with a top down approach. The first assigns more power to the local community, which is a common principle of IWRM. On the other hand, the development of an overall catchment strategy could potentially make use of synergetic effects of the measures, which fulfils the cost efficiency requirement at the basin scale but compromises local interests. Within a joint research project for the 5500 km2 Werra river basin in central Germany, measures have been planned to reach environmental objectives of the European Water Framework directive (WFD) regarding ecological continuity and nutrient loads. The main criteria for the evaluation of the measures were costs of implementation, reduction of nutrients, ecological benefit and social acceptance. The multi-criteria evaluation of the catchment strategies showed compensation between positive and negative performance of criteria within the catchment, which in the end reduced the discriminative power of the different strategies. Furthermore, benefit criteria are partially computed for the whole basin only. Both ecological continuity and nutrient load show upstream-downstream effects in opposite direction. The principles of "polluter pays" and "overall cost efficiency" can be followed for the reduction of nutrient losses when financial compensations between upstream and downstream users are made, similar to concepts of emission trading.

  2. An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin.

    PubMed

    Srinivas, Rallapalli; Singh, Ajit Pratap

    2018-03-01

    Assessment of water quality status of a river with respect to its discharge has become prerequisite to sustainable river basin management. The present paper develops an integrated model for simulating and evaluating strategies for water quality management in a river basin management by controlling point source pollutant loadings and operations of multi-purpose projects. Water Quality Analysis and Simulation Program (WASP version 8.0) has been used for modeling the transport of pollutant loadings and their impact on water quality in the river. The study presents a novel approach of integrating fuzzy set theory with an "advanced eutrophication" model to simulate the transmission and distribution of several interrelated water quality variables and their bio-physiochemical processes in an effective manner in the Ganges river basin, India. After calibration, simulated values are compared with the observed values to validate the model's robustness. Fuzzy technique of order preference by similarity to ideal solution (F-TOPSIS) has been used to incorporate the uncertainty associated with the water quality simulation results. The model also simulates five different scenarios for pollution reduction, to determine the maximum pollutant loadings during monsoon and dry periods. The final results clearly indicate how modeled reduction in the rate of wastewater discharge has reduced impacts of pollutants in the downstream. Scenarios suggesting a river discharge rate of 1500 m 3 /s during the lean period, in addition to 25 and 50% reduction in the load rate, are found to be the most effective option to restore quality of river Ganges. Thus, the model serves as an important hydrologic tool to the policy makers by suggesting appropriate remediation action plans.

  3. Connecting science to managers in river restoration in the Upper Klamath Basin, Oregon and California

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2009-12-01

    The semi-arid Upper Klamath Basin is a complex landscape of agricultural land, pasture and forests, drained by rivers, lakes, and wetlands. Unique characteristics of the river systems include high natural nutrient loadings, large springs, low gradients, high sinuosity, fine sediment, herbaceous-dominated riparian vegetation, and habitat for salmonid and sucker fish. Following listing of several fish species under the Endangered Species Act in the 1980s to 90s, the Upper Klamath Basin has become a focal point of river management and restoration. Drought conditions in 2001 resulted in a cutoff of irrigation water and a political crisis. The crisis engendered a distrust of scientists by many residents of the basin. Political conflict over allocation of water resources and ecosystem management has continued since 2001. In this environment, multiple groups, including federal and state agencies and NGOs, have developed restoration assessments and agendas, and they have also implemented numerous restoration projects. These restoration guidance documents are typically based on input from local residents and landowners as well as the published scientific literature. The documents from different groups are generally consistent but priorities vary somewhat. Gaps in scientific understanding of the river systems are recognized as a handicap in restoration planning. The science knowledge base has been growing since 2001 but generally lags behind on-the-ground restoration activities. Research can help in addressing two critical questions important in restoration implementation. What restoration strategies are best suited to the processes and dynamics of this system? Are the specific restoration designs being employed effective at meeting restoration goals? In addition to following scientific standards of practice, scientific research needs to be framed with an awareness of how formal and informal knowledge is used in restoration implementation.

  4. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  5. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration.

    PubMed

    Fernandez, Paz; Delgado, Expectación; Lopez-Alonso, Mónica; Poyatos, José Manuel

    2018-02-01

    This article presents analyses of soil and environmental information for the Darro River basin (Granada-Spain) preliminary to its hydrological and forestry restoration. These analyses were carried out using a geographical information system (GIS) and employing a new procedure that adapts hydrological forest-restoration methods. The complete analysis encompasses morphological conditions, soil and climate characteristics as well as vegetation and land use. The study investigates soil erosion in the basin by using Universal Soil Loss Equation (USLE) and by mapping erosion fragility units. The results are presented in a set of maps and their analysis, providing the starting point for river basin management and the hydrological and forestry-restoration project that was approved at the end of 2015. The presence of soft substrates (e.g. gravel and sand) indicates that the area is susceptible to erosion, particularly the areas that are dominated by human activity and have little soil protection. Finally, land use and vegetation cover were identified as key factors in the soil erosion in the basin. According to the results, river authorities have included several measures in the restoration project aimed at reducing the erosion and helping to recover the environmental value of this river basin and to include it in recreation possibilities for the community of Granada. The presented analytical approach, designed by the authors, would be useful as a tool for environmental restoration in other small Mediterranean river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Improved Regional Water Management Utilizing Climate Forecasts: An Inter-basin Transfer Model with a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.

    2014-12-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply

  7. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Thomas; Minor, Timothy; Pohll, Gregory

    2013-07-22

    Water is unquestionably a critical resource throughout the United States. In the semi-arid west -- an area stressed by increase in human population and sprawl of the built environment -- water is the most important limiting resource. Crucially, science must understand factors that affect availability and distribution of water. To sustain growing consumptive demand, science needs to translate understanding into reliable and robust predictions of availability under weather conditions that could be average but might be extreme. These predictions are needed to support current and long-term planning. Similar to the role of weather forecast and climate prediction, water prediction overmore » short and long temporal scales can contribute to resource strategy, governmental policy and municipal infrastructure decisions, which are arguably tied to the natural variability and unnatural change to climate. Change in seasonal and annual temperature, precipitation, snowmelt, and runoff affect the distribution of water over large temporal and spatial scales, which impact the risk of flooding and the groundwater recharge. Anthropogenic influences and impacts increase the complexity and urgency of the challenge. The goal of this project has been to develop a decision support framework of data acquisition, digital modeling, and 3D visualization. This integrated framework consists of tools for compiling, discovering and projecting our understanding of processes that control the availability and distribution of water. The framework is intended to support the analysis of the complex interactions between processes that affect water supply, from controlled availability to either scarcity or deluge. The developed framework enables DRI to promote excellence in water resource management, particularly within the Lake Tahoe basin. In principle, this framework could be replicated for other watersheds throughout the United States. Phase II of this project builds upon the research conducted

  8. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  9. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  10. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Yearmore » Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the

  11. The Great Basin Research and Management Partnership

    USDA-ARS?s Scientific Manuscript database

    The Great Basin is undergoing major sociological and ecological change as a result of urbanization, changing technology and land use, climate change, limited water resources, altered fire regimes, and invasive species, insects, and disease. Sustaining ecosystems, resources, and human populations of...

  12. Forecasting Winter Storms in the Sierra: A Social Science Perspective in Keeping the Public Safe without Negatively Impacting the Local Tourism Industry

    NASA Astrophysics Data System (ADS)

    Milne, R.; Wallmann, J.; Myrick, D. T.

    2010-12-01

    The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.

  13. Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej

    2017-04-01

    The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.

  14. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    NASA Astrophysics Data System (ADS)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable

  15. Earth observations taken from orbiter Discovery during STS-85 mission

    NASA Image and Video Library

    1997-08-11

    STS085-716-061 (7 - 19 August 1997) --- The dark green forests of the Sierra Nevada Mts. occupy the left side of the picture. Reno lies between Lake Tahoe (center) and Pyramid Lake (top right). Lake Tahoe, is a clear, deep alpine lake (over 505 meters deep), surrounded by Montane forest, ski resorts and casinos. Although Tahoe is known as one of the clearest lakes in the world, water quality in the lake has been declining due to soil erosion from development. Since 1968, it has lost about 30 feet of clarity. A partnership was recently formed between environmentalists and resort owners to protect their common interest in keeping the lake as clear as possible. Over the last five years they have slowed the erosion and the growth of algae that it causes so that clarity is now "only" lost at a rate of roughly one foot per year. Pyramid Lake (on the upper right of the photo) is as different from Tahoe as a lake could be. The sagebrush desert around the lake and is owned by the Pyramid Lake Paiute tribe who manage it as a fishery for an endangered sucker (fish), the cui-cui. The tribe has added modern fisheries' biology methods to their traditional management and chooses not to develop the lake as a recreation destination. Anaho Island, in the lower half of the lake, is a wildlife refuge managed for American White Pelicans which fly hundreds of miles each day to get from this safe breeding area to the shallow marshes where they feed. Directly above Lake Tahoe is Donner pass, near the site where the beleaguered Donner Party spent the winter of 1846 - 1847 trapped in the mountains. Several shallow ephemeral lakes can be seen in Lemmon Valley north of Reno's core urban area. These lakes would normally have dried up by August when this photo was taken, but are still wet because of the extremely wet winter and floods of January 1997.

  16. Identifying the groundwater basin boundaries, using environmental isotopes: a case study

    NASA Astrophysics Data System (ADS)

    Demiroğlu, Muhterem

    2017-06-01

    Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.

  17. Assessing the potential of economic instruments for managing drought risk at river basin scale

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Lopez-Nicolas, A.; Macian-Sorribes, H.

    2015-12-01

    Economic instruments work as incentives to adapt individual decisions to collectively agreed goals. Different types of economic instruments have been applied to manage water resources, such as water-related taxes and charges (water pricing, environmental taxes, etc.), subsidies, markets or voluntary agreements. Hydroeconomic models (HEM) provide useful insight on optimal strategies for coping with droughts by simultaneously analysing engineering, hydrology and economics of water resources management. We use HEMs for evaluating the potential of economic instruments on managing drought risk at river basin scale, considering three criteria for assessing drought risk: reliability, resilience and vulnerability. HEMs allow to calculate water scarcity costs as the economic losses due to water deliveries below the target demands, which can be used as a vulnerability descriptor of drought risk. Two generic hydroeconomic DSS tools, SIMGAMS and OPTIGAMS ( both programmed in GAMS) have been developed to evaluate water scarcity cost at river basin scale based on simulation and optimization approaches. The simulation tool SIMGAMS allocates water according to the system priorities and operating rules, and evaluate the scarcity costs using economic demand functions. The optimization tool allocates water resources for maximizing net benefits (minimizing total water scarcity plus operating cost of water use). SIMGAS allows to simulate incentive water pricing policies based on water availability in the system (scarcity pricing), while OPTIGAMS is used to simulate the effect of ideal water markets by economic optimization. These tools have been applied to the Jucar river system (Spain), highly regulated and with high share of water use for crop irrigation (greater than 80%), where water scarcity, irregular hydrology and groundwater overdraft cause droughts to have significant economic, social and environmental consequences. An econometric model was first used to explain the variation

  18. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Habteyes, Befekadu G.; Hasseen El-bardisy, Harb A. E.; Amer, Saud A.; Schneider, Verne R.; Ward, Frank A.

    2015-10-01

    Ongoing pressures from population growth, recurrent drought, climate, urbanization and industrialization in the Nile Basin raise the importance of finding viable measures to adapt to these stresses. Four tributaries of the Eastern Nile Basin contribute to supplies: the Blue Nile (56%), White Nile-Albert (14%), Atbara (15%) and Sobat (15%). Despite much peer reviewed work addressing conflicts on the Nile, none to date has quantitatively examined opportunities for discovering benefit sharing measures that could protect negative impacts on downstream water users resulting from new upstream water storage developments. The contribution of this paper is to examine the potential for mutually beneficial and sustainable benefit sharing measures from the development and operation of the Grand Ethiopian Renaissance Dam while protecting baseline flows to the downstream countries including flows into the Egyptian High Aswan Dam. An integrated approach is formulated to bring the hydrology, economics and institutions of the region into a unified framework for policy analysis. A dynamic optimization model is developed and applied to identify the opportunities for Pareto Improving measures to operate these two dams for the four Eastern Nile Basin countries: Ethiopia, South Sudan, Sudan, and Egypt. Results indicate a possibility for one country to be better off (Ethiopia) and no country to be worse off from a managed operation of these two storage facilities. Still, despite the optimism of our results, considerable diplomatic negotiation among the four riparians will be required to turn potential gains into actual welfare improvements.

  19. Great Basin Factsheet Series 2016 - Information and tools to restore and conserve Great Basin ecosystems

    Treesearch

    Jeanne C. Chambers

    2016-01-01

    Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...

  20. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    NASA Astrophysics Data System (ADS)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  1. Klamath River Basin water-quality data

    USGS Publications Warehouse

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  2. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into amore » 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.« less

  3. Management of groundwater supply and water quality in the Los Angeles Basin, California

    USGS Publications Warehouse

    Reichard, E.G.; Crawford, S.M.; Land, M.T.; Paybins, K.S.

    1999-01-01

    Water use and water needs in the coastal Los Angeles Basin in California have been very closely tied to the development of the region during the last 150 years. The first water wells were drilled in the mid-1800s. Currently about 40% of the water supply (9.4 m3 s-1) in the region is provided by groundwater. Other sources of water supply include reclaimed water and surface water imported from Owens Valley, the Colorado River, and northern California. Increasing groundwater use in the basin led to over-abstraction and seawater instrusion. Because of this, an important component of water management in the area has been the artificial recharge of local, imported, and reclaimed water which is spread in ponds and injected in wells to recharge the aquifer system and control seawater intrusion. The US Geological Survey (USGS) is working co-operatively with the Water Replenishment District of Southern California to evaluate the hydraulic and water-quality effects of these recharge operations and to assess the potential impacts of alternative water-management strategies, including changes in pumping and increases in the use of reclaimed water. As part of this work, the USGS has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. Chemical and isotopic data were used to identify the age and source of recharge to groundwater throughout the study area. This information is key to understanding the fate of artificially recharged water and helps define the three-dimensional groundwater flow system. The geohydrological data, especially the geophysical and geological data collected from 11 newly installed multi-completion monitoring wells, were used to redefine the regional hydrostratigraphy. The groundwater flow model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water-management

  4. Hydrologic and chemical-quality data from four rural basins in Guilford County, North Carolina, 1985-88

    USGS Publications Warehouse

    Hill, C.L.

    1989-01-01

    An investigation was begun in 1984 in Guilford County, North Carolina, to monitor water quality and soil erosion in basins with various land-management practices. Hydrologic and chemical-quality data were collected from four rural drainage basins, including two agricultural basins (7.4 and 4.8 acres) cultivated in tobacco and small grains, a mixed rural land-use basin (665 acres) currently under standard land-management practices, and a forested control basin (44 acres) characterizing background conditions. Mean concentrations of total nitrite plus nitrate were 1.0 milligrams per liter from the agricultural basin under standard land-management practices. This was nearly 10 times greater than concentrations from the forested basin. Records of streamflow discharge, chemical quality, ground-water levels, precipitation, and farming activities collected from October 1984 through September 1988 at one or more of the basins are also presented in this report.

  5. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  6. Gila River Basin Native Fishes Conservation Program

    Treesearch

    Doug Duncan; Robert W. Clarkson

    2013-01-01

    The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...

  7. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  8. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Means, Robert E.

    2013-01-01

    The overall goal of the Wyoming Basin Rapid Ecoregional Assessment (REA) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change (including energy development, fire, and invasive species), and a predictive capacity for evaluating future risks (including climate change). Additionally, the REA may be used for identifying priority areas for conservation or restoration and for assessing cumulative effects of multiple land uses. The Wyoming Basin REA will address Management Questions developed by the Bureau of Land Management and other agency partners for 8 major biomes and 19 species or species assemblages. The maps developed for addressing Management Questions will be integrated into overall maps of landscape-level ecological values and risks. The maps can be used to address the goals of the REA at a number of levels: for individual species, species assemblages, aquatic and terrestrial systems, and for the entire ecoregion. This allows flexibility in how the products of the REA are compiled to inform planning and management actions across a broad range of spatial scales.

  9. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  10. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  11. Developing measures of socioeconomic resiliency in the interior Columbia River basin.

    Treesearch

    Amy L. Horne; Richard W. Haynes

    1999-01-01

    Measures of socioeconomic resiliency were developed for the 100 counties studied in the Interior Columbia Basin Ecosystem Management Project. These measures can be used for understanding the extent to which changes in policies for management of Federal lands may affect socioeconomic systems coincident with those lands. Sixty-seven percent of the basin’s residents live...

  12. Streamflow characteristics of streams in the Helmand Basin, Afghanistan

    USGS Publications Warehouse

    Williams-Sether, Tara

    2008-01-01

    A majority of the Afghan population lacks adequate and safe supplies of water because of contamination, lack of water-resources management regulation, and lack of basic infrastructure, compounded by periods of drought and seasonal flooding. Characteristics of historical streamflows are needed to assist with efforts to quantify the water resources of the Helmand Basin. The Helmand Basin is the largest river basin in Afghanistan. It comprises the southern half of the country, draining waters from the Sia Koh Mountains in Herat Province to the eastern mountains in Gardez Province (currently known as the Paktia Province) and the Parwan Mountains northwest of Kabul, and finally draining into the unique Sistan depression between Iran and Afghanistan (Favre and Kamal, 2004). The Helmand Basin is a desert environment with rivers fed by melting snow from the high mountains and infrequent storms. Great fluctuations in streamflow, from flood to drought, can occur annually. Knowledge of the magnitude and time distribution of streamflow is needed to quantify water resources and for water management and environmental planning. Agencies responsible for the development and management of Afghanistan's surface-water resources can use this knowledge for making safe, economical, and environmentally sound water-resource planning decisions. To provide the Afghan managers with necessary streamflow information, the U.S. Geological Survey (USGS), in cooperation with the U.S. Agency for International Development (USAID), computed streamflow statistics for data collected at historical gaging stations within the Helmand Basin. The historical gaging stations used are shown in figure 1 and listed in table 1.

  13. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  14. Collaborations, research, and adaptive management to address nonnative Phragmites australis in the Great Lakes Basin

    USGS Publications Warehouse

    Kowalski, Kurt P.

    2016-06-30

    Phragmites australis, also known as common reed, is a native North American wetland grass that has grown in North America for thousands of years. More recently, a nonnative, invasive variety of Phragmites from Eurasia is rapidly invading wetlands across the continental United States and other parts of North America, where it negatively impacts humans and the environment. U.S. Geological Survey scientists, funded by the Great Lakes Restoration Initiative, are leading innovative efforts to improve management of nonnative Phragmites in the Great Lakes Basin.

  15. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Treesearch

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  16. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: plant communities and their importance to wildlife.

    Treesearch

    J. Edward Dealy; Donavin A. Leckenby; Diane M. Concannon

    1981-01-01

    Plant communities in the Great Basin of southeastern Oregon are described, and a field key is provided. The value of a plant community’s vertical and horizontal structure and the seasonal availability of its forage are examined in relation to wildlife habitat in managed rangelands. Further, the importance of individual and combined plant communities to wildlife in...

  17. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  18. Rio Grande Basin Consortium: Mission, goals, and activities

    Treesearch

    Deborah A. Potter; Deborah M. Finch

    1996-01-01

    The Rio Grande Basin Consortium (RGBC) serves as a networking group and clearinghouse for scientific information pertaining to the Rio Grande Basin. Its membership consists of natural and social scientists from New Mexico’s three research universities, administrators, and resource managers from federal, state, and local governmental agencies, members of community and...

  19. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  20. Lessons from Australian Water Reform for the Colorado River Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Udall, B.

    2010-12-01

    The Murray Darling Basin in Australia (MDB) and the Colorado River Basin (CRB) share many geographical, climatic, and legal similarities. Both are predominantly arid, approximately the same size, occupy similar latitudes, have major snowmelt tributaries as well as very arid tributaries, were allocated by interstate agreements early in the 20th century, have multi-year carryover storage, are threatened by mid-latitude climate change related drying, and during the last ten years have suffered under droughts of historic proportions. Some management practices have begun to change in the CRB, e.g. the multi-state 2007 shortage-sharing agreement, but in the MDB significant water management reform began in 1994 and has accelerated during the recent drought. The Australian language around water, conservation ethic, national and state policies, infrastructure, especially desalination, and even water management entities have undergone substantial changes during the last five years. Australia’s new National Water Commission, set up specifically to oversee reform, is on the verge of releasing a new basin management plan which will govern MDB management over the next decade. Which of these many reform-related lessons from Australia might be applicable to the Colorado River Basin and why? And which of the lessons might not be applicable and why?

  1. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... basin Level B Studies and regional water resource management plans, the responsible official...

  2. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Treesearch

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  3. Basin of Mexico: A history of watershed mismanagement

    Treesearch

    Luis A. Bojorquez Tapia; Exequiel Ezcurra; Marisa Mazari-Hiriart; Salomon Diaz; Paola Gomez; Georgina Alcantar; Daniela Megarejo

    2000-01-01

    Mexico City Metropolitan Zone (MCMZ) is located within the Basin of Mexico. Because of its large population and demand for natural resources, several authors have questioned the viability of the city, especially in terms of water resources. These are reviewed at the regional and the local scales. It is concluded that a multi-basin management approach is necessary to...

  4. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    NASA Astrophysics Data System (ADS)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task

  5. Participatory modelling to support decision making in water management under uncertainty: two comparative case studies in the Guadiana river basin, Spain.

    PubMed

    Carmona, Gema; Varela-Ortega, Consuelo; Bromley, John

    2013-10-15

    A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each other's views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems. Copyright © 2013 Elsevier

  6. Science-society collaboration for robust adaptation planning in water management - The Maipo River Basin in Chile

    NASA Astrophysics Data System (ADS)

    Ocampo Melgar, Anahí; Vicuña, Sebastián; Gironás, Jorge

    2015-04-01

    The Metropolitan Region (M.R.) in Chile is populated by over 6 million people and supplied by the Maipo River and its large number of irrigation channels. Potential environmental alterations caused by global change will extremely affect managers and users of water resources in this semi-arid basin. These hydro-climatological impacts combined with demographic and economic changes will be particularly complex in the city of Santiago, due to the diverse, counterpoised and equally important existing activities and demands. These challenges and complexities request the implementation of flexible plans and actions to adapt policies, institutions, infrastructure and behaviors to a new future with climate change. Due to the inherent uncertainties in the future, a recent research project entitled MAPA (Maipo Adaptation Plan for its initials in Spanish) has formed a collaborative science-society platform to generate insights into the vulnerabilities, challenges and possible mitigation measures that would be necessary to deal with the potential changes in the M.R. This large stakeholder platform conformed by around 30 public, private and civil society organizations, both at the local and regional level and guided by a Robust Decision Making Framework (RDMF) has identified vulnerabilities, future scenarios, performance indicators and mitigation measures for the Maipo River basin. The RDMF used in this project is the XLRM framework (Lempert et al. 2006) that incorporates policy levers (L), exogenous uncertainties (X), measures of performance standards (M) and relationships (R) in an interlinked process. Both stakeholders' expertise and computational capabilities have been used to create hydrological models for the urban, rural and highland sectors supported also by the Water Evaluation and Planning system software (WEAP). The identification of uncertainties and land use transition trends was used to develop future development scenarios to explore possible water management

  7. Great Basin Integrated Landscape Monitoring Pilot Summary Report

    USGS Publications Warehouse

    Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.

  8. Management of Solanum elaeagnifolium in the Mediterranean Basin

    USDA-ARS?s Scientific Manuscript database

    Solanum elaeagnifolium Cav. (silverleaf nightshade, SOLEL) is a prominent invasive alien weed in many countries of the Mediterranean Basin since its introduction in the mid-20th century, originating from the southwestern United States and northern Mexico. It reproduces vegetatively and by seeds that...

  9. Management strategies for sustainable western water

    Treesearch

    Scott Tyler; Sudeep Chandra; Gordon Grant

    2017-01-01

    With the effects of the dramatic western US drought still reverberating through the landscape, researchers gathered in advance of the 20th annual Lake Tahoe Summit to discuss western US water issues in the 21st century. This two-day workshop brought together ~40 researchers from universities and agencies (federal and state) to discuss the prospects that...

  10. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    NASA Astrophysics Data System (ADS)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly

  11. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested

  12. Application of synthetic scenarios to address water resource concerns: A management-guided case study from the Upper Colorado River Basin

    USGS Publications Warehouse

    McAfee, Stephanie A.; Pederson, Gregory T.; Woodhouse, Connie A.; McCabe, Gregory

    2017-01-01

    Water managers are increasingly interested in better understanding and planning for projected resource impacts from climate change. In this management-guided study, we use a very large suite of synthetic climate scenarios in a statistical modeling framework to simultaneously evaluate how (1) average temperature and precipitation changes, (2) initial basin conditions, and (3) temporal characteristics of the input climate data influence water-year flow in the Upper Colorado River. The results here suggest that existing studies may underestimate the degree of uncertainty in future streamflow, particularly under moderate temperature and precipitation changes. However, we also find that the relative severity of future flow projections within a given climate scenario can be estimated with simple metrics that characterize the input climate data and basin conditions. These results suggest that simple testing, like the analyses presented in this paper, may be helpful in understanding differences between existing studies or in identifying specific conditions for physically based mechanistic modeling. Both options could reduce overall cost and improve the efficiency of conducting climate change impacts studies.

  13. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  14. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  15. Tackling soil degradation and environmental changes in Lake Manyara Basin, Tanzania to support sustainable landscape/ecosystem management.

    NASA Astrophysics Data System (ADS)

    Munishi, Linus; Mtei, Kelvin; Bode, Samuel; Dume, Bayu; Navas, Ana; Nebiyu, Amsalu; Semmens, Brice; Smith, Hugh; Stock, Brian; Boeckx, Pascal; Blake, Will

    2017-04-01

    The Lake Manyara Basin (LMB), which encompasses Lake Manyara National Park a world ranking World Biosphere Reserve, is of great ecological and socio-economic value because it hosts a small-holder rain fed and extensive irrigation agriculture, grazing grounds for pastoralists, terrestrial and aquatic habitat for wildlife and tourism business contributing to poverty alleviation. Despite these multiple ecosystem services that support the local communities, the LMB is threatened by; (a) siltation from eroded soil fed from the wider catchment and rift escarpment of the basin and (b) declining water levels due to water capture by agriculture and possibly climate change. These threats to the ecosystem and its services are augmented by increasing human population, pollution by agricultural pesticides, poaching, human encroachment and infrastructure development, and illegal fisheries. Despite these challenges, here is a dearth of information on erosion hotspots and to date soil erosion and siltation problems in LMB have been interpreted largely in qualitative terms, and no coherent interpretative framework of these records exists. Despite concerns that modern sediment fluxes to the Lake may exceed long-term fluxes, little is known about erosion sources, how erosion rates and processes vary across the landscape and how erosion rates are influenced by the strong climate gradients in the basin. This contribution describes a soil erosion and sediment management project that aims to deliver a demonstration dataset generated from inter-disciplinary sediment-source tracing technologies and approaches to assess erosion hotspots, processes and spatial patterns of erosion in the area. The work focuses on a sub basin, the Monduli Sub catchment, located within the greater LMB. This is part of efforts to establish an understanding of soil erosion and landscape degradation in the basin as a pathway for generating and developing knowledge, building capacity to assist conservationists

  16. Water resources management in the Ganges Basin: a comparison of three strategies for conjunctive use of groundwater and surface water

    USGS Publications Warehouse

    Khan, Mahfuzur R.; Voss, Clifford I.; Yu, Winston; Michael, Holly A.

    2014-01-01

    The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin.

  17. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  18. Streamflow Prediction in Ungauged, Irrigated Basins

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  19. Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010

    USGS Publications Warehouse

    Thorsteinson, Lyman; VanderKooi, Scott; Duffy, Walter

    2011-01-01

    This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.

  20. Distributed Leadership in Drainage Basin Management: A Critical Analysis of ‘River Chief Policy’ from a Distributed Leadership Perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyi

    2018-02-01

    Water resources management has been more significant than ever since the official file stipulated ‘three red lines’ to scrupulously control water usage and water pollution, accelerating the promotion of ‘River Chief Policy’ throughout China. The policy launches creative approaches to include people from different administrative levels to participate and distributes power to increase drainage basin management efficiency. Its execution resembles features of distributed leadership theory, a vastly acknowledged western leadership theory with innovative perspective and visions to suit the modern world. This paper intends to analyse the policy from a distributed leadership perspective using Taylor’s critical policy analysis framework.

  1. Understanding the Impacts of Climate Change in the Tana River Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Muthuwatta, Lal; Sood, Aditya; McCartney, Matthew; Sandeepana Silva, Nishchitha; Opere, Alfred

    2018-06-01

    In the Tana River Basin in Kenya, six Regional Circulation Models (RCMs) simulating two Representative Concentration Pathways (RCPs) (i.e., 4.5 and 8.5) were used as input to the Soil and Water Assessment Tool (SWAT) model to determine the possible implications for the hydrology and water resources of the basin. Four hydrological characteristics - water yield, groundwater recharge, base flow and flow regulation - were determined and mapped throughout the basin for three 30-year time periods: 2020-2049, 2040-2069 and 2070-2099. Results were compared with a baseline period, 1983-2011. All four hydrological characteristics show steady increases under both RCPs for the entire basin but with considerable spatial heterogeneity and greater increases under RCP 8.5 than RCP 4.5. The results have important implications for the way water resources in the basin are managed. It is imperative that water managers and policy makers take into account the additional challenges imposed by climate change in operating built infrastructure.

  2. Whole Watershed Management to Maximize Total Water Storage: Case Study of the American-Cosumnes River Basin

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.

    2016-12-01

    Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional

  3. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  4. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    PubMed

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Water-related scientific activities of the U.S. Geological Survey in Nevada, fiscal years 1985-89

    USGS Publications Warehouse

    Kilroy, Kathryn C.

    1989-01-01

    The U.S. Geological Survey has been collecting water resources data in Nevada since 1890. Most of the projects in the current Nevada District program can be classified as either basic-data acquisition (about 25%) or hydrologic interpretation (about 75 %). About 52% of the activities are supported by cooperative agreements with State and local agencies. Technical projects supported by other Federal agencies make up about 23% of the program, and the remaining 25% consists of data collection, research, and interpretive projects supported directly by the U.S. Geological Survey. Water conditions in Nevada during the 4 years covered by this report were by no means average, with 1 very wet year (1986) and 2 very dry years (1987-88). The major water resources issues include: water allocation in the Truckee-Carson River basin; irrigation return flow contamination of the Stillwater Wildlife Management Area; effects of weapons testing at the Nevada Test Site; assessment of potential long-term impacts of the proposed Yucca Mountain Nuclear Waste Repository; and drought. Future water-resources issues in Nevada are likely to center on water supply for and the environmental effects of, the rapidly growing population centers at Las Vegas, Reno, and Elko; impacts of operations at the Nevada Test Site; management of interstate rivers such as the Truckee and Colorado Rivers; hydrologic and environmental impacts at heavily mined areas; and water quality management in the Lake Tahoe Basin. (Thacker-USGS-WRD)

  6. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving

  7. Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change.

    PubMed

    Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha

    2012-12-01

    The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Do incentives still matter for the reform of irrigation management in the Yellow River Basin in China?

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Zhang, Lijuan; Huang, Qiuqiong

    2014-09-01

    Under the pressure of increasing water shortages and the need to sustain the development of irrigated agriculture, since the middle of the 1990s, officials in the YRB have begun to push for the institutional reform of irrigation management. Based on a panel data set collected in 2001 and 2005 in the Yellow River Basin, the overall goal of this paper is to examine how the irrigation management reform has proceeded since the early 2000s and what the impacts are of the incentive mechanisms on water use and crop yields. The results show that after the early 2000s, irrigation management reform has accelerated. Different from contracting management, more Water User Associations (WUAs) chose not to establish incentive mechanisms. The econometric model results indicate that using incentive mechanisms to promote water savings is effective under the arrangement of contracting management and not effective under WUAs. However, if incentives are provided to the contracting managers, the wheat yield declines significantly. Our results imply that at the later stage of the reform, the cost of reducing water use by providing incentives to managers includes negative impacts on some crop yields. Therefore, how to design win-win supporting policies to ensure the healthy development of the irrigation management reform should be highly addressed by policy makers.

  9. Old Basin Filled by Smooth Plains

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Old basin, 190 km in diameter, filled by smooth plains at 43 degrees S, 55 degrees W. The basin's hummocky rim is partly degraded and cratered by later events. Mariner 10 frame 166607.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  10. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  11. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projectsmore » (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and

  12. Areal Changes of Lentic Water Bodies Within an Agricultural Basin of the Argentinean Pampas. Disentangling Land Management from Climatic Causes

    NASA Astrophysics Data System (ADS)

    Booman, Gisel Carolina; Calandroni, Mirta; Laterra, Pedro; Cabria, Fabián; Iribarne, Oscar; Vázquez, Pablo

    2012-12-01

    Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed ( P < 0.05) due to non-climatic causes. During the evaluated decade, 30 % of the LWB that changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade.

  13. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    NASA Astrophysics Data System (ADS)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  14. Coalbed methane-produced water quality and its management options in Raniganj Basin, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Mendhe, Vinod Atmaram; Mishra, Subhashree; Varma, Atul Kumar; Singh, Awanindra Pratap

    2017-06-01

    Coalbed methane (CBM) recovery is associated with production of large quantity of groundwater. The coal seams are depressurized by pumping of water for regular and consistent gas production. Usually, CBM operators need to pump >10 m3 of water per day from one well, which depends on the aquifer characteristics, drainage and recharge pattern. In India, 32 CBM blocks have been awarded for exploration and production, out of which six blocks are commercially producing methane gas at 0.5 million metric standard cubic feet per day. Large amount of water is being produced from CBM producing blocks, but no specific information or data are available for geochemical properties of CBM-produced water and its suitable disposal or utilization options for better management. CBM operators are in infancy and searching for the suitable solutions for optimal management of produced water. CBM- and mine-produced water needs to be handled considering its physical and geochemical assessment, because it may have environmental as well as long-term impact on aquifer. Investigations were carried out to evaluate geochemical and hydrogeological conditions of CBM blocks in Raniganj Basin. Totally, 15 water samples from CBM well head and nine water samples from mine disposal head were collected from Raniganj Basin. The chemical signature of produced water reveals high sodium and bicarbonate concentrations with low calcium and magnesium, and very low sulphate in CBM water. It is comprehend that CBM water is mainly of Na-HCO3 type and coal mine water is of Ca-Mg-SO4 and HCO3-Cl-SO4 type. The comparative studies are also carried out for CBM- and mine-produced water considering the geochemical properties, aquifer type, depth of occurrence and lithological formations. Suitable options like impounding, reverse osmosis, irrigation and industrial use after prerequisite treatments are suggested. However, use of this huge volume of CBM- and mine-produced water for irrigation or other beneficial purposes

  15. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  16. Pesticides in the Lake Kinneret basin: a combined approach towards mircopollutant management

    NASA Astrophysics Data System (ADS)

    Gaßmann, M.; Friedler, E.; Dubwoski, Y.; Dinerman, E.; Olsson, O.; Bauer, M.

    2009-04-01

    concentration of the pesticides in Lake Kinneret (iv) and therefore the drinking water reservoir, a lake model is fed by the stream network model outputs. However, the most difficult part of the current risk management approach of water resources in the upper Jordan River basin is to produce reliable field data on the environmental fate of pesticides and to evaluate their impact on the local water supply. The introduced combined approach aims at providing useful information and arguments for the decision making process and supporting water managers in revision of management strategies and planning of new infrastructure projects.

  17. Balancing Ground-Water Withdrawals and Streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin, Rhode Island

    USGS Publications Warehouse

    Barlow, Paul M.; Dickerman, David C.

    2001-01-01

    Ground water withdrawn for water supply reduces streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin in Rhode Island. These reductions may adversely affect aquatic habitats. A hydrologic model was prepared by the U.S. Geological Survey in cooperation with the Rhode Island Water Resources Board, Town of North Kingstown, Rhode Island Department of Environmental Management, and Rhode Island Economic Development Corporation to aid water-resource planning in the basin. Results of the model provide information that helps water suppliers and natural-resource managers evaluate strategies for balancing ground-water development and streamflow reductions in the basin.

  18. Climate change impacts on southeastern U.S. basins

    USGS Publications Warehouse

    Georgakakos, Aris P.; Yao, Huaming

    2000-01-01

    The work described herein aims to assess the impacts of potential climate change on the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Talapoosa (ACT) river basins in the Southeastern US. The assessment addresses the potential impacts on watershed hydrology (soil moisture and streamflow) and on major water uses including water supply, drought management, hydropower, environmental and ecological protection, recreation, and navigation. This investigation develops new methods, establishes and uses an integrated modeling framework, and reaches several important conclusions that bear upon river basin planning and management. Although the specific impacts vary significantly with the choice of the GCM scenario, some general conclusions are that (1) soil moisture and streamflow variability is expected to increase, and (2) flexible and adaptive water sharing agreements, management strategies, and institutional processes are best suited to cope with the uncertainty associated with future climate scenarios.

  19. 77 FR 57556 - Lake Tahoe Basin Federal Advisory Committee (LTBFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... updated information on Aquatic Invasive Species, fuels treatments, and biomass opportunities in the Lake...: The LTBFAC will receive updated information on Aquatic Invasive Species, fuels treatments, and biomass...

  20. Social-ecological resilience and law in the Platte River Basin

    USGS Publications Warehouse

    Birge, Hannah E.; Allen, Craig R.; Craig, Robin; Garmestani, Ahjond S.; Hamm, Joseph A.; Babbitt, Christina; Nemec, Kristine T.; Schlager, Edella

    2014-01-01

    Efficiency and resistance to rapid change are hallmarks of both the judicial and legislative branches of the United States government. These defining characteristics, while bringing stability and predictability, pose challenges when it comes to managing dynamic natural systems. As our understanding of ecosystems improves, we must devise ways to account for the non-linearities and uncertainties rife in complex social-ecological systems. This paper takes an in-depth look at the Platte River basin over time to explore how the system's resilience—the capacity to absorb disturbance without losing defining structures and functions—responds to human driven change. Beginning with pre-European settlement, the paper explores how water laws, policies, and infrastructure influenced the region's ecology and society. While much of the post-European development in the Platte River basin came at a high ecological cost to the system, the recent tri-state and federal collaborative Platte River Recovery and Implementation Program is a first step towards flexible and adaptive management of the social-ecological system. Using the Platte River basin as an example, we make the case that inherent flexibility and adaptability are vital for the next iteration of natural resources management policies affecting stressed basins. We argue that this can be accomplished by nesting policy in a resilience framework, which we describe and attempt to operationalize for use across systems and at different levels of jurisdiction. As our current natural resources policies fail under the weight of looming global change, unprecedented demand for natural resources, and shifting land use, the need for a new generation of adaptive, flexible natural resources govern-ance emerges. Here we offer a prescription for just that, rooted in the social , ecological and political realities of the Platte River basin. Social-Ecological Resilience and Law in the Platte River Basin (PDF Download Available). Available

  1. Utilizing Gravity Methods for Regional Studies in Basin Delineation: Case Study at Jornada del Muerto basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.

    2005-12-01

    The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.

  2. Data on surface-water quality and quantity, lower Edgewood Creek basin, Douglas County, Nevada, 1984-85

    USGS Publications Warehouse

    La Camera, R. J.; Browning, S.B.

    1988-01-01

    Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)

  3. Modelling the changing cumulative vulnerability to climate-related hazards for river basin management using a GIS-based multicriteria decision approach

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan

    2017-04-01

    1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses

  4. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    EPA Science Inventory

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  5. Steps toward “useful” hydroclimatic scenarios for water resource management in the Murray-Darling Basin

    NASA Astrophysics Data System (ADS)

    Kiem, Anthony S.; Verdon-Kidd, Danielle C.

    2011-12-01

    There is currently a distinct gap between what climate science can provide and information that is practically useful for (and needed by) natural resource managers. Improved understanding, and model representations, of interactions between the various climate drivers (both regional and global scale), combined with increased knowledge about the interactions between climate processes and hydrological processes at the regional scale, is necessary for improved attribution of climate change impacts, forecasting at a range of temporal scales and extreme event risk profiling (e.g., flood, drought, and bushfire). It is clear that the science has a long way to go in closing these research gaps; however, in the meantime water resource managers in the Murray-Darling Basin, and elsewhere, require hydroclimatic projections (i.e., seasonal to multidecadal future scenarios) that are regionally specific and, importantly, take into account the impacts, and associated uncertainties, of both natural climate variability and anthropogenic change. The strengths and weaknesses of various approaches for supplying this information are discussed in this paper.

  6. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  7. Evaluation of potential effects of federal land management alternatives on trends of salmonids and their habitats in the interior Columbia River basin.

    Treesearch

    Bruce Rieman; James T. Peterson; James Clayton; Philip Howell; Russell Thurow; William Thompson; Danny Lee

    2001-01-01

    Aquatic species throughout the interior Columbia River basin are at risk. Evaluation of the potential effects of federal land management on aquatic ecosystems across this region is an important but challenging task. Issues include the size and complexity of the systems, uncertainty in important processes and existing states, flexibility and consistency in the...

  8. Looking at groundwater research landscape of Jakarta Basin for better water management

    NASA Astrophysics Data System (ADS)

    Irawan, Dasapta Erwin; Priyambodho, Adhi; Novianti Rachmi, Cut; Maulana Wibowo, Dimas

    2017-07-01

    Based on our experience, defining the gap between what we know and what we don’t know is the hardest part in proposing water management strategy. Many techniques have been introduced to make this stage easier, and one of them is bibliometric analysis. The following paper is the second part of our bibliometric project in the search for a gap in the water resources research in Jakarta. This paper starts to analyse the visualisations that had been extracted from the previous paper based on our database. Using the keyword “groundwater Jakarta”, we managed to get 70 relevant papers. Several visualisations have been built using open source applications. Word cloud analysis shows that the trend to discuss groundwater in scientific sense had only been started in the early 2000’s. This is presumably due to the emerging regional autonomy in which forcing regions to understand their groundwater setting before creating a management strategy. More papers in the later time has been induced by more geo-hazards (land subsidence and floods) resulted in the vast groundwater pumping. More and more resources have been utilized to get more groundwater data. Water scientists by then understood that these hazards had been started long before the 2000’s. This had become the starting point of data era later on. The next era will be the era of water management. Hydrologists had been proposing integrated water management Jakarta and its nearby groundwater basins. Most of them have been strongly suggested to manage all water bodies, rainfall, surface water, and groundwater as one system. In the 2010’s we identify more papers are discussing in water quality following the vast discussion in water quantity in the previous era. People have been more aware the importance of quality in providing water system for the citizen. Then five years later, we believe that water researchers have also put their mind in the interactions between surface water and groundwater, especially in the

  9. From Management to Negotiation: Technical and Institutional Innovations for Integrated Water Resource Management in the Upper Comoé River Basin, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  10. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Maril Mora, President / CEO of the Reno -Tahoe Airport Authority welcomes NASA and Partners.

  11. A global distributed basin morphometric dataset

    NASA Astrophysics Data System (ADS)

    Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang

    2017-01-01

    Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.

  12. Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins.

    PubMed

    Navarro-Ortega, Alícia; Acuña, Vicenç; Batalla, Ramon J; Blasco, Julián; Conde, Carlos; Elorza, Francisco J; Elosegi, Arturo; Francés, Félix; La-Roca, Francesc; Muñoz, Isabel; Petrovic, Mira; Picó, Yolanda; Sabater, Sergi; Sanchez-Vila, Xavier; Schuhmacher, Marta; Barceló, Damià

    2012-05-01

    The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.

  13. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  14. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    PubMed

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  15. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Goode, Jaime R.; Luce, Charles H.; Buffington, John M.

    2012-02-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to increase sediment yield primarily through changes in temperature and hydrology that promote vegetation disturbances (i.e., wildfire, insect/pathogen outbreak, drought-related die off). Here, we synthesize existing data from central Idaho to explore (1) how sediment yields are likely to respond to climate change in semi-arid basins influenced by wildfire, (2) the potential consequences for aquatic habitat and water resource infrastructure, and (3) prospects for mitigating sediment yields in forest basins. Recent climate-driven increases in the severity and extent of wildfire suggest that basin-scale sediment yields within the next few years to decades could be greater than the long-term average rate of 146 T km - 2 year - 1 observed for central Idaho. These elevated sediment yields will likely impact downstream reservoirs, which were designed under conditions of historically lower sediment yield. Episodic erosional events (massive debris flows) that dominate post-fire sediment yields are impractical to mitigate, leaving road restoration as the most viable management opportunity for offsetting climate-related increases in sediment yield. However, short-term sediment yields from experimental basins with roads are three orders of magnitude smaller than those from individual fire-related events (on the order of 10 1 T km - 2 year - 1 compared to 10 4 T km - 2 year - 1 , respectively, for similar contributing areas), suggesting that road restoration would provide a relatively minor reduction in sediment loads at the basin-scale. Nevertheless, the ecologically damaging effects of fine sediment (material < 6 mm

  16. Implementation of Theeuropeanwater Framework Directive In France: New Challenges For River Basin Organisat Ion, Planning and Participation

    NASA Astrophysics Data System (ADS)

    Allain, S.

    The European Water Framework Directive (2000/60/EC) establishes a system of participatory river basin planning for national and international basins. The French institutional framework for water management is already very close to this system: the 1964 Water Law actually set up basin bodies, the Agences de l'Eau ("Water Agencies"), at the level of large river basins, and multipartite basin commissions, the Comités de Bassin ("River Basin Authorities"), in order to monitor the Agences de l'Eau's policies; besides, the 1992 Water Law created a planning procedure at this level, the Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE : "General Water Management Plan"), aiming to determine general orientations for the management of water resources and having to be defined by the Comités de Bassin. At first glance therefore, the implementation of the European Water Framework Directive should not raise a lot of problems in France. However, a quick analysis of the current situation shows that it is not so obvious : if the French Water Policy set up two basin organisations, neither of them deals concretely with the management of the water resources, and the implementation of water management plans depends on many stakeholders; the SDAGE itself only partially meets the demands of the Directive, regarding e. g. the economic analysis; finally, in spite of the creation of multipartite basin commissions, the public participation is very restricted. Such an analysis leads to pay more attention to the relations to establish between organisation, planning and participation at the level of large river basins. An analysis of other elements of the French institutional framework can help us in this way : another planning procedure was actually created by the 1992 Water Law, the Schéma d'Aménagement et de Gestion des Eaux (SAGE : "Water Management Plan"), aiming to fix general objectives to manage the water resources at the level of small river basins, and having to be

  17. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  18. Fire and the Great Basin

    Treesearch

    Jeanne C. Chambers

    2008-01-01

    Fire regimes in Great Basin ecosystems have changed significantly since settlement of the region in the mid- to late 1800s. The following provides an overview of the nature and consequences of altered fire regimes, factors influencing the changes, and research and management questions that need to be addressed to maintain sustainable ecosystems.

  19. Great Basin wildlife disease concerns

    Treesearch

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  20. Resilience landscapes for Congo basin rainforests vs. climate and management impacts

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael

    2015-04-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.

  1. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    NASA Astrophysics Data System (ADS)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS

  2. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with

  3. Solutions for North American Water Security Challenge: Colorado and Bravo transboundary basins cases

    NASA Astrophysics Data System (ADS)

    López Pérez, M.

    2013-12-01

    The transboundary basins of Colorado (Baja California) and Rio Bravo (Grande) have low water availability figures and water will be appreciated as a highly valued good. In the Rio Grande basin, the strategies and actions have been developed with the River Basin Council: a new surface water management, new water allocation rules for different rainfall and runoff scenarios (climate change included), new sources of water and establishment of water reserves for human consumption and for environmental purposes. In the Colorado River, with an integrated watershed management vision, Mexican and US federal, state and non-governmental organizations representatives signed Minute 319 for 5 years without changing the 1944 Water Treaty. Concepts and rules for surplus, shortage, Intentionally Created Mexican Water (ICMA), salinity, water for the environment and international projects were included and are been implemented. Parallel drinking water and sanitation services in both sides of the border through the Joint Investment Program, EPA-CONAGUA invested 979.2 million dollars from grants to improve the quality of the environment and the inhabitants. Accomplishments are high and the reduction in river health is a good indicator. The implementation of this binational cooperation actions under the framework of the 1944 Water Treaty are considered global solutions in the field of integrated water management in transboundary basins and for creating water security in highly pressured basins. Keywords: Colorado River, Rio Grande or Bravo River, water security, Transboundary basins, environmental water reserves

  4. An adaptive watershed management assessment based on watershed investigation data.

    PubMed

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  5. Risk management frameworks: supporting the next generation of Murray-Darling Basin water sharing plans

    NASA Astrophysics Data System (ADS)

    Podger, G. M.; Cuddy, S. M.; Peeters, L.; Smith, T.; Bark, R. H.; Black, D. C.; Wallbrink, P.

    2014-09-01

    Water jurisdictions in Australia are required to prepare and implement water resource plans. In developing these plans the common goal is realising the best possible use of the water resources - maximising outcomes while minimising negative impacts. This requires managing the risks associated with assessing and balancing cultural, industrial, agricultural, social and environmental demands for water within a competitive and resource-limited environment. Recognising this, conformance to international risk management principles (ISO 31000:2009) have been embedded within the Murray-Darling Basin Plan. Yet, to date, there has been little strategic investment by water jurisdictions in bridging the gap between principle and practice. The ISO 31000 principles and the risk management framework that embodies them align well with an adaptive management paradigm within which to conduct water resource planning. They also provide an integrative framework for the development of workflows that link risk analysis with risk evaluation and mitigation (adaptation) scenarios, providing a transparent, repeatable and robust platform. This study, through a demonstration use case and a series of workflows, demonstrates to policy makers how these principles can be used to support the development of the next generation of water sharing plans in 2019. The workflows consider the uncertainty associated with climate and flow inputs, and model parameters on irrigation and hydropower production, meeting environmental flow objectives and recreational use of the water resource. The results provide insights to the risks associated with meeting a range of different objectives.

  6. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  7. 75 FR 3442 - Tahoe National Forest, California, Tahoe National Forest Motorized Travel Management Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Forest Transportation System (NFTS) roads, NFTS motorized trails, and areas by the public except as... roads and trails to the NFTS by vehicle class and season of use. 3. Establishment of Motorized ``Open... the NFTS: Changes to the NFTS including Vehicle Class, Season of Use and/Reopening Maintenance Level 1...

  8. Characterizing Drought Risk Management and Assessing the Robustness of Snowpack-based Drought Indicators in the Upper Colorado River Basin.

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Badger, A.; Lukas, J.; Dilling, L.; Page, R.

    2017-12-01

    Drought conditions over the past two decades have arisen during a time of increasing water demands in the Upper Colorado River Basin. The Basin's highly allocated and diverse water systems raise the question of how drought-based information, such as snowpack, streamflow, and reservoir conditions, can be used to inform drought risk management. Like most of the western U.S., snow-water equivalent (SWE) at key dates during the year (e.g., April 1) is routinely used in water resource planning because it is often the highest observed value during the season and it embodies stored water to be released, through melt, during critical periods later in the summer. This presentation will first focus on how water managers on Colorado's Western Slope (a) perceive drought-related risk, (b) use and access drought information, and (c) respond to drought. Preliminary findings will be presented from in-person interviews, document analysis, observations of planning meetings, and other interactions with seven water-management entities across the Western Slope. The second part of the presentation will focus on how the predictive power of snowpack-based drought indicators—identified as the most useful and reliable drought indicator by regional water stakeholders—are expected change in a warmer world, i.e. where expectations are for more rain versus snow, smaller snowpacks, and earlier snowmelt and peak runoff. We will present results from hydrologic simulations using climate projection to examine how a warming climate will affect the robustness of these snowpack-based drought indicators by mid-century.

  9. ERTS-1 evaluation of natural resources management applications in the Great Basin

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.; Lorain, G.

    1973-01-01

    The relatively cloud free weather in the Great Basin has allowed the accumulation of several dates of excellent ERTS-1 imagery. Mountains, valleys, playas, stream courses, canyons, alluvial fans, and other landforms are readily delineated on ERTS-1 imagery, particularly with MSS-5. Each band is useful for identifying and studying one or more natural resource features. For example, crested wheatgrass seedings were most easily identified and measured on MSS-7. Color enhancements simulating CIR were useful for depicting meadow and phreatophytic vegetation along water bodies and stream courses. Work is underway to inventory and monitor wildfire areas by age and successional status. Inventories have been completed on crested wheatgrass seedings over the entire State of Nevada, and inventories of playa surfaces, water surfaces, phreatophytic vegetation, snow cover, meadows, and other features is continuing. Vegetation ecotones are being delineated for vegetation mapping. The pinyon/juniper-northern desert shrub ecotone has been identified with considerable success. Phenology changes can be used to describe vegetation changes for management.

  10. Managing the Columbia Basin for Sustainable Economy, Society, Environment

    EPA Science Inventory

    The Columbia River Basin (CRB) is a vast region of the Pacific Northwest covering parts of the United States, Canada and Tribal lands. As the Columbia River winds its way from Canada into the US, the river passes through numerous multi-purpose reservoirs and hydroelectric genera...

  11. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  12. A European initiative to define research needs and foster the adoption of Managed Aquifer Recharge into river basin management

    NASA Astrophysics Data System (ADS)

    Kneppers, Angeline; Grützmacher, Gesche; Kazner, Christian; Zojer, Hans

    2010-05-01

    The European Technology Platform for Water (WssTP) was initiated by the European Commission to federate a highly fragmented sector with the aim to foster competitive innovations and promote sustainable solutions. To achieve this, pilot programmes endorsing a bottom-up approach were launched in 2007 with a variety of stakeholders having representative water issues to solve. Integrated Water Resources Management (IWRM) was adopted as a balancing process for the safe and sustainable development, allocation and monitoring of water resource use in the context of current and future social, economic and environmental objectives. As a result key drivers were selected and a methodology was followed to identify and validate the needs with stakeholders and experts, and demonstrate solutions as an integrated part of the river basin management plans. Managed Aquifer Recharge (MAR) was identified as a key component of integrated water resources management, especially in water scarce regions and an area relevant for further research. The paper shall summarize the process followed by the WssTP, initiating a Task Force with 36 representatives from European research institutes and industry partners with participation of a few international experts. During a workshop conducted in Graz in June 2009 these experts developed the basis for a report that has now been submitted to the European Commission for consideration in future research calls. Implementing IWRM and MAR is made difficult by the number of different water bodies, but also by the large number of stakeholders, policies, legislations and conflicting interests. The results of the MAR Task Force initiative set the basis for further discussions with the international MAR community on the relevance of the identified research needs but also on the importance and process to associate the institutional and managerial entities for capacity building and the adoption of MAR into the overall management strategies.

  13. Research information needs on terrestrial vertebrate species of the interior Columbia basin and northern portions of the Klamath and Great Basins: a research, development, and application database.

    Treesearch

    Bruce G. Marcot

    1997-01-01

    Research information needs on selected invertebrates and all vertebrates of the interior Columbia River basin and adjacent areas in the United States were collected into a research, development, and application database as part of the Interior Columbia Basin Ecosystem Management Project. The database includes 482 potential research study topics on 232 individual...

  14. Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan.

    PubMed

    Chang, Chia-Ling; Chao, Yu-Chi

    2012-05-01

    Every year, Taiwan endures typhoons and earthquakes; these natural hazards often induce landslides and debris flows. Therefore, watershed management strategies must consider the environmental vulnerabilities of local basins. Because many factors affect basin ecosystems, this study applied multiple criteria analysis and the analytical hierarchy process (AHP) to evaluate seven criteria in three phases (geographic phase, hydrologic phase, and societal phase). This study focused on five major basins in Taiwan: the Tan-Shui River Basin, the Ta-Chia River Basin, the Cho-Shui River Basin, the Tseng-Wen River Basin, and the Kao-Ping River Basin. The objectives were a comprehensive examination of the environmental characteristics of these basins and a comprehensive assessment of their environmental vulnerabilities. The results of a survey and AHP analysis showed that landslide area is the most important factor for basin environmental vulnerability. Of all these basins, the Cho-Shui River Basin in central Taiwan has the greatest environmental vulnerability.

  15. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality managementmore » has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.« less

  16. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    USGS Publications Warehouse

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  17. Drainage Basins as Large-Scale Field Laboratories of Change: Hydro-biogeochemical- economic Model Study Support for Water Pollution and Eutrophication Management Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.

  18. Great Basin Native Plant Selection and Increase Project: 2012 progress report

    Treesearch

    Nancy Shaw; Mike Pellant

    2013-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...

  19. Distribution and Fate of Black Carbon Nanoparticles from Regional Urban Pollution and Wildfire at a Large Subalpine Lake in the Western United States

    NASA Astrophysics Data System (ADS)

    Bisiaux, M. M.; Heyvaert, A. C.; Edwards, R.

    2012-04-01

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, atmospheric chemistry, and the carbon cycle. Eventually these particles enter aquatic environments, where their distribution, fate and association with other pollutants are still poorly characterized. This study presents results from an evaluation of rBC in the waters of oligotrophic Lake Tahoe and its watershed in the western United States. The study period included a large wildfire within the Tahoe basin, seasonal snowmelt, and a number of storm events that resulted in pulsed urban runoff into the lake with rBC concentrations up to four orders of magnitude higher than mid-lake concentrations. The results show that elevated rBC concentrations from wildfire and urban runoff were rapidly attenuated in the lake, suggesting unexpected aggregation or degradation of the particles that prevent rBC concentrations from building up in the water of this lake, renowned for its clarity. The rBC concentrations were also measured in sediment cores from Lake Tahoe to evaluate the sediment archive as a potential combustion record. The evidence suggests that rBC is efficiently transferred to these sediments, which preserve a local-to-regional scale history of rBC emissions, as revealed by comparison with other pollutant records in the sediment. Rapid removal of rBC soon after entry into the lake has implications for transport of rBC in the global aquatic environment and flux of rBC from continents to the global ocean.

  20. Coastal freshwater resources management in the frame of climate change: application to three basins (Italy, Morocco, Portugal)

    NASA Astrophysics Data System (ADS)

    Masson, E.; Antonellini, M.; Dentinho, T.; Khattabi, A.

    2009-04-01

    Climate change becomes an increasing constraint in IWRM and many effects are expected in coastal watersheds like sea level rise and its consequences (i.e. beach erosion, salt water intrusion, soil salinization, groundwater and surface water pollution…) or water budget changes (i.e. seasonal and inter-annual fluctuations) and an increase of extreme events (i.e. floods, rainfalls and droughts). Beside this physical changes one can also observed the increase of water demand in coastal areas due to population growth and development of tourism activities. Both effects (e.g. physical and socio-economical) must be included into any coastal freshwater management option for a mid-term / long-term approach to set water mass/basin management plans as expected in European countries by the WDF or elsewhere in an IWRM objective. The Waterknow project funded by EraNet-Circle-Med program aims to develop a tool to help decisions makers in the implementation of IWRM plans in coastal areas that will have to cope with climate change effects and socio-economical pressures. This interdisciplinary project is applied to three basins (e.g. Fiumi Uniti Bevano, Italy; Terceira Island, Portugal and Taheddart, Morocco) and seeks to integrate and to develop research achievements in coastal hydrogeology, economical and land use modeling in each basin. In the Fiumi Uniti Bevano basin, a detailed hydrogeological survey was performed during the summer 2008. Twenty auger holes with an average spacing of 350 m where drilled with the objective of determining the top groundwater quality in the coastal aquifer. At the same time, we collected the chemical and physical parameters of the surface waters. The data collected in the field show that a fresh groundwater lens is still present in the aquifer of the backshore area below the coastal dunes and that the surface water is all brackish to salty. In the northern part of the study area, the fresh groundwater lens in the backshore zone is missing, as

  1. System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jake Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  2. System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jacob J. Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  3. Aquifers of the Denver Basin, Colorado

    USGS Publications Warehouse

    Topper, R.

    2004-01-01

    Development of the Denver Basin for water supply has been ongoing since the late 1800s. The Denver Basin aquifer system consists of the water-yielding strata of Tertiary and Cretaceous sedimentary rocks within four overlying formations. The four statutory aquifers contained in these formations are named the Dawson, Denver, Arapahoe, and Laramie-Fox Hills. For water rights administrative purposes, the outcrop/subcrop of the Laramie-Fox Hills aquifer defines the margins of the Basin. Initial estimates of the total recoverable groundwater reserves in storage, under this 6700-mi2 area, were 295 million acre-ft. Recent geologic evidence indicates that the aquifers are very heterogeneous and their composition varies significantly with distance from the source area of the sediments. As a result, available recoverable reserves may be one-third less than previously estimated. There is no legal protection for pressure levels in the aquifer, and water managers are becoming increasingly concerned about the rapid water level declines (30 ft/yr). Approximately 33,700 wells of record have been completed in the sedimentary rock aquifers of the Denver Basin for municipal, industrial, agricultural, and domestic uses.

  4. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  5. Spatial analysis from remotely sensed observations of Congo basin of East African high Land to drain water using gravity for sustainable management of low laying Chad basin of Central Africa

    NASA Astrophysics Data System (ADS)

    Modu, B.; Herbert, B.

    2014-11-01

    The Chad basin which covers an area of about 2.4 million kilometer square is one of the largest drainage basins in Africa in the centre of Lake Chad .This basin was formed as a result of rifting and drifting episode, as such it has no outlet to the oceans or seas. It contains large area of desert from the north to the west. The basin covers in part seven countries such as Chad, Nigeria, Central African Republic, Cameroun, Niger, Sudan and Algeria. It is named Chad basin because 43.9% falls in Chad republic. Since its formation, the basin continues to experienced water shortage due to the activities of Dams combination, increase in irrigations and general reduction in rainfall. Chad basin needs an external water source for it to be function at sustainable level, hence needs for exploitation of higher east African river basin called Congo basin; which covers an area of 3.7 million square km lies in an astride the equator in west-central Africa-world second largest river basin after Amazon. The Congo River almost pans around republic of Congo, the democratic republic of Congo, the Central African Republic, western Zambia, northern Angola, part of Cameroun, and Tanzania. The remotely sensed imagery analysis and observation revealed that Congo basin is on the elevation of 275 to 460 meters and the Chad basin is on elevation of 240 meters. This implies that water can be drained from Congo basin via headrace down to the Chad basin for the water sustainability.

  6. Native plant development and restoration program for the Great Basin, USA

    Treesearch

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  7. 75 FR 13253 - Plan Revision for Lake Tahoe Basin Management Unit, Alpine, El Dorado, and Placer Counties, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... need for change document, the ``CER'' (Nov 2006) is available online at: http://fs.usda.gov/ltbmu... Report (CER)'' and request for public and partner agency comments specific to the unit's need for change...

  8. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  9. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  10. Water-use analysis program for the Neshaminy Creek basin, Bucks and Montgomery counties, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    A water-use analysis computer program was developed for the Neshaminy Creek Basin to assist in managing and allocating water resources in the basin. The program was developed for IBM-compatible personal computers. Basin analysis and the methodologies developed for the Neshaminy Creek Basin can be transferred to other watersheds. The development and structure of the water-use analysis program is documented in this report. The report also serves as a user's guide. The program uses common relational database-management software that allows for water use-data input, editing, updating and output and can be used to generate a watershed water-use analysis report. The watershed-analysis report lists summations of public-supply well withdrawals; a combination of industrial, commercial, institutional, and ground-water irrigation well withdrawals; spray irrigation systems; a combination of public, industrial, and private surface-water withdrawals; wastewater-tratement-facility dishcarges; estimates of aggregate domestic ground-water withdrawals on an areal basin or subbasin basis; imports and exports of wastewater across basin or subbasin divides; imports and exports of public water supplies across basin or subbasin divides; estimates of evaporative loss and consumptive loss from produce incorporation; industrial septic-system discharges to ground water; and ground-water well-permit allocations.

  11. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  12. Educating for action: Aligning skills with policies for sustainable development in the Danube river basin.

    PubMed

    Irvine, Kenneth; Weigelhofer, Gabriele; Popescu, Ioana; Pfeiffer, Ellen; Păun, Andrei; Drobot, Radu; Gettel, Gretchen; Staska, Bernadette; Stanica, Adrian; Hein, Thomas; Habersack, Helmut

    2016-02-01

    Sustainable river basin management depends on knowledge, skills and education. The DANCERS project set out to identify feasible options for achieving education for sustainable water management across the Danube river basin, and its integration with broader education and economic development. The study traced the historic, regulatory and educational landscape of water management in the basin, contrasting it with the complex political decision-making, data-heavy decision support, learning-centred collaboration, and information-based participation that are all inherent components of Integrated Water Resource Management (IWRM). While there is a wide range of educational opportunities and mobility schemes available to individuals, there is no coherent network related to training in water management and sustainable development in the study region. Progress in addressing the multi-layered environmental challenges within the basin requires further aligning of economic, environmental and educational policies, advancing the EU Bologna Process across the region, and the development of dedicated training programmes that combine technical and relational skills. The DANCERS project identified key short and medium term needs for education and research to support progressive adoption of sustainable development, and the necessary dialogue across the public and private sectors to align policies. These include the development of new education networks for masters and PhD programmes, including joint programmes; improved access to technical training and life-long learning programmes for skills development; developing formalized and certified competency structures and associated accreditation of institutions where such skilled individuals work; and developing a co-ordinated research infrastructure and pan-basin programme for research for water management and sustainable development. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of Stormwater Infiltration on Quality of Groundwater Beneath Retention and Detention Basins

    EPA Science Inventory

    Use of stormwater retention and detention basins has become a popular method for managing urban and suburban stormwater runoff. Infiltration of stormwater through these basins may increase the risk to ground-water quality, especially in areas where the soil is sandy and the wate...

  14. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    NASA Astrophysics Data System (ADS)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  15. Sedimentary basin geochemistry and fluid/rock interactions workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and othermore » Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.« less

  16. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  17. An Analysis of the Hydrology of the Rio Grande/Rio Bravo Basin

    NASA Astrophysics Data System (ADS)

    Gutierrez, F.; Dracup, J. A.

    2002-12-01

    Stretching almost 2,000 miles from Colorado to the Gulf of Mexico, the Rio Grande (known as the Rio Bravo in Mexico) is very important socially, economically and politically for both Mexico and the U.S. In recent years, the longest drought on record has made water in the Rio Grande Basin scarce. In 2001, for the first time in recorded history, the Rio Grande failed to reach all the way to the Gulf of Mexico -- it stopped 500 feet from the shore. In this study, the authors first assess the relative magnitude and frequency of drought events in the Basin. Using GIS, a spatial analysis of the unimpaired flows and precipitation time series of the Basin is performed. This assessment will provide the basis for a basin simulation model. The authors then perform an extensive analysis of the effects of the El Ni¤o - Southern Oscillation and the Pacific Decadal Oscillation on the hydrology of the Rio Grande/Rio Bravo Basin. It is anticipated that the results of this research will provide information to water managers that will improve the effectiveness of water resources management policies for the Basin. This research is founded by the NSF fund SAHRA (Science and Technology Center to study and promote the "Sustainability of Water Resources in Semi-Arid Regions" at the University of Arizona).

  18. Multilayered aquifer modeling in the coastal sedimentary basin of Togo

    NASA Astrophysics Data System (ADS)

    Gnazou, M. D. T.; Sabi, B. E.; Lavalade, J. L.; Schwartz, J.; Akakpo, W.; Tozo, A.

    2017-01-01

    This work is a follow up to the hydrogeological synthesis done in 2012 on the coastal sedimentary basin of Togo. That synthesis notably emphasized the lack of piezometric monitoring in the last thirty years. This has kept us from learning about the dynamics and evolution of the resource in the context of rapidly increasing demand. We are therefore presenting a model for understanding flows, and its main objectives are to provide an initial management tool that should evolve with time as new data (piezometric monitoring, pumping tests, etc.) become available, and to determine what new information can be obtained that will help policy makers to manage the resource better. The results of steady state flow calibration have shown that the aquifer of the Continental Terminal overexploited in the West, can still be exploited in the East of the basin, the Maastrichtian on the whole basin. On the other hand, exploitation of Paleocene aquifers should be done with care.

  19. Science and ecosystem management in the interior Columbia basin.

    Treesearch

    Richard W. Haynes; Thomas M. Quigley; Jodi L. Clifford; Rebecca A. Gravenmier

    2001-01-01

    Significant changes over the past 150 years in aquatic, terrestrial, landscape, and socioeconomic systems have altered biophysical systems in the interior Columbia basin. Changes and conflict in public policy concerns, such as resource use vs. restoration vs. conservation are especially evident in more than 34% of total forest and rangeland in the United States that...

  20. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  1. Option contracts for allocating water in inter-basin transfers: the case of the Tagus-Segura Transfer in Spain

    NASA Astrophysics Data System (ADS)

    Rey, Dolores; Garrido, Alberto; Calatraba, Javier

    2014-05-01

    Users in the Mediterranean region face significant water supply risks. Water markets mechanisms can provide flexibility to water systems run in tight situations. The largest water infrastructure in the Iberian Peninsula connects the Segura and Tagus Basins. Stakeholders and politicians in the Tagus Basin have asked that water transfers between the two basins be eventually phased out. The need to increase the statutory minimum environmental flow in the middle Tagus and to meet new urban demands is going to result in a redefinition of the Transfer's management rules, leading to a reduction in the transferable volumes. To minimise the consequences of such restrictions to irrigators in the Segura Basin who depend on the transferred volumes, we propose the establishment of water option contracts between both basins that represents an institutional innovation with respect to previous inter-basin spot market experiences. Based on the draft of the new Tagus Basin Plan, we propose both a modification of the Transfer's management rule and an innovative inter-basin option contract. The main goal of the paper is to define this contract and evaluate it with respect to non-market scenarios. We also assess the resulting impact on environmental flows in the Tagus River and water availability for users in the Segura Basin, together with the economic impacts of such contract on both basins. Our results show that the proposed option contract would reduce the impact of a change in the transfer's management rule, and reduce the supply risks of the recipient area. Keywords: environmental flow, inter-basin transfer, option contracts, Tagus-Segura, water markets, water supply reliability.

  2. Adaptive Management of Bull Trout Populations in the Lemhi Basin

    USGS Publications Warehouse

    Peterson, James T.; Tyre, Andrew J.; Converse, Sarah J.; Bogich, Tiffany L.; Miller, Damien; Post van der Burg, Max; Thomas, Carmen; Thompson, Ralph J.; Wood, Jeri; Brewer, Donna; Runge, Michael C.

    2011-01-01

    The bull trout Salvelinus confluentus, a stream-living salmonid distributed in drainages of the northwestern United States, is listed as threatened under the Endangered Species Act because of rangewide declines. One proposed recovery action is the reconnection of tributaries in the Lemhi Basin. Past water use policies in this core area disconnected headwater spawning sites from downstream habitat and have led to the loss of migratory life history forms. We developed an adaptive management framework to analyze which types of streams should be prioritized for reconnection under a proposed Habitat Conservation Plan. We developed a Stochastic Dynamic Program that identified optimal policies over time under four different assumptions about the nature of the migratory behavior and the effects of brook trout Salvelinus fontinalis on subpopulations of bull trout. In general, given the current state of the system and the uncertainties about the dynamics, the optimal policy would be to connect streams that are currently occupied by bull trout. We also estimated the value of information as the difference between absolute certainty about which of our four assumptions were correct, and a model averaged optimization assuming no knowledge. Overall there is little to be gained by learning about the dynamics of the system in its current state, although in other parts of the state space reducing uncertainties about the system would be very valuable. We also conducted a sensitivity analysis; the optimal decision at the current state does not change even when parameter values are changed up to 75% of the baseline values. Overall, the exercise demonstrates that it is possible to apply adaptive management principles to threatened and endangered species, but logistical and data availability constraints make detailed analyses difficult.

  3. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  4. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  5. The Great Basin Research and Management Partnership: Facilitating Collaborative Solutions

    USDA-ARS?s Scientific Manuscript database

    The Great Basin is undergoing major sociological and ecological change as a result of urbanization, changing technology and land use, climate change, limited water resources, altered fire regimes, and invasive species, insects, and disease. Sustaining ecosystems, resources, and human populations of...

  6. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    We evaluated Management Questions (Core and Integrated) for each species and community for the Wyoming Basin REA. Core Management Questions address primary management issues, including (1) where is the Conservation Element, and what are its key ecological attributes (characteristics of species and communities that may affect their long-term persistence or viability); (2) what and where are the Change Agents; and (3) how do the Change Agents affect the key ecological attributes? Integrated Management Questions synthesize the Core Management Questions as follows: (1) where are the areas with high landscape-level ecological values; (2) where are the areas with high landscape-level risks; and (3) where are the potential areas for conservation, restoration, and development? The associated maps and key findings for each Management Question are summarized for each Conservation Element in individual chapters. Additional chapters on landscape intactness and an REA synthesis are included.

  7. Water-related scientific activities of the U.S. Geological Survey in Nevada, fiscal years 1993-94

    USGS Publications Warehouse

    Foglesong, M. Teresa

    1995-01-01

    The U.S. Geological Survey has been collecting water-resources data in Nevada since 1890. Most of the projects that constitute the current Nevada District program can be classified as either basic- data acquisition (about 25 percent) or hydrologic interpretation (about 75 percent). About 39 percent of the activities are supported by cooperative agreements with State and local agencies. Technical projects supported by other Federal agencies make up about 32 percent of the program, and the re- maining 29 percent consists of USGS data collection, interpretive projects, and research. Water con- ditions in most of Nevada during fiscal years 1993 and 1994 continued to be dry, a continuation of drought conditions since late 1986. The major water-resource issues in Nevada include: water allocation in the Truckee River and Carson River Basins; water-supply needs of Las Vegas and the Reno/Sparks area, including water-importation plans; hydrologic effects of weapons testing at the Nevada Test Site; assessment of potential long-term effects of the proposed Yucca Mountain Nuclear Waste Repository; and drought. Future water-resources issues in Nevada are likely to center on water supply for, and environmental effects of, the rapidly growing population centers at Las Vegas, Reno, and Elko; impacts of operations at the Nevada Test Site; management of interstate rivers such as the Truckee, Carson, Walker, and Colorado Rivers; hydrologic and environmental impacts at heavily mined areas; and water-quality management in the Lake Tahoe Basin.

  8. Extreme multi-basin flooding linked with extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    De Luca, Paolo; Hillier, John K.; Wilby, Robert L.; Quinn, Nevil W.; Harrigan, Shaun

    2017-11-01

    Fluvial floods are typically investigated as ‘events’ at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975-2014), a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (~46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response times <40 h and documented flood impacts. Furthermore, peak flows tend to occur after 0-13 days of very severe gales causing combined and spatially-distributed, yet differentially time-lagged, wind and flood damages. These findings have implications for emergency responders, insurers and contingency planners worldwide.

  9. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2014-05-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

  10. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  11. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  12. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  13. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    NASA Astrophysics Data System (ADS)

    Oosthuizen, Nadia; Hughes, Denis A.; Kapangaziwiri, Evison; Mwenge Kahinda, Jean-Marc; Mvandaba, Vuyelwa

    2018-05-01

    The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin - the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe - is assessed. Input data (and model parameters) are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17.72 Mm3 after the uncertainty

  14. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    USGS Publications Warehouse

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  15. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  16. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  17. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real

  18. Hydrogeologic Framework of the Salt Basin, New Mexico and Texas

    NASA Astrophysics Data System (ADS)

    Ritchie, A. B.; Phillips, F. M.

    2010-12-01

    The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.

  19. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  20. Great Basin rare and vulnerable species

    Treesearch

    Erica Fleishman

    2008-01-01

    Many native species of plants and animals in the Great Basin have a restricted geographic distribution that reflects the region’s biogeographic history. Conservation of these species has become increasingly challenging in the face of changing environmental conditions and land management practices. This paper provides an overview of major stressors contributing to...

  1. Trace metal fractionation as a mean to improve on the management of contaminated sediments from runoff water in infiltration basins.

    PubMed

    Al Husseini, Amelène El-Mufleh; Béchet, Béatrice; Gaudin, Anne; Ruban, Véronique

    2013-01-01

    The management of stormwater sediment is a key issue for local authorities due to the pollution load and significant tonnages. In view of reuse, for example for civil engineering, the environmental evaluation of these highly aggregated sediments requires the study of the fractionation and mobility of trace metals. The distribution of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) and their level of lability in three French stormwater sediments was determined using sequential and kinetic extractions (EDTA reagent) associated with mineralogical analysis and scanning electron microscopy observations. Using microanalysis, new data were acquired on the evolution of aggregate state during extractions, and on its significant role in the retention of trace metals. Trace metals were, in particular, observed to be very stable in small aggregates (10-50 microm). Comparison of the two extraction methods revealed that EDTA extraction was not convenient for evaluating the stable fraction of Cr, Ni and Zn. Moreover, the results were relevant for basins presenting similar sources of trace metals, whatever the physicochemical conditions in basins. The results suggest that the management of stormwater sediments could be improved by a better knowledge of metal mobility, as chemical extractions could highlight the localization of the mobile fraction of trace metals. Treatment could be therefore avoided, or specific treatment could be applied to a reduced volume of sediments.

  2. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    USGS Publications Warehouse

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  4. Delft-FEWS:A Decision Making Platform to Intergrate Data, Model, Algorithm for Large-Scale River Basin Water Management

    NASA Astrophysics Data System (ADS)

    Yang, T.; Welles, E.

    2017-12-01

    In this paper, we introduce a flood forecasting and decision making platform, named Delft-FEWS, which has been developed over years at the Delft Hydraulics and now at Deltares. The philosophy of Delft-FEWS is to provide water managers and operators with an open shell tool, which allows the integratation of a variety of hydrological, hydraulics, river routing, and reservoir models with hydrometerological forecasts data. Delft-FEWS serves as an powerful tool for both basin-scale and national-scale water resources management. The essential novelty of Delft-FEWS is to change the flood forecasting and water resources management from a single model or agency centric paradigm to a intergrated framework, in which different model, data, algorithm and stakeholders are strongly linked together. The paper will start with the challenges in water resources managment, and the concept and philosophy of Delft-FEWS. Then, the details of data handling and linkages of Delft-FEWS with different hydrological, hydraulic, and reservoir models, etc. Last, several cases studies and applications of Delft-FEWS will be demonstrated, including the National Weather Service and the Bonneville Power Administration in USA, and a national application in the water board in the Netherland.

  5. Discharge permit market and farm management nexus: an approach for eutrophication control in small basins with low-income farmers.

    PubMed

    Imani, Somaye; Niksokhan, Mohammad Hossein; Jamshidi, Shervin; Abbaspour, Karim C

    2017-07-01

    The economic concerns of low-income farmers are barriers to nutrient abatement policies for eutrophication control in surface waters. This study brings up a perspective that focuses on integrating multiple-pollutant discharge permit markets with farm management practices. This aims to identify a more economically motivated waste load allocation (WLA) for non-point sources (NPS). For this purpose, we chose the small basin of Zrebar Lake in western Iran and used the soil and water assessment tool (SWAT) for modeling. The export coefficients (ECs), effectiveness of best management practices (BMPs), and crop yields were calculated by using this software. These variables show that low-income farmers can hardly afford to invest in BMPs in a typical WLA. Conversely, a discharge permit market presents a more cost-effective solution. This method saves 64% in total abatement costs and motivates farmers by offering economic benefits. A market analysis revealed that nitrogen permits mostly cover the trades with the optimal price ranging from $6 to $30 per kilogram. However, phosphorous permits are limited for trading, and their price exceeds $60 per kilogram. This approach also emphasizes the establishment of a regional institution for market monitoring, dynamic pricing, fair fund reallocation, giving information to participants, and ensuring their income. By these sets of strategies, a WLA on the brink of failure can turn into a cost-effective and sustainable policy for eutrophication control in small basins.

  6. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  7. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  8. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  9. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  10. Rehabilitation of Great Basin rangelands: an integrated approach

    USDA-ARS?s Scientific Manuscript database

    Disturbed rangelands present significant challenges to resource managers and land owners. In the Great Basin, exotic annual grasses have truncated secondary succession by outcompeting native perennial species for limited moisture and nutrients. An integrated approach to successfully control such inv...

  11. Linking River Basin Modifications and Rural Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2015-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions between river basin modifications and local scale cultivation and irrigation. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. This represents a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. This study applies a new conceptual framework to define the relevant social and physical units operating on the common pool resources of climate, water and sediment in the Bengal Delta (Bangladesh). The new framework will inform development of a nested geospatial analysis and a coupled model to identify multi-scale social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, basin modification, and climate vulnerability in tropical deltas. The framework was used to create household surveys for collecting data on climate perceptions, land and water management, and governance. Test surveys were administered to rural farmers in 14 villages during a reconnaissance visit to coastal Bangladesh. Initial results demonstrate complexity and heterogeneity at the local scale in both biophysical conditions and decision-making. More importantly, the results illuminate how national and geopolitical-level policies scale down to impact local-level environmental and social stability in communities already vulnerable to coastal flooding. Here, we will discuss components of the

  12. Hydrological simulation of the Brahmaputra basin using global datasets

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Conway, Crystal; Craven, Joanne; Masih, Ilyas; Mazzolini, Maurizio; Shrestha, Shreedeepy; Ugay, Reyne; van Andel, Schalk Jan

    2017-04-01

    Brahmaputra River flows through China, India and Bangladesh to the Bay of Bengal and is one of the largest rivers of the world with a catchment size of 580K km2. The catchment is largely hilly and/or forested with sparse population and with limited urbanisation and economic activities. The catchment experiences heavy monsoon rainfall leading to very high flood discharges. Large inter-annual variation of discharge leading to flooding, erosion and morphological changes are among the major challenges. The catchment is largely ungauged; moreover, limited availability of hydro-meteorological data limits the possibility of carrying out evidence based research, which could provide trustworthy information for managing and when needed, controlling, the basin processes by the riparian countries for overall basin development. The paper presents initial results of a current research project on Brahmaputra basin. A set of hydrological and hydraulic models (SWAT, HMS, RAS) are developed by employing publicly available datasets of DEM, land use and soil and simulated using satellite based rainfall products, evapotranspiration and temperature estimates. Remotely sensed data are compared with sporadically available ground data. The set of models are able to produce catchment wide hydrological information that potentially can be used in the future in managing the basin's water resources. The model predications should be used with caution due to high level of uncertainty because the semi-calibrated models are developed with uncertain physical representation (e.g. cross-section) and simulated with global meteorological forcing (e.g. TRMM) with limited validation. Major scientific challenges are seen in producing robust information that can be reliably used in managing the basin. The information generated by the models are uncertain and as a result, instead of using them per se, they are used in improving the understanding of the catchment, and by running several scenarios with varying

  13. Caribbean basin framework, 3: Southern Central America and Colombian basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolarsky, R.A.; Mann, P.

    1991-03-01

    The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas ofmore » Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.« less

  14. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  15. Contributions of watershed management research to ecosystem-based management in the Colorado River Basin

    Treesearch

    Malchus B. Baker; Peter F. Ffolliott

    2000-01-01

    The Rocky Mountains and Southwestern United States, essentially the Colorado River Basin, have been the focus of a wide range of research efforts to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the regions’s ecosystems. Watershed research, spearheaded by the USDA Forest Service and its...

  16. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin.

    PubMed

    Kondolf, G Mathias; Schmitt, Rafael J P; Carling, Paul; Darby, Steve; Arias, Mauricio; Bizzi, Simone; Castelletti, Andrea; Cochrane, Thomas A; Gibson, Stanford; Kummu, Matti; Oeurng, Chantha; Rubin, Zan; Wild, Thomas

    2018-06-01

    Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development. Copyright © 2017 Elsevier B.V. All

  17. Anthropogenic impacts on hydrology of Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.

    2015-12-01

    The Karkheh River Basin (KRB) in southwest Iran is a key region for agriculture and energy production. KRB has high human-induced water demand and suffers from low water productivity. The future of the KRB and its growth clearly relies on sustainable water resources and hence, requires a holistic, basin-wide management and monitoring of natural resources (water, soil, vegetation, livestock, etc.). The KRB has dry regions in which water scarcity is a major challenge. In this study, we investigate changes in the hydrology of the basin during the past three decades including human-induced alterations of the system. We evaluate climatic variability, agricultural water use, land cover change and agriculture production. In this reaserch, we have developed a simple indicator for quantifying human influence on the hydrologic cycle. The results show that KRB's hydrology is significantly dominated by human activities. The anthropogenic water demand has increased substantially caused by growth in agriculture industry. In fact, the main reason for water scarcity in the region appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Our results show that continued growth in the region is not sustainable without considering major changes in water use efficiency, land cover management and water productivity.

  18. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  19. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  20. Thermal state of the Arkoma Basin and the Anadarko Basin, Oklahoma

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin

    1999-12-01

    One of the most fundamental physical processes that affects virtually all geologic phenomena in sedimentary basins is the flow of heat from the Earth's interiors. The Arkoma Basin and the Anadarko Basin, Oklahoma, are a prolific producer of both oil and natural gas. Both basins also have important geologic phenomena. Understanding the thermal state of the these basins is crucial to understanding the timing and extent of hydrocarbon generation, the genesis of Mississippi Valley-type ore deposits, and the origin of overpressures in the Anadarko Basin. In chapter one, heat flow and heat production in the Arkoma basin and Oklahoma Platform are discussed. Results of this study are not generally supportive of theories which invoke topographically driven regional groundwater flow from the Arkoma Basin in Late Pennsylvanian-Early Permian time (˜290 Ma) to explain the genesis of geologic phenomena. In chapter 2, different types of thermal conductivity temperature corrections that are commonly applied in terrestrial heat flow studies are evaluated. The invariance of the relative rankings with respect to rock porosity suggests the rankings may be valid with respect to in situ conditions. Chapter three addresses heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform. We found no evidence for heat flow to increase significantly from the Anadarko Basin in the south to the Oklahoma Platform to the north. In chapter four, overpressures in the Anadarko Basin, southwestern Oklahoma are discussed. Using scale analyses and a simple numerical model, we evaluated two endmember hypotheses (compaction disequilibrium and hydrocarbon generation) as possible causes of overpressuring. Geopressure models which invoke compaction disequilibrium do not appear to apply to the Anadarko Basin. The Anadarko Basin belongs to a group of cratonic basins which are tectonically quiescent and are characterized by the association of abnormal pressures with natural gas

  1. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  2. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  3. Examining seasonal variations in microbial community composition and metabolism in Lake Tahoe, Sierra Nevada, California to gain insight into the role of spring freshet and lake mixing on lake microbial ecology and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Aluwihare, L.

    2016-12-01

    The 2016 "State of the Lake Report" for Lake Tahoe notes that surface waters of have warmed 15 times faster in the last four years as compared to the long trend. Lake mixing depth has decreased with only 4 instances of full-lake mixing ( 450 m) recorded since 2000, none since 2011, and the shallowest depth of mixing on record, 80 m, was observed in 2015. Snowpack in the region shows a long-term decline, and April snowpack in 2015 was the lowest recorded in nearly 100 years. Lake biomass peaks shortly after mixing occurs, which demonstrates the dependence of lake primary production on this process. Lake mixing also oxygenates deep waters of the lake. Mixing, organic matter production, and vertical gradients in nutrient and oxygen concentrations profoundly impact the depth distribution of microbial communities and metabolisms. Spring melt also brings nutrients into the lake including organic matter; and in other high elevation lake systems it has been shown that streamflow seeds the lake's microbiome. Here we present data from an year long observation of monthly changes in microbial (including phytoplankton) community composition to examine how the seasonally segregated processes of runoff, lake mixing, and surface primary production affect Lake Tahoe's microbial ecology. Members of certain phylogenetic groups showed trends that we are currently exploring in the context of their metabolic capabilities. For example, Chlorobi and Chloroflexi primarily appear in surface waters during deep mixing, consistent with some of them being sensitive to oxygen. Similarly, common but poorly characterized clades of Actinobacteria exhibited negative responses to discharge, while certain clades of Betaproteobacteria exhibited a positive response during and following discharge events at LT. Actinobacteria have been found to be abundant in numerous lake systems suggesting that their metabolic capabilities maybe particularly telling of the dominant species sorting mechanisms at play in

  4. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and

  5. Structural and Depositional Evolution of the Stevenson Basin, a Gulf of Alaska Forearc Basin: Insights from Legacy Seismic and Borehole Data

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Liberty, L. M.; Almeida, R. V.; Hubbard, J.

    2016-12-01

    We explore the structural and depositional evolution of the Stevenson Basin, Gulf of Alaska from a dense network of 2-D marine seismic profiles that span the Gulf of Alaska continental margin. The grid of 71 seismic profiles was acquired as part of a 1975 Mineral Management Services (MMS) exploration project to assess basin architecture along the Alaska continental shelf. We obtained unmigrated and stacked seismic profiles in TIFF format. We converted the data to SEGY format and migrated each profile. Within the Stevenson Basin, we identify key seismic horizons, including the regional Eocene-Miocene unconformity, that provide insights into its depositional and structural history. Using these observations combined with stacking velocities, sonic logs from wells, and refraction velocities from the Edge profile of Ye et al. (1997), we develop a local 3D velocity model that we use to depth-convert the seismic reflection profiles. By using ties to >2.5 km deep exploration wells, we note the Stevenson Basin is one of many Eocene and younger depocenters that span the forearc between Kodiak and Prince William Sound. Well logs and seismic data suggest basal strata consist of Eocene sediments than are unconformably overlain by Neogene and younger strata. Faults that breach the sea floor suggest active deformation within and at the bounds of this basin, including on new faults that do not follow any pre-existing structural trends. This assessment is consistent with slip models that place tsunamigenic faults that ruptured during the 1964 Great Alaska earthquake in the vicinity of the basin. The catalog of faults, their slip history and the depositional evolution of the Stevenson Basin, all suggest that the basin evolution may be controlled by heterogeneities along the incoming plate.

  6. Sahra integrated modeling approach to address water resources management in semi-arid river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, E. P.; Gupta, Hoshin V.; Brookshire, David S.

    Water resources decisions in the 21Sf Century that will affect allocation of water for economic and environmental will rely on simulations from integrated models of river basins. These models will not only couple natural systems such as surface and ground waters, but will include economic components that can assist in model assessments of river basins and bring the social dimension to the decision process. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated models to assess impacts of climate variability and land use change on water resources inmore » semi-arid river basins. The objectives of this paper are to describe the SAHRA integrated modeling approach and to describe the linkage between social and natural sciences in these models. Water resources issues that arise from climate variability or land use change may require different resolution models to answer different questions. For example, a question related to streamflow may not need a high-resolution model whereas a question concerning the source and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model development because one cannot anticipate the questions in advance, and the computational and data resources may not always be available or needed for the issue to be addressed. The coarsest resolution model is based on dynamic simulation of subwatersheds or river reaches. This model resolution has the advantage of simplicity and social factors are readily incorporated. Users can readily take this model (and they have) and examine the effects of various management strategies such as increased cost of water. The medium resolution model is grid based and uses variable grid cells of 1-12 km. The surface hydrology is more physically based using basic equations for energy and water balance terms, and modules are being incorporated that will simulate engineering

  7. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    NASA Astrophysics Data System (ADS)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  8. The Jornada Basin long term ecological research program

    USDA-ARS?s Scientific Manuscript database

    Chihuahuan Desert landscapes exemplify the ecological conditions, vulnerability, and management challenges in arid and semi-arid regions around the world. The goal of the Jornada Basin Long Term Ecological Research program (JRN LTER) established in 1982 is to understand and quantify the key factors ...

  9. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  10. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications.

    PubMed

    Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J

    2015-01-01

    Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  12. Hydric potential of the river basin: Prądnik, Polish Highlands

    NASA Astrophysics Data System (ADS)

    Lepeška, Tomáš; Radecki-Pawlik, Artur; Wojkowski, Jakub; Walega, Andrzej

    2017-12-01

    Human society deals with floods, drought and water pollution. Facing those problems, the question how to prevent or at least to minimalize the adverse effects of water-related issues is asked of the landscape managers. In this way, any help given to landscape managers seems to be an additional useful tool. Within this paper, an approach leading to mitigation of water-related problems is presented that relates the retention of precipitation and the use of ecosystems as a tool for improving the quality, quantity of water resources and availability throughout the region. One approach is the determination of the landscape's hydric potential (LHP). This study examines one example of using this method within the conditions of Poland. The results of the research show that national data are entirely appropriate for implementation of the LHP method. Further, this approach revealed the classes of the hydric potential of the Prądnik river basin which was selected as the experimental territory. LHP results reflect the ecosystem attributes of the model river basin; areas of average LHP cover 63.26%, areas of high and limited hydric potential cover approximately 18.3% each. The spatial distribution of LHP means the results of this study provide a baseline for management of the river basin.

  13. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  14. Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin

    NASA Astrophysics Data System (ADS)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta

    2014-05-01

    Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed

  15. The Huaihe Basin Water Resource and Water Quality Management Platform Implemented with a Spatio-Temporal Data Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, W.; Yan, C.

    2012-07-01

    Presently, planning and assessment in maintenance, renewal and decision-making for watershed hydrology, water resource management and water quality assessment are evolving toward complex, spatially explicit regional environmental assessments. These problems have to be addressed with object-oriented spatio-temporal data models that can restore, manage, query and visualize various historic and updated basic information concerning with watershed hydrology, water resource management and water quality as well as compute and evaluate the watershed environmental conditions so as to provide online forecasting to police-makers and relevant authorities for supporting decision-making. The extensive data requirements and the difficult task of building input parameter files, however, has long been an obstacle to use of such complex models timely and effectively by resource managers. Success depends on an integrated approach that brings together scientific, education and training advances made across many individual disciplines and modified to fit the needs of the individuals and groups who must write, implement, evaluate, and adjust their watershed management plans. The centre for Hydro-science Research, Nanjing University, in cooperation with the relevant watershed management authorities, has developed a WebGIS management platform to facilitate this complex process. Improve the management of watersheds over the Huaihe basin through the development, promotion and use of a web-based, user-friendly, geospatial watershed management data and decision support system (WMDDSS) involved many difficulties for the development of this complicated System. In terms of the spatial and temporal characteristics of historic and currently available information on meteorological, hydrological, geographical, environmental and other relevant disciplines, we designed an object-oriented spatiotemporal data model that combines spatial, attribute and temporal information to implement the management

  16. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Person, M. A.

    2008-12-01

    The hydrodynamic consequences of a glaciation/deglaciation cycle within an intercratonic sedimentary basin on subsurface transport processes is assessed using numerical models. In our analysis we consider the effects of mechanical ice sheet loading, permafrost formation, variable density fluids, and lithospheric flexure on solute/isotope transport, groundwater residence times, and transient hydraulic head distributions. The simulations are intended to apply, in a generic sense, to intercratonic sedimentary basins that would have been near the southern limit of the Laurentide Ice Sheet during the last glacial maximum (˜20 ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid flow and recharge rates are strongly elevated during glaciation as compared to nonglacial periods. Furthermore, our results illustrate that steady state hydrodynamic conditions in these basins are probably never reached during a 32.5 ka cycle of advance and retreat of a wet-based ice sheet. Present-day hydrogeological conditions across formerly glaciated areas are likely to still reflect the impact of the last glaciation and associated processes that ended locally more than 10 ka B.P. Our results reveal characteristic spatial patterns of underpressure and overpressure that occur in aquitards and aquifers, respectively, as a result of recent glaciation. The calculated emplacement of low salinity, isotopically light glacial meltwater along basin margins is roughly consistent with observations from formerly glaciated basins in North America. The modeling presented in this study will help to improve the management of groundwater resources in formerly glaciated basins as well as to evaluate the viability on geological timescales of nuclear waste repositories located at high latitudes.

  17. Multifractal Internet Traffic Model and Active Queue Management

    DTIC Science & Technology

    2003-01-01

    dropped by the Adaptive RED , ssthresh decreases from 64KB to 4KB and the new con- gestion window cwnd is decreased from 8KB to 1KB (Tahoe). The situation...method to predict the queuing behavior of FIFO and RED queues. In order to satisfy a given delay and jitter requirement for real time connections, and to...5.2 Vulnerability of Adaptive RED to Web-mice . . . . . . . . . . . . . 103 5.3 A Parallel Virtual Queues Structure

  18. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  19. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  20. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long