Sample records for taiheiyo haro tokeihyo

  1. THE H I CHRONICLES OF LITTLE THINGS BCDs: EVIDENCE FOR EXTERNAL PERTURBATIONS IN THE MORPHOLOGY AND KINEMATICS OF HARO 29 AND HARO 36

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Simpson, Caroline E.; Elmegreen, Bruce G., E-mail: trisha.ashley@gmail.com, E-mail: simpsonc@fiu.edu, E-mail: bge@us.ibm.com

    We analyze high angular and velocity resolution H I line data of two LITTLE THINGS blue compact dwarfs (BCDs): Haro 29 and Haro 36. Both of these BCDs are disturbed morphologically and kinematically. Haro 29's H I data reveal a kinematic major axis that is offset from the optical major axis, and a disturbed outer H I component, indicating that Haro 29 may have had a past interaction. Position-velocity diagrams of Haro 36 indicate that it has two kinematically separate components at its center and a likely tidal tail in front of the galaxy. We find that Haro 36 mostmore » likely had an interaction in the past, is currently interacting with an unknown companion, or is a merger remnant.« less

  2. Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis

    DTIC Science & Technology

    2006-08-01

    the frequency range 1–10 kHz are combined to analyze the acoustic environment of Haro Strait of Puget Sound , an area frequented by the southern...51Haro Strait, Puget Sound , acoustic environment, shallow water, acoustic model, southern resident killer whales, shipping noise Field measurements and...acoustic propagation modeling for the frequency range 1–10 kHz are combined to analyze the acous- tic environment of Haro Strait of Puget Sound , home to

  3. Shocked molecular hydrogen emission from Herbig-Haro objects and their exciting stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, B.A.; Schwartz, R.D.; Mundy, L.G.

    1990-01-01

    The results of an H2 emission-line survey of the 1-0 S(1) transition from 33 Herbig-Haro objects and suspected Herbig-Haro objects are presented. The survey focuses on Herbig-Haro objects that have been recently identified and/or lie at southern declinations. Data are also presented for the 2-1 S(3), 1-0 Q(1), and 1-0 Q(3) transitions of H2 for a subset of the sample. H2 emission has been detected toward 16 Herbig-Haro or nebulous objects; published optical spectra of 13 of these objects suggest that they are low-excitation nebulae associated with low-velocity shocks. H2 has also been detected toward the emission-line stars RU Lupmore » and LkH-alpha 234. Extended 1-0 S(1) emission has been mapped in the vicinity of gas outflows associated with the emission-line stars R CrA and LkH-alpha 234 and appears to delineate the blueshifted molecular gas in these bipolar outflows. A comparison of the data, in combination with the atomic line data from these HHs, is made with current C- and J-type shock models. 41 refs.« less

  4. Herbig Haro-Emission in zwei bipolaren Reflexionsnebeln

    NASA Astrophysics Data System (ADS)

    Staude, H. J.; Neckel, Th.; Sarcander, M.; Birkle, K.

    Der mit PV Cep assoziierte Reflexionsnebel hat sich auf CCD-Aufnahmen als bipolar erwiesen. Die Spektroskopie dieses Nebels sowie des bipolaren Boomerang-Nebels zeigt niedrig angeregte Herbig-Haro-Emission und macht die Anwesenheit kollimierter Hochgeschwindigkeitsflüsse entlang der Polachsen beider Objekte wahrscheinlich.

  5. Optical spectroscopy of known and suspected Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Fuller, G. A.

    1985-01-01

    Optical spectra of a number of suspected Herbig-Haro objects are presented. From these, the nature of these nebulosities are determined. Several of the nebulae are of very high density, perhaps due to their extreme youth. Extinctions measured toward DG Tau HH and the L1551 IRS 5 optical jet are in each case substantially less than the stellar values. It is suggested that this phenomenon reflects the existence of appreciably thick circumstellar dust disks around these, and two additional, exciting stars. Shock model diagnostics suggest that the emission lines in these Herbig-Haro nebulae arise in modest velocity shocks with sizable preshock densities in several cases. Radial velocities enable lower limits to be placed on the mass loss rates of those stars that have been detected in the radio continuum.

  6. DETECTION OF H i IN EMISSION IN THE LY α EMITTING GALAXY HARO 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardy, Stephen A.; Cannon, John M.; Östlin, Göran

    We present the first robust detection of H i 21 cm emission in the blue compact galaxy Haro 11 using the 100 m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Ly α and the Lyman continuum. We detect (5.1 ± 0.7 × 10{sup 8}) M {sub ⊙} of H i gas at an assumed distance of 88 Mpc, making this galaxy H i deficient compared to other local galaxies with similar optical properties. Given this small H i mass, Haro 11 has an elevated M{sub H2}/ M{sub Hi} ratio and a verymore » low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The H i emission has a linewidth of 71 km s{sup −}1 and is offset 60 km s{sup −1} redward of the optical line center. It is undergoing a starburst after a recent merger that has elevated the star formation rate, and will deplete the gas supply in <0.2 Gyr. Although this starburst has elevated the star formation rate (SFR) compared to galaxies with similar H i masses and line widths, Haro 11 matches a trend of lower gas fractions toward higher SFRs and is below the general trend of increasing H i mass with increasing luminosity. Taken together, our results paint Haro 11 as a standard low-mass galaxy that is undergoing an unusually efficient star formation episode.« less

  7. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.145 Strait of Juan de Fuca, Haro Strait and Strait...

  8. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.145 Strait of Juan de Fuca, Haro Strait and Strait...

  9. Surface brightness and color distributions in blue compact dwarf galaxies. I - Haro 2, an extreme example of a star-forming young elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Loose, Hans-Hermann; Thuan, Trinh X.

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.

  10. Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.

    2011-11-01

    We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.

  11. TH28 (Krautter's star) and its string of Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1988-01-01

    A high-quality spectrogram of the unusual T Tauri-like star Th28 and its string of Herbig-Haro (HH) objects has been obtained. New velocities and line intensities for the star and the gaseous knots are reported, and data are given for a third HH object located 87 arcsec to the SE along the same collimation axis as defined by the other features. Th28 has a heliocentric velocity of +5 km/s which is close to the velocity of the CO in the area. The star's spectral type is probably in the G8-K2 range.

  12. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Image and Video Library

    2001-04-12

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake. The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an "anticline," which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant "dike," which is an igneous intrusion into older "host" rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies. In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top). http://photojournal.jpl.nasa.gov/catalog/PIA03300

  13. New Herbig-Haro objects in star-forming regions

    NASA Technical Reports Server (NTRS)

    Reipurth, BO; Graham, J. A.

    1988-01-01

    A list of 25 new Herbig-Haro objects, HH 58 to HH 82, in the Orion molecular clouds and in southern molecular cloud complexes has been compiled. CCD images in the S II 6717, 6731 forbidden lines are presented for the objects, together with a few spectra and some IR observations. The individual objects and, when identified, their energy sources are discussed. HH 65 is located in the red lobe of the bipolar outflow associated with the highly variable reflection nebula Re 50. HH 67 is a 22-arcsec long sinusoidal jet. HH 68/69 consists of a long, linear chain of four HH knots. HH 72 emerges from a 120-solar luminosity IRAS source embedded in a Bok globule. HH 79 is the first HH object discovered in the Ophiuchus clouds. HH 80/81 in Sagittarius are among the brightest HH objects known, have complex velocities, high excitation conditions and emerge from a 6000-solar luminosity young B-star. HH 82 is associated with the bright variable star S Coronae Australis.

  14. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper,more » we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.« less

  15. Far-infrared observations of the exciting stars of Herbig-Haro objects. III - Circumstellar disks

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Harvey, P. M.; Schwartz, R. D.

    1985-01-01

    Far-infrared observations of the exciting stars of Herbig-Haro objects are presented that (1) show these stars to be of low luminosity; (2) indicate that it is not usual for these objects themselves to be visible at far-infrared wavelengths; and (3) demonstrate the existence of spatially resolved, physically large, potentially disklike structures. These latter structures are resolved perpendicular to the directions of flow from the stars, but not parallel to the flows. In addition to these general properties, two new HH-exciting stars were discovered by searching along the extrapolated proper motion vectors for these HHs; and the jetlike object 'DG Tau B' was also detected.

  16. Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.

    1983-01-01

    IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.

  17. An Automated Scheme for the Large-Scale Survey of Herbig-Haro Objects

    NASA Astrophysics Data System (ADS)

    Deng, Licai; Yang, Ji; Zheng, Zhongyuan; Jiang, Zhaoji

    2001-04-01

    Owing to their spectral properties, Herbig-Haro (HH) objects can be discovered using photometric methods through a combination of filters, sampling the characteristic spectral lines and the nearby continuum. The data are commonly processed through direct visual inspection of the images. To make data reduction more efficient and the results more uniform and complete, an automated searching scheme for HH objects is developed to manipulate the images using IRAF. This approach helps to extract images with only intrinsic HH emissions. By using this scheme, the pointlike stellar sources and extended nebulous sources with continuum emission can be eliminated from the original images. The objects with only characteristic HH emission become prominent and can be easily picked up. In this paper our scheme is illustrated by a sample field and has been applied to our surveys for HH objects.

  18. The Discovery of Herbig–Haro Objects in LDN 673

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Shuping, R. Y.; Prato, L.; Schweiker, H.

    2018-01-01

    We report the discovery of 12 faint Herbig–Haro (HH) objects in LDN 673 found using a novel color-composite imaging method that reveals faint Hα emission in complex environments. Follow-up observations in [S II] confirmed their classification as HH objects. Potential driving sources are identified from the Spitzer c2d Legacy Program catalog and other infrared observations. The 12 new HH objects can be divided into three groups: four are likely associated with a cluster of eight young stellar object class I/II IR sources that lie between them; five are colinear with the T Tauri multiple star system AS 353, and are likely driven by the same source as HH 32 and HH 332 and three are bisected by a very red source that coincides with an infrared dark cloud. We also provide updated coordinates for the three components of HH 332. Inaccurate numbers were given for this object in the discovery paper. The discovery of HH objects and associated driving sources in this region provides new evidence for star formation in the Aquila clouds, implying a much larger T Tauri population in a seldom-studied region.

  19. Neutral ISM, Lyα, and Lyman-continuum in the Nearby Starburst Haro11

    NASA Astrophysics Data System (ADS)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Lyα line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Lyα, but low enough to be at least partly transparent to LyC and undetected in Si II. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium. Based on observations with HST-COS, program GO 13017, obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and

  20. Observations of the 63 micron forbidden O I line in Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Hollenbach, David J.; Haas, Michael R.; Erickson, Edwin F.

    1988-01-01

    The paper presents observations of the 63 micron forbidden O I line from Herbig-Haro objects and their exciting stars. Forbidden O I 63 micron emission is detected toward the HH-exciting stars T Tau, DG Tau, L1551 IRS 5, and toward the HH objects HH 7-11, HH 42A, and HH 43 which are displaced from their exciting stars. The forbidden O I emission is associated with these flows on the basis of its spatial coincidence and its negative radial velocities. If the exciting stars drive bipolar flows in which the 63 micron emission follows that at 6300 A, the absence of redshifted 63 micron lines from the three exciting stars might indicate that the disks hypothesized to overlie the receding lobes of these flows are still optically thick in the far-infrared.

  1. Chemistry of dense clumps near moving Herbig-Haro objects

    NASA Astrophysics Data System (ADS)

    Christie, H.; Viti, S.; Williams, D. A.; Girart, J. M.; Morata, O.

    2011-09-01

    Localized regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high-density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however, recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer lived. Some photochemically induced species, including methanol, are expected to maintain high abundances for ˜104 yr.

  2. HH 222: A GIANT HERBIG-HARO FLOW FROM THE QUADRUPLE SYSTEM V380 ORI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reipurth, Bo; Aspin, Colin; Connelley, M. S.

    2013-11-01

    HH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or ''the waterfall'' on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure ismore » a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3.°7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ∼1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.« less

  3. Multiwavelength analysis of the Lyman-α emitting galaxy Haro 2: relation between the diffuse Lyman-α and soft X-ray emissions

    NASA Astrophysics Data System (ADS)

    Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.

    2012-10-01

    Context. Lyman-α emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims: To understand how the Lyα escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Lyα emitters, like Haro 2. Methods: We study the Lyα emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Lyα emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Hα image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results: The UV, Hα and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to

  4. New Herbig-Haro objects in the L1617 and L1646 dark clouds

    NASA Astrophysics Data System (ADS)

    Wang, H.; Stecklum, B.; Henning, Th.

    2005-07-01

    Optical imaging towards L1617 and L1646 revealed three new Herbig-Haro (HH) objects, HH 182, 439, and 866. Spectroscopic observations of HH 182 A and 439 A confirmed their HH object nature. Molecular hydrogen v = 1-0 S(1) narrow band imaging revealed three H2 emission features in the HH 182 region which coincide with the optical emission. Based on the position angles of the different parts of the HH 111 flow and that of HH 182, HH 182 may be the outermost southeastern part of the giant HH 111 flow. One deeply embedded star is revealed in our near-infrared imaging of the HH 439 region. HH 439 A and the associated bow shock are probably driven by the newly detected embedded star. HH 439 B-D are probably driven by the Herbig AeBe star candidate GSC 04794-00827 (IRAS 06045-0554). The embedded source IRAS 06046-0603 is identified to be the exciting source of HH 866.

  5. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  6. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake.

    The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an 'anticline,' which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant 'dike,' which is an igneous intrusion into older 'host' rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies.

    In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same

  7. Haro 11: Where is the Lyman Continuum Source?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less

  8. Molecular line emission models of Herbig-Haro objects. II - HCO(+) emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Koenigl, Arieh

    1993-01-01

    We present time-dependent models of the chemistry and temperature of interstellar molecular gas clumps that are exposed to the radiation from propagating stellar-jet shocks. The X-ray, EUV, and FUV radiation from the shock initiates ion chemistry and also heats the gas in the clumps. Using representative parameters, we show that, on the shock transit time between the clumps, the abundances of the ionized molecular species that are produced in the clumps can exceed the values determined from steady state models by several orders of magnitude. Collisional excitation by the heated gas can lead to measurable line emission from several ionized species; as in previous investigations of X-ray-irradiated molecular gas, we find that electron impacts contribute significantly to this process. We apply these results to the interpretation of the HCO(+) line emission that has already been detected in several Herbig-Haro objects. We demonstrate that this picture provides a natural explanation of the fact that the line intensity typically peaks ahead of the associated shock, as well as of the reported low line-center velocities and narrow line widths. We tabulate several diagnostic line intensities of HCO(+) and other molecular species that may be used to infer the physical conditions in the emitting gas.

  9. Detection of H I absorption in the dwarf galaxy Haro 11

    NASA Astrophysics Data System (ADS)

    MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie

    2014-02-01

    We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).

  10. Effects of Preionization in Radiative Shocks. II. Application to the Herbig–Haro Objects

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Sutherland, Ralph S.

    2017-04-01

    In an earlier paper we treated the preionization problem in shocks over the velocity range 20 km s‑1 < {v}{{s}}< 1000 km s‑1 in a fully self-consistent manner. Here we investigate in detail the effect of the upstream UV photon field generated in the radiative zone of shocks in the range in which hydrogen is only partly ionized 20 km s‑1 (< {v}{{s}}< 150 km s‑1). We show that, as a result of superheating in the nonequilibrium preshock plasma, both the magnetic parameter and the Mach number of the shock are strongly affected by the preionization state of the gas, which controls to a large extent the radiative spectrum of the shock. We use these models to provide specific line diagnostics for Herbig–Haro objects, which allow us to solve for both the preshock density and shock velocity, and we present detailed models of the HH 34 jet, which allows us to derive the shock conditions, mass-loss rate, momentum flux, and chemical abundances in the jet. We show that the refractory elements Mg, Ca, Fe, and Ni are enhanced by 0.22 dex over the solar values, which provides interesting clues about the jet-launching mechanism in pre-main-sequence evolution.

  11. Embedded Outflows from Herbig-Haro 46/47

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on image for larger view of insert

    This image from NASA's Spitzer Space Telescope transforms a dark cloud into a silky translucent veil, revealing the molecular outflow from an otherwise hidden newborn star. Using near-infrared light, Spitzer pierces through the dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic stars, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

    The Spitzer image was obtained with the infrared array camera and is a three-color mosaic. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red.

    HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1,140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

    The 8-micron channel of the infrared array camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron emission corresponds to the lower right edge of the dark cloud in the visible-light picture.

    Outflows are fascinating objects, since they characterize one of the most energetic phases of the formation of low-mass stars (like our Sun). The

  12. First Large-scale Herbig-Haro Jet Driven by a Proto-brown Dwarf

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Briceño, C.; Whelan, E. T.; Heathcote, S.

    2017-07-01

    We report the discovery of a new Herbig-Haro jet, HH 1165, in SOAR narrow-band imaging of the vicinity of the σ Orionis cluster. HH 1165 shows a spectacular extended and collimated spatial structure, with a projected length of 0.26 pc, a bent C-shaped morphology, multiple knots, and fragmented bow shocks at the apparent ends of the flow. The Hα image shows a bright halo with a clumpy distribution of material seen around the driving source, and curved reflection nebulosity tracing the outflow cavities. The driving source of HH 1165 is a Class I proto-brown dwarf, Mayrit 1701117 (M1701117), with a total (dust+gas) mass of ˜36 M Jup and a bolometric luminosity of ˜0.1 L ⊙. High-resolution VLT/UVES spectra of M1701117 show a wealth of emission lines indicative of strong outflow and accretion activity. SOAR/Goodman low-resolution spectra along the jet axis show an asymmetrical morphology for HH 1165. We find a puzzling picture wherein the northwest part exhibits a classical HH jet running into a pre-dominantly neutral medium, while the southern part resembles an externally irradiated jet. The C-shaped bending in HH 1165 may be produced by the combined effects from the massive stars in the ionization front to the east, the σ Orionis core to the west, and the close proximity to the B2-type star HR 1950. HH 1165 shows all of the signatures to be considered as a scaled-down version of parsec-length HH jets, and can be termed as the first sub-stellar analog of a protostellar HH jet system.

  13. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Dawei; Li, Yutong; Lu, Xin

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in themore » laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model.« less

  14. First Large-scale Herbig–Haro Jet Driven by a Proto-brown Dwarf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riaz, B.; Briceño, C.; Heathcote, S.

    2017-07-20

    We report the discovery of a new Herbig–Haro jet, HH 1165, in SOAR narrow-band imaging of the vicinity of the σ Orionis cluster. HH 1165 shows a spectacular extended and collimated spatial structure, with a projected length of 0.26 pc, a bent C-shaped morphology, multiple knots, and fragmented bow shocks at the apparent ends of the flow. The H α image shows a bright halo with a clumpy distribution of material seen around the driving source, and curved reflection nebulosity tracing the outflow cavities. The driving source of HH 1165 is a Class I proto-brown dwarf, Mayrit 1701117 (M1701117), withmore » a total (dust+gas) mass of ∼36 M {sub Jup} and a bolometric luminosity of ∼0.1 L {sub ⊙}. High-resolution VLT/UVES spectra of M1701117 show a wealth of emission lines indicative of strong outflow and accretion activity. SOAR/Goodman low-resolution spectra along the jet axis show an asymmetrical morphology for HH 1165. We find a puzzling picture wherein the northwest part exhibits a classical HH jet running into a pre-dominantly neutral medium, while the southern part resembles an externally irradiated jet. The C-shaped bending in HH 1165 may be produced by the combined effects from the massive stars in the ionization front to the east, the σ Orionis core to the west, and the close proximity to the B2-type star HR 1950. HH 1165 shows all of the signatures to be considered as a scaled-down version of parsec-length HH jets, and can be termed as the first sub-stellar analog of a protostellar HH jet system.« less

  15. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  16. HERBIG-HARO OBJECTS IN THE LUPUS I AND III MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hongchi; Henning, Thomas

    2009-10-15

    We performed a deep search for Herbig-Haro (HH) objects toward the Lupus I and III clouds, covering a sky area of {approx} 1 and {approx} 0.5 deg{sup 2}, respectively. In total, 11 new HH objects, HH 981--991, are discovered. The HH objects both in Lupus I and in Lupus III tend to be concentrated in small areas. The HH objects detected in Lupus I are located in a region of radius 0.26 pc near the young star Sz 68. The abundance of HH objects shows that this region of the cloud is active in on-going star formation. HH objects inmore » the Lup III cloud are concentrated in the central part of the cloud around the Herbig Ae/Be stars HR 5999 and 6000. HH 981 and 982 in Lupus I are probably driven by the young brown dwarf SSTc2d J154457.9-342340 which has a mass of 50 M{sub J} . HH 990 and 991 in Lup III align well with the HH 600 jet emanating from the low-mass star Par-Lup3-4, and are probably excited by this low-mass star of spectral type M5. High proper motions for HH 228 W, E, and E2 are measured, which confirms that they are excited by the young star Th 28. In contrast, HH 78 exhibits no measurable proper motion in the time span of 18 years, indicating that HH 78 is unlikely part of the HH 228 flow. The HH objects in Lup I and III are generally weak in terms of brightness and dimension in comparison to HH objects we detected with the same technique in the R CrA and Cha I clouds. Through a comparison with the survey results from the Spitzer c2d program, we find that our optical survey is more sensitive, in terms of detection rate, than the Spitzer IRAC survey to high-velocity outflows in the Lup I and III clouds.« less

  17. HIGHLY EXCITED H{sub 2} IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.

    2016-05-10

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H{sub 2} with upper state energies ranging from ∼6000 K to the dissociation energy of H{sub 2}, ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much ofmore » the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H{sub 2} line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H{sub 2} newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H{sub 2} by the shock.« less

  18. Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    2017-08-01

    Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.

  19. Spectrum from Embedded Star in Herbig-Haro 46/47

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Spitzer Space Telescope has lifted the cosmic veil to see an otherwise hidden newborn star, while detecting the presence of water and carbon dioxide ices, as well as organic molecules. Using near-infrared light, Spitzer pierces through an optically dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark dust clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic star, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

    HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

    The Spitzer image (inset) was obtained with the infrared array camera and is a three-color mosaic. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red. The 8-micron channel of the camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron mission corresponds to the lower right edge of the dark cloud in the visible-light picture.

    The primary image shows a spectrum obtained with Spitzer's infrared spectrograph instrument, stretching from wavelengths of 5.5 microns (left) to 20 microns (right). Spectra are graphical representations of a celestial

  20. Variability of Disk Emission in Pre-Main Sequence and Related Stars. I. HD 31648 and HD 163296 - Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; hide

    2007-01-01

    Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.

  1. Variability of Disk Emission in Pre-Main-Sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad

    2008-05-01

    Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 μm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 μm region throughout this span of time. In both stars, the changes in the 1-5 μm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.

  2. The escape of Lyman photons from a young starburst: the case of Haro11†

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Östlin, Göran; Atek, Hakim; Kunth, Daniel; Mas-Hesse, J. Miguel; Leitherer, Claus; Jiménez-Bailón, Elena; Adamo, Angela

    2007-12-01

    Lyman α (Lyα) is one of the dominant tools used to probe the star-forming galaxy population at high redshift (z). However, astrophysical interpretations of data drawn from Lyα alone hinge on the Lyα escape fraction which, due to the complex radiative transport, may vary greatly. Here, we map the Lyα emission from the local luminous blue compact galaxy Haro11, a known emitter of Lyα and the only known candidate for low-z Lyman continuum emission. To aid in the interpretation, we perform a detailed ultraviolet and optical multiwavelength analysis and model the stellar population, dust distribution, ionizing photon budget, and star-cluster population. We use archival X-ray observations to further constrain properties of the starburst and estimate the neutral hydrogen column density. The Lyα morphology is found to be largely symmetric around a single young star-forming knot and is strongly decoupled from other wavelengths. From general surface photometry, only very slight correlation is found between Lyα and Hα, E(B - V), and the age of the stellar population. Only around the central Lyα bright cluster do we find the Lyα/Hα ratio at values predicted by the recombination theory. The total Lyα escape fraction is found to be just 3 per cent. We compute that ~90 per cent of the Lyα photons that escape do so after undergoing multiple resonance scattering events, masking their point of origin. This leads to a largely symmetric distribution and, by increasing the distance that photons must travel to escape, decreases the escape probability significantly. While dust must ultimately be responsible for the destruction of Lyα, it plays a little role in governing the observed morphology, which is regulated more by interstellar medium kinematics and geometry. We find tentative evidence for local Lyα equivalent width in the immediate vicinity of star clusters being a function of cluster age, consistent with hydrodynamic studies. We estimate the intrinsic production

  3. Structure of Protoplanetary Environments

    NASA Technical Reports Server (NTRS)

    Simon, Michal

    2000-01-01

    Our research focused on the structure and composition of the disks in the T Tau and Haro 6-10 multiple star systems and on the nature of the 'infrared companions' that these systems contain. This work has resulted in two papers, one on T Tau, presently under review at the Astrophysical Journal, and the other, on Haro 6-10, about to be submitted to Astronomy and Astrophysics. In the paper 'Evidence for Extinction and Accretion Variability in T Tau S' by Tracy L. Beck, L. Prato, and M. Simon, we present angularly resolved spectra of T Tau N (the visible star) and T Tau S (the infrared companion, IRC) in the three micrometer water ice-feature and the K-band. Most of the water ice absorption lies along the line of sight to T Tau S, confirming it is seen through stronger obscuration. A decrease in the ice-band absorption toward T Tau S between 12/98 and 1/00, significant, at the two-sigma level, was associated with an increase in its near IR flux. Bracket gamma emission is detected in T Tau N and S, and H2 (2.12 micrometer) emission only toward T Tau S, consistent with previous studies of IRCs. Our results suggest that the near IR variability of T Tau S is probably caused by both variations in accretion rate and extinction. Our paper on Haro 6-10, 'The Near IR and Ice Band Variability of Haro, 6-10' by Ch. Leinert, T.L. Beck, S. Ligori, M. Simon, J. Woitas, and R.R. Howell, represents a fusion of originally independent efforts at the Max Planck Institut fur Astronomie (Heidelberg) and Stony Brook. Our combined observations demonstrate that both Haro 6-10 S (the visible star) and Haro 6-10 N (the IRC) vary significantly in near IR flux on time scales as short as a month. The substantial decrease of Haro 6-10 S in the last four years carries the photometric signature of increased extinction. However, a comparable K-band flux increase of the IRC is associated with a dimming at H so cannot be explained by lower extinction. Absorption in the 3.1 micrometer ice band was

  4. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  5. International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  6. Infrared Polarization of the Molecular Cloud Associated to IRAS 18236-1205

    NASA Astrophysics Data System (ADS)

    Luna, A.; Retes, R.; Devaraj, R.; Maya, Y. D.; Carrasco, L.

    2017-07-01

    We present the near-infrared polarization observations towards the star forming molecular cloud associated with the IRAS source 18236-1205, obtained with the near-infrared (NIR) imaging polarimeter POLICAN at the Guillermo Haro Astrophysical Observatory in Cananea, Sonora, México.

  7. Occurrence, diversity and pattern of damage of Oplostomus species (Coleoptera: Scarabaeidae), honey bee pests in Kenya

    USDA-ARS?s Scientific Manuscript database

    Several arthropod pests including the hive beetles Aethina tumida and Oplostomus haroldi and the ectoparasite Varroa destructor have recently been identified as associated with honey bee colonies in Kenya. Here, we report the first documentation of O. fuligineus in Kenya, a related scarab of O. haro...

  8. Light Armored Vehicle (LAV) Task and Media Analysis for the U.S. Marine Corps LAV-25.

    DTIC Science & Technology

    1983-08-26

    recommendations for literature to be ordered from DTIC. Finally, the Marketing Manager for International Laser Systems, Mr. Haro Schneider, was...in FIRE ( nline ).X 7.3.2 Wait five seconds. Press misfire reset warning indicator. x E-32 .. , HANDS-ON TRAINING TRAINING REQUIRED REQUIRED 7.3.3 Close

  9. The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey. A ground-based follow-up survey of CO(1-0), CO(2-1), and CO(3-2)

    NASA Astrophysics Data System (ADS)

    Cormier, D.; Madden, S. C.; Lebouteiller, V.; Hony, S.; Aalto, S.; Costagliola, F.; Hughes, A.; Rémy-Ruyer, A.; Abel, N.; Bayet, E.; Bigiel, F.; Cannon, J. M.; Cumming, R. J.; Galametz, M.; Galliano, F.; Viti, S.; Wu, R.

    2014-04-01

    Context. Observations of nearby starburst and spiral galaxies have revealed that molecular gas is the driver of star formation. However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds in these environments. Aims: We aim to quantify the molecular gas reservoir in a subset of 6 galaxies from the Herschel Dwarf Galaxy Survey with newly acquired CO data and to link this reservoir to the observed star formation activity. Methods: We present CO(1-0), CO(2-1), and CO(3-2) observations obtained at the ATNF Mopra 22-m, APEX, and IRAM 30-m telescopes, as well as [C ii] 157μm and [O i] 63μm observations obtained with the Herschel/PACS spectrometer in the 6 low-metallicity dwarf galaxies: Haro 11, Mrk 1089, Mrk 930, NGC 4861, NGC 625, and UM 311. We derived their molecular gas masses from several methods, including using the CO-to-H2 conversion factor XCO (both Galactic and metallicity-scaled values) and dust measurements. The molecular and atomic gas reservoirs were compared to the star formation activity. We also constrained the physical conditions of the molecular clouds using the non-LTE code RADEX and the spectral synthesis code Cloudy. Results: We detect CO in 5 of the 6 galaxies, including first detections in Haro 11 (Z ~ 0.4 Z⊙), Mrk 930 (0.2 Z⊙), and UM 311 (0.5 Z⊙), but CO remains undetected in NGC 4861 (0.2 Z⊙). The CO luminosities are low, while [C ii] is bright in these galaxies, resulting in [C ii]/CO(1-0) ≥ 10 000. Our dwarf galaxies are in relatively good agreement with the Schmidt-Kennicutt relation for total gas. They show short molecular depletion timescales, even when considering metallicity-scaled XCO factors. Those galaxies are dominated by their H i gas, except Haro 11, which has high star formation efficiency and is dominated by ionized and molecular gas. We determine the mass of each ISM phase in

  10. A Mobilization Concept for the Future

    DTIC Science & Technology

    1989-04-28

    ecnomic , mili-ary and political factors that T7haro the :omcsition of U.S. Army force structure and troop taticning. Further, in the interest of cost...be based on mission essential task lists (METL) for specific geographic areas. As a beginning, the Army should look at developing two such forces. One

  11. Image digitising and analysis of outflows from young stars

    NASA Astrophysics Data System (ADS)

    Zealey, W. J.; Mader, S. L.

    1997-08-01

    We present IIIaJ, IIIaF and IVN band images of Herbig-Haro objects digitised from the ESO/SERC Southern Sky Survey plates. These form part of a digital image database of southern HH objects, which allows the identification of emission and reflection nebulosity and the location of the obscured sources of outflows.

  12. 33 CFR 161.55 - Vessel Traffic Service Puget Sound and the Cooperative Vessel Traffic Service for the Juan de...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Sound and the Cooperative Vessel Traffic Service for the Juan de Fuca Region. 161.55 Section 161.55... the Juan de Fuca Region. The Vessel Traffic Service Puget Sound area consists of the navigable waters... International Boundary through the waters known as the Strait of Juan de Fuca, Haro Strait, Boundary Pass, and...

  13. 33 CFR 161.55 - Vessel Traffic Service Puget Sound and the Cooperative Vessel Traffic Service for the Juan de...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sound and the Cooperative Vessel Traffic Service for the Juan de Fuca Region. 161.55 Section 161.55... the Juan de Fuca Region. The Vessel Traffic Service Puget Sound area consists of the navigable waters... International Boundary through the waters known as the Strait of Juan de Fuca, Haro Strait, Boundary Pass, and...

  14. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks aremore » the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.« less

  15. POLICAN: A near-infrared imaging polarimeter at OAGH

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.; Serrano-Bernal, O.

    2017-07-01

    We present a near-infrared linear imaging polarimeter POLICAN, developed for the Cananea near-infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. POLICAN reaches a limiting magnitude to about 16th mag with a polarimetric accuracy of about 1% for bright sources.

  16. Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field

    DTIC Science & Technology

    2006-09-30

    Pacific (ITCZ 10ºN, 95ºW), 3) Bering Sea coastal shelf, 4) Ionian Sea, 5) Carr Inlet, Puget Sound , Washington, and 6) Haro Strait, Washington/BC...Southern Resident Killer Whale ( Puget Sound ). In coastal and inland waterways, anthropogenic noise is often present. These signals are usually...Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field Jeffrey A. Nystuen Applied Physics Laboratory University of

  17. On Geometric Variational Models for Inpainting Surface Holes (PREPRINT)

    DTIC Science & Technology

    2006-01-01

    email: haro@ima.umn.edu Phone: (612) 626-1501 Fax: (612) 626-7370 Affiliations: 1 Dept. de Tecnologia , University of Pompeu-Fabra, Passeig de...regions where the 3D model is incomplete. The main cause of holes are occlusions, but these can also be due to low reflectance, constraints in the...major areas where range scanners are used. With the increasing popularity of range scanners as 3D shape acquisition devices, with applications in

  18. Hubble Sees a Stellar "Sneezing Fit"

    NASA Image and Video Library

    2017-12-08

    Look at the bright star in the middle of this image. It appears as if it just sneezed. This sight will only last for a few thousand years — a blink of an eye in the young star's life. If you could carry on watching for a few years you would realize it's not just one sneeze, but a sneezing fit. This young star is firing off rapid releases of super-hot, super-fast gas, like multiple sneezes, before it finally exhausts itself. These bursts of gas have shaped the turbulent surroundings, creating structures known as Herbig-Haro objects. These objects are formed from the star's energetic "sneezes." Launched due to magnetic fields around the forming star, these energetic releases can contain as much mass as our home planet, and cannon into nearby clouds of gas at hundreds of kilometers/miles per second. Shock waves form, such as the U-shape below this star. Unlike most other astronomical phenomena, as the waves crash outwards, they can be seen moving across human timescales of years. Soon, this star will stop sneezing, and mature to become a star like our sun. This region is actually home to several interesting objects. The star at the center of the frame is a variable star named V633 Cassiopeiae, with Herbig-Haro objects HH 161 and HH 164 forming parts of the horseshoe-shaped loop emanating from it. The slightly shrouded star just to the left is known as V376 Cassiopeiae, another variable star that has succumbed to its neighbor's infectious sneezing fits; this star is also sneezing, creating yet another Herbig-Haro object — HH 162. Both stars are very young and are still surrounded by dusty material left over from their formation, which spans the gap between the two. Credit: ESA/Hubble & NASA, Acknowledgement: Gilles Chapdelaine NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  19. Monitoring Sea Surface Processes Using the High Frequency Ambient Sound Field

    DTIC Science & Technology

    2005-09-30

    time 2.2 sec). This has been identified as a Southern Resident Killer Whale ( Puget Sound ). 6 In coastal and inland waterways, anthropogenic noise...ITCZ 10ºN, 95ºW), 3) Bering Sea coastal shelf, 4) Ionian Sea, 5) Carr Inlet, Puget Sound , Washington, and 6) Haro Strait, Washington/BC. The sound ...and 9 m/s). Figure 8. A comparison of cumulative distribution functions (CDFs) for rain, drizzle and shipping in Carr Inlet, Puget Sound . The

  20. Rehabilitation of Visual and Perceptual Dysfunction after Severe Traumatic Brain Injury

    DTIC Science & Technology

    2014-05-01

    Aguilar C, Hall-Haro C. Decay of prism aftereffects under passive and active conditions. Cogn Brain Res. 2004;20:92-97. 13. Kornheiser A. Adaptation...17. Huxlin KR, Martin T, Kelly K, et al. Perceptual relearning of complex visual motion after V1 damage in humans. J Neurosci . 2009;29:3981-3991...questionnaires. Restor Neurol Neurosci . 2004;22:399-420. 19. Peli E, Bowers AR, Mandel AJ, Higgins K, Goldstein RB, Bobrow L. Design of driving simulator

  1. A History of The U.S. Army in Operations Research

    DTIC Science & Technology

    1967-05-22

    Evolution (1951 - 1959). • • . • • • 60 5. Operations Research Office Organizatin I April 195L4 . . 64 6. AMry Organization for Reseavh and Development...23bid.. pp. 30-31, 41-42. Zpp. 48-50. 41 Thu Office established in Oahu, Hawaii, under the leadership of Dv. Lauriston C, Marshall, a physicist from...research in training methods, motivation, xorale leadership and psychological warfare. Most of the specific problems uz- dertaken by HaRO were old

  2. Herbig-Haro objects in the Chamaeleon II dark cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, J.A.; Hartigan, P.

    1988-04-01

    A new photograph and some spectra have been obtained for the group of HH objects HH 52, 53, 54. A long, gaseous streamer extends from HH 54 and produces an appearance very similar to that of HH 12. The spectra provide some additional radial velocities and line-intensity measurements for the group. It is confirmed that HH 54D is a star with no unusual photometric or spectroscopic characteristics. Attention is drawn to the distance of 400 pc derived by FitzGerald (1974, 1976) for a globule in the Cha II cloud, and it is suggested that the whole complex of gas, dust,more » and stars may well be further away than the 140 pc generally assumed. The spatial and velocity characteristics of this group of HH objects are discussed. The data do not support the identifications proposed by Sandell et al. (1987) as sources for the observed flows. 32 references.« less

  3. Herbig-Haro objects as the heads of radiative jets

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Konigl, Arieh; Fryxell, Bruce A.

    1989-01-01

    The interpretation of certain HH objects as the heads of nonadiabatic supersonic jets is examined using two-dimensional numerical simulations. It is found that radiative jets develop a dense shell between the jet shock and the leading bow shock when the cooling distance behind either one of these shocks is smaller than the jet radius. It is proposed that the radiatively cooling shell may account for the variable emission pattern from objects like HH 1. Also, it is suggested that HH objects with measured space velocities that exceed the spectroscopically inferred shock velocities could correspond to heavy jets in which the bow shock is effectively adiabatic. Low-excitation objects in which these velocities are comparable may represent light jets where the jet shock is nonradiative.

  4. Reconstruction of Acoustic Exposure on Orcas in Haro Strait

    DTIC Science & Technology

    2009-01-01

    Resident killer whales (Orcinus orca) (J pod).1 The class shadowed the J pod from their boat, recording its behavior, the GPS loca- tion of the...one of the resident pods of orcas, raising the question of the sonar’s impact on them. Due to two coincidental activities, this question can be...addressed in detail. Coinciding with Shoup’s transit, a marine mammal class from Friday Harbor Labs led by Dr. David Bain was observing a pod of Southern

  5. Dither and drizzle strategies for Wide Field Camera 3

    NASA Astrophysics Data System (ADS)

    Mutchler, Max

    2010-07-01

    Hubble's 20th anniversary observation of Herbig-Haro object HH 901 in the Carina Nebula is used to illustrate observing strategies and corresponding data reduction methods for the new Wide Field Camera 3 (WFC3), which was installed during Servicing Mission 4 in May 2009. The key issues for obtaining optimal results with offline Multidrizzle processing of WFC3 data sets are presented. These pragmatic instructions in "cookbook" format are designed to help new WFC3 users quickly obtain good results with similar data sets.

  6. VizieR Online Data Catalog: Arp 102B spectral optical monitoring (Shapovalova+, 2013)

    NASA Astrophysics Data System (ADS)

    Shapovalova, A. I.; Popovic, L. C.; Burenkov, A. N.; Chavushyan, V. H.; Ilic, D.; Kollatschny, W.; Kovacevic, A.; Bochkarev, N. G.; Valdes, J. R.; Torrealba, J.; Patino-Alvarez, V.; Leon-Tavares, J.; Benitez, E.; Carrasco, L.; Dultzin, D.; Mercado, A.; Zhdanova, V. E.

    2013-10-01

    Spectra of Arp 102B (during 142 nights) were taken with the 6-m and 1-m telescopes of the SAO RAS (Russia, 1998-2010), the INAOE 2.1-m telescope of the Guillermo Haro Observatory (GHO) at Cananea, Sonora, Mexico (1998-2007), the 2.1-m telescope of the Observatorio Astronomico Nacional at San Pedro Martir (OAN-SPM), Baja California, Mexico (2005-2007), and the 3.5-m and 2.2-m telescopes of Calar Alto observatory, Spain (1987-1994). (4 data files).

  7. Obituary -- Enrique Chavira Navarrete

    NASA Astrophysics Data System (ADS)

    Carramiñana, A.

    2001-04-01

    During the twentieth century, Mexican astronomical observatories migrated Tonantzintla and from there to the selected mountain sites of San Pedro Mártir and Cananea. In Tonantzintla Mexican astronomy progressed from cosmography to astrophysics. There, during the fifties and sixties, Guillermo Haro used the Schmidt camera to place México in the astronomical map. Instrumental to this process was Enrique Chavira, whose scientific life almost exactly matched the second half of the century which has just finished, going from the pioneer times of the Tonantzintla Astrophysical Observatory to the fully developed Mexican astronomy of the dawn of the XXI century. Enrique Chavira died unexpectedly 38 days before the turn of the century. Even though his heart had shown past weaknesses, his daily presence in the corridors of the Tonantzintla Institute somehow led us to believe he would always be here. Chavira was the most senior of the astronomers at Tonantzintla and, though he never entered the decision circles, he always had an opinion, frequently ironic, about the main problems of the Instituto. I do remember more than one occasion Alfonso Serrano asking for the advice of Chavira, seeking the experience of the former assistant of Don Guillermo Haro. Born and raised in México City, Chavira eventually moved to Puebla, the closest large city to Tonantzintla, following the steps of Mexican observational astronomy. Without concluding his formal studies, Chavira managed to adjudicate for himself the title of ``astrónomo'', earning it with his skillful handling of the Schmidt camera and the photographic plates. Over the years he took over 8000 astronomical plates, which is a little more than half of the precious Tonantzintla collection. Even though Chavira was aware of his limitations, his ability in photographic astronomy made him a recognized astronomer. The list of his co-authors includes, apart from Guillermo Haro, other renamed astronomers like Manuel Peimbert, Luis

  8. Soluciones analiticas AL problema de jets con velocidad de eyeccion variable EN EL tiempo.

    NASA Astrophysics Data System (ADS)

    Canto, J.; Raga, A. C.; D'Alessio, P.

    1998-11-01

    Se presenta un nuevo metodo que permite resolver de manera exacta y analitica las ecuaciones que describen un jet hipersonico con velocidad de eyeccion variable en el tiempo. El metodo se basa en consideraciones sencillas de conservacion de momento para las superficies de trabajo que se forman en el interior del jet. Como ejemplo, se presentan soluciones para jets con variacion sinusoidal en la velocidad de eyeccion, y tambien para el caso de un incremento lineal en el tiempo. Estas soluciones analiticas tienen una clara aplicacion en la interpretacion de las observaciones de jets asociados a objetos Herbig-Haro.

  9. The virial coefficients of hard hypersphere binary mixtures

    NASA Astrophysics Data System (ADS)

    Enciso, E.; Almarza, N. G.; Gonzalez, M. A.; Bermejo, F. J.

    The third, fourth and fifth virial coefficients of hard hypersphere binary mixtures with dimensionality d = 4, 5 have been calculated for size ratios R ≥0.1, R ı σ22 / σ11 , where σ ii is the diameter of component i . The composition independent partial virial coefficients have been evaluated by Monte Carlo integration of the corresponding Mayer modified star diagrams. The results are compared with the predictions of Santos, S., Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys ., 96 , 1 of the equation of state of a multicomponent mixture of hard hyperspheres, and the good agreement gives strong support to the validity of that recipe.

  10. Structure of ternary additive hard-sphere fluid mixtures.

    PubMed

    Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano

    2002-12-01

    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.

  11. VizieR Online Data Catalog: G0-G3 main-sequence stars with V<15 (Lopez-Valdivia+, 2014)

    NASA Astrophysics Data System (ADS)

    Lopez-Valdivia, R.; Bertone, E.; Chavez, M.; Tapia-Schiavon, C.; Hernandez-Aguila, J. B.; Valdes, J. R.; Chavushyan, V.

    2015-04-01

    We selected in late 2008 a sample of stars from the Set of Identifications, Measurements, and Bibliography for Astronomical Data (SIMBAD) data base using the following criteria: (i) spectral type between G0 and G3; (ii) luminosity class V; (iii) visible magnitude V<15mag; (iv) declination δ>-10°. The selection resulted in about 1200 objects. We report here the results for 233 stars. We carried out the spectroscopic observations at the 2.12-m telescope of the Observatorio Astrofisico Guillermo Haro (Sonora, Mexico) between 2008 and 2013, with a Boller & Chivens spectrograph, equipped with a Versarray 1300x1340 CCD. (3 data files).

  12. Blue compact dwarf galaxies. I - Neutral hydrogen observations of 115 galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Martin, G. E.

    1981-01-01

    HI observations are reported for a sample of 115 blue compact dwarf (M sub B greater than approximately -18) galaxies or 'extragalactic H II regions' chosen mostly from the objective prism surveys of Markarian (1967-1974) and Haro (1956), with a few objects from Zwicky (1971) and other investigators. Ninety-three galaxies are detected. H I profiles, neutral hydrogen masses, total masses, and all available optical data are given for the 115 galaxies in a consistent and homogeneous system and in a useful format for statistical studies. The data are used in a companion paper to study the stochastic mode of star formation in galaxies.

  13. Very Large Array Ammonia Observations of the HH 111/HH 121 Protostellar System: A Detection of a New Source with a Peculiar Chemistry

    NASA Astrophysics Data System (ADS)

    Sewiło, Marta; Wiseman, Jennifer; Indebetouw, Remy; Charnley, Steven B.; Pineda, Jaime E.; Lindberg, Johan E.; Qin, Sheng-Li

    2017-11-01

    We present the results of Very Large Array NH3 (J,K)=(1,1) and (2,2) observations of the HH 111/HH 121 protostellar system. HH 111, with a spectacular collimated optical jet, is one of the most well-known Herbig-Haro objects. We report the detection of a new source, NH3-S, in the vicinity of HH 111/HH 121 (˜0.03 pc from the HH 111 jet source) in two epochs of the ammonia observations. This constitutes the first detection of this source, in a region that has been thoroughly covered previously by both continuum and spectral line interferometric observations. We study the kinematic and physical properties of HH 111 and the newly discovered NH3-S. We also use HCO+ and HCN (J=4-3) data obtained with the James Clerk Maxwell Telescope and archival Atacama Large Millimeter/submillimeter Array 13CO, 12CO, and C18O (J=2-1), N2D+ (J=3-2), and 13CS (J=5-4) data to gain insight into the nature of NH3-S. The chemical structure of NH3-S shows evidence for “selective freeze-out,” an inherent characteristic of dense cold cores. The inner part of NH3-S shows subsonic nonthermal velocity dispersions indicating a “coherent core,” while they increase in the direction of the jets. Archival near- to far-infrared data show no indication of any embedded source in NH3-S. The properties of NH3-S and its location in the infrared dark cloud suggest that it is a starless core located in a turbulent medium, with the turbulence induced by Herbig-Haro jets and associated outflows. More data are needed to fully understand the physical and chemical properties of NH3-S and if/how its evolution is affected by nearby jets.

  14. Hubble Space Telescope images and follow-up spectroscopy of the Orion nebula

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Wen, Zheng; Hester, J. J.

    1991-01-01

    Recently published HST images of the Orion nebula reveal elephant-trunk structures, an apparent jet of material, and fine-scale structure in the Herbig-Haro object HH2, which is located at the base of an elephant trunk. High-resolution spectroscopy shows that the apparent jet is actually an ionization front seen edge-on. HH2 shows a complex structure in the several stages of ionization observed. There seem to be two velocity systems characterized by a bright central region and an accompanying shell-like emission. These two systems are most likely to be the result of a bow shock and corresponding Mach disk formed from the interaction of a collimated jet and the ambient gas of the nebula.

  15. Dust destruction and thermal inhomogeneities in the Orion Nebula. Results of HH 202.

    NASA Astrophysics Data System (ADS)

    Espíritu, J.; Peimbert, A.; Delgado-Inglada, G.; Ruiz, M. T.

    2017-11-01

    We present a long-slit spectroscopic analysis of Herbig-Haro 202 and the surrounding gas of the Orion Nebula using data from the Very Large Telescope. We determined the spatial variation of its physical conditions and chemical abundances. Special attention was paid to the iron (Fe) and oxygen (O) abundances, which show a peak at the brightest part of HH 202, allowing us to estimate that 57% of the dust is the destroyed; we also calculate the amount of depletion of oxygen in dust grains. Finally we show that O abundances determined from collisionally excited lines and recombination lines are irreconcilable at the center of the shock unless thermal inhomogeneities are considered.

  16. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, David; Gibb, Erika; Rettig, Terrence W.

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less

  17. Red and nebulous objects in dark clouds - A survey

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    A search on the NGS-PO Sky Survey photographs has revealed 150 interesting nebulous and/or red objects, mostly lying in dark clouds and not previously catalogued. Spectral classifications are presented for 55 objects. These indicate a small number of new members of the class of Herbig-Haro objects, a significant number of new T Tauri stars, and a few emission-line hot stars. It is argued that hot, high-mass stars form preferentially in the dense cores of dark clouds. The possible symbiosis of high and low mass stars is considered. A new morphology class is defined for cometary nebulae, in which a star lies on the periphery of a nebulous ring.

  18. A Rapidly Moving Shell in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Walter, Donald K.; O'Dell, C. R.; Hu, Xihai; Dufour, Reginald J.

    1995-01-01

    A well-resolved elliptical shell in the inner Orion Nebula has been investigated by monochromatic imaging plus high- and low-resolution spectroscopy. We find that it is of low ionization and the two bright ends are moving at -39 and -49 km/s with respect to OMC-1. There is no central object, even in the infrared J bandpass although H2 emission indicates a possible association with the nearby very young pre-main-sequence star J&W 352, which is one of the youngest pre-main-sequence stars in the inner Orion Nebula. Many of the characteristics of this object (low ionization, blue shift) are like those of the Herbig-Haro objects, although the symmetric form would make it an unusual member of that class.

  19. VizieR Online Data Catalog: Long-term optical monitoring of E1821+643 (Shapovalova+, 2016)

    NASA Astrophysics Data System (ADS)

    Shapovalova, A. I.; Popovic, L. C.; Chavushyan, V. H.; Burenkov, A. N.; Ilic, D.; Kollatschny, W.; Kovacevic, A.; Valdes, J. R.; Patino-Alvarez, V.; Leon-Tavares, J.; Torrealba, J.; Zhdanova, V. E.

    2016-03-01

    The photometry in BVR filters of E1821+643 was performed at the Special Astrophysical Observatory of the Russian Academy of Science (SAO RAS) during the 2003-2014 period (98 nights) with the 1m Zeiss telescope. The photometric system of this instrument resembles those of Johnson in the B and V filters and of Cousins in the R filter. Spectra of E1821+643 (~140 nights) were acquired with two telescopes (6m and 1m) at SAO RAS, Russia (during 1998-2014), one telescope (INAOE's 2.1m) at Guillermo Haro Observatory (GHO) Cananea, Sonora, Mexico (during 1998-2007 and 2013), and two telescopes (3.5m and 2.2m) at Calar Alto Observatory, Spain (during 1990-1994). (4 data files).

  20. Port and Waterway Safety Assessment: Haro Strait/Boundary Pass USA - Canada Workshop Report

    DTIC Science & Technology

    2002-02-26

    VTS Puget Sound (206) 217-6152 kalger@pacnorwest.uscg.mil LCDR Keith Bradford USCG MSO Puget Sound (206) 217-6251 kbradford@pacnorwest.uscg.mil Mr...594-3335 dyck@telus.net Mr. Colin Eckford Washington Marine Group (604) 988-3111 ceckford@seaspan.com Capt. Miklos Endrody Puget Sound Pilots (425...nwlink.com Mr. Andrea Heba Vancouver Port Authority (604) 665-9086 andrea.heba@portvancouver.com Capt. Robert Kromann Puget Sound Pilots (425) 743

  1. Very Large Array Ammonia Observations of the HH 111/HH 121 Protostellar System: A Detection of a New Source with a Peculiar Chemistry

    NASA Technical Reports Server (NTRS)

    Sewilo, Marta; Wiseman, Jennifer; Indebetouw, Remy; Charnley, Steven B.; Pineda, Jaime E.; Lindberg, Johan E.; Qin, Sheng-Li

    2017-01-01

    We present the results of Very Large Array NH3 (J, K) = (1, 1) and (2, 2) observations of the HH 111/HH 121 protostellar system. HH 111, with a spectacular collimated optical jet, is one of the most well-known Herbig-Haro objects. We report the detection of a new source, NH3-S, in the vicinity of HH 111/HH 121 (approximately 0.03 parsecs from the HH 111 jet source) in two epochs of the ammonia observations. This constitutes the first detection of this source, in a region that has been thoroughly covered previously by both continuum and spectral line interferometric observations. We study the kinematic and physical properties of HH 111 and the newly discovered NH3-S. We also use HCO plus and HCN (J=4-3) data obtained with the James Clerk Maxwell Telescope and archival Atacama Large Millimeter/submillimeter Array (sup 13) CO, (sup 12) CO, and C (sup 18) O (J=2-1), N2D plus (J=3-2), and (sup 13) CS (J=5-4) data to gain insight into the nature of NH3-S. The chemical structure of NH3-S shows evidence for "selective freeze-out,"� an inherent characteristic of dense cold cores. The inner part of NH3-S shows subsonic nonthermal velocity dispersions indicating a "coherent core,"� while they increase in the direction of the jets. Archival near- to far-infrared data show no indication of any embedded source in NH3-S. The properties of NH3-S and its location in the infrared dark cloud suggest that it is a starless core located in a turbulent medium, with the turbulence induced by Herbig-Haro jets and associated outflows. More data are needed to fully understand the physical and chemical properties of NH3-S and if/how its evolution is affected by nearby jets.

  2. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  3. Narrow-band Imagery with the Goddard Fabry-Perot: Probing the Epoch of Active Accretion for PMS Stars

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Grady, C.; Endres, M.; Williger, G.

    2006-01-01

    The STIS coronagraphic imaging sample of I'MS stars was surveyed with the Goddard Fabry-Perot (GFP) interferometer to determine what fraction of the stars drive jets, whether there is any difference in behavior for a group of intermediate-mass stars as compared with T Tauri stars, and to search for evolutionary effects. Compared to broad band imaging, the FGP achieves an emission-line nebulosity-to-star contrast gain of between 500 and 3000. To date, we have detected jets associated with classical T Tauri stars spanning a factor of 280 in mass accretion rate in approximately 50% of the STIS coronagraphic imaging sample. We also detected jets or Herbig-HARO knots associated with 5 Herbig Ae stars, all younger than 8 Myr, for a detection fraction which is smaller than the T Tauri survey.

  4. A highly embedded protostar in SFO 18: IRAS 05417+0907

    NASA Astrophysics Data System (ADS)

    Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana

    2018-04-01

    Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.

  5. Beyond MOS and Fibers: Wide-FoV Imaging Fourier Transform Spectroscopy - an Instrumentation Proposal for the Present and Future Mexican Telescopes

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.

    2016-10-01

    In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.

  6. Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    The development of efficient methods for detecting quasiperiodic oscillations and computing the corresponding invariant tori is a subject of great importance in dynamical systems and their applications in science and engineering. In this paper, we prove the convergence of a new Newton-like method for computing quasiperiodic normally hyperbolic invariant tori carrying quasiperiodic motion in smooth families of real-analytic dynamical systems. The main result is stated as an a posteriori KAM-like theorem that allows controlling the inner dynamics on the torus with appropriate detuning parameters, in order to obtain a prescribed quasiperiodic motion. The Newton-like method leads to several fast and efficient computational algorithms, which are discussed and tested in a companion paper (Canadell and Haro in J Nonlinear Sci, 2017. doi: 10.1007/s00332-017-9388-z), in which new mechanisms of breakdown are presented.

  7. Kinematics and the origin of the internal structures in HL Tauri jet (HH 151)

    NASA Astrophysics Data System (ADS)

    Movsessian, T. A.; Magakian, T. Yu.; Moiseev, A. V.

    2012-05-01

    Context. Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. Aims: We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20'' from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. Methods: We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perót interferometer. Two epochs of the observations of the HL/XZ Tau region in Hα emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. Results: The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Hα emission only. Conclusions: We conclude that the high- and low-velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau. Based on observations collected with the 6 m telescope of the Special

  8. Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs

    NASA Technical Reports Server (NTRS)

    Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy

    2016-01-01

    We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and

  9. The nature of HHL 73 from optical imaging and integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    López, R.; Sánchez, S. F.; García-Lorenzo, B.; Gómez, G.; Estalella, R.; Riera, A.; Busquet, G.

    2008-02-01

    We present new results on the nature of the Herbig-Haro-like object 73 (HHL 73, also known as [G84b] 11) based on narrow-band CCD Hα and [SII] images of the HHL 73 field, and integral field spectroscopy (IFS) and radio continuum observations at 3.6 cm covering the emission of the HHL 73 object. The CCD images allow us to resolve the HHL 73 comet-shaped morphology into two components and a collimated emission feature of ~4 arcsec long, reminiscent of a microjet. The IFS spectra of HHL 73 showed emission lines characteristic of the spectra of Herbig-Haro objects. The kinematics derived for HHL 73 are complex. The profiles of the [SII] λλ6717, 6731 Å lines were well fitted with a model of three Gaussian velocity components peaking at VLSR ~= -100, -20 and +35 km s-1. We found differences among the spatial distribution of the kinematic components that are compatible with the emission from a bipolar outflow with two blueshifted (low- and high-velocity) components. Extended radio continuum emission at 3.6 cm was detected showing a distribution in close agreement with the HHL 73 redshifted gas. From the results discussed here, we propose HHL 73 to be a true HH object. IRAS 21432+4719, offset 30-arcsec north-east from the HHL 73 apex, is the most plausible candidate to be driving HHL 73, although the evidence is not conclusive. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC) and in the 2.6-m Nordic Optical Telescope and 2.5-m Isaac Newton Telescope at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: rosario@am.ub.es (RL); sanchez@caha.es (SFS); bgarcia@iac.es (BG-L); gabriel.gomez@gtc.iac.es (GG); robert.estalella@am.ub.es (RE); angels.riera@upc.edu (AR); gbusquet@am.ub.es (GB)

  10. Highly supersonic bipolar mass ejection from a red giant OH/IR source - OH 0739 - 14

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Dopita, M. A.; Schwartz, R. D.; Tielens, A. G. G. M.

    1985-01-01

    From long-slit spectrophotometry of the bipolar nebula associated with the unusual OH source, OH 0739 - 14, the presence of a blue companion to the M9 III central star was shown and a Herbig-Haro-like knot beyond each nebular lobe was discovered. From differential colors of the lobes and from radial velocities of these knots it was demonstrated that the system inclines its northern lobe in the forward direction. It was also shown that the nebulous knots are shocks being driven into an extensive circumstellar envelope, and that this material is very overabundant in nitrogen, suggesting that it is matter lost from a star of mass greater than 3 solar masses. A model of biconical ejection from a central binary is consistent with the OH observations, and a possible relation of OH 0739 - 14 to the symbiotic stars and to bipolar planetary nebulae is suggested.

  11. Infrared spectra of rotating protostars

    NASA Technical Reports Server (NTRS)

    Adams, F. C.; Shu, F. H.

    1986-01-01

    Earlier calculations of the infrared emission expected from stars in the process of being made are corrected to include the most important observable effects of rotation and generalized. An improved version of the spherical model of a previous paper is developed, and the corresponding emergent spectral energy distributions are calculated for the theoretically expected mass infall rate in the cores of cool and quiescent molecular clouds. The dust grain opacity model and the temperature profile parameterization are improved. It is shown that the infrared spectrum of the IRAS source 04264+2426, which is associated with a Herbig-Haro object, can be adequately represented in terms of a rotating and accreting protostar. This strengthens the suggestion that collimated outflows in young stellar objects originate when a stellar wind tries to emerge and reverse the swirling pattern of infall which gave birth to the central star.

  12. VizieR Online Data Catalog: L-σ relation for massive star formation (Chavez+, 2014)

    NASA Astrophysics Data System (ADS)

    Chavez, R.; Terlevich, R.; Terlevich, E.; Bresolin, F.; Melnick, J.; Plionis, M.; Basilakos, S.

    2015-03-01

    We observed 128 HIIGx selected from the SDSS DR7 spectroscopic catalogue (Abazajian et al., 2009ApJS..182..543A) for having the strongest emission lines relative to the continuum (i.e. largest equivalent widths) and in the redshift range 0.01Haro (OAGH) in Cananea (Sonora), both in Mexico. High spectral resolution spectroscopy was obtained using echelle spectrographs at 8-m class telescopes. The telescopes and instruments used are UVES at the ESO VLT in Paranal, Chile and the HDS at the National Astronomical Observatory of Japan (NAOJ) Subaru Telescope in Mauna Kea, Hawaii. (5 data files).

  13. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  14. Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald

    1999-01-01

    HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.

  15. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  16. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232

    NASA Astrophysics Data System (ADS)

    Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.

    2017-11-01

    Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.

  17. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  18. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  19. Determination of Li abundance in Solar type stars of intermediate brightness

    NASA Astrophysics Data System (ADS)

    Amazo-Gómez, E. M.; Hernandez-Águila, B.; Dagostino, M. C.; Bertone, E.; de la Luz, V.

    2014-10-01

    The determination of the lithium abundance in stellar atmospheres is of fundamental importance in multiple contexts of contemporary astrophysics. On the one hand, the lithium present in stars with global sub-solar metal abundances provides a strong restriction on the abundance of this element as a result of primordial nucleo-synthesis. On the other hand, Li can be an age indicator for stars with convective envelopes. Additionally, Li abundance appears to be correlated with the presence of sub-stellar companions. We present preliminary results of a project aimed at determining the Li abundance in an extended sample of solar-like stars (spectral type G and luminosity class V) of intermediate brightness. High resolution spectroscopic data (R=65000) were obtained with the CanHiS echelle spectrograph on the 2.11m telescope of the Guillermo Haro Observatory in Cananea, Sonora, Mexico. We report the equivalent widths of a first sub-sample of 33 stars.

  20. Spectroscopic Survey of Circumstellar Disks in Orion

    NASA Astrophysics Data System (ADS)

    Contreras, Maria; Hernandez, Jesus; Olguin, Lorenzo; Briceno, Cesar

    2013-07-01

    As a second stage of a project focused on characterizing candidate stars bearing a circumstellar disk in Orion, we present a spectroscopic follow-up of a set of about 170 bright stars. The present set of stars was selected by their optical (UBVRI) and infrared behavior in different color-color and color-magnitude diagrams. Observations were carried out at the Observatorio Astronomico Nacional located at the Sierra San Pedro Martir in B.C., Mexico and at the Observatorio Guillermo Haro in Cananea, Sonora, Mexico. Low-resolution spectra were obtained for all candidates in the sample. Using the SPTCLASS code, we have obtained spectral types and equivalent widths of the Li I 6707 and Halpha lines for each one of the stars. This project is a cornerstone of a large scale survey aimed to obtain stellar parameters in a homogeneous way using spectroscopic data. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  1. CANICA: The Cananea Near-Infrared Camera at the 2.1 m OAGH Telescope

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Hernández Utrera, O.; Vázquez, S.; Mayya, Y. D.; Carrasco, E.; Pedraza, J.; Castillo-Domínguez, E.; Escobedo, G.; Devaraj, R.; Luna, A.

    2017-10-01

    The Cananea near-infrared camera (CANICA) is an instrument commissioned at the 2.12 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA operates in the near-infrared at multiple bands including J(1.24 μm), H(1.63 μm) and K' (2.12 μm) broad-bands. CANICA in located at the Ritchey-Chrétien focal plane of the telescope, reimaging the f/12 beam into f/6 beam. The detector is a 1024 × 1024 HgCdTe HAWAII array of 18.5 μm pixel size, covering a field of view of 5.5 × 5.5 arcmin2, for a plate scale of 0.32 arcsec/pixel. The camera is enclosed in a cryostat, cooled with liquid nitrogen to 77 K. The cryostat contains the collimator, two 15-position filter wheels, single fixed reimaging optics and the detector.

  2. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  3. A multifrequency study of star formation in the blue compact dwarf galaxy IZw 36

    NASA Technical Reports Server (NTRS)

    Viallefond, F.; Thuan, T. X.

    1983-01-01

    Radio, near IR, optical, and UV observations of I Zw 36 = Mrk 209 = Haro 29 are reported. The H I distribution shows a core-halo structure, the core containing half of the mass and showing systematic motions; the halo is diffuse and contains several H I clumps. The visible star formation region is associated with the core but is shifted slightly with respect to the H I peak column density; and the virial mass is 5 to 7 times the H I mass. Star formation models with an initial mass function of slope 1.5 (the Salpeter value being 1.35) and a burst age or duration of a few million years fit well the optical spectrophotometric measurements. The data also suggest that the column density of molecular hydrogen in I Zw 36 is 6 + or - 3 times that of the neutral hydrogen, about the right amount to account for the virial mass.

  4. A spectroscopic study of the blue stragglers in M67

    NASA Astrophysics Data System (ADS)

    Liu, G. Q.; Deng, L.; Chávez, M.; Bertone, E.; Davo, A. Herrero; Mata-Chávez, M. D.

    2008-10-01

    Based on spectrophotometric observations from the Guillermo Haro Observatory (Cananea, Mexico), a study of the spectral properties of the complete sample of 24 blue straggler stars (BSs) in the old Galactic open cluster M67 (NGC 2682) is presented. All spectra, calibrated using spectral standards, were recalibrated by means of photometric magnitudes in the Beijing-Arizona-Taipei-Connecticut system, which includes fluxes in 11 bands covering ~3500-10000 Å. The set of parameters was obtained using two complementary approaches that rely on a comparison of the spectra with (i) an empirical sample of stars with well-established spectral types and (ii) a theoretical grid of optical spectra computed at both low and high resolution. The overall results indicate that the BSs in M67 span a wide range in Teff(~ 5600 -12600 K) and surface gravities that are fully compatible with those expected for main-sequence objects (log g = 3.5 -5.0 dex).

  5. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A new image from ESO's Very Large Telescope gives a close-up view of the dramatic effects new-born stars have on the gas and dust from which they formed. Although the stars themselves are not visible, material they have ejected is colliding with the surrounding gas and dust clouds and creating a surreal landscape of glowing arcs, blobs and streaks. The star-forming region NGC 6729 is part of one of the closest stellar nurseries to the Earth and hence one of the best studied. This new image from ESO's Very Large Telescope gives a close-up view of a section of this strange and fascinating region (a wide-field view is available here: eso1027). The data were selected from the ESO archive by Sergey Stepanenko as part of the Hidden Treasures competition [1]. Sergey's picture of NGC 6729 was ranked third in the competition. Stars form deep within molecular clouds and the earliest stages of their development cannot be seen in visible-light telescopes because of obscuration by dust. In this image there are very young stars at the upper left of the picture. Although they cannot be seen directly, the havoc that they have wreaked on their surroundings dominates the picture. High-speed jets of material that travel away from the baby stars at velocities as high as one million kilometres per hour are slamming into the surrounding gas and creating shock waves. These shocks cause the gas to shine and create the strangely coloured glowing arcs and blobs known as Herbig-Haro objects [2]. In this view the Herbig-Haro objects form two lines marking out the probable directions of ejected material. One stretches from the upper left to the lower centre, ending in the bright, circular group of glowing blobs and arcs at the lower centre. The other starts near the left upper edge of the picture and extends towards the centre right. The peculiar scimitar-shaped bright feature at the upper left is probably mostly due to starlight being reflected from dust and is not a Herbig-Haro object. This

  6. Pulsations, Shocks, and Mass Loss

    NASA Technical Reports Server (NTRS)

    Bally, John

    1998-01-01

    This grant provided long-term support for my investigation of the outflows powered by young stars. Several major research results emerged during the course of this research, including: (1) The discovery of giant Herbig-Haro outflows from young stars that can extend for many parsecs from their sources. The first parsec-scale outflow to be recognized led to the realization that Herbig-Haro outflows, even those produced by low mass young stellar objects, can extend orders of magnitude farther from their sources than previously thought. Our preconceptions were to a large extent driven by the narrow fields-of-view then provided by CCD detectors. With the recent advent of large format CCDs and CCD mosaics, we have come to realize that most outflows attain parsec-scale dimensions. Even at the distance of the Orion star forming clouds, such flows can subtend a degree on the sky. Our work has led to the recognition of over two dozen giant. (2) The discovery that outflows are highly clustered. Even regions of relatively isolated star formation such as those in Taurus frequently produce multiple outflows. (3) The discovery of a new family of externally irradiated jets. During the last year of support from this grant, we made the startling discovery that there is a class of jets from young stars that are illuminated by the ionizing radiation field of nearby massive stars. The first four examples were discovered in the vicinity of the a Orionis sub-group of the Orion OB Association which is believed to be at least 2 million years old. Since the jets are photo-ionized, their densities can be reliably estimated. Most HH jets are shock excited, and are therefore notoriously difficult to characterize since their visibility and observed properties depend on the complex and highly non-linear processes associated with shocks. Furthermore, many irradiated jets are one sided rather than bipolar. Thus, irradiated jets may for the first time be used to accurately diagnose jet densities

  7. Binary energy source of the HH 250 outflow and its circumstellar environment

    NASA Astrophysics Data System (ADS)

    Comerón, Fernando; Reipurth, Bo; Yen, Hsi-Wei; Connelley, Michael S.

    2018-04-01

    Aims: Herbig-Haro flows are signposts of recent major accretion and outflow episodes. We aim to determine the nature and properties of the little-known outflow source HH 250-IRS, which is embedded in the Aquila clouds. Methods: We have obtained adaptive optics-assisted L-band images with the NACO instrument on the Very Large Telescope (VLT), together with N- and Q-band imaging with VISIR also on the VLT. Using the SINFONI instrument on the VLT we carried out H- and K-band integral field spectroscopy of HH 250-IRS, complemented with spectra obtained with the SpeX instrument at the InfraRed Telescope Facility (IRTF) in the JHKL bands. Finally, the SubMillimeter Array (SMA) interferometer was used to study the circumstellar environment of HH 250-IRS at 225 and 351 GHz with CO (2-1) and CO (3-2) maps and 0.9 mm and 1.3 mm continuum images. Results: The HH 250-IRS source is resolved into a binary with 0.''53 separation, corresponding to 120 AU at the adopted distance of 225 pc. The individual components show heavily veiled spectra with weak CO absorption indicative of late-type stars. Both are Class I sources, but their spectral energy distributions between 1.5 μm and 19 μm differ markedly and suggest the existence of a large cavity around one of the components. The millimeter interferometric observations indicate that the gas mainly traces a circumbinary envelope or disk, while the dust emission is dominated by one of the circumstellar envelopes. Conclusions: HH 250-IRS is a new addition to the handful of multiple systems where the individual stellar components, the circumstellar disks and a circumbinary disk can be studied in detail, and a rare case among those systems in which a Herbig-Haro flow is present. Based on observations obtained with the VLT (Cerro Paranal, Chile) in programs 089.C-0196(A), 095.C-0488(A), and 095.C-0488(B), as well as with IRTF (Mauna Kea, Hawaii), SMA (Mauna Kea, Hawaii), and the Nordic Optical Telescope (La Palma, Canary Islands, Spain

  8. Laboratory Investigation of Astrophysical Collimated Jets with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Yuan, Dawei; Li, Yutong; Tao, Tao; Wei, Huigang; Zhong, Jiayong; Zhu, Baojun; Li, Yanfei; Zhao, Jiarui; Li, Fang; Han, Bo; Zhang, Zhe; Liang, Guiyun; Wang, Feilu; Hu, Guangyue; Zheng, Jian; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhou, Shenlei; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2018-06-01

    One of the remarkable dynamic features of the Herbig–Haro (HH) object is its highly collimated propagation far away from the accretion disk. Different factors are proposed to give us a clearly physical explanation behind these fascinating phenomena, including magnetic field, radiation cooling, surrounding medium, and so on. Laboratory astrophysics, as a new complementary method of studying astrophysical issues, can provide an insight into these behaviors in a similar and controllable laboratory environment. Here we report the scaled laboratory experiments that a well-collimated radiative jet with high Mach number is successfully created to mimic the evolution of HH objects. According to our results, we find that the radiation cooling effect within the jet and the outer rare surrounding plasmas from the X-ray (>keV) photoionized target contribute to the jet collimation. The local nonuniform density structures along the collimated radiative jet axis are caused by the pressure competition between the inner jet and the outer plasmas. The corresponding simulations performed with radiation-hydrodynamic codes FLASH reveal how the radiative jet evolves.

  9. VizieR Online Data Catalog: 1H 0323+342 rest frame optical spectrum with GHAO (Leon+, 2014)

    NASA Astrophysics Data System (ADS)

    Leon Tavares, J.; Kotilainen, J.; Chavushyan, V.; Anorve, C.; Puerari, I.; Cruz-Gonzalez, I.; Patino-Alvarez, V.; Anton, S.; Carraminana, A.; Carrasco, L.; Guichard, J.; Karhunen, K.; Olguin-Iglesias, A.; Sanghvi, J.; Valdes, J.

    2017-05-01

    Within the framework of a spectrophotometric monitoring program of bright γ-ray sources (Patino-Alvarez et al. 2013, Proc. Fermi Symposium, arXiv:1303.1893), we undertook spectroscopic observations of 1H 0323+342 using the Boller & Chivens long-slit spectrograph on the 2.1 m Guillermo Haro Astrophysical Observatory (GHAO) in Sonora, Mexico. The spectra were obtained under photometric weather conditions (2012 September 17, 2013 January 9, 2013 February 7 and 11) using a slit width of 2.5 arcsec. The spectral resolution was R=15 Å and R=7 Å (FWHM) for the low-resolution and intermediate-resolution spectra, respectively. The wavelength range for the three low-resolution spectra is 3800-7100 Å, and for one intermediate-resolution spectrum the wavelength range is 4300-5900 Å. The signal-to-noise ratio (S/N) was >40 in the continuum near H{Beta}. To enable a wavelength calibration, HeAr lamp spectra were taken after each object exposure. Spectrophotometric standard stars were observed every night (at least two per night) to enable flux calibration. (1 data file).

  10. Far-infrared observations of a star-forming region in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Cruz-Gonzalez, I.; Mcbreen, B.; Fazio, G. G.

    1984-01-01

    A high-resolution far-IR (40-250-micron) survey of a 0.9-sq-deg section of the core region of the Corona Australis dark cloud (containing very young stellar objects such as T Tauri stars, Herbig Ae and Be stars, Herbig-Haro objects, and compact H II regions) is presented. Two extended far-IR sources were found, one associated with the Herbig emission-line star R CrA and the other with the irregular emission-line variable star TY CrA. The two sources have substantially more far-IR radiation than could be expected from a blackbody extrapolation of their near-IR fluxes. The total luminosities of these sources are 145 and 58 solar luminosity, respectively, implying that the embedded objects are of intermediate or low mass. The infrared observations of the sources associated with R CrA and TY CrA are consistent with models of the evolution of protostellar envelopes of intermediate mass. However, the TY CrA source appears to have passed the evolutionary stage of expelling most of the hot dust near the central source, yielding an age of about 1 Myr.

  11. Exploring the engines of molecular outflows

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    1995-03-01

    Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.

  12. Molecular hydrogen line ratios in four regions of shock-excited gas

    NASA Technical Reports Server (NTRS)

    Burton, M. G.; Brand, P. W. J. L.; Geballe, T. R.; Webster, A. S.

    1989-01-01

    Five emission lines of molecular hydrogen, with wavelengths in the ranges of 2.10-2.25 and 3.80-3.85 microns, have been observed in four objects of different type in which the line emission is believed to be excited by shocks. The relative intensities of the lines 1 - 0 S(1):1 - 0 S(O):2 - 1 S(1) are approximately 10.5:2.5:1.0 in all four objects. The 0 - 0 S(13):1 - 0 O(7) line ratio, however, varies from 1.05 in OMC-1 to about 2.3 in the Herbig-Haro object HH 7. The excitation temperature derived from the S(13) and O(7) lines is higher than that derived from the 1 - 0 and 2 - 1 S(1) lines in all four objects, so the shocked gas in these objects cannot be characterized by a single temperature. The constancy of the (1-0)/(2-1) S(1) line ratio between sources suggests that the post-shock gas is 'thermalized' in each source. The S(13)/O(7) ratio is particularly sensitive to the density and temperature conditions in the gas.

  13. Bipolar outflows and Jets From Young Stars

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2000-05-01

    Stars produce powerful jets and winds during their birth. These primary outflows power shock waves (Herbig-Haro objects) and entrain surrounding gas to produce molecular outflows. Many outflows reach parsec-scale dimensions whose dynamical ages can become comparable to the accretion age of the source star. Thus, these giant outflows provide fossil records of the mass loss histories of their parent stars. Jet symmetries provide tantalizing clues about the violent history of stellar accretion and dynamical interactions with nearby companions. These flows inject sufficient energy and momentum into the surrounding medium to alter the physical and chemical state of the gas, generate turbulence, disrupt the parent cloud, and self-regulate the rate of star formation. Recent observations have revealed a new class of externally irradiated jets which are rendered visible by the light of nearby massive stars. Some of these jets appear to be millions of years old, indicating that outflow activity can persist for much longer than previously thought. Stellar jets provide ideal laboratories for the investigation of accretion powered outflows and associated shocks since their time-dependent behavior can be observed with a rich variety of spectral line diagnostics.

  14. Molecular hydrogen and excitation in the HH 1-2 system

    NASA Technical Reports Server (NTRS)

    Noriega-Crespo, A.; Garnavich, P. M.

    1994-01-01

    We present a series of molecular hydrogen images of the Herbig-Haro 1-2 system in the 1-0 S(1) transition at 2.121 microns, with a spatial resolution of approximately 2 sec. The distribution of H2 is then compared with that of the excitation, given by the (S II) 6717+6731 to H-alpha line ratio. We find that most optical condensations in the HH 1-2 system, including the VLA 1 jet, have H2 counterparts. H2 emission is detected in most low excitation knots, as expected for low velocity shocks (50 km/s less than), but also in high excitation regions, like in HH 1F and HH 2A min. For these latter objects, the H2 emission could be due to the interaction of the preionizing flux, produced by 150-200 km/s shocks, with the surrounding interstellar matter, i.e., fluorescence. The lack fluorescent lines in the ultraviolet (UV), however, suggest a different mechanism. H2 is detected at the tip of the VLA 1 jet, where the knot morphology suggests the presence of a second bow shock. H2 is detected also SE of HH 2E and SW of HH 1F, in regions with known NH3 emission.

  15. Arrhenius reconsidered: astrophysical jets and the spread of spores

    NASA Astrophysics Data System (ADS)

    Sheldon, Malkah I.; Sheldon, Robert B.

    2015-09-01

    In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.

  16. SOAR Adaptive Optics Observations of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Briceno, Cesar

    2018-01-01

    I present results from recent studies of nearby star-forming regions using the SOAR 4.1m telescope Ground-layer Adaptive Optics system.Using narrow-band Hα and [SII] imaging we discovered a spectacular extended Herbig-Haro jet powered by a 26 MJup young brown dwarf located in the vicinity of the σ Orionis cluster. The collimated structure of multiple knots spans 0.26 pc, making it a scaled down version of the parsec-length jets seen in T Tauri stars, and the first substellar analog of an HH jet system.In the ε Chamaeleon stellar group we carried out an Adaptive Optics-aided speckle imaging study of 47 members and candidate members, to characterize the multiplicity of this, one of the nearest groups of young (~3-5 Myr) stars. We resolved 10 new binary pairs, 5 previously know binaries and two triple systems. We find a companion frequency of 0.010±0.04 per decade of separation, in the 4 to 300 AU separation range, a result comparable to main sequence dwarfs in the field. However, the more massive association members, with B and A spectral types, all have companions in this separation range. Finally, we provide new constraints on the orbital elements of the ε Cha triple system.

  17. Lithium abundance in a sample of solar-like stars

    NASA Astrophysics Data System (ADS)

    López-Valdivia, R.; Hernández-Águila, J. B.; Bertone, E.; Chávez, M.; Cruz-Saenz de Miera, F.; Amazo-Gómez, E. M.

    2015-08-01

    We report on the determination of the lithium abundance [A(Li)] of 52 solar-like stars. For 41 objects the A(Li) here presented corresponds to the first measurement. We have measured the equivalent widths of the 6708 Å lithium feature in high-resolution spectroscopic images (R ˜ 80 000), obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), as part of the first scientific observations of the revitalized Lunar and Planetary Laboratory (LPL) Echelle Spectrograph, now known as the Cananea High-resolution Spectrograph (CanHiS). Lithium abundances were derived with the Fortran code MOOG, using as fundamental input a set of atmospheric parameters recently obtained by our group. With the help of an additional small sample with previous A(Li) determinations, we demonstrate that our lithium abundances are in agreement, to within uncertainties, with other works. Two target objects stand out from the rest of the sample. The star BD+47 3218 (Teff = 6050 ± 52 K, A(Li) = 1.86 ± 0.07 dex) lies inside the so-called lithium desert in the A(Li)-Teff plane. The other object, BD+28 4515, has an A(Li) = 3.05 ± 0.07 dex, which is the highest of our sample and compatible with the expected abundances of relatively young stars.

  18. Investigating the temporal domain of massive ionized jets - I. A pilot study

    NASA Astrophysics Data System (ADS)

    Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Cunningham, N.

    2018-03-01

    We present sensitive (σ < 10 μJy beam- 1), radio continuum observations using the Australian Telescope Compact Array at frequencies of 6 and 9 GHz towards four massive young stellar objects (MYSOs). From a previous, less sensitive work, these objects are known to harbour ionized jets associated with radio lobes, which result from shock processes. In comparison with that work, further emission components are detected towards each MYSO. These include extended, direct, thermal emission from the ionized jet's stream, new radio lobes indicative of shocks close (<105 au) to the MYSO, three radio Herbig-Haro objects separated by up to 3.8 pc from the jet's launching site, and an IR-dark source coincident with CH3OH maser emission. No significant, integrated flux variability is detected towards any jets or shocked lobes, and only one proper motion is observed (1806± 596{{ km}{ s}^{-1}{ }} parallel to the jet axis of G310.1420+00.7583A). Evidence for precession is detected in all four MYSOs with precession periods and angles within the ranges 66-15 480 yr and 6°-36°, respectively. Should precession be the result of the influence from a binary companion, we infer orbital radii of 30-1800 au.

  19. OT2_pbjerkel_1: Herschel observations of the shocked gas in HH54

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.

    2011-09-01

    A shock that can be studied in detail, using a very limited amount of Herschel time, is the Herbig-Haro object HH54 located in the nearby Chamaeleon II cloud at a distance of 180 pc. The shocked region has an angular extent of roughly 30'' and is not contaminated with emission from other nearby objects. The gas, traced by H2O and CO, emits radiation predominantly in the far-infrared regime. For that reason, this program can only be executed using the instruments aboard the Herschel Space Observatory. We propose spectroscopy of rotational H2O and CO transitions, falling in the wavelength range covered by SPIRE and PACS. These observations will allow us to stratify the shocked region in different physical/kinematical components. We will also improve our understanding of the mechanisms responsible for water production and destruction. Given the relatively large angular extent of the region, we will determine the types of shock responsible for the emission in different positions along the shocked surface. We also propose HIFI observations of selected CO and H2O transitions. A bullet feature has previously been observed in several CO line profiles. Using HIFI, we will constrain the origin and physical properties of the region responsible for this emission.

  20. A systematic and detailed investigation of radiative rates for forbidden transitions of astrophysical interest in doubly ionized iron peak elements

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel

    2015-08-01

    The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)

  1. The Taurus Spitzer Legacy Project

    NASA Astrophysics Data System (ADS)

    McCabe, Caer-Eve; Padgett, D. L.; Rebull, L.; Noriega-Crespo, A.; Carey, S.; Brooke, T.; Stapelfeldt, K. R.; Fukagawa, M.; Hines, D.; Terebey, S.; Huard, T.; Hillenbrand, L.; Guedel, M.; Audard, M.; Monin, J.; Guieu, S.; Knapp, G.; Evans, N. J., III; Menard, F.; Harvey, P.; Allen, L.; Wolf, S.; Skinner, S.; Strom, S.; Glauser, A.; Saavedra, C.; Koerner, D.; Myers, P.; Shupe, D.; Latter, W.; Grosso, N.; Heyer, M.; Dougados, C.; Bouvier, J.

    2009-01-01

    Without massive stars and dense stellar clusters, Taurus plays host to a distributed mode of low-mass star formation particularly amenable to observational and theoretical study. In 2005-2007, our team mapped the central 43 square degrees of the main Taurus clouds at wavelengths from 3.6 - 160 microns with the IRAC and MIPS cameras on the Spitzer Space Telescope. Together, these images form the largest contiguous Spitzer map of a single star-forming region (and any region outside the galactic plane). Our Legacy team has generated re-reduced mosaic images and source catalogs, available to the community via the Spitzer Science Center website http://ssc.spitzer.caltech.edu/legacy/all.html . This Spitzer survey is a central and crucial part of a multiwavelength study of the Taurus cloud complex that we have performed using XMM, CFHT, and the SDSS. The seven photometry data points from Spitzer allow us to characterize the circumstellar environment of each object, and, in conjunction with optical and NIR photometry, construct a complete luminosity function for the cloud members that will place constraints on the initial mass function. We present results drawing upon our catalog of several hundred thousand IRAC and thousands of MIPS sources. Initial results from our study of the Taurus clouds include new disks around brown dwarfs, new low luminosity YSO candidates, and new Herbig-Haro objects.

  2. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kun, M.; Moór, A.; Wolf-Chase, G.

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27more » flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.« less

  3. VizieR Online Data Catalog: NGC 5548 43 year-long monitoring in Hβ (Bon+, 2016)

    NASA Astrophysics Data System (ADS)

    Bon, E.; Zucker, S.; Netzer, H.; Marziani, P.; Bon, N.; Jovanovic, P.; Shapovalova, A. I.; Komossa, S.; Gaskell, C. M.; Popovic, L. C.; Britzen, S.; Chavushyan, V. H.; Burenkov, A. N.; Sergeev, S.; La Mura, G.; Valdes, J. R.; Stalevski, M.

    2016-10-01

    We analyzed 1600 spectra of NGC 5548 in the Hβ spectral interval, covering 43 years. We used: (a) archival spectra obtained by K.K. Chuvaev from 1972-1988 (Sergeev+ 2007ApJ...668..708S) prior to the International AGN Watch (IAW) campaigns. These early spectra were recorded on photographic plates acquired with an image tube at the 2.6m Shajn Telescope of the Crimean Astrophysical Observatory. (b) The 13 year study (from 1988 to 2002) of the IAW program (Peterson+ 2002ApJ...581..197P), which provided 1530 optical continuum measurements and 1248 Hβ measurements. (c) A spectral monitoring program with the 6 and 1m telescopes of the Special Astrophysical Observatory (SAO) in Russia from 1996 to 2002, and the 2.1m telescope of Guillermo Haro Observatory (GHO) in Cananea, Mexico, from 1996 to 2003 (S04; Shapovalova+ 2004, J/A+A/422/925). (d) More recent, unpublished observations of the same program covering 2003-2013 observed at SAO (see Table 1), and a continuation of the monitoring campaign presented in S04. (e) Spectra from the new IAW campaign obtained at Asiago observatory in 2012, 2013, and 2015. (f) New unpublished observations from 2013 from the Asiago observatory (also given in Table 1). See section 2 for further details. (2 data files).

  4. Hubble Views a Cosmic Skyrocket

    NASA Image and Video Library

    2017-12-08

    NASA image release July 3, 2012 Caption: Resembling a Fourth of July skyrocket, Herbig-Haro 110 is a geyser of hot gas from a newborn star that splashes up against and ricochets off the dense core of a cloud of molecular hydrogen. Although the plumes of gas look like whiffs of smoke, they are actually billions of times less dense than the smoke from a July 4 firework. This Hubble Space Telescope photo shows the integrated light from plumes, which are light-years across. -- Herbig-Haro (HH) objects come in a wide array of shapes, but the basic configuration stays the same. Twin jets of heated gas, ejected in opposite directions away from a forming star, stream through interstellar space. Astronomers suspect that these outflows are fueled by gas accreting onto a young star surrounded by a disk of dust and gas. The disk is the "fuel tank," the star is the gravitational engine, and the jets are the exhaust. When these energetic jets slam into colder gas, the collision plays out like a traffic jam on the interstate. Gas within the shock front slows to a crawl, but more gas continues to pile up as the jet keeps slamming into the shock from behind. Temperatures climb sharply, and this curving, flared region starts to glow. These "bow shocks" are so named because they resemble the waves that form at the front of a boat. In the case of the single HH 110 jet, astronomers observe a spectacular and unusual permutation on this basic model. Careful study has repeatedly failed to find the source star driving HH 110, and there may be good reason for this: perhaps the HH 110 outflow is itself generated by another jet. Astronomers now believe that the nearby HH 270 jet grazes an immovable obstacle - a much denser, colder cloud core - and gets diverted off at about a 60-degree angle. The jet goes dark and then reemerges, having reinvented itself as HH 110. The jet shows that these energetic flows are like the erratic outbursts from a Roman candle. As fast-moving blobs of gas catch up

  5. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    ultraviolet light, are responsible for making the nebula glow brightly. But the Lagoon Nebula is also home to much younger stellar infants. Newborn stars have been detected in the nebula that are so young that they are still surrounded by their natal accretion discs. Such new born stars occasionally eject jets of matter from their poles. When this ejected material ploughs into the surrounding gas short-lived bright streaks called Herbig-Haro objects [3] are formed, making the new-borns easy to spot. In the last five years, several Herbig-Haro objects have been detected in the Lagoon Nebula, so the baby boom is clearly still in progress here. Notes [1] This survey, one of six VISTA surveys currently in progress, will image the central parts of the Milky Way many times over a period of five years and will detect huge numbers of new variable objects. [2] Bart Bok was a Dutch-American astronomer who spent most of his long career in the United States and Australia. He first noticed the dark spots that now bear his name, in star formation regions and speculated that they may be associated with the earliest stages of star formation. The hidden baby stars were only observed directly when infrared imaging was possible several decades later. [3] Although not the first to see such objects, the astronomers George Herbig and Guillermo Haro were the first to study the spectra of these strange objects in detail and realise that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with star formation. More information The science team for VVV includes Dante Minniti (Universidad Catolica, Chile), Phil Lucas (University of Hertfordshire, UK), Ignacio Toledo (Universidad Catolica) and Maren Hempel (Universidad Catolica). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical

  6. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    NASA Astrophysics Data System (ADS)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  7. Far UV Observations of Interstellar Shocks

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1998-01-01

    This grant covered analysis of Hopkins Ultraviolet Telescope data from the Astro-2 mission. The proposed research was aimed primarily at SNR shock waves, but the ASTRO-2 GO program was intended to make the GOs part of the instrument teams. The grant therefore covered extensive travel to Marshall Space Flight Center for mission simulations and the mission itself. In keeping with the unique nature of the ASTRO-2 GO program, I participated actively in the instrument team's investigations of HH objects and cataclysmic variables. Over the course of the Astro-2 mission, we obtained good observations of the supernova remnants SN1006 (1 position), Vela (3 positions), the Cygnus Loop (7 positions) and 0519-69 in the LMC (1 position) as part of this GI program, along with Puppis A (1 position), Vela (1 position), the Cygnus Loop (7 positions) and the Schweizer- Middleditch star (HUT PI program on SNRS). We also observed the Herbig-Haro object HH2 and about a dozen cataclysmic variables, including magnetic systems and dwarf novae. This GI grant covered modest travel for data analysis. We anticipate submitting papers on the non-radiative shock in northern Cygnus Loop, on the LMC Balmer-dominated remnant LMC 0519-69, on the radiative shocks in the Eastern Cygnus Loop (the XA region), and on the cataclysmic variable YZ Cnc over the course of the coming year. We have obtained extensive supporting data from ground-based telescopes for the Cygnus Loop spectra.

  8. Featured Image: Revealing Hidden Objects with Color

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    Stunning color astronomical images can often be the motivation for astronomers to continue slogging through countless data files, calculations, and simulations as we seek to understand the mysteries of the universe. But sometimes the stunning images can, themselves, be the source of scientific discovery. This is the case with the below image of Lynds Dark Nebula 673, located in the Aquila constellation, that was captured with the Mayall 4-meter telescope at Kitt Peak National Observatory by a team of scientists led by Travis Rector (University of Alaska Anchorage). After creating the image with a novel color-composite imaging method that reveals faint H emission (visible in red in both images here), Rector and collaborators identified the presence of a dozen new Herbig-Haro objects small cloud patches that are caused when material is energetically flung out from newly born stars. The image adapted above shows three of the new objects, HH 118789, aligned with two previously known objects, HH 32 and 332 suggesting they are driven by the same source. For more beautiful images and insight into the authors discoveries, check out the article linked below!Full view of Lynds Dark Nebula 673. Click for the larger view this beautiful composite image deserves! [T.A. Rector (University of Alaska Anchorage) and H. Schweiker (WIYN and NOAO/AURA/NSF)]CitationT. A. Rector et al 2018 ApJ 852 13. doi:10.3847/1538-4357/aa9ce1

  9. THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu

    2012-09-10

    We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindlemore » surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.« less

  10. Preliminary status of POLICAN: A near-infrared imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.

    2015-10-01

    POLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0°, 22.5°, 45°, 67.5°) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3°. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

  11. The dusty silhouette jet HH 1019 in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Kiminki, Megan M.; Smith, Nathan; Bally, John

    2017-06-01

    We report the discovery in Hubble Space Telescope (HST) images of the new Herbig-Haro jet, HH 1019, located near the Tr 14 cluster in the Carina Nebula. Like other HH jets in the region, this bipolar collimated flow emerges from the head of a dark dust pillar. However, HH 1019 is unique because - unlike all other HH jets known to date - it is identified by a linear chain of dark, dusty knots that are seen primarily in silhouette against the background screen of the H II region. Proper motions confirm that these dark condensations move along the jet axis at high speed. [S II] emission traces a highly collimated jet that is spatially coincident with these dust knots. The high extinction in the body of the jet suggests that this outflow has lifted a large amount of dust directly from the disc, although it is possible that it has entrained dust from its surrounding protostellar envelope before exiting the dust pillar. If dust in HH 1019 originates from the circumstellar disc, this provides further evidence for a jet launched from a range of radii in the disc, including those outside the dust sublimation radius. HH 1019 may be the prototype for a new subclass of dusty HH objects seen primarily in extinction against the background screen of a bright H II region. Such jets may be common, but difficult to observe because they require the special condition of a very bright background in order to be seen in silhouette.

  12. Regiones de formación de estrellas masivas en las Nubes de Magallanes

    NASA Astrophysics Data System (ADS)

    Barbá, R.; Maíz Apellániz, J.; Rubio, M.; Walborn, N.

    Las Nubes de Magallanes son un laboratorio formidable para el estudio de regiones de formación estelar. A diferencia de lo que sucede en el plano galáctico, ambas galaxias contienen poco polvo que nos afecte la visión directa de dichas regiones. Por otra parte, la menor metalicidad de las Nubes, nos permiten hacer un estudio comparativo de la formación estelar en ambientes de baja metalicidad. El presente trabajo da una revisión de los progresos notables que hemos alcanzado en el conocimiento del contenido estelar de algunas regiones de formación de estrellas masivas en ambas Nubes, en base a la utilización de imágenes del Telescopio Espacial Hubble, Gemini Sur, y Very Large Telescope, entre otros. En especial, nos concentramos en 30 Doradus y N11 en la Nube Mayor, y en NGC 346 en la Nube Menor. Nuevas imágenes de N11 obtenidas en los últimos meses con la Advanced Camera for Surveys del Hubble (óptico), y con Flamingos en Gemini Sur (infrarrojo), nos han permitido descubrir un nuevo `jet' con origen en una fuente infrarroja sumergida en un pilar polvoriento similar al objeto Herbig-Haro de M20 en nuestra galaxia. Este `jet' (junto a otros tres que hemos descubierto en 30 Doradus), es el cuarto ejemplo confirmado de `jet' asociado a una protoestrella fuera de nuestra galaxia. Además, presentamos el descubrimiento del primer objeto estelar joven masivo de la Nube Menor confirmado espectroscópicamente.

  13. VizieR Online Data Catalog: Spectroscopically Identified Hot Subdwarf Stars (Kilkenny+ 1988)

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Heber, U.; Drilling, J. S.

    1996-05-01

    Prior to 1986 there were around 200 spectroscopically classified hot subdwarf stars. The Palomar-Green survey (Green et al., 1986ApJS...61..305G) detected over 900 hot subdwarfs, mostly in the North Galactic Cap and mostly previously unknown objects; the Kitt-Peak_Downes survey found another 60 near the Galactic Plane (Downes, 1986ApJS...61..569D). These form the basis of the present catalog but new subdwarfs are continually being found by spectroscopic surveys of photographically discovered faint blue star samples; examples are the work of Wegner and his co-workers on the Kiso survey (Wegner et al., 1985AJ.....90.1511W, 1986AJ.....91..139W, 1987AJ.....94.1271W) and of Kilkenny and Muller (1987) on southern discoveries by Luyten and collaborators (e.g. Haro and Luyten, 1962, Cat. III/74; Luyten and Anderson, 1958, 1959, 1967, "A Search for Faint Blue Stars"). Only stars for which a spectroscopic classification exists have been included. There is a significant probability that stars with only photometric classifications can be normal high-latitude B stars, white dwarfs or cataclysmic variable, for example. Hot subdwarfs in binary systems have been included but not planetary nebulae nuclei classified 'sd' since the latter have been catalogued elsewhere. Although there is not a universally accepted classification scheme for hot subdwarfs, it is fairly clear that the main criterion is a surface gravity higher than that of hot main sequence stars but less than that of hot white dwarfs. Also, hot subdwarf stars typically show helium abundance anomalies. (3 data files).

  14. THE RADIO JET ASSOCIATED WITH THE MULTIPLE V380 ORI SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, Luis F.; Yam, J. Omar; Carrasco-González, Carlos

    The giant Herbig–Haro object 222 extends over ∼6′ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical–IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, locatedmore » about 23′ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free–free emitters at centimeter wavelengths. Here, we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the giant outflow defined by HH 222 and its suggested counterpart to the SE, HH 1041. We propose that this radio jet traces the origin of the large scale HH outflow. Assuming that the jet arises from the Herbig Be star, the radio luminosity is a few times smaller than the value expected from the radio–bolometric correlation for radio jets, confirming that this is a more evolved object than those used to establish the correlation.« less

  15. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Frank, A.; Hartigan, P.

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of thesemore » bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.« less

  16. Characterization and Performance of the Cananea Near-infrared Camera (CANICA)

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Mayya, Y. D.; Carrasco, L.; Luna, A.

    2018-05-01

    We present details of characterization and imaging performance of the Cananea Near-infrared Camera (CANICA) at the 2.1 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA has a HAWAII array with a HgCdTe detector of 1024 × 1024 pixels covering a field of view of 5.5 × 5.5 arcmin2 with a plate scale of 0.32 arcsec/pixel. The camera characterization involved measuring key detector parameters: conversion gain, dark current, readout noise, and linearity. The pixels in the detector have a full-well-depth of 100,000 e‑ with the conversion gain measured to be 5.8 e‑/ADU. The time-dependent dark current was estimated to be 1.2 e‑/sec. Readout noise for correlated double sampled (CDS) technique was measured to be 30 e‑/pixel. The detector shows 10% non-linearity close to the full-well-depth. The non-linearity was corrected within 1% levels for the CDS images. Full-field imaging performance was evaluated by measuring the point spread function, zeropoints, throughput, and limiting magnitude. The average zeropoint value in each filter are J = 20.52, H = 20.63, and K = 20.23. The saturation limit of the detector is about sixth magnitude in all the primary broadbands. CANICA on the 2.1 m OAGH telescope reaches background-limited magnitudes of J = 18.5, H = 17.6, and K = 16.0 for a signal-to-noise ratio of 10 with an integration time of 900 s.

  17. Gemini-IFU Spectroscopy of HH 111

    NASA Astrophysics Data System (ADS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Raga, A. C.; Feitosa, J.; Plana, H.

    2015-03-01

    We present new optical observations of the Herbig-Haro (HH) 111 jet using the Gemini Multi Object Spectrograph in its Integral Field Unit mode. Eight fields of 5\\prime\\prime × 3\\buildrel{\\prime\\prime}\\over{.} 5 have been positioned along and across the HH 111 jet, covering the spatial region from knot E to L in HH 111 (namely, knots E, F, G, H, J, K, and L). We present images and velocity channel maps for the [O i] 6300+6360, Hα, [N ii] 6548+6583, and [S ii] 6716+6730 lines, as well as for the [S ii] 6716/6730 line ratio. We find that the HH 111 jet has an inner region with lower excitation and higher radial velocity, surrounded by a broader region of higher excitation and lower radial velocity. Also, we find higher electron densities at lower radial velocities. These results imply that the HH 111 jet has a fast, axial region with lower velocity shocks surrounded by a lower velocity sheath with higher velocity shocks. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  18. Space Radar Image of Victoria, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency spaceborne radar image shows the southern end of Vancouver Island on the west coast of Canada. The white area in the lower right is the city of Victoria, the capital of the province of British Columbia. The three radar frequencies help to distinguish different land use patterns. The bright pink areas are suburban regions, the brownish areas are forested regions, and blue areas are agricultural fields or forest clear-cuts. Founded in 1843 as a fur trading post, Victoria has grown to become one of western Canada's largest commercial centers. In the upper right is San Juan Island, in the state of Washington. The Canada/U.S. border runs through Haro Strait, on the right side of the image, between San Juan Island and Vancouver Island. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 6, 1994, onboard the space shuttle Endeavour. The area shown is 37 kilometers by 42 kilometers (23 miles by 26 miles) and is centered at 48.5 degrees north latitude, 123.3 degrees west longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and received; green is C-band, vertically transmitted and received; and blue is X-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  19. POLICAN: A Near-infrared Imaging Polarimeter at the 2.1m OAGH Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Vázquez-Rodríguez, M. A.; Mayya, Y. D.; Tánori, J. G.; Serrano Bernal, E. O.

    2018-05-01

    POLICAN is a near-infrared imaging linear polarimeter developed for the Cananea Near-infrared Camera (CANICA) at the 2.1 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. POLICAN is mounted ahead of CANICA and consist of a rotating super-achromatic (1–2.7 μm) half-wave plate (HWP) as the modulator and a fixed wire-grid polarizer as the analyzer. CANICA has a 1024 × 1024 HgCdTe detector with a plate scale of 0.32 arcsec/pixel and provides a field of view of 5.5 × 5.5 arcmin2. The polarimetric observations are carried out by modulating the incoming light through different steps of half-wave plate angles (0°, 22.°5, 45°, 67.°5) to establish linear Stokes parameters (I, Q, and U). Image reduction consists of dark subtraction, polarimetric flat fielding, and sky subtraction. The astrometry and photometric calibrations are performed using the publicly available data from the Two Micron All Sky Survey. Polarimetric calibration includes observations of globular clusters and polarization standards available in the literature. Analysis of multiple observations of globular clusters yielded an instrumental polarization of 0.51%. Uncertainties in polarization range from 0.1% to 10% from the brightest 7 mag to faintest 16 mag stars. The polarimetric accuracy achieved is better than 0.5% and the position angle errors less than 5° for stars brighter than 13 mag in H-band. POLICAN is mainly being used to study the scattered polarization and magnetic fields in and around star-forming regions of the interstellar medium.

  20. Fluid dynamics of stellar jets in real time: Third Epoch Hubble Space Telescope images of HH 1, HH 34, AND HH 47

    DOE PAGES

    Hartigan, P.; Frank, A.; Foster, J. M.; ...

    2011-07-01

    We present new, third-epoch Hubble Space Telescope Hα and [S II] images of three Herbig-Haro (HH) jets (HH 1&2, HH 34, and HH 47) and compare the new images with those from previous epochs. The high spatial resolution, coupled with a time series whose cadence is of order both the hydrodynamic and radiative cooling timescales of the flow, allows us to follow the hydrodynamic/magnetohydrodynamic evolution of an astrophysical plasma system in which ionization and radiative cooling play significant roles. Cooling zones behind the shocks are resolved, so it is possible to identify which way material flows through a given shockmore » wave. The images show that heterogeneity is paramount in these jets, with clumps dominating the morphologies of both bow shocks and their Mach disks. This clumpiness exists on scales smaller than the jet widths and determines the behavior of many of the features in the jets. Evidence also exists for considerable shear as jets interact with their surrounding molecular clouds, and in several cases we observe shock waves as they form and fade where material emerges from the source and as it proceeds along the beam of the jet. Fine structure within two extended bow shocks may result from Mach stems that form at the intersection points of oblique shocks within these clumpy objects. Taken altogether, these observations represent the most significant foray thus far into the time domain for stellar jets, and comprise one of the richest data sets in existence for comparing the behavior of a complex astrophysical plasma flow with numerical simulations and laboratory experiments.« less

  1. An X-ray Observation of the L1251 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2006-01-01

    An X-ray image of the L1251 dark cloud in Cepheus was obtained with the XMM-Newton telescope. More than three dozen sources were detected above a 3 delta limit in X-ray luminosity of L(sub X = 10(exp 29) ergs/s. Among the detections are eight optically visible T Tauri stars, which had been identified in earlier work from their emission at H(alpha). The two strongest X-ray sources have steady luminosities of L(sub X) approx. 10(exp 31) ergs/s and are at the saturation limit for X-ray activity in late-type stars, L(sub X)/L(sub bol) approx. 10(exp -3). X-ray emission was also observed from two CO emission cores in L1251, core C (L1251A) and core E (L1251B). Both regions contain high-velocity molecular gas, bright IRAS sources (Class I protostars), thermal radio sources, and Herbig-Haro (HH) jets. In L1251A strong X-ray emission was discovered in close proximity to the near-inbred and radio source IRSA/VLA 7 and to IRAS 22343+7501. IRSA/VLA 7 thus appears to be the most likely source of the molecular and HH outflows in L1251A. In L1251B X-ray emission was observed from a visible T Tauri star, KP2-44, which is thought to be the driving source for HH 189. Also reported is the tentative detection of X-ray emission from VLA 3, a thermal radio continuum source in L1251B that is closely associated with the extreme Class I protostar IRAS 22376+7455.

  2. VizieR Online Data Catalog: Optical spectroscopic atlas of MOJAVE AGNs (Torrealba+, 2012)

    NASA Astrophysics Data System (ADS)

    Torrealba, J.; Chavushyan, V.; Cruz-Gonzalez, I.; Arshakian, T. G.; Bertone, E.; Rosa-Gonzalez, D.

    2014-09-01

    The atlas includes spectral parameters for the emission lines Hβ, [OIII] 5007, MgII 2798 and/or CIV 1549 and corresponding data for the continuum, as well as the luminosities and equivalent widths of the FeII UV/optical. It also contains homogeneous photometric information in the B-band for 242 sources of the MOJAVE/2cm sample. These data were acquired at 2.1m mexican telescopes: Observatorio Astronomico Nacional in San Pedro Martir (OAN-SPM), B. C., Mexico and at Observatorio Astronomico Guillermo Haro, in Cananea, Sonora (OAGH), Mexico. It is supplemented with spectroscopic data found in the archives of the Sloan Digital Sky Survey (SDSS), the Hubble Space Telescope (HST), in the AGN sample of Marziani et al. (2003ApJS..145..199M, Cat. J/ApJS/145/199), and in Lawrence et al. 1996ApJS..107..541L. We present the continuum emission and/or line parameters for 41 sources in the Hβ region, 78 in the MgII region, and 35 in the CIV region. Also, there are 14 sources with information available for both Hβ and MgII regions, 12 with MgII and CIV, and 5 with Hβ, MgII and CIV. The spectroscopic information information for the statistically complete sample MOJAVE-1 (Lister & Homan, 2005AJ....130.1389L, Cat. J/AJ/130/1389) included in the Atlas is as follows: 28 sources in the Hβ region, 46 in the MgII region, and 23 in the CIV region. All the emission lines parameters are for the broad component of the line, except for [OIII] 5007. (7 data files).

  3. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  4. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron

  5. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star

  6. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  7. EMPIRICAL DETERMINATION OF EINSTEIN A-COEFFICIENT RATIOS OF BRIGHT [Fe II] LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannini, T.; Antoniucci, S.; Nisini, B.

    The Einstein spontaneous rates (A-coefficients) of Fe{sup +} lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtainedmore » a spectrum of the bright Herbig-Haro object HH 1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratios ≥100. Among these latter lines, we selected those emitted by the same level, whose dereddened intensity ratios are direct functions of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH 1 through intensity ratios of atomic species, H I  recombination lines and H{sub 2} ro-vibrational transitions. We provide seven reliable A-coefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (λ12570/λ16440 and λ13209/λ16440) are in better agreement with the predictions by the Quinet et al. relativistic Hartree-Fock model. However, none of the theoretical models predict A-coefficient ratios in agreement with all of our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.« less

  8. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    NASA Astrophysics Data System (ADS)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  9. On ambiente de binárias de pequena massa em formação: o caso do glóbulo cometário CG30 e IRAS08076-3556

    NASA Astrophysics Data System (ADS)

    Hickel, G. R.; Vilas-Boas, J. W. S.

    2003-08-01

    Neste trabalho, combinamos observações de polarização linear no óptico (banda R), dados no infravermelho distante (IRAS) e observações de transições moleculares em radiofreqüências (CO e espécies isotópicas, HCN e HCO+) para analisar o glóbulo cometário (GC) CG30 (na região da IRAS Vela Shell), que apresenta objetos Herbig-Haro e ejeções de matéria, além de uma fonte pontual IRAS em seu interior. Os objetivos deste estudo são: determinar a eficiência de formação estelar nos glóbulos cometários, através da relação entre a massa total do GC e da massa das estrelas em formação; determinar como o campo magnético influencia na formação de estrelas no interior destes objetos; e analisar as modificações que ejeções de matéria de estrelas em formação causam no gás e no campo magnético dos GCs. Combinando nossos dados com trabalhos já publicados, mostramos que CG30 tem uma eficiência de formação estelar em torno de 3%; que o campo magnético é importante na manutenção da estrutura global do GC e demonstra sinais de torção e compressão; e que a ejeção bipolar de matéria das estrelas do par formam uma ejeção quadripolar, a qual influencia na densidade e temperatura do gás e no grau de polarização dos grãos de poeira associados ao gás do GC.

  10. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

  11. Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.

    2015-11-01

    We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).

  12. The Three-Dimensional Structure of HH 32 from GMOS IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Riera, A.; Raga, A. C.; Aspin, C.

    2004-01-01

    We present new high-resolution spectroscopic observations of the Herbig-Haro object HH 32 from system verification observations made with the GMOS IFU at Gemini North Observatory. The three-dimensional spectral data cover a 8.7"×5.85" spatial field and 4820-7040 Å spectral region centered on the HH 32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Hα line, as well as line ratio velocity channel maps of [O III] λ5007/Hα, [O I] λ6300/Hα, [N II] λ6583/Hα, [S II] λλ(6716+6730)/Hα, and [S II] λ6716/λ6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1" and over velocities of ~50 km s-1. A ``3/2-dimensional'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data, and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superposed bow shocks with separations of ~3", which we interpret as evidence of a line-of-sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the NSF, the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  13. Soundwatch: Eighteen years of monitoring whale watch vessel activities in the Salish Sea

    PubMed Central

    Osborne, Richard W.; Koski, Kari

    2017-01-01

    The Soundwatch Boater Education Program is a vessel monitoring and public education outreach program. Soundwatch has been run by The Whale Museum (TWM) during the whale watch season (May through September) in the Haro Strait Region of the Central Salish Sea since 1993. Data collection has been in a consistent manner since 1998 and is presented here. The program compiles data on vessel types and vessel interactions with marine mammals with a focus on the Southern Resident killer whale (SRKW), Orcinas orca, which was listed as endangered under the U.S. Endangered Species Act (ESA) in 2005. The primary goal of the Soundwatch program is to reduce vessel disturbance to SRKWs and other marine wildlife through the education of boaters on regional, local and federal guidelines and regulations and the systematic monitoring of vessel activities around cetaceans. Since 1998, the number of active commercial whale watching vessels has increased over time; ranging from a low of 63 in 1999, to a high of 96 in 2015. In addition, the number of vessel incidents or violation of regulations and guidelines has also increased; ranging from a low of 398 in 1998 to a high of 2621 in 2012. Soundwatch collected data on 23 incident types, some remaining the same over the 18-year data set and some changing over time. The most common incidents over the 18 years were “Within 880 m of Lime Kiln” and “Crossing the path of whales”. The numbers of people kayaking near whales also significantly increased since 2004 with the incident “kayaks spread out” with a significantly increasing trend making it difficult for whales to avoid vessels. These results suggest a need for further outreach for effective education and enforcement of whale watching guidelines and regulations in the Central Salish Sea. PMID:29272275

  14. Soundwatch: Eighteen years of monitoring whale watch vessel activities in the Salish Sea.

    PubMed

    Seely, Elizabeth; Osborne, Richard W; Koski, Kari; Larson, Shawn

    2017-01-01

    The Soundwatch Boater Education Program is a vessel monitoring and public education outreach program. Soundwatch has been run by The Whale Museum (TWM) during the whale watch season (May through September) in the Haro Strait Region of the Central Salish Sea since 1993. Data collection has been in a consistent manner since 1998 and is presented here. The program compiles data on vessel types and vessel interactions with marine mammals with a focus on the Southern Resident killer whale (SRKW), Orcinas orca, which was listed as endangered under the U.S. Endangered Species Act (ESA) in 2005. The primary goal of the Soundwatch program is to reduce vessel disturbance to SRKWs and other marine wildlife through the education of boaters on regional, local and federal guidelines and regulations and the systematic monitoring of vessel activities around cetaceans. Since 1998, the number of active commercial whale watching vessels has increased over time; ranging from a low of 63 in 1999, to a high of 96 in 2015. In addition, the number of vessel incidents or violation of regulations and guidelines has also increased; ranging from a low of 398 in 1998 to a high of 2621 in 2012. Soundwatch collected data on 23 incident types, some remaining the same over the 18-year data set and some changing over time. The most common incidents over the 18 years were "Within 880 m of Lime Kiln" and "Crossing the path of whales". The numbers of people kayaking near whales also significantly increased since 2004 with the incident "kayaks spread out" with a significantly increasing trend making it difficult for whales to avoid vessels. These results suggest a need for further outreach for effective education and enforcement of whale watching guidelines and regulations in the Central Salish Sea.

  15. TEARING THE VEIL: INTERACTION OF THE ORION NEBULA WITH ITS NEUTRAL ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Werf, Paul P.; Goss, W. M.; O'Dell, C. R.

    2013-01-10

    We present H I 21 cm observations of the Orion Nebula, obtained with the Karl G. Jansky Very Large Array, at an angular resolution of 7.''2 Multiplication-Sign 5.''7 and a velocity resolution of 0.77 km s{sup -1}. Our data reveal H I absorption in the Veil toward the radio continuum of the H II region, and H I emission arising from the Orion Bar photon-dominated region (PDR) and from the Orion-KL outflow. In the Orion Bar PDR, the H I signal peaks in the same layer as the H{sub 2} near-infrared vibrational line emission, in agreement with models of themore » photodissociation of H{sub 2}. The gas temperature in this region is approximately 540 K, and the H I abundance in the interclump gas in the PDR is 5%-10% of the available hydrogen nuclei. Most of the gas in this region therefore remains molecular. Mechanical feedback on the Veil manifests itself through the interaction of ionized flow systems in the Orion Nebula, in particular the Herbig-Haro object HH 202, with the Veil. These interactions give rise to prominent blueward velocity shifts of the gas in the Veil. The unambiguous evidence for interaction of this flow system with the Veil shows that the distance between the Veil and the Trapezium stars needs to be revised downward to about 0.4 pc. The depth of the ionized cavity is about 0.7 pc, which is much smaller than the depth and the lateral extent of the Veil. Our results reaffirm the blister model for the M42 H II region, while also revealing its relation to the neutral environment on a larger scale.« less

  16. Identifying Modeled Ship Noise Hotspots for Marine Mammals of Canada's Pacific Region

    PubMed Central

    Erbe, Christine; Williams, Rob; Sandilands, Doug; Ashe, Erin

    2014-01-01

    The inshore, continental shelf waters of British Columbia (BC), Canada are busy with ship traffic. South coast waters are heavily trafficked by ships using the ports of Vancouver and Seattle. North coast waters are less busy, but expected to get busier based on proposals for container port and liquefied natural gas development and expansion. Abundance estimates and density surface maps are available for 10 commonly seen marine mammals, including northern resident killer whales, fin whales, humpback whales, and other species with at-risk status under Canadian legislation. Ship noise is the dominant anthropogenic contributor to the marine soundscape of BC, and it is chronic. Underwater noise is now being considered in habitat quality assessments in some countries and in marine spatial planning. We modeled the propagation of underwater noise from ships and weighted the received levels by species-specific audiograms. We overlaid the audiogram-weighted maps of ship audibility with animal density maps. The result is a series of so-called “hotspot” maps of ship noise for all 10 marine mammal species, based on cumulative ship noise energy and average distribution in the boreal summer. South coast waters (Juan de Fuca and Haro Straits) are hotspots for all species that use the area, irrespective of their hearing sensitivity, simply due to ubiquitous ship traffic. Secondary hotspots were found on the central and north coasts (Johnstone Strait and the region around Prince Rupert). These maps can identify where anthropogenic noise is predicted to have above-average impact on species-specific habitat, and where mitigation measures may be most effective. This approach can guide effective mitigation without requiring fleet-wide modification in sites where no animals are present or where the area is used by species that are relatively insensitive to ship noise. PMID:24598866

  17. Detection of Escaping Lyman Continuum Radiation in Two Local Starbursts Using FUSE

    NASA Astrophysics Data System (ADS)

    Leitet, E.; Bergvall, N.; Andersson, B.-G.; Zackrisson, E.

    2007-05-01

    Dwarf galaxies may play a significant role in the reionization history of the universe, and as such also for the history of structure formation. These galaxies are however too faint to be observed at high redshifts, and it is therefore important to establish the amount of Lyman continuum (LyC) radiation that escape local starbursting dwarf galaxies. The amount of leakage is important to know also in order to improve models of star formation and spectral evolution of galaxies, which if neglected, might lead to false conclusions about the properties of the galaxies themself. Previous attempts to directly observe the leakage of hydrogen-ionizing radiation from local galaxies has before this resulted only in one successful case. In Bergvall et al. (2006 A&A 448, 513) an escape fraction of 4-10 % for the blue compact galaxy Haro 11, was found. In this work the detection and quantification of the LyC escape fractions for two additional local starburst galaxies using the Far Ultraviolet Spectroscopic Explorer, FUSE, is presented. The detections were made using FUSE archival data reduced with the latest, and much improved, pipeline. The LyC continuum can be seen as a faint structure between the Lyman limit of the target galaxies and the Milky Way. From line profile fitting it was found that both galaxies have high column densities of neutral gas, indicating that the LyC radiation is escaping through holes in the ISM. The escape fractions are calculated using spectral evolutionary models, based on the f(900Å), f(960Å) and f(Ha) fluxes. The fact that LyC leakage now is detected in three local starbursting dwarf galaxies is going to have a deep impact on future research on structure formation and galaxy evolution. The next challenge would be to statistically determine the escape fraction in extended surveys of starbursting dwarf galaxies.

  18. Prevalence, risk factors, and major bacterial causes of camel mastitis in Borana Zone, Oromia Regional State, Ethiopia.

    PubMed

    Regassa, Alemayehu; Golicha, Gelma; Tesfaye, Dawit; Abunna, Fufa; Megersa, Bekele

    2013-10-01

    A cross-sectional study was carried out from November 2010 up to April 2011 to estimate mastitis prevalence and associated risk factors and to assess its bacterial causes in traditionally managed camels in Borana Zone, Southern Ethiopia. Thus, 348 lactating camels were examined clinically, and subclinical cases were checked with California mastitis test (CMT). The overall prevalence of mastitis was 44.8 % (156/348), comprising clinical (19, 5.4 %) and subclinical (137, 39.4 %) cases. The quarter level prevalence of mastitis was 24.0 % (334/1,392). Of the total 1,392 examined teats, 30 were blind, and hence, from the 1,362 non-blind CMT-examined teats, 22.3 % (304/1,362) were CMT positive. Of the 304 CMT-positive samples, 264 were culture positive (197 Gram-positive, 41 Gram-negative, and 26 mixed isolates), and 40 were culture negative. The prevalence of Staphylococcus aureus was found to be the highest at both the animal (12.8 %, 39/304) and quarter level (2.9 %, 39/1,362). Regression analysis revealed higher likelihood of mastitis occurrence among camels from Dharito (OR = 3.4, 95 % confidence interval (CI) = 1.8, 6.4), Gagna (OR = 3.4, 95 % CI = 1.8, 6.5), and Haro Bake (OR = 2.6, 95 % CI = 1.3, 5.1) than camels from Surupha. Likewise, there was higher chance of mastitis occurrence among camels at the early lactation stage (OR = 2.3, 95 % CI = 1.1, 4.6) and camels with udder/teat lesions (OR = 13.7, 95 % CI = 1.7, 109.4) than among camels at late lactation stage and camels with healthy udder/teats, respectively. In conclusion, this study reveals the current status of camel mastitis in Southern Ethiopia.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bally, John; Ginsburg, Adam; Probst, Ron

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionizationmore » front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.« less

  20. Latin American astronomers and the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  1. Warm Molecular Hydrogen and Ionized Neon in the HH 2 Outflow

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Cabrit, S.; Noriega-Crespo, A.; Moro-Martín, A.; Cesarsky, D.

    2003-06-01

    We report on spectro-imaging observations of the Herbig-Haro 2 outflow with the ISOCAM camera on board the Infrared Space Observatory. The [Ne II] 12.81 μm and [Ne III] 15.55 μm lines are detected only toward the jet working surface (HH 2H), consistent with the high excitation of this knot in the optical range, while H2 pure rotational emission is found all over the shocked region HH 2. The low-energy transition S(2) traces warm gas (T~400 K) peaked toward knots E and F and extended ejecta (T~250-380 K) with masses of a few times 10-3 Msolar in the high-velocity CO outflow extending between the powering source and HH 2. Such emission could arise from low-velocity C-type shocks (v~=10-15 km s-1). The higher transitions S(3)-S(7) trace the emission of hot shocked gas (T=1000-1400 K) from individual optical knots in the HH 2 region. The ortho-to-para (OTP) ratio exhibits large spatial variations between 1.2 (knot E) and 2.5 (knot H), well below its value at LTE. The emission of the S(3)-S(7) lines is well accounted for by planar C-shock models with a typical velocity Vs=20-30 km s-1 propagating into a medium of density ni=104-105 cm-3 with an initial OTP ratio close to 1 in the preshock gas. In the leading edge of the jet, where the geometry of the emission allows a simple modeling, a good agreement is found with velocities derived from the optical proper motions measured in the ionized gas. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  2. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  3. [Kelvin-Helmholtz instability in protostellar jets

    NASA Technical Reports Server (NTRS)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  4. A study of the Galactic star forming region IRAS 02593+6016/S 201 in infrared and radio wavelengths

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; Kulkarni, V. K.; Testi, L.; Verma, R. P.; Vig, S.

    2004-03-01

    We present infrared and radio continuum observations of the S 201 star forming region. A massive star cluster is seen, which contains different classes of young stellar objects. The near-infrared colour-colour and colour-magnitude diagrams are studied to determine the nature of these sources. We have discovered knots of molecular hydrogen emission at 2.122 μm in the central region of S 201. These knots are clearly seen along the diffuse emission to the north-west and are probably obscured Herbig-Haro objects. High sensitivity and high resolution radio continuum images from GMRT observations at 610 and 1280 MHz show an arc-shaped structure due to the interaction between the HII region and the adjacent molecular cloud. The ionization front at the interface between the HII region and the molecular cloud is clearly seen comparing the radio, molecular hydrogen and Brγ images. The emission from the carriers of Unidentified Infrared Bands in the mid-infrared 6-9 μm (possibly due to PAHs) as extracted from the Midcourse Space Experiment survey (at 8, 12, 14 and 21 μm) is compared with the radio emission. The HIRES processed IRAS maps at 12, 25, 60 and 100 μm have also been used for comparison. The spatial distribution of the temperature and the optical depth of the warm dust component around the S 201 region has been generated from the mid-infrared images. This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the CNAA (Consorzio Nazionale per l'Astronomia e l'Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the

  5. Young massive star clusters in the era of HST and integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna

    2018-01-01

    the massive, eclipsing Wolf-Rayet binary, WR20a or a possible Herbig-Haro object in the northern clump.

  6. Hubble Captures Spectacular "Landscape" in the Carina Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 NASA's Hubble Space Telescope captured this billowing cloud of cold interstellar gas and dust rising from a tempestuous stellar nursery located in the Carina Nebula, 7,500 light-years away in the southern constellation Carina. This pillar of dust and gas serves as an incubator for new stars and is teeming with new star-forming activity. Hot, young stars erode and sculpt the clouds into this fantasy landscape by sending out thick stellar winds and scorching ultraviolet radiation. The low-density regions of the nebula are shredded while the denser parts resist erosion and remain as thick pillars. In the dark, cold interiors of these columns new stars continue to form. In the process of star formation, a disk around the proto-star slowly accretes onto the star's surface. Part of the material is ejected along jets perpendicular to the accretion disk. The jets have speeds of several hundreds of miles per second. As these jets plow into the surround nebula, they create small, glowing patches of nebulosity, called Herbig-Haro (HH) objects. Long streamers of gas can be seen shooting in opposite directions off the pedestal on the upper right-hand side of the image. Another pair of jets is visible in a peak near the top-center of the image. These jets (known as HH 901 and HH 902, respectively) are common signatures of the births of new stars. This image celebrates the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. Hubble's Wide Field Camera 3 observed the pillar on Feb. 1-2, 2010. The colors in this composite image correspond to the glow of oxygen (blue), hydrogen and nitrogen (green), and sulfur (red). Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization

  7. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} comparedmore » to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities

  8. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102

  9. PROPER MOTIONS OF THE OUTER KNOTS OF THE HH 80/81/80N RADIO-JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masqué, Josep M.; Rodriguez, Luis F.; Carrasco-González, Carlos

    2015-11-20

    The radio-knots of the Herbig–Haro (HH) 80/81/80N jet extend from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by the bright infrared source IRAS 18162−2048 associated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81, and HH 80N radio knots located about 2.5 pc away in projection from themore » powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that this knot, along with HH 81 and HH 80 are associated with the same radio-jet. We also confirm the presence of Source 34, located further north of HH 80N, previously proposed to belong to the jet.We derived that the tangential velocity of HH 80N is 260 km s{sup −1} and has a direction in agreement with the expected direction of a ballistic precessing jet. The HH 80 and HH 81 objects have tangential velocities of 350 and 220 km s{sup −1}, respectively, but their directions are somewhat deviated from the expected jet path. The velocities of the HH objects studied in this work are significantly lower than those derived for the radio knots of the jet close to the powering source (600–1400 km s{sup −1}) suggesting that the jet is slowing down due to a strong interaction with the ambient medium. As a result, since HH 80 and HH 81 are located near the edge of the cloud, the inhomogeneous and low density medium may contribute to skew the direction of their determined proper motions. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of ≲1000 cm{sup −3}. All of these

  10. Ship noise extends to frequencies used for echolocation by endangered killer whales

    PubMed Central

    Veirs, Val; Wood, Jason D.

    2016-01-01

    Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20–30 dB re 1 µPa2/Hz from 100 to 1,000 Hz), but also at high frequencies (5–13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5–40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa2/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard

  11. Ship noise extends to frequencies used for echolocation by endangered killer whales.

    PubMed

    Veirs, Scott; Veirs, Val; Wood, Jason D

    2016-01-01

    Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20-30 dB re 1 µPa(2)/Hz from 100 to 1,000 Hz), but also at high frequencies (5-13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5-40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa(2)/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard

  12. Physical structure and dust reprocessing in a sample of HH jets

    NASA Astrophysics Data System (ADS)

    Podio, L.; Medves, S.; Bacciotti, F.; Eislöffel, J.; Ray, T.

    2009-11-01

    Context: Stellar jets are an essential ingredient of the star formation process and a wealth of information can be derived from their characteristic emission-line spectra. Aims: We investigate the physical structure and dust reprocessing in the shocks along the beam of a number of classical Herbig-Haro (HH) jets in the Orion and Lupus molecular clouds (HH 111, HH 1/2, HH 83, HH 24 M/A/E/C, and Sz68). Parameters describing plasma conditions, as well as dust content, are derived as a function of distance from the source and, for HH 111, of gas velocity. Methods: Spectral diagnostic techniques are applied to obtain the jet physical conditions (the electron and total density, ne and n_H, the ionisation fraction, x_e, and the temperature, T_e) from the ratios of selected forbidden lines. The presence of dust grains is investigated by estimating the gas-phase abundance of calcium with respect to its solar value. Results: We find the electron density varies between 0.05-4×103 cm-3, the ionisation fraction xe from 0.01-0.7, the temperature ranges between 0.6-3×104 K, and the hydrogen density between 0.01-6×104 cm-3. Interestingly, in the HH 111 jet, n_e, x_e, and Te peak in the high velocity interval (HVI) of the strongest working surfaces, confirming a prediction from shocks models. Calcium turns out to be depleted with respect to its solar value, but its gas-phase abundance is higher than estimates for the interstellar medium in Orion. The depletion is high (up to 80%) along the low-excited jets, while low or no depletion is measured in those jets which show higher excitation conditions. Moreover, for HH 111 the depletion is lower in the HVI of the fastest shock. Conclusions: Our results confirm the shock structure predicted by models and indicate that shocks occurring along jets, and presumably those present in the launch zone, only partially destroy dust grains and that the efficiency of dust reprocessing strongly depends on shock velocity. However, the high Ca gas

  13. VizieR Online Data Catalog: A Finding List of Faint UV-Bright Stars (Lanning+, 1998)

    NASA Astrophysics Data System (ADS)

    Lanning, H. H.

    1997-02-01

    The Sandage two-color photographic survey was originally made in support of the UHURU x-ray satellite in order to identify those optical counterparts of the detected x-ray sources found in the galactic plane. During inspection of the plates, however, many UV-bright objects fainter than 10th magnitude were seen in the general field. A larger image in the U filter suggested the possibility of a bluer object as in the case of low-luminosity stars, white dwarfs, novae, CVs, normal early B stars, etc. As these are interesting in themselves, it was decided to publish a catalog for the use of other observers. This multi-color photographic technique has been described, for example, by Haro and Herbig (1955). The survey was concentrated on objects with m(B)~10 or fainter. It employed the Palomar 48-in (Oschin) Schmidt telescope and was centered on the galactic plane with overlapping regions covering the galactic latitudes +- 9 degrees, and extending throughout most of the northern plane (l = 0 deg - 227 deg). Plates were taken by J. Kristian, A.R. Sandage, R.J. Brucato, and Lanning, primarily. The data presented here were found following a careful examination of the plates but it should not be assumed these data represent a complete survey of the fields examined. The categories were roughly calibrated against photoelectric (U-B) measures, but a full scale calibration program, including magnitude effects, etc. was not done. The numerical (U-B) limits of the tables should not therefore be taken precisely. The blue magnitude of the sources in the finding list has been estimated using these photoelectric values as a guide but should be considered accurate to only +- 0.5 mag. due to the difficulty of adjusting to the various plate characteristics. Positions were measured from images retrieved from the Space Telescope Science Institute collection of Guide Star digital plate scans. The accuracy of positions from the Guide Star Catalog images has been estimated to be on the order

  14. Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2009-12-01

    Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion

  15. HUBBLE VIEWS OF THREE STELLAR JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.

  16. Protostellar jets in the NIR: interaction with the ISM and correlation with the exciting source evolutionary phase

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, Alessio

    2006-03-01

    I present an in-depth near-IR (NIR) analysis of a sample of H2 jets from young embedded sources to compare the physical, kinematical properties and cooling mechanisms of the different flows. The sample comprises 23 outflows driven by Class 0 and I sources having low-intermediate solar luminosity (1-600 L(sun)). For such an analysis, I have utilized narrow band images centered on the H2 (2.12 micron) and [FeII] (1.64 micron) spectral lines, low resolution spectra (R~600) in the range 1-2.5 micron and high resolution spectra (R~10000) centered on H2 (2.12 micron) and [FeII] (1.64 micron) lines. At NIR wavelengths these two tracers (H2,[FeII]) are the main coolants of the gas, that is excited by strong radiative shocks. Narrow band images have been used to detect such shocked regions in both ionic and molecular components. [FeII] have been observed in ~74% of the outflows which in some cases indicate the presence of embedded Herbig Haro (HH) like objects. H2 line ratios have been used to estimate the visual extinction and the average temperature of the molecular gas. A(V) values range from ~2 to ~15 mag, while average temperatures range between ~2000 and ~4000 K. In several knots, however, a stratification of temperatures is found with maximum values up to 5000 K. Such a stratification is more commonly observed in those knots which also show [FeII] emission, while a thermalized gas at a single temperature is generally found in knots emitting only in molecular lines. Combining narrow band imaging with the parameters derived from the spectroscopic analysis, it was possible to measure the total luminosity of the H2 and [FeII] shocked regions (L(H2) and L([FeII])) in each flow. H2 is the major NIR coolant with an average L(H2)/L([FeII]) ratio of ~10^2. About 83% of the sources have a L(H2)/L(bol) ratio ~0.04, irrespective of the Class of the driving source, while a smaller group of sources (mostly Class I) have L(H2)/L(bol) an order of magnitude smaller. Such a separation

  17. Proceedings of a workshop on American Eel passage technologies

    USGS Publications Warehouse

    Haro, Alexander J.

    2013-01-01

    Recent concerns regarding a decline in recruitment of American eels (Anguilla rostrata) have prompted efforts to restore this species to historic habitats by providing passage for both upstream migrant juveniles and downstream migrant adults at riverine barriers, including low-head and hydroelectric dams (Castonguay et al. 1994, Haro et al. 2000). These efforts include development of management plans and stock assessment reviews in both the US and Canada (COSEWIC 2006, Canadian Eel Working Group 2009, DFO 2010, MacGregor et al. 2010, ASMFC 2000, ASMFC 2006, ASMFC 2008, Williams and Threader 2007), which target improvement of upstream and downstream passage for eels, as well as identification and prioritization of research needs for development of new and more effective passage technologies for American eels. Traditional upstream fish passage structures, such as fishways and fish lifts, are often ineffective passing juvenile eels, and specialized passage structures for this species are needed. Although designs for such passage structures are available and diverse (Knights and White 1998, Porcher 2002, FAO/DVWK 2002, Solomon and Beach 2004a,b, Environment Agency UK 2011), many biologists, managers, and engineers are unfamiliar with eel pass design and operation, or unaware of the technical options available for upstream eel passage, Better coordination is needed to account for eel passage requirements during restoration efforts for other diadromous fish species. Also, appropriately siting eel passes at hydropower projects is critical, and siting can be difficult and complex due to physical restrictions in access to points of natural concentrations of eels, dynamic hydraulics of tailrace areas, and presence of significant competing flows from turbine outfalls or spill. As a result, some constructed eel passes are sited poorly and may pass only a fraction of the number of eels attempting to pass the barrier. When sited and constructed appropriately, however, eel passes

  18. Hubble Sees the Force Awakening in a Newborn Star

    NASA Image and Video Library

    2017-12-08

    Just in time for the release of the movie “Star Wars Episode VII: The Force Awakens,” NASA’s Hubble Space Telescope has photographed what looks like a cosmic, double-bladed lightsaber. In the center of the image, partially obscured by a dark, Jedi-like cloak of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe. “Science fiction has been an inspiration to generations of scientists and engineers, and the film series Star Wars is no exception,” said John Grunsfeld, astronaut and associate administrator for the NASA Science Mission directorate. “There is no stronger case for the motivational power of real science than the discoveries that come from the Hubble Space Telescope as it unravels the mysteries of the universe." This celestial lightsaber does not lie in a galaxy far, far away, but rather inside our home galaxy, the Milky Way. It’s inside a turbulent birthing ground for new stars known as the Orion B molecular cloud complex, located 1,350 light-years away. When stars form within giant clouds of cool molecular hydrogen, some of the surrounding material collapses under gravity to form a rotating, flattened disk encircling the newborn star. Though planets will later congeal in the disk, at this early stage the protostar is feeding on the disk with a Jabba-like appetite. Gas from the disk rains down onto the protostar and engorges it. Superheated material spills away and is shot outward from the star in opposite directions along an uncluttered escape route — the star’s rotation axis. Shock fronts develop along the jets and heat the surrounding gas to thousands of degrees Fahrenheit. The jets collide with the surrounding gas and dust and clear vast spaces, like a stream of water plowing into a hill of sand. The shock fronts form tangled, knotted clumps of nebulosity and are collectively known as Herbig-Haro (HH) objects. The prominent HH object shown in this image is HH 24. Just to the right of the

  19. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  20. Mapping the complex kinematics of LL objects in the Orion nebula

    NASA Astrophysics Data System (ADS)

    Henney, William J.; García-Díaz, Ma. T.; O'Dell, C. R.; Rubin, Robert H.

    2013-01-01

    LL Orionis-type objects (LL objects) are hyperbolic bowshocks visible around young stars in the outer Orion nebula, many of which are also associated with curved, highly collimated jets. The bowshocks are clearly due to the supersonic interaction between an outflow from the young star and an environmental flow from the core of the nebula, but the exact nature of these flows has not yet been established. We present the first high-resolution optical spectra of two of these objects, LL 1 and LL 2, together with their associated Herbig-Haro (HH) jets, HH 888 and HH 505. We combine multiple long-slit echelle spectra in the Hα 6563 Å and [N ii] 6584 Å lines to produce velocity maps of the two objects at a resolution of 4text{arcsec} × 2text{arcsec} × 11 {km s^{-1}}. The gas motions within both stellar bowshocks are of rather low velocity (10-20 km s-1), but there are important differences between the two objects. LL 1 shows a high degree of symmetry, whereas LL 2 has very asymmetric kinematics that seem to follow velocity gradients in the surrounding nebula. We also measure the line-of-sight velocity for multiple knots in the HH 888 and HH 505 jets, and combine our spectroscopy with new and existing proper-motion measurements to reconstruct the three-dimensional kinematics of the jets. The knot motions in both jets are very similar: both flows are inclined at 40° to 60° from the plane of the sky, with exclusively redshifted knots to the north and exclusively blueshifted knots to the south. In both cases, one also sees a deceleration along the length of the jets, from >200 km s-1 close to the respective stars down to <100 km s-1 farther out. The marked contrasts that we find between the kinematics of the jets and the kinematics of the stellar bowshocks are evidence that the two phenomena are not causally related. Regular patterns in the dynamic ages of the HH 505 knots imply periodic ejections on three different time-scales: 50, 12 and 4 yr. We use line ratios and

  1. List of Participants

    NASA Astrophysics Data System (ADS)

    2011-08-01

    GonzalezBUAP, FCFM Lorenzo Díaz CruzBUAP Facultad de Ciencias Físico Matemáticas Luis Rey Díaz BarrónDivisión de Ciencias e Ingenierías Luis UrenaUniversidad de Guanajuato Magda LolaDept. of Physics, University of Patras, Greece Mahmoud WahbaEgyptian Center for Theoretical Physics, MTI Marcus S CohenNew Mexico State University Mario A Acero OrtegaICN - UNAM Mario E GomezUniversidad de Huelva Mark PipeUniversity of Sheffield Mauro NapsucialeDCI-UG Mirco CannoniUniversidad de Huelva Mónica Felipa Ramírez PalaciosUniversidad de Guadalajara Murli Manohar VermaLucknow university, India Nassim BozorgniaUCLA Octavio Obregón Octavio ValenzuelaIA-UNAM Oleg KamaevUniversity of Minnesota Osamu SetoHokkai-Gakuen University Pedro F González DíazIFF, CSIC, Serrano 121, 28006 Madrid, Spain Qaisar ShafiBartol Research Inst. and Delaware U. Raul Hennings-YeomansLos Alamos National Laboratory René Ángeles MartínezDepartamento de Fisica, del DCI de la Universidad de Guanajuato Reyna XoxocotziBUAP, FCFM Rishi Kumar TiwariGovt. Model Science College, Rewa (MP) INDIA Roberto A SussmanICN-UNAM Selim Gómez ÁvilaDCI-UG Sugai KenichiSaitama University Susana Valdez AlvaradoDCI-UG TVladimir - 2K CollaborationColorado State University Tonatiuh MatosCINVESTAV Valeriy DvoeglazovUniversidad de Zacatecas Vannia Gonzalez MaciasDCI-UG Vladimir Avila-ReeseInstituto de Astronomia, UNAM Wolfgang BietenholzINC, UNAM (Mexico) Yamanaka MasatoKyoto Sangyo University Yann MambriniLPT Orsay Yu-Feng ZhouInstitute of Theotretical Physics, Chinese Academy of Sciences, PR China Aaron HigueraDCI-UG Azarael Yebra PérezDCI-UG César Hernández AguayoDCI-UG Jaime Chagoya AlvarezDCI-UG Jonathan Rashid Rosique CampuzanoDCI-UG José Alfredo Soto ÁlvarezDCI-UG Juan Carlos De Haro SantosDCI-UG Luis Eduardo Medina MedranoDCI-UG Maria Fatima Rubio EspinozaDCI-UG Paulo Alberto Rodriguez HerreraDCI-UG Roberto Oziel Gutierrez CotaDCI-UG Rocha Moran Maria PaulinaDCI-UG Xareni Sanchez MonroyDCI-UG

  2. The Eagle's EGGs

    NASA Astrophysics Data System (ADS)

    2001-12-01

    image shows not only the central three pillars but also several others in the same star-forming region, as well as a huge number of stars in front of, in, or behind the Eagle Nebula. The cluster of bright blue stars to the upper right is NGC 6611 , home to the massive and hot stars that illuminate the pillars. Technical information about this photo is available below. ESO PR Photo 37b/01 ESO PR Photo 37b/01 [Preview - JPEG: 400 x 553 pix - 160k] [Normal - JPEG: 800 x 1105 pix - 1.2M] [FullRes - JPEG: 1330 x 1837 pix - 2.7M] Caption : ESO PR Photo 37b/01 shows a zoom into the centre of PR Photo 37a/01 , with the infrared view of the columns and their immediate surroundings in more detail. The pillars or columns are numbered 1 to 3 from left to right (east to west). The pillars themselves are less prominent than on the Hubble visible-light image of this region - this because near-infrared light penetrates the thinner parts of the gas and dust clouds and only the heads remain opaque. A number of red objects can be seen associated with the pillars: some of these are just background sources seen through the dust, but some are probably real young stars embedded in the pillars. The purple arc near the bottom of the picture is Herbig-Haro object 216 , a fast-moving clump of heated gas emanating from a young star (see also PR Photo 37e/01 ). Technical information about this photo is available below. HST and VLT images of the Eagle Nebula - PR Video Clip 08a/01] ESO PR Video Clip 08a/01 HST and VLT images of the Eagle Nebula (52 frames/0:02 min) [MPEG Video; 160x120 pix; 3.6Mb] ESO Video Clip 08a/01 shows a sky field similar to that seen in PR Photo 37b/01 , "dissolving" back and forth between the Hubble and VLT views, demonstrating the dramatic changes that occur when changing wavelength from the visible to near-infrared. (It is suggested to play it at reduced speed). The wide-field view of M16 ( Photo 37a/01 ) shows that there is much more to the region than is seen in the

  3. Infrared Halo Frames a Newborn Star

    NASA Astrophysics Data System (ADS)

    2003-08-01

    infrared than in visible light. This is because the absorption of infrared light by dust particles is smaller than the absorption of visible light. More dust is then needed to produce the same amount of scattering and to show a rim in infrared light. The infrared rim will therefore show up in an area where the dust density is higher, i.e. closer to the centre of the cloud, than the visible-light rim. Similar rings were also detected in the J- and Ks-band images and, as expected, of different sizes. Thus the mere observation of the size (and shape) of a bright rim already provides information about the internal structure of the cloud. In the case of DC303.8-14.2, a detailed evaluation shows that the dust density of the centre is so high that any visible light from the nascent star in there would be dimmed at least 1000 times before it emerges from the cloud. Getting a bonus: Jets from a young star As an unexpected and welcome bonus, the astronomers also detected several jet- and knot-like structures in the Ks-band image (right panel in PR Photo 26a/03), near the IRAS source. The area shown represents the innermost region of the cloud (65 x 50 arcsec 2 , or just 1/500 of the area of the DSS image to the left). Several knot-like structures on a line like a string of beads are clearly seen. They are most probably regions where the gas ejected by the young stellar object rams into the surrounding medium, creating zones of compressed and hot molecular hydrogen. Such structures are known by astronomers as "Herbig-Haro objects", cf. ESO PR 17/99. More information A general description of the methods used to study and model surface brightness observations of small dark clouds in given in a basic paper by Kimmo Lehtinen and Kalevi Mattila in the research journal Astronomy & Astrophysics (Vol. 309, p. 570 1996). The results presented here will be published in a forthcoming paper in Astronomy & Astrophysics.

  4. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    fine HST image - a new infrared view by VLT and ISAAC of this area was published last month, cf. PR 25/01. Such structures are only temporary as they are being constantly eroded by the expanding region of ionized gas and are destroyed on timescales of typically a few thousand years. The Horsehead as we see it today will therefore not last forever and minute changes will become observable as the time passes. The surroundings To the east of the Horsehead (at the bottom of this image) there is ample evidence for star formation in the Lynds 1630 dark cloud . Here, the reflection nebula NGC 2023 surrounds the hot B-type star HD 37903 and some Herbig Haro objects are found which represent high-speed gas outflows from very young stars with masses of around a solar mass. The HII region to the west (top of picture) is ionized by the strong radiation from the bright star Sigma Orionis , located just below the southernmost star in Orion's Belt. The chain of dust and molecular clouds are part of the Orion A and B regions (also known as Orion's `sword' ). Other images of the Horsehead Nebula The Horsehead Nebula is a favourite object for amateur astrophotographers and large numbers of images are available on the WWW. Due to its significant extension and the limited field-of-view of some professional telescopes, fewer photographs are available from today's front-line facilities, except from specialized wide-field instruments like Schmidt telescopes, etc. The links below point to a number of prominent photos obtained elsewhere and some contain further useful links to other sites with more information about this splendid sky area. "Astronomy Picture of the Day" : http://antwrp.gsfc.nasa.gov/apod/ap971025.html Hubble Heritage image : http://hubble.stsci.edu/news_.and._views/pr.cgi?2001%2B12 INT Wide-Field image : http://www.ing.iac.es/PR/science/horsehead.htm NOT image : http://www.not.iac.es/new/general/photos/astronomical/ NOAO Wide-Field image : http

  5. Obituary: Gary Lars Grasdalen, 1945-2003

    NASA Astrophysics Data System (ADS)

    Strom, Stephen Eric

    2003-12-01

    population of newly formed stars in the Ophiuchus complex. This discovery led to a series of survey papers cataloging and describing the young stellar population associated with multiple nearby clouds. The results from these early survey papers produced finding lists and nomenclature for embedded young stars that are still referenced by researchers. By developing the tools needed to point telescopes precisely, Grasdalen was able to follow a hunch that he had while a graduate student at Berkeley---that Herbig-Haro objects were excited by optically obscured young stars that were displaced from these emission nebulae. He believed these objects to be reflection nebulae, scattering light earthward from a young star whose powerful wind had carved out a cavity thus creating an indirect pathway for optical photons to reach observers from an otherwise invisible star. Grasdalen compiled a list of candidate H-H objects from the Palomar Observatory Sky Survey and began a near-infrared search for associated young stars, first using inefficient PbS and when they became available, InSb detectors. In 1974, his insight was rewarded with the discovery of the embedded young star associated with H-H 100 in Corona Austrina, and soon thereafter, with multiple candidate infrared sources associated with H-H objects. The 1974 discovery paper notes that the exciting source for H-H 100 is located near the geometric center of a 0.1 pc, roughly spherical cloud, providing early evidence that young stars form within regions that we now call ``molecular cores". Following several years of study, it became clear that the H-H objects themselves are in fact directly excited via stellar wind-molecular cloud interactions, thus invalidating the hypothesis that H-H objects are pure reflection nebulae. Nevertheless, Grasdalen's pioneering discovery of infrared sources associated with these objects, combined with the infrared survey results, led to a veritable explosion of infrared and molecular line studies of star

  6. Enthusiasm for Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-11-01

    , recorded by the NASA ESA UK International Ultraviolet Explorer, which apparently result from comets or asteroids splashing into HD 100546. "A tremendous cloud of comets seems to surround this young star," says Christoffel Waelkens of Leuven, Belgium, who leads the project that discovered the olivine crystals. "We believe that it was from just such a comet cloud, around the young Sun, that the Earth and the other planets were born. Now we compare notes with colleagues who study minerals in our local comets and meteorites. ISO has seen olivine in Comet Hale-Bopp. So not the least of ISO's successes is a reunification of stellar astrophysics and solar-system science." Newborn stars and stellar jets Astronomers in Stockholm, Sweden, are the lead authors of papers concerning the search for newborn stars and related phenomena in the southern constellation Chamaeleon. At about 800 light-years a feature called the Chamaeleon Dark Clouds, sprawling across more than one degree of the sky, is one of the closest regions of present-day star formation. The camera ISOCAM has obtained more than 23,000 images of the region, in two wavelength bands around 7 and 15 microns. Out of hundreds of objects detected, the team identified 65 young stars, of which more than 40 per cent were not previously known. Another lead author from Stockholm reports on the use of ISO's Long-Wavelength Spectrometer to examine a strange luminous patch in the Chamaeleon Dark Clouds called HH 54. It is a Herbig-Haro object, named after an American and a Mexican astronomer, in which a jet of gas from a very young star creates luminosity by shock waves, at a great distance from the star. ISO has for the first time detected emissions from water vapour in an HH object. This result not only confirms ISO's pioneering role as a cosmic water diviner, but gives new insight into the mechanisms creating the HH object. Practically all of the energy of a 10 kilometre-per-second shock is dissipated by infrared emissions from water

  7. A Powerful Twin Arrives

    NASA Astrophysics Data System (ADS)

    1999-11-01

    may be used in several different observation modes. FORS2 is largely identical to FORS1 , but there are a number of important differences. For example, it contains a Mask Exchange Unit (MXU) for laser-cut star-plates [1] that may be inserted at the focus, allowing a large number of spectra of different objects, in practice up to about 70, to be taken simultaneously. Highly sophisticated software assigns slits to individual objects in an optimal way, ensuring a great degree of observing efficiency. Instead of the polarimetry optics found in FORS1 , FORS2 has new grisms that allow the use of higher spectral resolutions. The FORS project was carried out under ESO contract by a consortium of three German astronomical institutes, the Heidelberg State Observatory and the University Observatories of Göttingen and Munich. The participating institutes have invested a total of about 180 man-years of work in this unique programme. The photos below demonstrate some of the impressive possibilities with this new instrument. They are based on observations with the FORS2 standard resolution collimator (field size 6.8 x 6.8 armin = 2048 x 2048 pixels; 1 pixel = 0.20 arcsec). In addition, observations of the Crab pulsar demonstrate a new observing mode, high-speed photometry. Protostar HH-34 in Orion ESO PR Photo 40b/99 ESO PR Photo 40b/99 [Preview - JPEG: 400 x 444 pix - 220kb] [Normal - JPEG: 800 x 887 pix - 806kb] [Full-Res - JPEG: 2000 x 2217 pix - 3.6Mb] The Area around HH-34 in Orion ESO PR Photo 40c/99 ESO PR Photo 40c/99 [Preview - JPEG: 400 x 494 pix - 262kb] [Full-Res - JPEG: 802 x 991 pix - 760 kb] The HH-34 Superjet in Orion (centre) PR Photo 40b/99 shows a three-colour composite of the young object Herbig-Haro 34 (HH-34) , now in the protostar stage of evolution. It is based on CCD frames obtained with the FORS2 instrument in imaging mode, on November 2 and 6, 1999. This object has a remarkable, very complicated appearance that includes two opposite jets that ram into the