Sample records for tail immersion method

  1. Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR

    PubMed Central

    Hanhineva, Kati J; Kärenlampi, Sirpa O

    2007-01-01

    Background Strawberry (Fragaria × ananassa) is an economically important soft fruit crop with polyploid genome which complicates the breeding of new cultivars. For certain traits, genetic engineering offers a potential alternative to traditional breeding. However, many strawberry varieties are quite recalcitrant for Agrobacterium-mediated transformation, and a method allowing easy handling of large amounts of starting material is needed. Also the genotyping of putative transformants is challenging since the isolation of DNA for Southern analysis is difficult due to the high amount of phenolic compounds and polysaccharides that complicate efficient extraction of digestable DNA. There is thus a need to apply a screening method that is sensitive and unambiguous in identifying the different transformation events. Results Hygromycin-resistant strawberries were developed in temporary immersion bioreactors by Agrobacterium-mediated gene transfer. Putative transformants were screened by TAIL-PCR to verify T-DNA integration and to distinguish between the individual transformation events. Several different types of border sequence arrangements were detected. Conclusion This study demonstrates that temporary immersion bioreactor system suits well for the regeneration of transgenic strawberry plants as a labour-efficient technique. Small amount of DNA required by TAIL-PCR is easily recovered even from a small transformant, which allows rapid verification of T-DNA integration and detection of separate gene transfer events. These techniques combined clearly facilitate the generation of transgenic strawberries but should be applicable to other plants as well. PMID:17309794

  2. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  3. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossan, Mohammad Robiul; Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209; Dillon, Robert

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of themore » hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.« less

  4. Lubricated immersed boundary method in two dimensions

    NASA Astrophysics Data System (ADS)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  5. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  6. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  7. Solving Fluid Structure Interaction Problems with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.

  8. A velocity-correction projection method based immersed boundary method for incompressible flows

    NASA Astrophysics Data System (ADS)

    Cai, Shanggui

    2014-11-01

    In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.

  9. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.

  10. Some recent developments of the immersed interface method for flow simulation

    NASA Astrophysics Data System (ADS)

    Xu, Sheng

    2017-11-01

    The immersed interface method is a general methodology for solving PDEs subject to interfaces. In this talk, I will give an overview of some recent developments of the method toward the enhancement of its robustness for flow simulation. In particular, I will present with numerical results how to capture boundary conditions on immersed rigid objects, how to adopt interface triangulation in the method, and how to parallelize the method for flow with moving objects. With these developments, the immersed interface method can achieve accurate and efficient simulation of a flow involving multiple moving complex objects. Thanks to NSF for the support of this work under Grant NSF DMS 1320317.

  11. Adoption of the Creative Process According to the Immersive Method

    ERIC Educational Resources Information Center

    Vuk, Sonja; Tacol, Tonka; Vogrinc, Janez

    2015-01-01

    The immersive method is a new concept of visual education that is better suited to the needs of students in contemporary post-industrial society. The features of the immersive method are: (1) it emerges from interaction with visual culture; (2) it encourages understanding of contemporary art (as an integral part of visual culture); and (3) it…

  12. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.

  13. AN IMMERSED BOUNDARY METHOD FOR COMPLEX INCOMPRESSIBLE FLOWS

    EPA Science Inventory

    An immersed boundary method for time-dependant, three- dimensional, incompressible flows is presented in this paper. The incompressible Navier-Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid fluxes and a second order central differenc...

  14. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  15. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  16. Physiological response to water immersion: a method for sport recovery?

    PubMed

    Wilcock, Ian M; Cronin, John B; Hing, Wayne A

    2006-01-01

    Recovery from exercise can be an important factor in performance during repeated bouts of exercise. In a tournament situation, where athletes may compete numerous times over a few days, enhancing recovery may provide a competitive advantage. One method that is gaining popularity as a means to enhance post-game or post-training recovery is immersion in water. Much of the literature on the ability of water immersion as a means to improve athletic recovery appears to be based on anecdotal information, with limited research on actual performance change. Water immersion may cause physiological changes within the body that could improve recovery from exercise. These physiological changes include intracellular-intravascular fluid shifts, reduction of muscle oedema and increased cardiac output (without increasing energy expenditure), which increases blood flow and possible nutrient and waste transportation through the body. Also, there may be a psychological benefit to athletes with a reduced cessation of fatigue during immersion. Water temperature alters the physiological response to immersion and cool to thermoneutral temperatures may provide the best range for recovery. Further performance-orientated research is required to determine whether water immersion is beneficial to athletes.

  17. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  18. Immersed boundary methods for simulating fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei

    2014-02-01

    Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.

  19. Black-tailed and white-tailed jackrabbits in the American West: History, ecology, ecological significance, and survey methods

    USGS Publications Warehouse

    Simes, Matthew; Longshore, Kathleen M.; Nussear, Kenneth E.; Beatty, Greg L.; Brown, David E.; Esque, Todd C.

    2015-01-01

    Across the western United States, Leporidae are the most important prey item in the diet of Golden Eagles (Aquila chrysaetos). Leporids inhabiting the western United States include black-tailed (Lepus californicus) and white-tailed jackrabbits (Lepus townsendii) and various species of cottontail rabbit (Sylvilagus spp.). Jackrabbits (Lepus spp.) are particularly important components of the ecological and economic landscape of western North America because their abundance influences the reproductive success and population trends of predators such as coyotes (Canis latrans), bobcats (Lynx rufus), and a number of raptor species. Here, we review literature pertaining to black-tailed and white-tailed jackrabbits comprising over 170 published journal articles, notes, technical reports, conference proceedings, academic theses and dissertations, and other sources dating from the late 19th century to the present. Our goal is to present information to assist those in research and management, particularly with regard to protected raptor species (e.g., Golden Eagles), mammalian predators, and ecological monitoring. We classified literature sources as (1) general information on jackrabbit species, (2) black-tailed or (3) white-tailed jackrabbit ecology and natural history, or (4) survey methods. These categories, especially 2, 3, and 4, were further subdivided as appropriate. The review also produced several tables on population trends, food habits, densities within various habitats, and jackrabbit growth and development. Black-tailed and white-tailed jackrabbits are ecologically similar in general behaviors, use of forms, parasites, and food habits, and they are prey to similar predators; but they differ in their preferred habitats. While the black-tailed jackrabbit inhabits agricultural land, deserts, and shrublands, the white-tailed jackrabbit is associated with prairies, alpine tundra, and sagebrush-steppe. Frequently considered abundant, jackrabbit numbers in western North

  20. An efficient strongly coupled immersed boundary method for deforming bodies

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Colonius, Tim

    2016-11-01

    Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.

  1. An Immersed Boundary-Lattice Boltzmann Method for Simulating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Cheng, Ming; Lou, Jing

    2013-11-01

    A two-dimensional momentum exchange-based immersed boundary-lattice Boltzmann method developed by X.D. Niu et al. (2006) has been extended in three-dimensions for solving fluid-particles interaction problems. This method combines the most desirable features of the lattice Boltzmann method and the immersed boundary method by using a regular Eulerian mesh for the flow domain and a Lagrangian mesh for the moving particles in the flow field. The non-slip boundary conditions for the fluid and the particles are enforced by adding a force density term into the lattice Boltzmann equation, and the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. This method preserves the advantages of lattice Boltzmann method in tracking a group of particles and, at the same time, provides an alternative approach to treat solid-fluid boundary conditions. Numerical validations show that the present method is very accurate and efficient. The present method will be further developed to simulate more complex problems with particle deformation, particle-bubble and particle-droplet interactions.

  2. Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces

    NASA Astrophysics Data System (ADS)

    Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz

    2018-03-01

    In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.

  3. An Immersed-Boundary Method for Fluid-Structure Interaction in the Human Larynx

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven

    2006-11-01

    We describe a novel and accurate computational methodology for modeling the airflow and vocal fold dynamics in human larynx. The model is useful in helping us gain deeper insight into the complicated bio-physics of phonation, and may have potential clinical application in design and placement of synthetic implant in vocal fold surgery. The numerical solution of the airflow employs a previously developed immersed-boundary solver. However, in order to incorporate the vocal fold into the model, we have developed a new immersed-boundary method that can simulate the dynamics of the multi-layered, viscoelastic solids. In this method, a finite-difference scheme is used to approximate the derivatives and ghost cells are defined near the boundary. To impose the traction boundary condition, a third-order polynomial is obtained using the weighted least squares fitting to approximate the function locally. Like its analogue for the flow solver, this immersed-boundary method for the solids has the advantage of simple grid generation, and may be easily implemented on parallel computers. In the talk, we will present the simulation results on both the specified vocal fold motion and the flow-induced vocal fold vibration. Supported by NIDCD Grant R01 DC007125-01A1.

  4. A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography

    USGS Publications Warehouse

    Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.

    2017-01-01

    Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea

  5. Development of a coupled level set and immersed boundary method for predicting dam break flows

    NASA Astrophysics Data System (ADS)

    Yu, C. H.; Sheu, Tony W. H.

    2017-12-01

    Dam-break flow over an immersed stationary object is investigated using a coupled level set (LS)/immersed boundary (IB) method developed in Cartesian grids. This approach adopts an improved interface preserving level set method which includes three solution steps and the differential-based interpolation immersed boundary method to treat fluid-fluid and solid-fluid interfaces, respectively. In the first step of this level set method, the level set function ϕ is advected by a pure advection equation. The intermediate step is performed to obtain a new level set value through a new smoothed Heaviside function. In the final solution step, a mass correction term is added to the re-initialization equation to ensure the new level set is a distance function and to conserve the mass bounded by the interface. For accurately calculating the level set value, the four-point upwinding combined compact difference (UCCD) scheme with three-point boundary combined compact difference scheme is applied to approximate the first-order derivative term shown in the level set equation. For the immersed boundary method, application of the artificial momentum forcing term at points in cells consisting of both fluid and solid allows an imposition of velocity condition to account for the presence of solid object. The incompressible Navier-Stokes solutions are calculated using the projection method. Numerical results show that the coupled LS/IB method can not only predict interface accurately but also preserve the mass conservation excellently for the dam-break flow.

  6. Immersed boundary peridynamics (IB/PD) method to simulate aortic dissection

    NASA Astrophysics Data System (ADS)

    Bhalla, Amneet Pal Singh; Griffith, Boyce

    2016-11-01

    Aortic dissection occurs when an intimal tear in the aortic wall propagates into the media to form a false lumen within the vessel wall. Rupture of the false lumen and collapse of the true lumen both carry a high risk of morbidity and mortality. Surgical treatment consists of either replacement of a portion of the aorta, or stent implantation to cover the affected segment. Both approaches carry significant risks: open surgical intervention is highly invasive, whereas stents can be challenging to implant and offer unclear long-term patient outcomes. It is also difficult to time optimally the intervention to ensure that the benefits of treatment outweigh its risks. In this work we develop innovative fluid-structure interaction (FSI) model combining elements from immersed boundary (IB) and peridynamics (PD) methods to simulate tears in membranes. The new approach is termed as IB/PD method. We use non-ordinary state based PD to represent material hyperelasticity. Several test problems are taken to validate peridynamics approach to model structural dynamics, with and without accounting for failure in the structures. FSI simulations using IB/PD method are compared with immersed finite element method (IB/FE) to validate the new hybrid approach. NIH Award R01HL117163 NSF Award ACI 1450327.

  7. Numerical study on the power extraction performance of a flapping foil with a flexible tail

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.

    2015-01-01

    The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.

  8. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  9. An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with Fluid Structure Interaction

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.

  10. Immersed boundary method for Boltzmann model kinetic equations

    NASA Astrophysics Data System (ADS)

    Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina

    2012-11-01

    Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.

  11. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    NASA Astrophysics Data System (ADS)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  12. Flapping foil power generator performance enhanced with a spring-connected tail

    NASA Astrophysics Data System (ADS)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  13. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators-Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1997-01-01

    Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.

  14. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  15. A tailing genome walking method suitable for genomes with high local GC content.

    PubMed

    Liu, Taian; Fang, Yongxiang; Yao, Wenjuan; Guan, Qisai; Bai, Gang; Jing, Zhizhong

    2013-10-15

    The tailing genome walking strategies are simple and efficient. However, they sometimes can be restricted due to the low stringency of homo-oligomeric primers. Here we modified their conventional tailing step by adding polythymidine and polyguanine to the target single-stranded DNA (ssDNA). The tailed ssDNA was then amplified exponentially with a specific primer in the known region and a primer comprising 5' polycytosine and 3' polyadenosine. The successful application of this novel method for identifying integration sites mediated by φC31 integrase in goat genome indicates that the method is more suitable for genomes with high complexity and local GC content. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. 2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids

    NASA Astrophysics Data System (ADS)

    Denaro, F. M.; Sarghini, F.

    2002-04-01

    Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco-Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright

  17. Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

    PubMed

    Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P

    2016-03-01

    The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites.

  18. The penalty immersed boundary method and its application to aerodynamics

    NASA Astrophysics Data System (ADS)

    Kim, Yongsam

    The Immersed Boundary (IB) method has been widely applied to problems involving a moving elastic boundary that is immersed in fluid and interacting with it. But most applications of the IB method have involved a massless elastic boundary. Extending the method to cover the case of a massive boundary has required spreading the boundary mass out onto the fluid grid and then solving the Navier-Stokes equations with a variable mass density. The variable mass density makes Fourier transform methods inapplicable, and requires a multigrid solver. Here we propose a new and simple way to give mass to the elastic boundary. The key idea of the method is to introduce two representations of each boundary: one is a massive boundary which does not interact with the fluid, and the other is messless and plays the same role as the boundary of the IB method with the massless assumption. Although they are almost the same, we allow these two representations of the boundary to be different as long as the gap between them is small. This can be ensured by connecting them with a stiff spring with a zero rest length which generates force acting on both boundaries and pulling them together. We call this the 'Penalty IB method'. It does not spread mass to the fluid grid, retains the use of Fourier transform methodology, and is easy to implement in the context of an existing IB method code for the massless case. This thesis introduces the Penalty IB method and applies it to several problems in which the mass of the boundary is important. These problems are filaments in a flowing soap film, flows past a cylinder, windsocks, flags, and parachutes.

  19. Effects of Topical Anesthetics on Behavior, Plasma Corticosterone, and Blood Glucose Levels after Tail Biopsy of C57BL/6NHSD Mice (Mus musculus).

    PubMed

    Dudley, Emily S; Johnson, Robert A; French, DeAnne C; Boivin, Gregory P

    2016-01-01

    Tail biopsy is a common procedure that is performed to obtain genetic material for determining genotype of transgenic mice. The use of anesthetics or analgesics is recommended, although identifying safe and effective drugs for this purpose has been challenging. We evaluated the effects of topical 2.5% lidocaine-2.5% prilocaine cream applied to the distal tail tip at 5 or 60 min before biopsy, immersion of the tail tip for 10 seconds in ice-cold 70% ethanol just prior to biopsy, and immersion of the tail tip in 0.5% bupivacaine for 30 s after biopsy. Mice were 7, 11, or 15 d old at the time of tail biopsy. Acute behavioral responses, plasma corticosterone, and blood glucose were measured after biopsy, and body weight and performance in elevated plus maze and open-field tests after weaning. Ice-cold ethanol prior to biopsy prevented acute behavioral responses to biopsy, and both ice-cold ethanol and bupivacaine prevented elevations in corticosterone and blood glucose after biopsy. Tail biopsy with or without anesthesia did not affect body weight or performance on elevated plus maze or open-field tests. We recommend the use of ice-cold ethanol for topical anesthesia prior to tail biopsy in mice 7 to 15 d old.

  20. Effects of Topical Anesthetics on Behavior, Plasma Corticosterone, and Blood Glucose Levels after Tail Biopsy of C57BL/6NHSD Mice (Mus musculus)

    PubMed Central

    Dudley, Emily S; Johnson, Robert A; French, DeAnne C; Boivin, Gregory P

    2016-01-01

    Tail biopsy is a common procedure that is performed to obtain genetic material for determining genotype of transgenic mice. The use of anesthetics or analgesics is recommended, although identifying safe and effective drugs for this purpose has been challenging. We evaluated the effects of topical 2.5% lidocaine–2.5% prilocaine cream applied to the distal tail tip at 5 or 60 min before biopsy, immersion of the tail tip for 10 seconds in ice-cold 70% ethanol just prior to biopsy, and immersion of the tail tip in 0.5% bupivacaine for 30 s after biopsy. Mice were 7, 11, or 15 d old at the time of tail biopsy. Acute behavioral responses, plasma corticosterone, and blood glucose were measured after biopsy, and body weight and performance in elevated plus maze and open-field tests after weaning. Ice-cold ethanol prior to biopsy prevented acute behavioral responses to biopsy, and both ice-cold ethanol and bupivacaine prevented elevations in corticosterone and blood glucose after biopsy. Tail biopsy with or without anesthesia did not affect body weight or performance on elevated plus maze or open-field tests. We recommend the use of ice-cold ethanol for topical anesthesia prior to tail biopsy in mice 7 to 15 d old. PMID:27423152

  1. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.

    PubMed

    An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan

    2017-01-01

    The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.

  2. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries

    PubMed Central

    Seo, Jung Hee; Mittal, Rajat

    2010-01-01

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129

  3. Mean Excess Function as a method of identifying sub-exponential tails: Application to extreme daily rainfall

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Papalexiou, Simon Michael

    2017-04-01

    Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.

  4. Determination of the temperature causing a nociceptive response in the tail of albino BALB/c mice.

    PubMed

    Aguirre Siancas, E E; Lam Figueroa, N M; Delgado Rios, J C; Ruiz Ramirez, E; Portilla Flores, O S; Crispín Huamaní, L J; Alarcón Velásquez, L

    2018-06-08

    Designs for determining nociceptive response in rodents are of great use in neurology and experimental neuroscience. Immersing mice's tails in warm water is one of the most widely used procedures to evaluate this response; however, a wide range of temperatures are used in different studies. Knowing the temperature that produces a powerful nociceptive response in the tail of BALB/c mice is extremely useful. Eight 2-month-old male BALB/c mice were used. A 14-cm high beaker was filled with water up to 13 cm. The animals' tails were immersed in the container with a starting temperature of 36°C. The water temperature was raised in 1°C increments until we identified the temperatures that produced nociceptive responses. That response was determined by counting the time taken before the mouse shook its tail to remove it from the water. Six of the 8 mice began shaking their tails at the temperature of 51°C. All animals removed their tails from the water at the temperatures of 54°C, 55°C, and 56°C, taking a mean time of 8.54, 7.99, and 5.33seconds, respectively. ANOVA applied to the response times for each of the 3 temperatures indicated revealed a value of F=2.8 (P=.123). The response time was statistically similar for the temperatures of 54°C, 55°C, and 56°C; however, the data were less dispersed for the latter temperature. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. An immersed-shell method for modelling fluid–structure interactions

    PubMed Central

    Viré, A.; Xiang, J.; Pain, C. C.

    2015-01-01

    The paper presents a novel method for numerically modelling fluid–structure interactions. The method consists of solving the fluid-dynamics equations on an extended domain, where the computational mesh covers both fluid and solid structures. The fluid and solid velocities are relaxed to one another through a penalty force. The latter acts on a thin shell surrounding the solid structures. Additionally, the shell is represented on the extended domain by a non-zero shell-concentration field, which is obtained by conservatively mapping the shell mesh onto the extended mesh. The paper outlines the theory underpinning this novel method, referred to as the immersed-shell approach. It also shows how the coupling between a fluid- and a structural-dynamics solver is achieved. At this stage, results are shown for cases of fundamental interest. PMID:25583857

  6. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods

    NASA Astrophysics Data System (ADS)

    Posa, Antonio; Vanella, Marcos; Balaras, Elias

    2017-12-01

    Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.

  7. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  8. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, K A

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.more » First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to

  9. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  10. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  11. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    NASA Astrophysics Data System (ADS)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  12. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  13. Assessing Knowledge Retention of an Immersive Serious Game vs. a Traditional Education Method in Aviation Safety.

    PubMed

    Chittaro, Luca; Buttussi, Fabio

    2015-04-01

    Thanks to the increasing availability of consumer head-mounted displays, educational applications of immersive VR could now reach to the general public, especially if they include gaming elements (immersive serious games). Safety education of citizens could be a particularly promising domain for immersive serious games, because people tend not to pay attention to and benefit from current safety materials. In this paper, we propose an HMD-based immersive game for educating passengers about aviation safety that allows players to experience a serious aircraft emergency with the goal of surviving it. We compare the proposed approach to a traditional aviation safety education method (the safety card) used by airlines. Unlike most studies of VR for safety knowledge acquisition, we do not focus only on assessing learning immediately after the experience but we extend our attention to knowledge retention over a longer time span. This is a fundamental requirement, because people need to retain safety procedures in order to apply them when faced with danger. A knowledge test administered before, immediately after and one week after the experimental condition showed that the immersive serious game was superior to the safety card. Moreover, subjective as well as physiological measurements employed in the study showed that the immersive serious game was more engaging and fear-arousing than the safety card, a factor that can contribute to explain the obtained superior retention, as we discuss in the paper.

  14. The Effects of Tail Docking Method on Piglets' Behavioral Responses to a Formalin Pain Test

    USDA-ARS?s Scientific Manuscript database

    Routine piglet production procedures, for example teeth clipping, tail docking and castration, most likely cause pain and are under increasing scrutiny from the animal rights lobby. The objectives of this study were to assess the impact of 2 alternative methods of tail-docking on subsequent response...

  15. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  16. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    NASA Astrophysics Data System (ADS)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  17. An immersed boundary method for simulating vesicle dynamics in three dimensions

    NASA Astrophysics Data System (ADS)

    Seol, Yunchang; Hu, Wei-Fan; Kim, Yongsam; Lai, Ming-Chih

    2016-10-01

    We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows (Hu et al., 2014 [17]) to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric case, the fully 3D numerical implementation is much more complicated and is far from straightforward. A vesicle membrane surface is known to be incompressible and exhibits bending resistance. As in 3D axisymmetric case, instead of keeping the vesicle locally incompressible, we adopt a modified elastic tension energy to make the vesicle surface patch nearly incompressible so that solving the unknown tension (Lagrange multiplier for the incompressible constraint) can be avoided. Nevertheless, the new elastic force derived from the modified tension energy has exactly the same mathematical form as the original one except the different definitions of tension. The vesicle surface is discretized on a triangular mesh where the elastic tension and bending force are calculated on each vertex (Lagrangian marker in the IB method) of the triangulation. A series of numerical tests on the present scheme are conducted to illustrate the robustness and applicability of the method. We perform the convergence study for the immersed boundary forces and the fluid velocity field. We then study the vesicle dynamics in various flows such as quiescent, simple shear, and gravitational flows. Our numerical results show good agreements with those obtained in previous theoretical, experimental and numerical studies.

  18. Taguchi optimization: Case study of gold recovery from amalgamation tailing by using froth flotation method

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aji, B. B.; Sumardi, S.; Mufakir, F. R.; Junaidi, A.; Nurjaman, F.; Karna, Aziza, Aulia

    2017-01-01

    Gold amalgamation process was widely used to treat gold ore. This process produces the tailing or amalgamation solid waste, which still contains gold at 8-9 ppm. Froth flotation is one of the promising methods to beneficiate gold from this tailing. However, this process requires optimal conditions which depends on the type of raw material. In this study, Taguchi method was used to optimize the optimum conditions of the froth flotation process. The Taguchi optimization shows that the gold recovery was strongly influenced by the particle size which is the best particle size at 150 mesh followed by the Potassium amyl xanthate concentration, pH and pine oil concentration at 1133.98, 4535.92 and 68.04 gr/ton amalgamation tailing, respectively.

  19. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  20. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  1. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  2. Recovery of Manganese Ore Tailings by High-Gradient Magnetic Separation and Hydrometallurgical Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun

    2017-11-01

    With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.

  3. Imposing the free-slip condition with a continuous forcing immersed boundary method

    NASA Astrophysics Data System (ADS)

    Kempe, Tobias; Lennartz, Matthias; Schwarz, Stephan; Fröhlich, Jochen

    2015-02-01

    The numerical simulation of spherical and ellipsoidal bubbles in purified fluids requires the imposition of the free-slip boundary condition at the bubble surface. This paper describes a numerical method for the implementation of free-slip boundary conditions in the context of immersed boundary methods. In contrast to other numerical approaches for multiphase flows, the realization is not straightforward. The reason is that the immersed boundary method treats the liquid as well as the gas phase as a field of constant density and viscosity with a fictitious fluid inside the bubble. The motion of the disperse phase is computed explicitly by solving the momentum balance for each of its elements and is coupled to the continuous phase via additional source terms in the Navier-Stokes equations. The paper starts with illustrating that an ad hoc method is unsuccessful. On this basis, a new method is proposed employing appropriate direct forcing at the bubble surface. A central finding is that with common ratios between the step size of the grid and the bubble diameter, curvature terms need to be accounted for to obtain satisfactory results. The new method is first developed for spherical objects and then extended to generally curved interfaces. This is done by introducing a local coordinate system which approximates the surface in the vicinity of a Lagrangian marker with the help of the two principal curvatures of the surface at this point. The numerical scheme is then validated for spherical and ellipsoidal objects with or without prescribed constant angular velocity. It is shown that the proposed method achieves similar convergence behavior as the method for no-slip boundaries. The results are compared to analytical solutions for creeping flow around a sphere and to numerical reference data obtained on a body-fitted grid. The numerical tests confirm the excellent performance of the proposed method.

  4. An Immersed Boundary method with divergence-free velocity interpolation and force spreading

    NASA Astrophysics Data System (ADS)

    Bao, Yuanxun; Donev, Aleksandar; Griffith, Boyce E.; McQueen, David M.; Peskin, Charles S.

    2017-10-01

    The Immersed Boundary (IB) method is a mathematical framework for constructing robust numerical methods to study fluid-structure interaction in problems involving an elastic structure immersed in a viscous fluid. The IB formulation uses an Eulerian representation of the fluid and a Lagrangian representation of the structure. The Lagrangian and Eulerian frames are coupled by integral transforms with delta function kernels. The discretized IB equations use approximations to these transforms with regularized delta function kernels to interpolate the fluid velocity to the structure, and to spread structural forces to the fluid. It is well-known that the conventional IB method can suffer from poor volume conservation since the interpolated Lagrangian velocity field is not generally divergence-free, and so this can cause spurious volume changes. In practice, the lack of volume conservation is especially pronounced for cases where there are large pressure differences across thin structural boundaries. The aim of this paper is to greatly reduce the volume error of the IB method by introducing velocity-interpolation and force-spreading schemes with the properties that the interpolated velocity field in which the structure moves is at least C1 and satisfies a continuous divergence-free condition, and that the force-spreading operator is the adjoint of the velocity-interpolation operator. We confirm through numerical experiments in two and three spatial dimensions that this new IB method is able to achieve substantial improvement in volume conservation compared to other existing IB methods, at the expense of a modest increase in the computational cost. Further, the new method provides smoother Lagrangian forces (tractions) than traditional IB methods. The method presented here is restricted to periodic computational domains. Its generalization to non-periodic domains is important future work.

  5. Method for confining the magnetic field of the cross-tail current inside the magnetopause

    NASA Technical Reports Server (NTRS)

    Sotirelis, T.; Tsyganenko, N. A.; Stern, D. P.

    1994-01-01

    A method is presented for analytically representing the magnetic field due to the cross-tail current and its closure on the magnetopause. It is an extension of a method used by Tsyganenko (1989b) to confine the dipole field inside an ellipsoidal magnetopause using a scalar potential. Given a model of the cross-tail current, the implied net magnetic field is obtained by adding to the cross-tail current field a potential field B = - del gamma, which makes all field lines divide into two disjoint groups, separated by the magnetopause (i.e., the combined field is made to have zero normal component with the magnetopause). The magnetopause is assumed to be an ellipsoid of revolution (a prolate spheroid) as an approximation to observations (Sibeck et al., 1991). This assumption permits the potential gamma to be expressed in spheroidal coordinates, expanded in spheroidal harmonics and its terms evaluated by performing inversion integrals. Finally, the field outside the magnetopause is replaced by zero, resulting in a consistent current closure along the magnetopause. This procedure can also be used to confine the modeled field of any other interior magnetic source, though the model current must always flow in closed circuits. The method is demonstrated on the T87 cross-tail current, examples illustrate the effect of changing the size and shape of the prescribed magnetopause and a comparison is made to an independent numerical scheme based on the Biot-Savart equation.

  6. Native Language Immersion.

    ERIC Educational Resources Information Center

    Reyhner, Jon

    This paper describes the benefits of indigenous mother tongue immersion programs, examining the Total Physical Response approach to immersion for beginning learners and focusing on the development of Maori and Hawaiian mother tongue language immersion programs. The paper discusses the importance of immersing students in a language-risk…

  7. An immersed boundary method for fluid-structure interaction with compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Li; Currao, Gaetano M. D.; Han, Feng; Neely, Andrew J.; Young, John; Tian, Fang-Bao

    2017-10-01

    This paper presents a two-dimensional immersed boundary method for fluid-structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid-structure interaction coupling. In the flow solver, the compressible multiphase Navier-Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge-Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.

  8. An immersed boundary method for modeling a dirty geometry data

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2017-11-01

    We present a robust, fast, and low preparation cost immersed boundary method (IBM) for simulating an incompressible high Re flow around highly complex geometries. The method is achieved by the dispersion of the momentum by the axial linear projection and the approximate domain assumption satisfying the mass conservation around the wall including cells. This methodology has been verified against an analytical theory and wind tunnel experiment data. Next, we simulate the problem of flow around a rotating object and demonstrate the ability of this methodology to the moving geometry problem. This methodology provides the possibility as a method for obtaining a quick solution at a next large scale supercomputer. This research was supported by MEXT as ``Priority Issue on Post-K computer'' (Development of innovative design and production processes) and used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science.

  9. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings

    PubMed Central

    Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.

    2009-01-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  10. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    NASA Astrophysics Data System (ADS)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  11. Voxel-based Immersive Environments Immersive Environments

    DTIC Science & Technology

    2000-05-31

    3D accelerated hardware. While this method lends itself well to modem hardware, the quality of the resulting images was low due to the coarse sampling...pipes. We will use MPEG video compression when sending video over T1 line, whereas for 56K bit Internet connection, we can use one of the more...sent over the communication line. The ultimate goal is to send the immersive environment over the 56K bps Internet. Since we need to send audio and

  12. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  13. Immersive Learning Technologies

    DTIC Science & Technology

    2009-08-20

    Immersive Learning Technologies Mr. Peter Smith Lead, ADL Immersive Learning Team 08/20/2009 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2009 4. TITLE AND SUBTITLE Immersive Learning Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Why Immersive Learning Technologies

  14. Simulation of hypersonic rarefied flows with the immersed-boundary method

    NASA Astrophysics Data System (ADS)

    Bruno, D.; De Palma, P.; de Tullio, M. D.

    2011-05-01

    This paper provides a validation of an immersed boundary method for computing hypersonic rarefied gas flows. The method is based on the solution of the Navier-Stokes equation and is validated versus numerical results obtained by the DSMC approach. The Navier-Stokes solver employs a flexible local grid refinement technique and is implemented on parallel machines using a domain-decomposition approach. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the expensive (in terms of time and human resources) classical generation process of a body fitted grid. First-order slip-velocity boundary conditions are employed and tested for taking into account rarefied gas effects.

  15. Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber

    NASA Astrophysics Data System (ADS)

    DeMott, Paul J.; Hill, Thomas C. J.; Petters, Markus D.; Bertram, Allan K.; Tobo, Yutaka; Mason, Ryan H.; Suski, Kaitlyn J.; McCluskey, Christina S.; Levin, Ezra J. T.; Schill, Gregory P.; Boose, Yvonne; Rauker, Anne Marie; Miller, Anna J.; Zaragoza, Jake; Rocci, Katherine; Rothfuss, Nicholas E.; Taylor, Hans P.; Hader, John D.; Chou, Cedric; Huffman, J. Alex; Pöschl, Ulrich; Prenni, Anthony J.; Kreidenweis, Sonia M.

    2017-09-01

    A number of new measurement methods for ice nucleating particles (INPs) have been introduced in recent years, and it is important to address how these methods compare. Laboratory comparisons of instruments sampling major INP types are common, but few comparisons have occurred for ambient aerosol measurements exploring the utility, consistency and complementarity of different methods to cover the large dynamic range of INP concentrations that exists in the atmosphere. In this study, we assess the comparability of four offline immersion freezing measurement methods (Colorado State University ice spectrometer, IS; North Carolina State University cold stage, CS; National Institute for Polar Research Cryogenic Refrigerator Applied to Freezing Test, CRAFT; University of British Columbia micro-orifice uniform deposit impactor-droplet freezing technique, MOUDI-DFT) and an online method (continuous flow diffusion chamber, CFDC) used in a manner deemed to promote/maximize immersion freezing, for the detection of INPs in ambient aerosols at different locations and in different sampling scenarios. We also investigated the comparability of different aerosol collection methods used with offline immersion freezing instruments. Excellent agreement between all methods could be obtained for several cases of co-sampling with perfect temporal overlap. Even for sampling periods that were not fully equivalent, the deviations between atmospheric INP number concentrations measured with different methods were mostly less than 1 order of magnitude. In some cases, however, the deviations were larger and not explicable without sampling and measurement artifacts. Overall, the immersion freezing methods seem to effectively capture INPs that activate as single particles in the modestly supercooled temperature regime (> -20 °C), although more comparisons are needed in this temperature regime that is difficult to access with online methods. Relative to the CFDC method, three immersion freezing

  16. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  17. Numerical simulation of h-adaptive immersed boundary method for freely falling disks

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Xia, Zhenhua; Cai, Qingdong

    2018-05-01

    In this work, a freely falling disk with aspect ratio 1/10 is directly simulated by using an adaptive numerical model implemented on a parallel computation framework JASMIN. The adaptive numerical model is a combination of the h-adaptive mesh refinement technique and the implicit immersed boundary method (IBM). Our numerical results agree well with the experimental results in all of the six degrees of freedom of the disk. Furthermore, very similar vortex structures observed in the experiment were also obtained.

  18. Visualisation of insect tracheal systems by lactic acid immersion.

    PubMed

    Ruan, Y; Li, Y; Zhang, M; Chen, X; Liu, Z; Wang, S; Jiang, S

    2018-05-15

    The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  19. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus

    2017-04-01

    Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.

  20. Understanding Immersivity: Image Generation and Transformation Processes in 3D Immersive Environments

    PubMed Central

    Kozhevnikov, Maria; Dhond, Rupali P.

    2012-01-01

    Most research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants’ performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI – anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking). In Experiment 2, we examined how the use of different backgrounds affected MR processes within the 3DI environment. In Experiment 3, we compared electroencephalogram data recorded while participants were mentally rotating visual-spatial images presented in 3DI vs. 2DNI environments. Overall, the findings of the three experiments suggest that visual-spatial processing is different in immersive and non-immersive environments, and that immersive environments may require different image encoding and transformation strategies than the two other non-immersive environments. Specifically, in a non-immersive environment, participants may utilize a scene-based frame of reference and allocentric encoding whereas immersive environments may encourage the use of a viewer-centered frame of reference and egocentric encoding. These findings also suggest that MR performed in laboratory conditions using a traditional 2D computer screen may not reflect spatial processing as it would occur in the real world. PMID:22908003

  1. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-01-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  2. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on

  3. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    NASA Astrophysics Data System (ADS)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and

  4. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation

    PubMed Central

    Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.

    2008-01-01

    A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017

  5. Geometric multigrid for an implicit-time immersed boundary method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  6. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction.

    PubMed

    Lazinski, David W; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.

  7. Unconventional tail configurations for transport aircraft

    NASA Astrophysics Data System (ADS)

    Sánchez-Carmona, A.; Cuerno-Rejado, C.; García-Hernández, L.

    2017-06-01

    This article presents the bases of a methodology in order to size unconventional tail configurations for transport aircraft. The case study of this paper is a V-tail con¦guration. Firstly, an aerodynamic study is developed for determining stability derivatives and aerodynamic forces. The objective is to size a tail such as it develops at least the same static stability derivatives than a conventional reference aircraft. The optimum is obtained minimizing its weight. The weight is estimated through two methods: adapted Farrar£s method and a statistical method. The solution reached is heavier than the reference, but it reduces the wetted area.

  8. Electrode immersion depth determination and control in electroslag remelting furnace

    DOEpatents

    Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX; Shelmidine, Gregory J [Tijeras, NM

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  9. Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia

    PubMed Central

    Clements, Julie M.; Casa, Douglas J.; Knight, J. Chad; McClung, Joseph M.; Blake, Alan S.; Meenen, Paula M.; Gilmer, Allison M.; Caldwell, Kellie A.

    2002-01-01

    Objective: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. Design and Setting: 17 heat-acclimated highly trained distance runners (age = 28 ± 2 years, height = 180 ± 2 cm, weight = 68.5 ± 2.1 kg, body fat = 11.2 ± 1.3%, training volume = 89 ± 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 ± 1°C) at an individually selected “comfortable” pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 ± 0.20°C), (2) distance run, then 12 minutes of cold-water immersion (14.03 ± 0.28°C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 ± 0.76°C). Measurements: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. Results: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P > .05) among all trials, as was the wet-bulb globe temperature. No differences (P > .05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P > .05) to each other and greater (P < .05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P > .05) between ice-water immersion and cold-water immersion at the

  10. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  11. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction

    PubMed Central

    Lazinski, David W.; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318

  12. KinImmerse: Macromolecular VR for NMR ensembles

    PubMed Central

    Block, Jeremy N; Zielinski, David J; Chen, Vincent B; Davis, Ian W; Vinson, E Claire; Brady, Rachael; Richardson, Jane S; Richardson, David C

    2009-01-01

    Background In molecular applications, virtual reality (VR) and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment) or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR) models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs). Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis. PMID:19222844

  13. Efficient Unstructured Cartesian/Immersed-Boundary Method with Local Mesh Refinement to Simulate Flows in Complex 3D Geometries

    NASA Astrophysics Data System (ADS)

    de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit

    2008-11-01

    Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.

  14. An eco-friendly method for heavy metal removal from mine tailings.

    PubMed

    Arab, Fereshteh; Mulligan, Catherine N

    2018-06-01

    One of the serious environmental problems that society is facing today is mine tailings. These byproducts of the process of extraction of valuable elements from ores are a source of pollution and a threat to the environment. For example, mine tailings from past mining activities at Giant Mines, Yellowknife, are deposited in chambers, stopes, and tailing ponds close to the shores of The Great Slave Lake. One of the environmentally friendly approaches for removing heavy metals from these contaminated tailing is by using biosurfactants during the process of soil washing. The objective of this present study is to investigate the effect of sophorolipid (SL) concentration, the volume of washing solution per gram of medium, pH, and temperature on the efficiency of sophorolipids in removing heavy metals from mine tailings. It was found that the efficiency of the sophorolipids depends on its concentration, and is greatly affected by changes in pH, and temperature. The results of this experiment show that increasing the temperature from 15 to 23 °C, while using sophorolipids, resulted in an increase in the removal of iron, copper, and arsenic from the mine tailing specimen, from 0.25, 2.1, and 8.6 to 0.4, 3.3, and 11.7%. At the same time, increasing the temperature of deionized water (DIW) from 15 to 23 °C led to an increase in the removal of iron, copper, and arsenic from 0.03, 0.9, and 1.8 to 0.04, 1.1, and 2.1%, respectively. By increasing temperature from 23 to 35 °C, when using sophorolipids, 22% reduction in the removal of arsenic was observed. At the same time while using DI water as the washing solution, increasing temperature from 23 to 35 °C resulted in 6.2% increase in arsenic removal. The results from this present study indicate that sophorolipids are promising agents for replacing synthetic surfactants in the removal of arsenic and other heavy metals from soil and mine tailings.

  15. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  16. Water immersion in neonatal bereavement photography.

    PubMed

    Duffey, Heather

    2014-01-01

    Water immersion in neonatal bereavement photography is a new technique intended to enhance the quality of the photographs provided to families following their loss. Water immersion appears to be most helpful following a second trimester fetal demise. This technique can be used by nurses, professional photographers and others in addition to more traditional neonatal bereavement photography. It does not require special skills or equipment and can be implemented in virtually any perinatal setting. The enhanced quality of photographs produced with this method can potentially provide a source of comfort to grieving families. © 2014 AWHONN.

  17. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  18. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.

    PubMed

    Duncan, Comer; Zhai, Guangnian; Scherer, Ronald

    2006-11-01

    The penalty immersed boundary (PIB) method, originally introduced by Peskin (1972) to model the function of the mammalian heart, is tested as a fluid-structure interaction model of the closely coupled dynamics of the vocal folds and aerodynamics in phonation. Two-dimensional vocal folds are simulated with material properties chosen to result in self-oscillation and volume flows in physiological frequency ranges. Properties of the glottal flow field, including vorticity, are studied in conjunction with the dynamic vocal fold motion. The results of using the PIB method to model self-oscillating vocal folds for the case of 8 cm H20 as the transglottal pressure gradient are described. The volume flow at 8 cm H20, the transglottal pressure, and vortex dynamics associated with the self-oscillating model are shown. Volume flow is also given for 2, 4, and 12 cm H2O, illustrating the robustness of the model to a range of transglottal pressures. The results indicate that the PIB method applied to modeling phonation has good potential for the study of the interdependence of aerodynamics and vocal fold motion.

  19. Analogs of microgravity: head-down tilt and water immersion.

    PubMed

    Watenpaugh, Donald E

    2016-04-15

    This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. Copyright © 2016 the American Physiological Society.

  20. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  1. Numerical investigation of nonlinear fluid-structure interaction dynamic behaviors under a general Immersed Boundary-Lattice Boltzmann-Finite Element method

    NASA Astrophysics Data System (ADS)

    Gong, Chun-Lin; Fang, Zhe; Chen, Gang

    A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.

  2. Water immersion in preeclampsia.

    PubMed

    Elvan-Taşpinar, Ayten; Franx, Arie; Delprat, Constance C; Bruinse, Hein W; Koomans, Hein A

    2006-12-01

    Preeclampsia is associated with profound vasoconstriction in most organ systems and reduced plasma volume. Because water immersion produces a marked central redistribution of blood volume and suppresses the renin-angiotensin system response and sympathetic activity, we hypothesized that water immersion might be useful in the treatment of preeclampsia. The effects of thermoneutral water immersion for 3 hours on central and peripheral hemodynamics were evaluated in 7 preeclamptic patients, 7 normal pregnant control patients, and 7 nonpregnant women. Finger plethysmography was used to determine hemodynamic measurements (cardiac output and total peripheral resistance), and forearm blood flow was measured by strain gauge plethysmography. Postischemic hyperemia was used to determine endothelium-dependent vasodilation. Analysis was by analysis of variance for repeated measurements. During water immersion cardiac output increased while diastolic blood pressure and heart rate decreased, although systolic blood pressure remained unchanged in each group. Forearm blood flow increased significantly in the normal pregnant and preeclamptic subjects. Total peripheral resistance decreased in all groups, but values in preeclamptic patients remained above those of normotensive pregnant women. Water immersion had no effect on endothelium-dependent vasodilation in the preeclamptic group, and most hemodynamic changes that were observed reversed to baseline within 2 hours of completion of the procedure. Although water immersion results in hemodynamic alterations in a manner that is theoretically therapeutic for women with preeclampsia, the effect was limited and short-lived. In addition water immersion had no effect on endothelium-dependent vasodilation in women with preeclampsia. The therapeutic potential for water immersion in preeclampsia appears to be limited.

  3. A moving control volume method for smooth computation of hydrodynamic forces and torques on immersed bodies

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Patankar, Neelesh A.; Bhalla, Amneet P. S.

    2017-11-01

    Fictitious domain methods for simulating fluid-structure interaction (FSI) have been gaining popularity in the past few decades because of their robustness in handling arbitrarily moving bodies. Often the transient net hydrodynamic forces and torques on the body are desired quantities for these types of simulations. In past studies using immersed boundary (IB) methods, force measurements are contaminated with spurious oscillations due to evaluation of possibly discontinuous spatial velocity of pressure gradients within or on the surface of the body. Based on an application of the Reynolds transport theorem, we present a moving control volume (CV) approach to computing the net forces and torques on a moving body immersed in a fluid. The approach is shown to be accurate for a wide array of FSI problems, including flow past stationary and moving objects, Stokes flow, and high Reynolds number free-swimming. The approach only requires far-field (smooth) velocity and pressure information, thereby suppressing spurious force oscillations and eliminating the need for any filtering. The proposed moving CV method is not limited to a specific IB method and is straightforward to implement within an existing parallel FSI simulation software. This work is supported by NSF (Award Numbers SI2-SSI-1450374, SI2-SSI-1450327, and DGE-1324585), the US Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231), and NIH (Award Number HL117163).

  4. But Do They Speak French? A Comparison of French Immersion Programs in Immersion Only and English/Immersion Settings. Research Report 79-01.

    ERIC Educational Resources Information Center

    Parkin, Michael

    Students' use of French in unsupervised classroom situations and outside the classroom was investigated in immersion center schools (all students are involved in French immersion programs) and dual track schools (French immersion programs co-exist with regular English language programs). A total of 414 students in grades 3 and 4 were observed…

  5. Le Point sur L'immersion au Canada (The Argument for...Immersion in Canada).

    ERIC Educational Resources Information Center

    Rebuffot, Jacques

    A discussion of French immersion education in Canada begins with a general examination of language immersion, including the historical context and social climate from which the immersion approach has grown in Canada, its beginnings in Quebec and spread throughout Canada, and the status of the approach in the United States, a number of European…

  6. Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Ashley, Holt

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.

  7. The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries

    NASA Astrophysics Data System (ADS)

    Nikfarjam, F.; Cheny, Y.; Botella, O.

    2018-05-01

    The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).

  8. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  9. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  10. An evaluation of hand immersion for rewarming individuals cooled by immersion in cold water.

    PubMed

    Cahill, C J; Balmi, P J; Tipton, M J

    1995-05-01

    The hypothesis that hypothermic individuals can be actively rewarmed in the field by immersion of the extremities in hot water was investigated. Three techniques for rewarming subjects with lowered deep body temperatures were compared: a) whole body immersion to the neck in water at 40 degrees C; b) immersion of two hands plus forearms only in water at 42 degrees C; and c) passive rewarming. The suggestion that the fall in deep body temperature resulting from immersion to the neck in water at 15 degrees C could be arrested by immersing both arms in water at 42 degrees C was also investigated. Results indicated that immersion to the neck in hot water was clearly the most effective rewarming technique. No significant difference (p > 0.05) was observed in the deep body temperature response during passive rewarming or during immersion of both hands and forearms in water at 42 degrees C. In the later condition some increase in peripheral blood flow to the hands may have occurred and resulted in a heat input of approximately 12 W, but any benefit from this was negated by an associated significant decrease (p > 0.05) in intrinsic heat production. Immersing the arms in hot water during immersion to the neck in cold water appeared to accelerate rather than decelerate the rate of fall of deep body temperature. We concluded that hand rewarming, although theoretically attractive, is ineffective in practice and could be detrimental in some circumstances, by suppressing intrinsic heat production or precipitating rewarming collapse.

  11. Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice

    PubMed Central

    Liu, Yang; Jennings, Nicole L; Dart, Anthony M; Du, Xiao-Jun

    2012-01-01

    AIM: To optimize the experimental protocols for a simple, sensitive and accurate bleeding assay. METHODS: Bleeding assay was performed in mice by tail tip amputation, immersing the tail in saline at 37 °C, continuously monitoring bleeding patterns and measuring bleeding volume from changes in the body weight. Sensitivity and extent of variation of bleeding time and bleeding volume were compared in mice treated with the P2Y receptor inhibitor prasugrel at various doses or in mice deficient of FcRγ, a signaling protein of the glycoprotein VI receptor. RESULTS: We described details of the bleeding assay with the aim of standardizing this commonly used assay. The bleeding assay detailed here was simple to operate and permitted continuous monitoring of bleeding pattern and detection of re-bleeding. We also reported a simple and accurate way of quantifying bleeding volume from changes in the body weight, which correlated well with chemical assay of hemoglobin levels (r2 = 0.990, P < 0.0001). We determined by tail bleeding assay the dose-effect relation of the anti-platelet drug prasugrel from 0.015 to 5 mg/kg. Our results showed that the correlation of bleeding time and volume was unsatisfactory and that compared with the bleeding time, bleeding volume was more sensitive in detecting a partial inhibition of platelet’s haemostatic activity (P < 0.01). Similarly, in mice with genetic disruption of FcRγ as a signaling molecule of P-selectin glycoprotein ligand-1 leading to platelet dysfunction, both increased bleeding volume and repeated bleeding pattern defined the phenotype of the knockout mice better than that of a prolonged bleeding time. CONCLUSION: Determination of bleeding pattern and bleeding volume, in addition to bleeding time, improved the sensitivity and accuracy of this assay, particularly when platelet function is partially inhibited. PMID:24520531

  12. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  13. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2008-04-01

    A method to detect the effective refractive index and concentration of birefringent pigments is suggested. The method is based on the utilization of the immersion liquid method and a multifunction spectrophotometer for the measurement of back scattered light. The method has applications in the measurement of the effective refractive index of pigments that are used, e.g., in the paper industry to improve the opacity of paper products.

  14. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  15. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. New Laboratory Methods for Characterizing the Immersion Factors for Irradiance

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; DAlimonte, Davide; vaderLinde, Dirk; Brown, James W.

    2003-01-01

    The experimental determination of the immersion factor, I(sub f)(lambda), of irradiance collectors is a requirement of any in-water radiometer. The eighth SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-8) showed different implementations, at different laboratories, of the same I(sub f)(lambda) measurement protocol. The different implementations make use of different setups, volumes, and water types. Consequently, they exhibit different accuracies and require different execution times for characterizing an irradiance sensor. In view of standardizing the characterization of I(sub f)(lambda) values for in-water radiometers, together with an increase in the accuracy of methods and a decrease in the execution time, alternative methods are presented, and assessed versus the traditional method. The proposed new laboratory methods include: a) the continuous method, in which optical measurements taken with discrete water depths are substituted by continuous profiles created by removing the water from the water vessel at a constant flow rate (which significantly reduces the time required for the characterization of a single radiometer); and b) the Compact Portable Advanced Characterization Tank (ComPACT) method, in which the commonly used large tanks are replaced by a small water vessel, thereby allowing the determination of I(sub f)(lambda) values with a small water volume, and more importantly, permitting I(sub f)(lambda) characterizations with pure water. Intercomparisons between the continuous and the traditional method showed results within the variance of I(sub f) (lambda) determinations. The use of the continuous method, however, showed a much shorter realization time. Intercomparisons between the ComPACT and the traditional method showed generally higher I(sub f)(lambda) values for the former. This is in agreement with the generalized expectations of a reduction in scattering effects, because of the use of pure water with the ComPACT method versus the use of

  17. Near-tail reconnection as the cause of cometary tail disconnections

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Saunders, M. A.; Phillips, J. L.; Fedder, J. A.

    1986-01-01

    In a cometary tail disconnection event the plasma tail appears to separate from the coma and to accelerate away from it. As this occurs a new tail begins to form. It is proposed that these disconnections arise in a manner analogous to geomagnetic substorms, i.e., by the formation of a strongly reconnecting region in the near tail that forms a magnetic island in the coma and ejects the plasma tail by strengthening the magnetic 'slingshot' within the tail. This reconnection process may be triggered by several different processes, such as interplanetary shocks or variations in the Alfven Mach number.

  18. Story Immersion in a Health Videogame for Childhood Obesity Prevention

    PubMed Central

    Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom

    2012-01-01

    Abstract Objective Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Subjects and Methods Eighty-seven 10–12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, “Escape from Diab” (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. Results African-American and Hispanic participants reported higher immersion scores than Caucasian participants (P=0.01). Story immersion correlated positively (P values<0.03) with an increase in Fruit and Vegetable Preference (r=0.27), Intrinsic Motivation for Water (r=0.29), Vegetable Self-Efficacy (r=0.24), and Physical Activity Self-Efficacy (r=0.32). Conclusion Ethnic similarity between videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors. PMID:24066276

  19. Computer Simulations of Valveless Pumping using the Immersed Boundary Method

    NASA Astrophysics Data System (ADS)

    Jung, Eunok; Peskin, Charles

    2000-03-01

    Pumping blood in one direction is the main function of the heart, and the heart is equipped with valves that ensure unidirectional flow. Is it possible, though, to pump blood without valves? This report is intended to show by numerical simulation the possibility of a net flow which is generated by a valveless mechanism in a circulatory system. Simulations of valveless pumping are motivated by biomedical applications: cardiopulmonary resuscitation (CPR); and the human foetus before the development of the heart valves. The numerical method used in this work is immersed boundary method, which is applicable to problems involving an elastic structure interacting with a viscous incompressible fluid. This method has already been applied to blood flow in the heart, platelet aggregation during blood clotting, aquatic animal locomotion, and flow in collapsible tubes. The direction of flow inside a loop of tubing which consists of (almost) rigid and flexible parts is investigated when the boundary of one end of the flexible segment is forced periodically in time. Despite the absence of valves, net flow around the loop may appear in these simulations. Furthermore, we present the new, unexpected results that the direction of this flow is determined not only by the position of the periodic compression, but also by the frequency and amplitude of the driving force.

  20. The interplays among technology and content, immersant and VE

    NASA Astrophysics Data System (ADS)

    Song, Meehae; Gromala, Diane; Shaw, Chris; Barnes, Steven J.

    2010-01-01

    The research program aims to explore and examine the fine balance necessary for maintaining the interplays between technology and the immersant, including identifying qualities that contribute to creating and maintaining a sense of "presence" and "immersion" in an immersive virtual reality (IVR) experience. Building upon and extending previous work, we compare sitting meditation with walking meditation in a virtual environment (VE). The Virtual Meditative Walk, a new work-in-progress, integrates VR and biofeedback technologies with a self-directed, uni-directional treadmill. As immersants learn how to meditate while walking, robust, real-time biofeedback technology continuously measures breathing, skin conductance and heart rate. The physiological states of the immersant will in turn affect the audio and stereoscopic visual media through shutter glasses. We plan to test the potential benefits and limitations of this physically active form of meditation with data from a sitting form of meditation. A mixed-methods approach to testing user outcomes parallels the knowledge bases of the collaborative team: a physician, computer scientists and artists.

  1. Immersive Environments in ADL

    DTIC Science & Technology

    2009-08-20

    Tracking and Storing In Browser 3-D 13 Questions or Comments? Peter Smith Team Lead, Immersive Learning Technologies peter.smith.ctr@adlnet.gov +1.407.384.5572 ...Immersive Environments in ADL Mr. Peter Smith, Lead, ADL Immersive Learning Team 08/20/2009 Report Documentation Page Form ApprovedOMB No. 0704-0188...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Advanced Decision Learning (ADL),1901 N

  2. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  3. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  4. Simultaneous immersion Mirau interferometry.

    PubMed

    Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J

    2013-05-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.

  5. Simultaneous immersion Mirau interferometry

    PubMed Central

    Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.

    2013-01-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552

  6. Immersive cyberspace system

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor)

    1997-01-01

    An immersive cyberspace system is presented which provides visual, audible, and vibrational inputs to a subject remaining in neutral immersion, and also provides for subject control input. The immersive cyberspace system includes a relaxation chair and a neutral immersion display hood. The relaxation chair supports a subject positioned thereupon, and places the subject in position which merges a neutral body position, the position a body naturally assumes in zero gravity, with a savasana yoga position. The display hood, which covers the subject's head, is configured to produce light images and sounds. An image projection subsystem provides either external or internal image projection. The display hood includes a projection screen moveably attached to an opaque shroud. A motion base supports the relaxation chair and produces vibrational inputs over a range of about 0-30 Hz. The motion base also produces limited translation and rotational movements of the relaxation chair. These limited translational and rotational movements, when properly coordinated with visual stimuli, constitute motion cues which create sensations of pitch, yaw, and roll movements. Vibration transducers produce vibrational inputs from about 20 Hz to about 150 Hz. An external computer, coupled to various components of the immersive cyberspace system, executes a software program and creates the cyberspace environment. One or more neutral hand posture controllers may be coupled to the external computer system and used to control various aspects of the cyberspace environment, or to enter data during the cyberspace experience.

  7. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  8. Arterial and intraocular pressure changes after a single-session hot-water immersion.

    PubMed

    Findikoglu, Gulin; Cetin, Ebru Nevin; Sarsan, Ayse; Senol, Hande; Yildirim, Cem; Ardic, Fusun

    2015-01-01

    The aim of this study is to investigate the effect of head-out hot-water immersion on the intraocular pressure (IOP) of healthy subjects and investigate whether this intervention alters cardiovascular and microcirculatory responses. METHODs: 16 male and 18 female healthy young adults were immersed in 39 degrees C water up to shoulder level for 20 minutes. Blood pressure (BP), heart rate (HR) and IOP were measured pre-immersion, post-immersion and five minutes after immersion on the same day. Tono-Pen was used to measure IOP. Mean arterial blood pressure (MAP), systolic pressure rate product (S-PRP), diastolic pressure rate product (D-PRP), pulse pressure (PP), mean ocular perfusion pressure (mean-OPP), systolic ocular perfusion pressure (S-OPP) and diastolic ocular perfusion pressure (D-OPP) were calculated. Systolic BP (SBP), diastolic BP (DBP), MAP, IOP, S-OPP, D-OPP and mean-OPP decreased; HR increased five minutes after immersion in the pool and post-immersion out of the pool significantly, compared to pre-immersion data (p < 0.05). HR, S-PRP and D-PRP measured five minutes after immersion were significantly higher from post-immersion (p < 0.05). PP and S-OPP were significantly different five minutes after immersion compared to pre-immersion. There was no statistically significant correlation between IOP and SBP, DBP, MAP, S-PRP, D-PRP, PP, S-OPP, D-OPP, or mean-OPP (p > 0.05). Physiological hemodynamic response to single head-out hot-water immersion caused a statistically significant decrease in IOP. Preliminary results could help to clarify vascular reactions and IOP changes during hot-water immersion that might be potentially therapeutic in glaucoma patients.

  9. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  10. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-07-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  11. Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-12-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.

  12. Does climate have heavy tails?

    NASA Astrophysics Data System (ADS)

    Bermejo, Miguel; Mudelsee, Manfred

    2013-04-01

    When we speak about a distribution with heavy tails, we are referring to the probability of the existence of extreme values will be relatively large. Several heavy-tail models are constructed from Poisson processes, which are the most tractable models. Among such processes, one of the most important are the Lévy processes, which are those process with independent, stationary increments and stochastic continuity. If the random component of a climate process that generates the data exhibits a heavy-tail distribution, and if that fact is ignored by assuming a finite-variance distribution, then there would be serious consequences (in the form, e.g., of bias) for the analysis of extreme values. Yet, it appears that it is an open question to what extent and degree climate data exhibit heavy-tail phenomena. We present a study about the statistical inference in the presence of heavy-tail distribution. In particular, we explore (1) the estimation of tail index of the marginal distribution using several estimation techniques (e.g., Hill estimator, Pickands estimator) and (2) the power of hypothesis tests. The performance of the different methods are compared using artificial time-series by means of Monte Carlo experiments. We systematically apply the heavy tail inference to observed climate data, in particular we focus on time series data. We study several proxy and directly observed climate variables from the instrumental period, the Holocene and the Pleistocene. This work receives financial support from the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme).

  13. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  14. Telling tails: selective pressures acting on investment in lizard tails.

    PubMed

    Fleming, Patricia A; Valentine, Leonie E; Bateman, Philip W

    2013-01-01

    Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variation in leg development and robustness and length of the body and tail. Autotomy is therefore likely to have fundamentally different effects on the overall body form and function in different species, which may be reflected directly in the incidence of lost/regenerating tails within populations or, over a longer period, in terms of relative tail length for different species. We recorded data (literature, museum specimens, field data) for relative tail length (n=350 species) and the incidence of lost/regenerating tails (n=246 species). We compared these (taking phylogeny into account) with intrinsic factors that have been proposed to influence selective pressures acting on caudal autotomy, including body form (robustness, body length, leg development, and tail specialization) and ecology (foraging behavior, physical and temporal niches), in an attempt to identify patterns that might reflect adaptive responses to these different factors. More gracile species have relatively longer tails (all 350 spp., P < 0.001; also significant for five of the six families tested separately), as do longer (all species, P < 0.001; Iguanidae, P < 0.05; Lacertidae, P < 0.001; Scindidae, P < 0.001), climbing (all species, P < 0.05), and diurnal (all species, P < 0.01; Pygopodidae, P < 0.01) species; geckos without specialized tails (P < 0.05); or active-foraging skinks (P < 0.05). We also found some relationships with the data for caudal autotomy, with more lost/regenerating tails for nocturnal lizards (all 246 spp., P < 0.01; Scindidae, P < 0.05), larger skinks (P < 0.05), climbing geckos (P < 0

  15. Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.

    2017-11-01

    Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.

  16. Color stability of ceramic brackets immersed in potentially staining solutions

    PubMed Central

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. METHODS: Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions. PMID:26352842

  17. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines

    PubMed Central

    Peterson, Brittni M.; Mermelstein, Paul G.; Meisel, Robert L.

    2015-01-01

    Background Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. New Method Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Results Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Comparison with Existing Method Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Conclusion Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. PMID:25601477

  18. Immersion Cooling of Electronics in DoD Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Henry; Herrlin, Magnus

    A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysismore » of the failures should be completed, and the design changes proven.« less

  19. Animal imaging using immersion

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Kotz, Kenneth T.; Rand, Kendra; Faris, Gregory W.

    2003-07-01

    We are using rodent animal models to study and compare contrast mechanisms for detection of breast cancer. These measurements are performed with the animals immersed in a matching scattering medium. The matching scattering medium or liquid tissue phantom comprises a mixture of Ropaque (hollow acrylic/styrene microspheres) and ink. We have previously applied matched imaging to imaging in humans. Surrounding the imaged region with a matched tissue phantom compensates for variations in tissue thickness and geometry, provides more uniform illumination, and allows better use of the dynamic range of the imaging system. If the match is good, the boundaries of the imaged region should almost vanish, enhancing the contrast from internal structure as compared to contrast from the boundaries and surface topography. For our measurements in animals, the immersion plays two additional roles. First, we can readily study tumors through tissue thickness similar to that of a human breast. Although the heterogeneity of the breast is lost, this is a practical method to study the detection of small tumors and monitor changes as they grow. Second, the immersion enhances our ability to quantify the contrast mechanisms for peripheral tumors on the animal because the boundary effects on photon migration are eliminated. We are currently developing two systems for these measurements. One is a continuous-wave (CW) system based on near-infrared LED illumination and a CCD (charge-coupled device) camera. The second system, a frequency domain system, can help quantify the changes observed with the CW system.

  20. Study on the Influence of Elevation of Tailing Dam on Stability

    NASA Astrophysics Data System (ADS)

    Wan, Shuai; Wang, Kun; Kong, Songtao; Zhao, Runan; Lan, Ying; Zhang, Run

    2017-12-01

    This paper takes Yunnan as the object of a tailing, by theoretical analysis and numerical calculation method of the effect of seismic load effect of elevation on the stability of the tailing, to analyse the stability of two point driven safety factor and liquefaction area. The Bishop method is adopted to simplify the calculation of dynamic safety factor and liquefaction area analysis using comparison method of shear stress to analyse liquefaction, so we obtained the influence of elevation on the stability of the tailing. Under the earthquake, with the elevation increased, the safety coefficient of dam body decreases, shallow tailing are susceptible to liquefy. Liquefaction area mainly concentrated in the bank below the water surface, to improve the scientific basis for the design and safety management of the tailing.

  1. Immersive Simulations for Smart Classrooms: Exploring Evolutionary Concepts in Secondary Science

    ERIC Educational Resources Information Center

    Lui, Michelle; Slotta, James D.

    2014-01-01

    This article presents the design of an immersive simulation and inquiry activity for technology-enhanced classrooms. Using a co-design method, researchers worked with a high school biology teacher to create a rainforest simulation, distributed across several large displays in the room to immerse students in the environment. The authors created and…

  2. Construction of super - hydrophobic copper alloy surface by one - step mixed solution immersion method

    NASA Astrophysics Data System (ADS)

    Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting

    2018-01-01

    This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.

  3. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  4. Vous avez dit "immersion?" (You Said "Immersion?").

    ERIC Educational Resources Information Center

    Gajo, Laurent, Ed.

    1998-01-01

    Articles on immersion and bilingual education include these: "Terminological Considerations Regarding Content and Language Integrated Learning" (Tarja Nikula, David Marsh); "Educazione bilingue e multiculturale, istruzione bilingue, immersione totale: quattro nozioni da definire" ("Bilingual and Multicultural Education,…

  5. Art, science, and immersion: data-driven experiences

    NASA Astrophysics Data System (ADS)

    West, Ruth G.; Monroe, Laura; Ford Morie, Jacquelyn; Aguilera, Julieta

    2013-03-01

    This panel and dialog-paper explores the potentials at the intersection of art, science, immersion and highly dimensional, "big" data to create new forms of engagement, insight and cultural forms. We will address questions such as: "What kinds of research questions can be identified at the intersection of art + science + immersive environments that can't be expressed otherwise?" "How is art+science+immersion distinct from state-of-the art visualization?" "What does working with immersive environments and visualization offer that other approaches don't or can't?" "Where does immersion fall short?" We will also explore current trends in the application of immersion for gaming, scientific data, entertainment, simulation, social media and other new forms of big data. We ask what expressive, arts-based approaches can contribute to these forms in the broad cultural landscape of immersive technologies.

  6. Environmental Risk Assessment System for Phosphogypsum Tailing Dams

    PubMed Central

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Zhou, Lianbi; Xu, Xianmang

    2013-01-01

    This paper may be of particular interest to the readers as it provides a new environmental risk assessment system for phosphogypsum tailing dams. In this paper, we studied the phosphogypsum tailing dams which include characteristics of the pollution source, environmental risk characteristics and evaluation requirements to identify the applicable environmental risk assessment methods. Two analytical methods, that is, the analytic hierarchy process (AHP) and fuzzy logic, were used to handle the complexity of the environmental and nonquantitative data. Using our assessment method, different risk factors can be ranked according to their contributions to the environmental risk, thereby allowing the calculation of their relative priorities during decision making. Thus, environmental decision-makers can use this approach to develop alternative management strategies for proposed, ongoing, and completed PG tailing dams. PMID:24382947

  7. Environmental risk assessment system for phosphogypsum tailing dams.

    PubMed

    Sun, Xin; Ning, Ping; Tang, Xiaolong; Yi, Honghong; Li, Kai; Zhou, Lianbi; Xu, Xianmang

    2013-01-01

    This paper may be of particular interest to the readers as it provides a new environmental risk assessment system for phosphogypsum tailing dams. In this paper, we studied the phosphogypsum tailing dams which include characteristics of the pollution source, environmental risk characteristics and evaluation requirements to identify the applicable environmental risk assessment methods. Two analytical methods, that is, the analytic hierarchy process (AHP) and fuzzy logic, were used to handle the complexity of the environmental and nonquantitative data. Using our assessment method, different risk factors can be ranked according to their contributions to the environmental risk, thereby allowing the calculation of their relative priorities during decision making. Thus, environmental decision-makers can use this approach to develop alternative management strategies for proposed, ongoing, and completed PG tailing dams.

  8. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    PubMed

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  9. Polyethylene glycol assisted growth of Sn-doped ZnO nanorod arrays prepared via sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Tin-doped zinc oxide (SZO) nanorod films at different concentrations of polyethylene glycol (PEG) were successfully deposited on zinc oxide (ZnO) seeded layer catalyst using sol-gel immersion method. The morphology of the samples were characterized using field emission scanning electron microscopy (FESEM), optical properties using UV-Vis spectrophotometer and electrical properties using I-V measurement system. The current-voltage (I-V) characteristics displayed that 5 wt % sample produced the highest conductivity.

  10. [Immersion pulmonary edema].

    PubMed

    Desgraz, Benoît; Sartori, Claudio; Saubade, Mathieu; Héritier, Francis; Gabus, Vincent

    2017-07-12

    Immersion pulmonary edema may occur during scuba diving, snorke-ling or swimming. It is a rare and often recurrent disease, mainly affecting individuals aged over 50 with high blood pressure. However it also occurs in young individuals with a healthy heart. The main symptoms are dyspnea, cough and hemoptysis. The outcome is often favorable under oxygen treatment but deaths are reported. A cardiac and pulmonary assessment is necessary to evaluate the risk of recurrence and possible contraindications to immersion.

  11. Impact resistance of oil-immersed lignum vitae

    NASA Astrophysics Data System (ADS)

    Yin, Wei; Shan, Lei; Lu, Hongyu; Zheng, Yelong; Han, Zhiwu; Tian, Yu

    2016-07-01

    Biological materials immersed in vegetable and mineral oil, such as rattan armor and wooden sleepers, have been extensively used since ancient times because of their excellent mechanical properties. This study quantitatively investigated the viscoelasticity and tribological performance of lignum vitae immersed in poly-alpha-olefin (PAO) and tung oils (Aleuritesfordii Hemsl.) to reveal the mechanism of impact resistance. The acceleration of samples immersed in tung oil was higher than that of dry and PAO-immersed samples in the first impact. The elastic modulus of the samples immersed in tung oil increased slightly. The impact damage on the samples immersed in tung oil was reduced because of the low friction coefficient (0.07) resulted in a low wear rate. The extent of impact damage on the samples immersed in tung oil was approximately 34% and 58% lower than that on the dry and PAO oil-immersed samples, respectively, under an angle of 20° and a height of 10 cm. The impact damage on the PAO-immersed samples was reduced because of low friction coefficient. However, impact damage increased because of large elastic modulus. The findings of this study can serve as a reference for the application of modified biological materials with high strength and wear resistance.

  12. Impact resistance of oil-immersed lignum vitae.

    PubMed

    Yin, Wei; Shan, Lei; Lu, Hongyu; Zheng, Yelong; Han, Zhiwu; Tian, Yu

    2016-07-18

    Biological materials immersed in vegetable and mineral oil, such as rattan armor and wooden sleepers, have been extensively used since ancient times because of their excellent mechanical properties. This study quantitatively investigated the viscoelasticity and tribological performance of lignum vitae immersed in poly-alpha-olefin (PAO) and tung oils (Aleuritesfordii Hemsl.) to reveal the mechanism of impact resistance. The acceleration of samples immersed in tung oil was higher than that of dry and PAO-immersed samples in the first impact. The elastic modulus of the samples immersed in tung oil increased slightly. The impact damage on the samples immersed in tung oil was reduced because of the low friction coefficient (0.07) resulted in a low wear rate. The extent of impact damage on the samples immersed in tung oil was approximately 34% and 58% lower than that on the dry and PAO oil-immersed samples, respectively, under an angle of 20° and a height of 10 cm. The impact damage on the PAO-immersed samples was reduced because of low friction coefficient. However, impact damage increased because of large elastic modulus. The findings of this study can serve as a reference for the application of modified biological materials with high strength and wear resistance.

  13. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  14. The Student Experience With Varying Immersion Levels of Virtual Reality Simulation.

    PubMed

    Farra, Sharon L; Smith, Sherrill J; Ulrich, Deborah L

    With increasing use of virtual reality simulation (VRS) in nursing education and given the vast array of technologies available, a variety of levels of immersion and experiences can be provided to students. This study explored two different levels of immersive VRS capability. Study participants included baccalaureate nursing students from three universities across four campuses. Students were trained in the skill of decontamination using traditional methods or with VRS options of mouse and keyboard or head-mounted display technology. Results of focus group interviews reflect the student experience and satisfaction with two different immersive levels of VRS.

  15. Testing tail-mounted transmitters with Myocastor coypus (nutria)

    USGS Publications Warehouse

    Merino, S.; Carter, J.; Thibodeaux, G.

    2007-01-01

    We developed a tail-mounted radio-transmitter for Myocastor coypus (nutria) that offers a practical and efficient alternative to collar or implant methods. The mean retention time was 96 d (range 57-147 d, n = 7), making this a practical method for short-term studies. The tail-mounts were less injurious to animals than collars and easier for field researchers to implement than either collars or surgically implanted transmitters.

  16. A Theory of Immersion Freezing

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  17. Chinese Immersion Language Education

    ERIC Educational Resources Information Center

    Jia, Hongyi

    2017-01-01

    In the present day Mandarin Chinese has become a commonly taught language in the U.S. Mandarin is widely taught in colleges and universities; K-12 Chinese programs, including immersion programs, have also grown rapidly. However, to date little research has been conducted on the latter programs. This study examines immersion programs in elementary…

  18. Assessing Risks of Mine Tailing Dam Failures

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  19. Autocalibration of multiprojector CAVE-like immersive environments.

    PubMed

    Sajadi, Behzad; Majumder, Aditi

    2012-03-01

    In this paper, we present the first method for the geometric autocalibration of multiple projectors on a set of CAVE-like immersive display surfaces including truncated domes and 4 or 5-wall CAVEs (three side walls, floor, and/or ceiling). All such surfaces can be categorized as swept surfaces and multiple projectors can be registered on them using a single uncalibrated camera without using any physical markers on the surface. Our method can also handle nonlinear distortion in the projectors, common in compact setups where a short throw lens is mounted on each projector. Further, when the whole swept surface is not visible from a single camera view, we can register the projectors using multiple pan and tilted views of the same camera. Thus, our method scales well with different size and resolution of the display. Since we recover the 3D shape of the display, we can achieve registration that is correct from any arbitrary viewpoint appropriate for head-tracked single-user virtual reality systems. We can also achieve wallpapered registration, more appropriate for multiuser collaborative explorations. Though much more immersive than common surfaces like planes and cylinders, general swept surfaces are used today only for niche display environments. Even the more popular 4 or 5-wall CAVE is treated as a piecewise planar surface for calibration purposes and hence projectors are not allowed to be overlapped across the corners. Our method opens up the possibility of using such swept surfaces to create more immersive VR systems without compromising the simplicity of having a completely automatic calibration technique. Such calibration allows completely arbitrary positioning of the projectors in a 5-wall CAVE, without respecting the corners.

  20. Numerical Simulations Using the Immersed Boundary Technique

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Balaras, Elias

    1997-01-01

    The immersed-boundary method can be used to simulate flows around complex geometries within a Cartesian grid. This method has been used quite extensively in low Reynolds-number flows, and is now being applied to turbulent flows more frequently. The technique will be discussed, and three applications of the method will be presented, with increasing complexity. to illustrate the potential and limitations of the method, and some of the directions for future work.

  1. Study on Surface Permeability of Concrete under Immersion

    PubMed Central

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations. PMID:28788490

  2. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    PubMed

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Thin film DNA-complex-based dye lasers fabricated by immersion and conventional processes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Suzuki, Yuki

    2017-08-01

    DNA based thin film dye laser is one of promising optical devices for future technology. Laser oscillation and amplified spontaneous emission (ASE) were demonstrated by hemicyanine-doped DNA complex films prepared with `immersion method' as well as those made by a conventional way. In the immersion process, DNA-surfactant complex films were stained by immersion into an acetone solution including the dyes. In this study, three types of hemicyanines were incorporated with both methods, and laser oscillation was achieved with optically induced population grating formed in all of the complex films. The laser threshold values for six cases ranged in 0.07 - 0.18 mJ/cm2 , which was close to the best values made in DNA complex matrices. Continual pumping showed that laser oscillation persisted for 4 - 10 minutes. Immersion process gave superior laser capability especially for output efficiency over the conventional counterparts.

  4. Research on evaluation techniques for immersive multimedia

    NASA Astrophysics Data System (ADS)

    Hashim, Aslinda M.; Romli, Fakaruddin Fahmi; Zainal Osman, Zosipha

    2013-03-01

    Nowadays Immersive Multimedia covers most usage in tremendous ways, such as healthcare/surgery, military, architecture, art, entertainment, education, business, media, sport, rehabilitation/treatment and training areas. Moreover, the significant of Immersive Multimedia to directly meet the end-users, clients and customers needs for a diversity of feature and purpose is the assembly of multiple elements that drive effective Immersive Multimedia system design, so evaluation techniques is crucial for Immersive Multimedia environments. A brief general idea of virtual environment (VE) context and `realism' concept that formulate the Immersive Multimedia environments is then provided. This is followed by a concise summary of the elements of VE assessment technique that is applied in Immersive Multimedia system design, which outlines the classification space for Immersive Multimedia environments evaluation techniques and gives an overview of the types of results reported. A particular focus is placed on the implications of the Immersive Multimedia environments evaluation techniques in relation to the elements of VE assessment technique, which is the primary purpose of producing this research. The paper will then conclude with an extensive overview of the recommendations emanating from the research.

  5. Astronomical large Ge immersion grating by Canon

    NASA Astrophysics Data System (ADS)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  6. Reduction of the discretization stencil of direct forcing immersed boundary methods on rectangular cells: The ghost node shifting method

    NASA Astrophysics Data System (ADS)

    Picot, Joris; Glockner, Stéphane

    2018-07-01

    We present an analytical study of discretization stencils for the Poisson problem and the incompressible Navier-Stokes problem when used with some direct forcing immersed boundary methods. This study uses, but is not limited to, second-order discretization and Ghost-Cell Finite-Difference methods. We show that the stencil size increases with the aspect ratio of rectangular cells, which is undesirable as it breaks assumptions of some linear system solvers. To circumvent this drawback, a modification of the Ghost-Cell Finite-Difference methods is proposed to reduce the size of the discretization stencil to the one observed for square cells, i.e. with an aspect ratio equal to one. Numerical results validate this proposed method in terms of accuracy and convergence, for the Poisson problem and both Dirichlet and Neumann boundary conditions. An improvement on error levels is also observed. In addition, we show that the application of the chosen Ghost-Cell Finite-Difference methods to the Navier-Stokes problem, discretized by a pressure-correction method, requires an additional interpolation step. This extra step is implemented and validated through well known test cases of the Navier-Stokes equations.

  7. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiang; Fan, Liang-Shih, E-mail: fan.1@osu.edu

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information suchmore » as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is

  8. Employing immersive virtual environments for innovative experiments in health care communication.

    PubMed

    Persky, Susan

    2011-03-01

    This report reviews the literature for studies that employ immersive virtual environment technology methods to conduct experimental studies in health care communication. Advantages and challenges of using these tools for research in this area are also discussed. A literature search was conducted using the Scopus database. Results were hand searched to identify the body of studies, conducted since 1995, that are related to the report objective. The review identified four relevant studies that stem from two unique projects. One project focused on the impact of a clinician's characteristics and behavior on health care communication, the other focused on the characteristics of the patient. Both projects illustrate key methodological advantages conferred by immersive virtual environments, including, ability to maintain simultaneously high experimental control and realism, ability to manipulate variables in new ways, and unique behavioral measurement opportunities. Though implementation challenges exist for immersive virtual environment-based research methods, given the technology's unique capabilities, benefits can outweigh the costs in many instances. Immersive virtual environments may therefore prove an important addition to the array of tools available for advancing our understanding of communication in health care. Published by Elsevier Ireland Ltd.

  9. Discovering new methods of data fusion, visualization, and analysis in 3D immersive environments for hyperspectral and laser altimetry data

    NASA Astrophysics Data System (ADS)

    Moore, C. A.; Gertman, V.; Olsoy, P.; Mitchell, J.; Glenn, N. F.; Joshi, A.; Norpchen, D.; Shrestha, R.; Pernice, M.; Spaete, L.; Grover, S.; Whiting, E.; Lee, R.

    2011-12-01

    Immersive virtual reality environments such as the IQ-Station or CAVE° (Cave Automated Virtual Environment) offer new and exciting ways to visualize and explore scientific data and are powerful research and educational tools. Combining remote sensing data from a range of sensor platforms in immersive 3D environments can enhance the spectral, textural, spatial, and temporal attributes of the data, which enables scientists to interact and analyze the data in ways never before possible. Visualization and analysis of large remote sensing datasets in immersive environments requires software customization for integrating LiDAR point cloud data with hyperspectral raster imagery, the generation of quantitative tools for multidimensional analysis, and the development of methods to capture 3D visualizations for stereographic playback. This study uses hyperspectral and LiDAR data acquired over the China Hat geologic study area near Soda Springs, Idaho, USA. The data are fused into a 3D image cube for interactive data exploration and several methods of recording and playback are investigated that include: 1) creating and implementing a Virtual Reality User Interface (VRUI) patch configuration file to enable recording and playback of VRUI interactive sessions within the CAVE and 2) using the LiDAR and hyperspectral remote sensing data and GIS data to create an ArcScene 3D animated flyover, where left- and right-eye visuals are captured from two independent monitors for playback in a stereoscopic player. These visualizations can be used as outreach tools to demonstrate how integrated data and geotechnology techniques can help scientists see, explore, and more adequately comprehend scientific phenomena, both real and abstract.

  10. Immersive volume rendering of blood vessels

    NASA Astrophysics Data System (ADS)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  11. Immersion lithography defectivity analysis at DUV inspection wavelength

    NASA Astrophysics Data System (ADS)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  12. The impact of contextualization on immersion in healthcare simulation.

    PubMed

    Engström, Henrik; Andersson Hagiwara, Magnus; Backlund, Per; Lebram, Mikael; Lundberg, Lars; Johannesson, Mikael; Sterner, Anders; Maurin Söderholm, Hanna

    2016-01-01

    The aim of this paper is to explore how contextualization of a healthcare simulation scenarios impacts immersion, by using a novel objective instrument, the Immersion Score Rating Instrument. This instrument consists of 10 triggers that indicate reduced or enhanced immersion among participants in a simulation scenario. Triggers refer to events such as jumps in time or space (sign of reduced immersion) and natural interaction with the manikin (sign of enhanced immersion) and can be used to calculate an immersion score. An experiment using a randomized controlled crossover design was conducted to compare immersion between two simulation training conditions for prehospital care: one basic and one contextualized. The Immersion Score Rating Instrument was used to compare the total immersion score for the whole scenario, the immersion score for individual mission phases, and to analyze differences in trigger occurrences. A paired t test was used to test for significance. The comparison shows that the overall immersion score for the simulation was higher in the contextualized condition. The average immersion score was 2.17 (sd = 1.67) in the contextualized condition and -0.77 (sd = 2.01) in the basic condition ( p  < .001). The immersion score was significantly higher in the contextualized condition in five out of six mission phases. Events that might be disruptive for the simulation participants' immersion, such as interventions of the instructor and illogical jumps in time or space, are present to a higher degree in the basic scenario condition; while events that signal enhanced immersion, such as natural interaction with the manikin, are more frequently observed in the contextualized condition. The results suggest that contextualization of simulation training with respect to increased equipment and environmental fidelity as well as functional task alignment might affect immersion positively and thus contribute to an improved training experience.

  13. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    NASA Astrophysics Data System (ADS)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  14. A tail like no other. The RPC-MAG view of Rosetta's tail excursion at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Goetz, Charlotte; Richter, Ingo; Delva, Magda; Ostaszewski, Katharina; Schwingenschuh, Konrad; Glassmeier, Karl-Heinz

    2018-06-01

    Context. The Rosetta Plasma Consortium (RPC) magnetometer (MAG) data during the tail excursion in March-April 2016 are used to investigate the magnetic structure of and activity in the tail region of the weakly outgassing comet 67P/Churyumov-Gerasimenko (67P). Aims: The goal of this study is to compare the large scale (near) tail structure with that of earlier missions to strong outgassing comets, and the small scale turbulent energy cascade (un)related to the singing comet phenomenon. Methods: The usual methods of space plasma physics are used to analyse the magnetometer data, such as minimum variance analysis, spectral analysis, and power law fitting. Also the cone angle and clock angle of the magnetic field are calculated to interpret the data. Results: It is found that comet 67P does not have a classical draped magnetic field and no bi-lobal tail structure at this late stage of the mission when the comet is already at 2.7 AU distance from the Sun. The main magnetic field direction seems to be more across the tail direction, which may implicate an asymmetric pick-up cloud. During periods of singing comet activity the propagation direction of the waves is at large angles with respect to the magnetic field and to the radial direction towards the comet. Turbulent cascade of magnetic energy from large to small scales is different in the presence of singing as without it.

  15. Stability Analysis of Algebraic Reconstruction for Immersed Boundary Methods with Application in Flow and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Battiato, I.

    2017-12-01

    Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.

  16. Effect of immersion time of restorative glass ionomer cements and immersion duration in calcium chloride solution on surface hardness.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Wada, Takahiro; Uo, Motohiro

    2014-12-01

    The objective of this study was to evaluate the effect of immersion time of restorative glass ionomer cements (GICs) and immersion duration in calcium chloride (CaCl2) solution on the surface hardness. Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were selected. Forty-eight specimens were randomly divided into two groups. Sixty minutes after being mixed, half of them were immersed in a 42.7wt% CaCl2 solution for 10, 30, or 60min (Group 1); the remaining specimens were immersed after an additional 1-week of storage (Group 2). The surface hardness of the specimens was measured and analyzed with two-way ANOVA and the Tukey HSD test (α=0.05). The surface compositions were examined using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The surface hardness of Group 1 significantly increased as the immersion duration in CaCl2 increased; that of Group 2 significantly increased only after 60-minute CaCl2 immersion. After CaCl2 immersion, the amounts of Ca increased as the immersion duration increased. The surface hardness after CaCl2 immersion significantly correlated with the amount of Ca in Group 1, but not in Group 2. The binding energy of the Ca2p peak was similar to that of calcium polyalkenoate. These findings indicated that the Ca ions from the CaCl2 solution created chemical bonds with the carboxylic acid groups in the cement matrix. Immersion of GICs in CaCl2 solution at the early stage of setting was considered to enhance the formation of the polyacid salt matrix; as a result, the surface hardness increased. Copyright © 2014. Published by Elsevier Ltd.

  17. The optical properties of α-Fe2O3 nanostructures synthesized with different immersion time

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, nanostructured hematite (α-Fe2O3) thin films have been prepared successfully by sonicated immersion method on fluorine-doped tin oxide (FTO) coated glass substrate. The effect of the immersion time on the structural and optical properties of α-Fe2O3 nanostructure were investigated for a variation of immersion time ranging from 1 to 4 hour. From the characterization results, the surface morphology of the sample prepared in 4 hours immersion process has exhibited highest porosity, and the highest absorbance properties were found in the same sample. These results suggest that the different time duration during immersion process play important roles in optical properties of α-Fe2O3 nanostructures.

  18. Heavy Tail Behavior of Rainfall Extremes across Germany

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  19. Immersive Technologies and Language Learning

    ERIC Educational Resources Information Center

    Blyth, Carl

    2018-01-01

    This article briefly traces the historical conceptualization of linguistic and cultural immersion through technological applications, from the early days of locally networked computers to the cutting-edge technologies known as virtual reality and augmented reality. Next, the article explores the challenges of immersive technologies for the field…

  20. Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films

    NASA Astrophysics Data System (ADS)

    Jung, C. C.; Stumpe, J.

    2005-02-01

    The new method of immersion transmission ellipsometry (ITE) [1] has been developed. It allows the highly accurate determination of the absolute three-dimensional (3D) refractive indices of anisotropic thin films. The method is combined with conventional ellipsometry in transmission and reflection, and the thickness determination of anisotropic films solely by optical methods also becomes more accurate. The method is applied to the determination of the 3D refractive indices of thin spin-coated films of an azobenzene-containing liquid-crystalline copolymer. The development of the anisotropy in these films by photo-orientation and subsequent annealing is demonstrated. Depending on the annealing temperature, oblate or prolate orders are generated.

  1. Learning immersion without getting wet

    NASA Astrophysics Data System (ADS)

    Aguilera, Julieta C.

    2012-03-01

    This paper describes the teaching of an immersive environments class on the Spring of 2011. The class had students from undergraduate as well as graduate art related majors. Their digital background and interests were also diverse. These variables were channeled as different approaches throughout the semester. Class components included fundamentals of stereoscopic computer graphics to explore spatial depth, 3D modeling and skeleton animation to in turn explore presence, exposure to formats like a stereo projection wall and dome environments to compare field of view across devices, and finally, interaction and tracking to explore issues of embodiment. All these components were supported by theoretical readings discussed in class. Guest artists presented their work in Virtual Reality, Dome Environments and other immersive formats. Museum professionals also introduced students to space science visualizations, which utilize immersive formats. Here I present the assignments and their outcome, together with insights as to how the creation of immersive environments can be learned through constraints that expose students to situations of embodied cognition.

  2. A Tale of Two Tails: Exploring Stellar Populations in the Tidal Tails of NGC 3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Konstantopoulos, Iraklis

    2016-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. We have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC 3256's twin tidal tails serve as a case study for this new technique. Our results show color values of u - g = 1.15 and r - i = 0.08 for the Western tail, and u - g = 1.33 and r - i = 0.22 for the Eastern tail, corresponding to discrepant ages between the tails of approximately 320 Myr and 785 Myr, respectively. With the interaction age of the system measured at 400 Myr, we find the stellar light in Western tail to be dominated by disrupted star clusters formed during and after the interaction, whereas the light from the Eastern tail is dominated by a 10 Gyr population originating from the host galaxies. We fit the Eastern tail color to a Mixed Stellar Population (MSP) model comprised 94% by mass of a 10 Gyr stellar population, and 6% of a 309 Myr population. We find 52% of the bolometric flux originating from this 10 Gyr population. We also detect a blue to red color gradient in each tail, running from galactic center to tail tip. In addition to tidal tail light, we detect 29 star cluster candidates (SCCs) in the Western tail and 19 in the Eastern, with mean ages of 282 Myr and 98 Myr respectively. Interestingly, we find an excess of very blue SCCs in the Eastern tail as compared to the Western tail, marking a recent, small episode of star formation.

  3. Application of a life cycle assessment to compare environmental performance in coal mine tailings management.

    PubMed

    Adiansyah, Joni Safaat; Haque, Nawshad; Rosano, Michele; Biswas, Wahidul

    2017-09-01

    This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and variations of OPT 1 using combinations of technology improvement and renewable energy sources (OPT 1A-D). Electrical energy was found to contribute more than 90% of the environmental impacts. The magnitude of land-use impacts associated with OPT 3 (thickened tailings) were 2.3 and 1.55 times higher than OPT 1 (tailings cake) and OPT 2 (tailings paste) respectively, while OPT 1B (tailings belt filter press with technology improvement and solar energy) and 1D (tailings belt press filter with technology improvement and wind energy) had the lowest ratio of environmental impact to land-use. Further analysis of an economic cost model and reuse opportunities is required to aid decision making on sustainable tailings management and industrial symbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress

    PubMed Central

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-01-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision—but not tail tip amputation—increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing. PMID:28535866

  5. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress.

    PubMed

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-05-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision-but not tail tip amputation-increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing.

  6. A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations

    NASA Technical Reports Server (NTRS)

    Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.

    2013-01-01

    This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.

  7. Innovative Second Language Education: Bilingual Immersion Programs.

    ERIC Educational Resources Information Center

    Snow, Marguerite Ann

    Bilingual immersion programs combine second language immersion for language majority children and bilingual education for language minority children. The programs are based on the underlying assumption of the immersion model: that a second language is best learned as a medium of instruction, not as the object of instruction. However, they are not…

  8. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    PubMed

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Language and Culture Immersion: A Winning Enterprise.

    ERIC Educational Resources Information Center

    Cormier, Raymond

    A second language program developed at Wilson College (Chambersburg, Pennsylvania) with a federal grant uses the Rassias Method of theatrical, dramatic language saturation. In the first application of the program at the college, peer tutors (who would be assistant teachers in the subsequent immersion program) were trained in a three-day workshop.…

  10. Selenium immersed thermistor bolometer study

    NASA Technical Reports Server (NTRS)

    Rolls, W. H.

    1979-01-01

    The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique.

  11. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    PubMed

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  12. Dual Language Immersion Program Equity and Access: Is There Equity for All Students?

    ERIC Educational Resources Information Center

    Fernandez, Patricia Espinoza

    2016-01-01

    This is a mixed methods study of K-12 school administrators with dual language immersion school leadership expertise. The paramount research focus was to identify equity and access issues in dual language immersion programs serving grades K-12, as identified by school administrators who have led such programs. A total pool of 498 were invited to…

  13. IB2d: a Python and MATLAB implementation of the immersed boundary method.

    PubMed

    Battista, Nicholas A; Strickland, W Christopher; Miller, Laura A

    2017-03-29

    The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred motion.

  14. Heavy-tailed distributions in the intermittent motion behaviour of the intertidal gastropod Littorina littorea

    NASA Astrophysics Data System (ADS)

    Seuront, Laurent; Duponchel, Anne-Charlotte; Chapperon, Coraline

    2007-11-01

    The two-dimensional motion behaviour of the common intertidal gastropod Littorina littorea is investigated as a function of the immersion time from three sampling sites on an exposed rocky shore. A total of 90 individuals have been individually marked and tracked over 14 consecutive daylight low tide. Successive displacements show very intermittent behaviour, with a few localised large displacements over a wide range of small displacements. We show that successive displacements are described by flight length l d heavy-tailed distributions with P(ld)∼ld-μ. The very low values of the exponent μ ( μ≈2.22, 2.43 and 2.67) indicate that L. littorea flights fall into the category of super-diffusive processes. These exponents were significantly higher than the special value μ≈2 analytically and theoretically predicted to be the most advantageous in optimising long-term encounter statistics, especially for low-prey-density scenario. As natural selection should favour flexible behaviour, leading to different optimum searching statistics, under different conditions, our results support the idea that the differences in food concentration and distribution encountered at the different sites by L. littorea led to different heavy-tailed distributions observed for the most extreme displacements.

  15. Gasoline immersion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.A.; Cruse, C.W.

    1981-01-01

    Chemical burns and pulmonary complications are the most common problems encountered in the patient immersed in gasoline. Our patient demonstrated a 46-percent total-body-surface area, partial-thickness chemical burn. Although he did not develop bronchitis or pneumonitis, he did display persistent atelectasis, laryngeal edema, and subsequent upper airway obstruction. This had not previously been reported in gasoline inhalation injuries. Hydrocarbon hepatitis secondary to the vascular endothelial damage is apparently a reversible lesion with no reported long-term sequelae. Gasoline immersion injuries may be a series multisystem injury and require the burn surgeon to take a multisystem approach to its diagnosis and treatment.

  16. Scalable smoothing strategies for a geometric multigrid method for the immersed boundary equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Amneet Pal Singh; Knepley, Matthew G.; Adams, Mark F.

    2016-12-20

    The immersed boundary (IB) method is a widely used approach to simulating fluid-structure interaction (FSI). Although explicit versions of the IB method can suffer from severe time step size restrictions, these methods remain popular because of their simplicity and generality. In prior work (Guy et al., Adv Comput Math, 2015), some of us developed a geometric multigrid preconditioner for a stable semi-implicit IB method under Stokes flow conditions; however, this solver methodology used a Vanka-type smoother that presented limited opportunities for parallelization. This work extends this Stokes-IB solver methodology by developing smoothing techniques that are suitable for parallel implementation. Specifically,more » we demonstrate that an additive version of the Vanka smoother can yield an effective multigrid preconditioner for the Stokes-IB equations, and we introduce an efficient Schur complement-based smoother that is also shown to be effective for the Stokes-IB equations. We investigate the performance of these solvers for a broad range of material stiffnesses, both for Stokes flows and flows at nonzero Reynolds numbers, and for thick and thin structural models. We show here that linear solver performance degrades with increasing Reynolds number and material stiffness, especially for thin interface cases. Nonetheless, the proposed approaches promise to yield effective solution algorithms, especially at lower Reynolds numbers and at modest-to-high elastic stiffnesses.« less

  17. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    PubMed

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.

  18. Immersion lithography: its history, current status and future prospects

    NASA Astrophysics Data System (ADS)

    Owa, Soichi; Nagasaka, Hiroyuki

    2008-11-01

    Since the 1980's, immersion exposure has been proposed several times. At the end of 1990's, however, these concepts were almost forgotten because other technologies, such as electron beam projection, EUVL, and 157 nm were believed to be more promising than immersion exposures. The current work in immersion lithography started in 2001 with the report of Switkes and Rothschild. Although their first proposal was at 157 nm wavelength, their report in the following year on 193 nm immersion with purified water turned out to be the turning point for the introduction of water-based 193 nm immersion lithography. In February, 2003, positive feasibility study results of 193 nm immersion were presented at the SPIE microlithography conference. Since then, the development of 193 nm immersion exposure tools accelerated. Currently (year 2008), multiple hyper NA (NA>1.0) scanners are generating mass production 45 nm half pitch devices in semiconductor manufacturing factories. As a future extension, high index immersion was studied over the past few years, but material development lagged more than expected, which resulted in the cancellation of high index immersion plans at scanner makers. Instead, double patterning, double dipole exposure, and customized illuminations techniques are expected as techniques to extend immersion for the 32 nm node and beyond.

  19. Effects of short term water immersion on peripheral reflex excitability in hemiplegic and healthy individuals: A preliminary study

    PubMed Central

    Cronin, N.J.; Valtonen, A.M.; Waller, B.; Pöyhönen, T.; Avela, J.

    2016-01-01

    Background: Reflex excitability is increased in hemiplegic patients compared to healthy controls. One challenge of stroke rehabilitation is to decrease the effects of hyperreflexia, which may be possible with water immersion. Methods/Aims: The present study examined the effects of acute water immersion on electrically-evoked Hmax:Mmax ratios (a measure of reflex excitability) in 7 hyperreflexive hemiplegic patients and 7 age-matched healthy people. Hmax:Mmax ratios were measured from soleus on dry land (L1), immediately after (W1) and 5 minutes after immersion (W5), and again after five minutes on land (L5). Results: Water immersion led to an acute increase in Hmax:Mmax ratio in both groups. However, after returning to dry land, there was a non-significant decrease in the Hmax:Mmax ratio of 8% in the hemiplegic group and 10% in healthy controls compared to pre-immersion values. Interpretation: A short period of water immersion can decrease peripheral reflex excitability after returning to dry land in both healthy controls and post-stroke patients, although longer immersion periods may be required for sustainable effects. Water immersion may offer promise as a low-risk, non-invasive and non-pharmaceutical method of decreasing hyperreflexivity, and could thus support aquatic rehabilitation following stroke. PMID:26944824

  20. Effects of short term water immersion on peripheral reflex excitability in hemiplegic and healthy individuals: A preliminary study.

    PubMed

    Cronin, N J; Valtonen, A M; Waller, B; Pöyhönen, T; Avela, J

    2016-03-01

    Reflex excitability is increased in hemiplegic patients compared to healthy controls. One challenge of stroke rehabilitation is to decrease the effects of hyperreflexia, which may be possible with water immersion. Methods/Aims: The present study examined the effects of acute water immersion on electrically-evoked Hmax:Mmax ratios (a measure of reflex excitability) in 7 hyperreflexive hemiplegic patients and 7 age-matched healthy people. Hmax:Mmax ratios were measured from soleus on dry land (L1), immediately after (W1) and 5 minutes after immersion (W5), and again after five minutes on land (L5). Water immersion led to an acute increase in Hmax:Mmax ratio in both groups. However, after returning to dry land, there was a non-significant decrease in the Hmax:Mmax ratio of 8% in the hemiplegic group and 10% in healthy controls compared to pre-immersion values. A short period of water immersion can decrease peripheral reflex excitability after returning to dry land in both healthy controls and post-stroke patients, although longer immersion periods may be required for sustainable effects. Water immersion may offer promise as a low-risk, non-invasive and non-pharmaceutical method of decreasing hyperreflexivity, and could thus support aquatic rehabilitation following stroke.

  1. Particle Swarm-Based Translation Control for Immersed Tunnel Element in the Hong Kong-Zhuhai-Macao Bridge Project

    NASA Astrophysics Data System (ADS)

    Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng

    2018-03-01

    Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.

  2. L'expression orale apres treize ans d'immersion francaise (Oral Expression After Thirteen Years of French Immersion).

    ERIC Educational Resources Information Center

    Pellerin, Micheline; Hammerly, Hector

    1986-01-01

    Conversations with six twelfth graders who had been in French immersion since kindergarten found a high rate of incorrect sentences, suggesting a faulty interlanguage fossilized at grade six and a need for immersion program revision. (MSE)

  3. Immersive 3D geovisualisation in higher education

    NASA Astrophysics Data System (ADS)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  4. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  5. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages

    PubMed Central

    Haghgou, Hamid R.; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    Objectives: The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. Materials and Methods: This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Results: Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P < 0.05). This reduction was also statistically significant in the permanent teeth (P < 0.05). A comparison of the enamel changes in the primary teeth with permanent teeth after immersion in both beverages showed a greater microhardness reduction in the primary teeth in both the experimental groups. Conclusions: Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster. PMID:27583223

  6. Immersed Boundary Simulations of Active Fluid Droplets

    PubMed Central

    Hawkins, Rhoda J.

    2016-01-01

    We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609

  7. On the statistical properties and tail risk of violent conflicts

    NASA Astrophysics Data System (ADS)

    Cirillo, Pasquale; Taleb, Nassim Nicholas

    2016-06-01

    We examine statistical pictures of violent conflicts over the last 2000 years, providing techniques for dealing with the unreliability of historical data. We make use of a novel approach to deal with fat-tailed random variables with a remote but nonetheless finite upper bound, by defining a corresponding unbounded dual distribution (given that potential war casualties are bounded by the world population). This approach can also be applied to other fields of science where power laws play a role in modeling, like geology, hydrology, statistical physics and finance. We apply methods from extreme value theory on the dual distribution and derive its tail properties. The dual method allows us to calculate the real tail mean of war casualties, which proves to be considerably larger than the corresponding sample mean for large thresholds, meaning severe underestimation of the tail risks of conflicts from naive observation. We analyze the robustness of our results to errors in historical reports. We study inter-arrival times between tail events and find that no particular trend can be asserted. All the statistical pictures obtained are at variance with the prevailing claims about ;long peace;, namely that violence has been declining over time.

  8. Level set immersed boundary method for gas-liquid-solid interactions with phase-change

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho

    2017-11-01

    We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.

  9. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  10. IQ-Station: A Low Cost Portable Immersive Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Whiting; Patrick O'Leary; William Sherman

    2010-11-01

    The emergence of inexpensive 3D TV’s, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive environments (IE). A low cost IE system, or IQ-station, fashioned from commercial off the shelf technology (COTS), coupled with a targeted immersive application can be a viable laboratory instrument for enhancing scientific workflow for exploration and analysis. The use of an IQ-station in a laboratory setting also has the potential of quickening the adoption of a more sophisticated immersive environment as a critical enabler in modern scientific and engineering workflows. Prior work in immersive environmentsmore » generally required either a head mounted display (HMD) system or a large projector-based implementation both of which have limitations in terms of cost, usability, or space requirements. The solution presented here provides an alternative platform providing a reasonable immersive experience that addresses those limitations. Our work brings together the needed hardware and software to create a fully integrated immersive display and interface system that can be readily deployed in laboratories and common workspaces. By doing so, it is now feasible for immersive technologies to be included in researchers’ day-to-day workflows. The IQ-Station sets the stage for much wider adoption of immersive environments outside the small communities of virtual reality centers.« less

  11. Wind-tunnel Investigation of End-plate Effects of Horizontal Tails on a Vertical Tail Compared with Available Theory

    NASA Technical Reports Server (NTRS)

    Murray, Harry E

    1946-01-01

    A vertical-tail model with stub fuselage was tested in combination with various simulated horizontal tails to determine the effect of horizontal-tail span and location on the aerodynamic characteristics of the vertical tail. Available theoretical data on end-plate effects were collected and presented in the form most suitable for design purposes. Reasonable agreement was obtained between the measured and theoretical end-plate effects of horizontal tails on vertical tails, and the data indicated that the end-plate effect was determined more by the location of the horizontal tail than by the span of the horizontal tail. The horizontal tail gave most end-plate effect when located near either tip of the vertical tail and, when located near the base of the vertical tail, the end-plate effect was increased by moving the horizontal tail rearward.

  12. A review on in situ phytoremediation of mine tailings.

    PubMed

    Wang, Li; Ji, Bin; Hu, Yuehua; Liu, Runqing; Sun, Wei

    2017-10-01

    Mine tailings are detrimental to natural plant growth due to their physicochemical characteristics, such as high pH, high salinity, low water retention capacity, high heavy metal concentrations, and deficiencies in soil organic matter and fertility. Thus, the remediation of mine tailings has become a key issue in environmental science and engineering. Phytoremediation, an in situ cost-effective technology, is emerging as the most promising remediation method for mine tailings by introducing tolerant plant species. It is particularly effective in dealing with large-area mine tailings with shallow contamination of organic, nutrient and metal pollutants. In this review, the background, concepts and applications of phytoremediation are comprehensively discussed. Furthermore, proper amendments used to improve the physical, chemical and biological properties of mine tailings are systematically reviewed and compared. Emphasis is placed on the types and characteristics of tolerant plants and their role in phytoremediation. Moreover, the role of microorganisms and their mechanism in phytoremediation are also discussed in-depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods.

    PubMed

    Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-01-01

    Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.

  14. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  15. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  16. Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring

    NASA Astrophysics Data System (ADS)

    Gendler, Naomi; Billing, Mike; Shanks, Jim

    The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.

  17. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  18. Evaluation of pyritic mine tailings as a plant growth substrate.

    PubMed

    Roseby, Stuart J; Kopittke, Peter M; Mulligan, David R; Menzies, Neal W

    2017-10-01

    At the Kidston gold mine, Australia, the direct establishment of vegetation on tailings was considered as an alternative to the use of a waste rock cover. The tailings acid/base account was used to predict plant growth limitation by acidity, and thus methods capable of identifying tailings that would acidify to pH 4.5 or lower were sought. Total S was found to be poorly correlated with acid-generating sulfide, and total C was poorly correlated with acid-neutralizing carbonate, precluding the use of readily determined total S and C as predictors of net acid generation. Therefore, the selected approach used assessment of sulfide content as a predictor of acid generation, and carbonate content as a measure of the acid-neutralizing capacity available at pH 5 and above. Using this approach, the majority of tailings (67%) were found to be non-acid generating. However, areas of potentially acid-generating tailings were randomly distributed across the dam, and could only be located by intensive sampling. The limitations imposed by the large sample numbers, and costly analysis of sulfide and carbonate, make it impractical to identify and ameliorate acid-generating areas prior to vegetation establishment. However, as only a small proportion of the tailings will acidify, a strategy of re-treating acid areas following oxidation is suggested. The findings of the present study will assist in the selection of appropriate methods for the prediction of net acid generation, particularly where more conservative measurements are required to allow vegetation to be established directly in tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. English Immersion and Educational Inequality in South Korea

    ERIC Educational Resources Information Center

    Jeon, Mihyon

    2012-01-01

    This article explores what immersion English education means in South Korea (henceforth Korea) and examines various related educational practices. The proposal for English immersion from the Presidential Transition Committee of the Lee administration in early 2008 has highlighted immersion education in Korea. Ironically, since the committee's…

  20. Probability of survival during accidental immersion in cold water.

    PubMed

    Wissler, Eugene H

    2003-01-01

    Estimating the probability of survival during accidental immersion in cold water presents formidable challenges for both theoreticians and empirics. A number of theoretical models have been developed assuming that death occurs when the central body temperature, computed using a mathematical model, falls to a certain level. This paper describes a different theoretical approach to estimating the probability of survival. The human thermal model developed by Wissler is used to compute the central temperature during immersion in cold water. Simultaneously, a survival probability function is computed by solving a differential equation that defines how the probability of survival decreases with increasing time. The survival equation assumes that the probability of occurrence of a fatal event increases as the victim's central temperature decreases. Generally accepted views of the medical consequences of hypothermia and published reports of various accidents provide information useful for defining a "fatality function" that increases exponentially with decreasing central temperature. The particular function suggested in this paper yields a relationship between immersion time for 10% probability of survival and water temperature that agrees very well with Molnar's empirical observations based on World War II data. The method presented in this paper circumvents a serious difficulty with most previous models--that one's ability to survive immersion in cold water is determined almost exclusively by the ability to maintain a high level of shivering metabolism.

  1. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    PubMed

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  2. A study of different modeling choices for simulating platelets within the immersed boundary method

    PubMed Central

    Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L.; Kirby, Robert M.

    2012-01-01

    The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid–structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations – radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations – for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations. PMID:23585704

  3. Two-Way Immersion: A Key to Global Awareness.

    ERIC Educational Resources Information Center

    Howard, Elizabeth R.

    2002-01-01

    Describes the use of two-way immersion education to provide students with opportunities to understand and appreciate other countries and cultures. The main features of two-way immersion education are bilingual language instruction, cross-cultural understanding, and international exchanges. Includes case study of two-way immersion at the Alicia…

  4. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    PubMed Central

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  5. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2011-08-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

  6. High-immersion three-dimensional display of the numerical computer model

    NASA Astrophysics Data System (ADS)

    Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu

    2013-08-01

    High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.

  7. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    PubMed

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 21 CFR 890.5100 - Immersion hydrobath.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immersion hydrobath. 890.5100 Section 890.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5100 Immersion...

  9. 21 CFR 890.5100 - Immersion hydrobath.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immersion hydrobath. 890.5100 Section 890.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5100 Immersion...

  10. 21 CFR 890.5100 - Immersion hydrobath.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immersion hydrobath. 890.5100 Section 890.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5100 Immersion...

  11. 21 CFR 890.5100 - Immersion hydrobath.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immersion hydrobath. 890.5100 Section 890.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5100 Immersion...

  12. 21 CFR 890.5100 - Immersion hydrobath.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immersion hydrobath. 890.5100 Section 890.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5100 Immersion...

  13. Middle Immersion Study 1988. Research Paper 88-08.

    ERIC Educational Resources Information Center

    Parkin, Michael; And Others

    Ottawa's program of middle French immersion (MFI) instruction, beginning in fourth grade, was evaluated when the first cohort reached sixth grade. Results of the study were compared with those of other groups, particularly the early French immersion (EFI) program and late French immersion (LFI) program students. The evaluation also added data from…

  14. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  15. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  16. Cell lineage tracing during Xenopus tail regeneration.

    PubMed

    Gargioli, Cesare; Slack, Jonathan M W

    2004-06-01

    The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promoter driving GFP (Green Fluorescent Protein) ubiquitously throughout the embryo. Single tissues were then specifically labelled by making grafts at the neurula stage from transgenic donors to unlabelled hosts. When the hosts have developed to tadpoles, they carry a region of the appropriate tissue labelled with GFP. These tails were amputated through the labelled region and the distribution of labelled cells in the regenerate was followed. We also labelled myofibres using the Cre-lox method. The results show that the spinal cord and the notochord regenerate from the same tissue type in the stump, with no labelling of other tissues. In the case of the muscle, we show that the myofibres of the regenerate arise from satellite cells and not from the pre-existing myofibres. This shows that metaplasia between differentiated cell types does not occur, and that the process of Xenopus tail regeneration is more akin to tissue renewal in mammals than to urodele tail regeneration.

  17. Can tail damage outbreaks in the pig be predicted by behavioural change?

    PubMed

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-03-01

    Tail biting, resulting in outbreaks of tail damage in pigs, is a multifactorial welfare and economic problem which is usually partly prevented through tail docking. According to European Union legislation, tail docking is not allowed on a routine basis; thus there is a need for alternative preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effective matrix-free preconditioning for the augmented immersed interface method

    NASA Astrophysics Data System (ADS)

    Xia, Jianlin; Li, Zhilin; Ye, Xin

    2015-12-01

    We present effective and efficient matrix-free preconditioning techniques for the augmented immersed interface method (AIIM). AIIM has been developed recently and is shown to be very effective for interface problems and problems on irregular domains. GMRES is often used to solve for the augmented variable(s) associated with a Schur complement A in AIIM that is defined along the interface or the irregular boundary. The efficiency of AIIM relies on how quickly the system for A can be solved. For some applications, there are substantial difficulties involved, such as the slow convergence of GMRES (particularly for free boundary and moving interface problems), and the inconvenience in finding a preconditioner (due to the situation that only the products of A and vectors are available). Here, we propose matrix-free structured preconditioning techniques for AIIM via adaptive randomized sampling, using only the products of A and vectors to construct a hierarchically semiseparable matrix approximation to A. Several improvements over existing schemes are shown so as to enhance the efficiency and also avoid potential instability. The significance of the preconditioners includes: (1) they do not require the entries of A or the multiplication of AT with vectors; (2) constructing the preconditioners needs only O (log ⁡ N) matrix-vector products and O (N) storage, where N is the size of A; (3) applying the preconditioners needs only O (N) flops; (4) they are very flexible and do not require any a priori knowledge of the structure of A. The preconditioners are observed to significantly accelerate the convergence of GMRES, with heuristical justifications of the effectiveness. Comprehensive tests on several important applications are provided, such as Navier-Stokes equations on irregular domains with traction boundary conditions, interface problems in incompressible flows, mixed boundary problems, and free boundary problems. The preconditioning techniques are also useful for

  19. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less

  20. Whole body cooling by immersion in water at moderate temperatures.

    PubMed

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p < 0.01). Tsk decreased from 33.23+/-1.4 degrees C to 26.95+/-1.8 degrees C (p < 0.01) at the end of immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p < 0.01) at the end of immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  1. THE NARROW X-RAY TAIL AND DOUBLE Hα TAILS OF ESO 137-002 IN A3627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Lin, X. B.; Kong, X.

    2013-11-10

    We present the analysis of a deep Chandra observation of a ∼2 L{sub *} late-type galaxy, ESO 137-002, in the closest rich cluster A3627. The Chandra data reveal a long (∼>40 kpc) and narrow tail with a nearly constant width (∼3 kpc) to the southeast of the galaxy, and a leading edge ∼1.5 kpc from the galaxy center on the upstream side of the tail. The tail is most likely caused by the nearly edge-on stripping of ESO 137-002's interstellar medium (ISM) by ram pressure, compared to the nearly face-on stripping of ESO 137-001 discussed in our previous work. Spectralmore » analysis of individual regions along the tail shows that the gas throughout it has a rather constant temperature, ∼1 keV, very close to the temperature of the tails of ESO 137-001, if the same atomic database is used. The derived gas abundance is low (∼0.2 solar with the single-kT model), an indication of the multiphase nature of the gas in the tail. The mass of the X-ray tail is only a small fraction (<5%) of the initial ISM mass of the galaxy, suggesting that the stripping is most likely at an early stage. However, with any of the single-kT, double-kT, and multi-kT models we tried, the tail is always 'over-pressured' relative to the surrounding intracluster medium (ICM), which could be due to the uncertainties in the abundance, thermal versus non-thermal X-ray emission, or magnetic support in the ICM. The Hα data from the Southern Observatory for Astrophysical Research show a ∼21 kpc tail spatially coincident with the X-ray tail, as well as a secondary tail (∼12 kpc long) to the east of the main tail diverging at an angle of ∼23° and starting at a distance of ∼7.5 kpc from the nucleus. At the position of the secondary Hα tail, the X-ray emission is also enhanced at the ∼2σ level. We compare the tails of ESO 137-001 and ESO 137-002, and also compare the tails to simulations. Both the similarities and differences of the tails pose challenges to the simulations. Several

  2. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak

    PubMed Central

    Jack, Mhairi; Futro, Agnieszka; Talbot, Darren; Zhu, Qiming; Barclay, David; Baxter, Emma M.

    2018-01-01

    Tail biting is a major welfare and economic problem for indoor pig producers worldwide. Low tail posture is an early warning sign which could reduce tail biting unpredictability. Taking a precision livestock farming approach, we used Time-of-flight 3D cameras, processing data with machine vision algorithms, to automate the measurement of pig tail posture. Validation of the 3D algorithm found an accuracy of 73.9% at detecting low vs. not low tails (Sensitivity 88.4%, Specificity 66.8%). Twenty-three groups of 29 pigs per group were reared with intact (not docked) tails under typical commercial conditions over 8 batches. 15 groups had tail biting outbreaks, following which enrichment was added to pens and biters and/or victims were removed and treated. 3D data from outbreak groups showed the proportion of low tail detections increased pre-outbreak and declined post-outbreak. Pre-outbreak, the increase in low tails occurred at an increasing rate over time, and the proportion of low tails was higher one week pre-outbreak (-1) than 2 weeks pre-outbreak (-2). Within each batch, an outbreak and a non-outbreak control group were identified. Outbreak groups had more 3D low tail detections in weeks -1, +1 and +2 than their matched controls. Comparing 3D tail posture and tail injury scoring data, a greater proportion of low tails was associated with more injured pigs. Low tails might indicate more than just tail biting as tail posture varied between groups and over time and the proportion of low tails increased when pigs were moved to a new pen. Our findings demonstrate the potential for a 3D machine vision system to automate tail posture detection and provide early warning of tail biting on farm. PMID:29617403

  3. Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves

    NASA Astrophysics Data System (ADS)

    Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian

    2012-12-01

    This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.

  4. Head or tail: the orientation of the small bowel capsule endoscope movement in the small bowel.

    PubMed

    Kopylov, Uri; Papageorgiou, Neofytos P; Nadler, Moshe; Eliakim, Rami; Ben-Horin, Shomron

    2012-03-01

    The diagnostic accuracy of capsule endoscopy has been suggested to be influenced by the direction of the passage in the intestine. It is currently unknown if a head-first or a tail-first orientation are equally common during the descent through the small bowel. The aim of the study was to identify the orientation of the capsule along the migration through the small bowel. Thirty capsule endoscopies were reviewed by an experienced observer. The direction of the passage through the pylorus and the ileoceccal valve was recorded for all the examinations. In addition, detailed review of the passage of the capsule in different segments of the small bowel was undertaken for all the capsules. The capsule was significantly more likely to pass the pylorus head-first compared to tail-first (25 and 5 out of 30, respectively, OR 5, 95% CI 65-94%, P < 0.001). In 28/30 studies, the capsule exited the ileoceccal valve head-first (OR-14, 95% CI 77-99%, P < 0.001). In an immersion experiment, uneven distribution of weight of the capsule body was demonstrated with the head part (camera tip) being lighter than the tail part. The capsule endoscope usually passes through the pylorus and subsequent segments of the small bowel head-first. This observation suggests that the intestinal peristaltic physiology drives symmetrical bodies with their light part first. The principle of intestinal orientation by weight distribution may bear implications for capsules' design in the future.

  5. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  6. Hypervolemia and plasma vasopressin response during water immersion in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Morse, J. T.; Barnes, P. R.; Silver, J.; Keil, L. C.

    1983-01-01

    Immersion studies were performed on seven mildly dehydrated male subjects to examine the effect of suppression of plasma vasopressin (PVP) on diuresis in water immersion. The water was kept at close to 34.5 C and the subjects remained in the water for 4 hr after sitting for 2 hr. Na and K levels in the serum and urine were analyzed, as were osmolality, red blood cell count, renin activity, total protein, albumin amounts, hematocrit, and hemoglobin. Plasma volume was monitored from samples drawn at specified intervals during immersion. The plasma volume increased significantly 30 min after immersion, but no PVP was observed. The dehydration induced elevated serum osmotic concentrations. It is concluded that the hydration condition before immersion and the volume of fluid intake during immersion affects the hemodilution during immersion.

  7. A study of bauxite tailing quality improvement by reverse flotation

    NASA Astrophysics Data System (ADS)

    Wulandari, W.; Purwasasmita, M.; Sanwani, E.; Malatsih, W.; Fadilla, F.

    2018-01-01

    The pre-treatment of bauxite ore from Tayan, West Kalimantan includes washing and screening fine bauxite particles (-2mm) prior as the feed to the Bayer process for producing alumina. These fine particles are believed to have high content of silica which is detrimental to the process. This washed bauxite tailing still has a significant amount of alumina content. Previous research has indicated that bauxite ore can be upgraded by applying reverse flotation method to reduce its silica content in the ore. Therefore, this study is aimed to utilize reverse flotation method to recover alumina content from washed bauxite tailing. The reverse flotation experiments were carried out at pH of 6 and 8; while the particle sizes were varied at - 140+270 mesh and -270 mesh, using a batch and circuit configuration. The result of this study shows that the batch reverse flotation can recover alumina in the tailing up to 81.4%, however the silica content is still significant. The complexity of silica-alumina minerals in the tailing prevents a complete separation of the ores by only using reverse flotation.

  8. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  9. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  10. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  11. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  12. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  13. Maximum Likelihood Methods in Treating Outliers and Symmetrically Heavy-Tailed Distributions for Nonlinear Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2006-01-01

    By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…

  14. [Water immersion as an anti-g protection for pilot. Pro et contra].

    PubMed

    Barer, A S

    2007-01-01

    In the period of 1988 - 1990 the ZVEZDA Aerospace medicine Department fulfilled comprehensive physiological investigations in order to assess the prospects for water immersion as an anti-g gear for pilots of high-maneuver aircraft. Both dry and open water immersion methods were used. More than 150 centrifuge runs were conducted to define limits for the acceleration value and time of 9-g tolerance. Volunteered subjects in the pilot's posture were inclined at 35 degrees and 55 degrees to the total inertial force vector. The obvious subjective discomfort felt during acceleration and absence of clinical aftereffect were qualified as a positive outcome. The subjects were ready for repeated runs even after a very brief repose. The main impediment to the professional anti-g use of immersion is visual disorders which in this case are not predictors of coming loss of consciousness and attributed to alterations in regional hemodynamics. The authors assert that there is a good reason to continue search for implementation of the immersion principle in g-protection of pilots to reduce the rate of professional pathologies and to intensify flights.

  15. The Balancing Act of Bilingual Immersion

    ERIC Educational Resources Information Center

    Hadi-Tabassum, Samina

    2005-01-01

    Hadi-Tabassum believes having a separate life context for each language she learned in childhood enabled her to switch easily among five different tongues. She states that the success of dual immersion bilingual programs is largely dependent on whether they immerse students in each of the involved languages separately and help students have a…

  16. Immersion in water in labour and birth

    PubMed Central

    Cluett, Elizabeth R; Burns, Ethel

    2014-01-01

    Background Enthusiasts suggest that labouring in water and waterbirth increase maternal relaxation, reduce analgesia requirements and promote a midwifery model of care. Critics cite the risk of neonatal water inhalation and maternal/neonatal infection. Objectives To assess the evidence from randomised controlled trials about immersion in water during labour and waterbirth on maternal, fetal, neonatal and caregiver outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 June 2011) and reference lists of retrieved studies. Selection criteria Randomised controlled trials comparing immersion in any bath tub/pool with no immersion, or other non-pharmacological forms of pain management during labour and/or birth, in women during labour who were considered to be at low risk of complications, as defined by the researchers. Data collection and analysis We assessed trial eligibility and quality and extracted data independently. One review author entered data and the other checked for accuracy. Main results This review includes 12 trials (3243 women): eight related to just the first stage of labour: one to early versus late immersion in the first stage of labour; two to the first and second stages; and another to the second stage only. We identified no trials evaluating different baths/pools, or the management of third stage of labour. Results for the first stage of labour showed there was a significant reduction in the epidural/spinal/paracervical analgesia/anaesthesia rate amongst women allocated to water immersion compared to controls (478/1254 versus 529/1245; risk ratio (RR) 0.90; 95% confidence interval (CI) 0.82 to 0.99, six trials). There was also a reduction in duration of the first stage of labour (mean difference −32.4 minutes; 95% CI −58.7 to −6.13). There was no difference in assisted vaginal deliveries (RR 0.86; 95% CI 0.71 to 1.05, seven trials), caesarean sections (RR 1.21; 95% CI 0.87 to 1.68, eight

  17. Research on Long Tail Recommendation Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xuezhi; Zhang, Chuang; Wu, Ming; Zeng, Yang

    2017-10-01

    Most recommendation systems in the major electronic commerce platforms are influenced by the long tail effect more or less. There are sufficient researches of how to assess recommendation effect while no criteria to evaluate long tail recommendation rate. In this study, we first discussed the existing problems of recommending long tail products through specific experiments. Then we proposed a long tail evaluation criteria and compared the performance in long tail recommendation between different models.

  18. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS.

    PubMed

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Muñiz-Valencia, Roberto; Jurado, Jose M; Alcázar, Ángela; Aguayo-Villarreal, Ismael A

    2017-12-15

    Due the negative effects of pesticides on environment and human health, more efficient and environmentally friendly methods are needed. In this sense, a simple, fast, free from memory effects and economical direct-immersion single drop micro-extraction (SDME) method and GC-MS for multi-class pesticides determination in mango samples was developed. Sample pre-treatment using ultrasound-assisted solvent extraction and factors affecting the SDME procedure (extractant solvent, drop volume, stirring rate, ionic strength, time, pH and temperature) were optimized using factorial experimental design. This method presented high sensitive (LOD: 0.14-169.20μgkg -1 ), acceptable precision (RSD: 0.7-19.1%), satisfactory recovery (69-119%) and high enrichment factors (20-722). Several obtained LOQs are below the MRLs established by the European Commission; therefore, the method could be applied for pesticides determination in routing analysis and custom laboratories. Moreover, this method has shown to be suitable for determination of some of the studied pesticides in lime, melon, papaya, banana, tomato, and lettuce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR

    PubMed Central

    Vandenbussche, Frank; Mathijs, Elisabeth; Lefebvre, David; De Clercq, Kris; Van Borm, Steven

    2016-01-01

    Non-specific tail sequences are often added to the 5’-terminus of primers to improve the robustness and overall performance of diagnostic assays. Despite the widespread use of tailed primers, the underlying working mechanism is not well understood. To address this problem, we conducted a detailed in vitro and in silico analysis of the enhancing effect of primer tailing on 2 well-established foot-and-mouth disease virus (FMDV) RT-qPCR assays using an FMDV reference panel. Tailing of the panFMDV-5UTR primers mainly affected the shape of the amplification curves. Modelling of the raw fluorescence data suggested a reduction of the amplification efficiency due to the accumulation of inhibitors. In depth analysis of PCR products indeed revealed the rapid accumulation of forward-primer derived artefacts. More importantly, tailing of the forward primer delayed artefacts formation and concomitantly restored the sigmoidal shape of the amplification curves. Our analysis also showed that primer tailing can alter utilisation patterns of degenerate primers and increase the number of primer variants that are able to participate in the reaction. The impact of tailed primers was less pronounced in the panFMDV-3D assay with only 5 out of 50 isolates showing a clear shift in Cq values. Sequence analysis of the target region of these 5 isolates revealed several mutations in the inter-primer region that extend an existing hairpin structure immediately downstream of the forward primer binding site. Stabilisation of the forward primer with either a tail sequence or cationic spermine units restored the sensitivity of the assay, which suggests that the enhancing effect in the panFMDV-3D assay is due to a more efficient extension of the forward primer. ur results show that primer tailing can alter amplification through various mechanisms that are determined by both the assay and target region. These findings expand our understanding of primer tailing and should enable a more targeted and

  20. Bonding capacity of the GFRP-S on strengthened RC beams after sea water immersion

    NASA Astrophysics Data System (ADS)

    Sultan, Mufti Amir; Djamaluddin, Rudy

    2017-11-01

    Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure fail were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fibre Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the bonding capacity behavior of reinforced concrete beams with reinforcement GFRP-S immersed in sea water using immersion time of one month, three months, six months and twelve months. Test specimen consists of 12 pieces of reinforced concrete beams with dimensions (150x200x3000) mm that had been reinforced with GFRP-S in the area of bending, the beam without immersion (B0), immersion one month (B1), three months (B3), six months (B6) and twelve months (B12). Test specimen were cured for 28 days before the application of the GFRP sheet. Test specimen B1, B3, B6 and B12 that have been immersed in sea water pool with a immersion time each 1, 3, 6 and 12 months. The test specimen without immersion test by providing a static load until it reaches the failure, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP to collect the strain value. From the research it obvious that there is a decrease bonding capacity on specimens immersed for one month, three months, six months and twelve months against the test object without immersion of 8.85%; 8.89%; 9.33% and 11.04%.

  1. Intrapericardial denervation: Responses to water immersion in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    McKeever, Kenneth H.; Keil, Lanny C.; Sandler, Harold

    1995-01-01

    Eleven anesthetized rhesus monkeys were used to study cardiovascular, renal, and endocrine alterations associated with 120 min of head-out water immersion. Five animals underwent complete intrapericardial denervation using the Randall technique, while the remaining six monkeys served as intact controls. Each animal was chronically instrumented with an electromagnetic flow probe on the ascending aorta, a strain gauge pressure transducer implanted in the apex of the left ventricle (LV), and electrocardiogram leads anchored to the chest wall and LV. During immersion, LV end-diastolic pressure, urine flow, glomerular filtration rate, sodium excretion, and circulating atrial natriuretic peptide (ANP) each increased (P less than 0.05) for intact and denervated monkeys. There were no alterations in free water clearance in either group during immersion, yet fractional excretion of free water increased (P less than 0.05) in the intact monkeys. Plasma renin activity (PRA) decreased (P less than 0.05) during immersion in intact monkeys but not the denervated animals. Plasma vasopressin (PVP) concentration decreased (P less than 0.05) during the first 30 min of immersion in both groups but was not distinguishable from control by 60 min of immersion in denervated monkeys. These data demonstrate that complete cardiac denervation does not block the rise in plasma ANP or prevent the natriuresis associated with head-out water immersion. The suppression of PVP during the first minutes of immersion after complete cardiac denervation suggests that extracardiac sensing mechanisms associated with the induced fluid shifts may be responsible for the findings. water immersion; natriuresis; vasopressin; eardiae denervation; monkey

  2. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    PubMed

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-10-24

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  3. Solid immersion terahertz imaging with sub-wavelength resolution

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Schadko, Aleksander O.; Lebedev, Sergey P.; Tolstoguzov, Viktor L.; Kurlov, Vladimir N.; Reshetov, Igor V.; Spektor, Igor E.; Skorobogatiy, Maksim; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-05-01

    We have developed a method of solid immersion THz imaging—a non-contact technique employing the THz beam focused into evanescent-field volume and allowing strong reduction in the dimensions of THz caustic. We have combined numerical simulations and experimental studies to demonstrate a sub-wavelength 0.35λ0-resolution of the solid immersion THz imaging system compared to 0.85λ0-resolution of a standard imaging system, employing only an aspherical singlet. We have discussed the prospective of using the developed technique in various branches of THz science and technology, namely, for THz measurements of solid-state materials featuring sub-wavelength variations of physical properties, for highly accurate mapping of healthy and pathological tissues in THz medical diagnosis, for detection of sub-wavelength defects in THz non-destructive sensing, and for enhancement of THz nonlinear effects.

  4. Craniomandibular System and Postural Balance after 3-Day Dry Immersion

    PubMed Central

    Treffel, Loïc; Dmitrieva, Liubov; Gauquelin-Koch, Guillemette; Custaud, Marc-Antoine; Blanc, Stéphane; Gharib, Claude; Millet, Catherine

    2016-01-01

    The objective of the study was to determine the influence of simulated microgravity by exposure to dry immersion on the craniomandibular system. Twelve healthy male volunteers participated in a 3-day dry immersion study. Before and immediately after exposure we measured maximal bite force using piezoresistive sensors. The mechanical properties of the jaw and cervical muscles were evaluated before, during, and after dry immersion using MyotonPRO. Because recent studies reported the effects of jaw motor activity on the postural stability of humans, stabilometric measurements of center of pressure were performed before and after dry immersion in two mandibular positions: rest position without jaw clenching, and intercuspidal position during voluntary teeth clenching. Results revealed no significant changes of maximal bite force after dry immersion. All postural parameters were significantly altered by dry immersion. There were however no significant differences in stabilometric data according to mandibular position. Moreover the masseter tonicity increased immediately after the end of dry immersion period. Dry immersion could be used as a valid model for studying the effects of microgravity on human subjects. However, 3 days appear insufficient in duration to evaluate the effects of weightlessness on maximal bite force. Our research suggests a link between postural disturbance after dry immersion and masseter tonicity. PMID:26913867

  5. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  6. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  7. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  8. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  9. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  10. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  11. An Analysis of VR Technology Used in Immersive Simulations with a Serious Game Perspective.

    PubMed

    Menin, Aline; Torchelsen, Rafael; Nedel, Luciana

    2018-03-01

    Using virtual environments (VEs) is a safer and cost-effective alternative to executing dangerous tasks, such as training firefighters and industrial operators. Immersive virtual reality (VR) combined with game aspects have the potential to improve the user experience in the VE by increasing realism, engagement, and motivation. This article investigates the impact of VR technology on 46 immersive gamified simulations with serious purposes and classifies it towards a taxonomy. Our findings suggest that immersive VR improves simulation outcomes, such as increasing learning gain and knowledge retention and improving clinical outcomes for rehabilitation. However, it also has limitations such as motion sickness and restricted access to VR hardware. Our contributions are to provide a better understanding of the benefits and limitations of using VR in immersive simulations with serious purposes, to propose a taxonomy that classifies them, and to discuss whether methods and participants profiles influence results.

  12. Ultrasound-assisted extraction for total sulphur measurement in mine tailings.

    PubMed

    Khan, Adnan Hossain; Shang, Julie Q; Alam, Raquibul

    2012-10-15

    A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2(3)) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80°C temperature and 1 ml of HNO(3):1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2(3) full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO™-CNS method. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating

    PubMed Central

    Chen, Xiaodong; Betke, Ulf; Peters, Paul Clemens; Söffker, Gerrit Maximilian; Scheffler, Michael

    2017-01-01

    The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA) a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles) to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%). The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs). PMID:28773093

  14. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is

  15. Immersion diuresis without expected suppression of vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Silver, J. E.; Wong, N.; Spaul, W. A.; Greenleaf, J. E.; Kravik, S. E.

    1984-01-01

    There is a shift of blood from the lower parts of the body to the thoracic circulation during bed rest, water immersion, and presumably during weightlessness. On earth, this central fluid shift is associated with a profound diuresis. However, the mechanism involved is not yet well understood. The present investigation is concerned with measurements regarding the plasma vasopressin, fluid, electrolyte, and plasma renin activity (PRA) responses in subjects with normal preimmersion plasma vasopressin (PVP) concentration. In the conducted experiments, PRA was suppressed significantly at 30 min of immersion and had declined by 74 percent by the end of the experiment. On the basis of previously obtained results, it appears that sodium excretion during immersion may be independent of aldosterone action. Experimental results indicate that PVP is not suppressed by water immersion in normally hydrated subjects and that other factors may be responsible for the diuresis.

  16. Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method

    NASA Astrophysics Data System (ADS)

    Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An

    2015-06-01

    Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.

  17. Language Immersion in the Self-Study Mode E-Course

    ERIC Educational Resources Information Center

    Sobolev, Olga

    2016-01-01

    This paper assesses the efficiency of the "Language Immersion e-Course" developed at the London School of Economics and Political Science (LSE) Language Centre. The new self-study revision e-course, promoting students' proficiency in spoken and aural Russian through autonomous learning, is based on the Michel Thomas method, and is…

  18. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  19. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    PubMed Central

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  20. Immersive Training Systems: Virtual Reality and Education and Training.

    ERIC Educational Resources Information Center

    Psotka, Joseph

    1995-01-01

    Describes virtual reality (VR) technology and VR research on education and training. Focuses on immersion as the key added value of VR, analyzes cognitive variables connected to immersion, how it is generated in synthetic environments and its benefits. Discusses value of tracked, immersive visual displays over nonimmersive simulations. Contains 78…

  1. Water immersion decreases sympathetic skin response during color–word Stroop test

    PubMed Central

    Yamazaki, Yudai; Takahashi, Akari; Uetake, Yoshihito; Nakano, Saki; Iguchi, Kaho; Baba, Yasuhiro; Nara, Rio; Shimoyama, Yoshimitsu

    2017-01-01

    Water immersion alters the autonomic nervous system (ANS) response in humans. The effect of water immersion on executive function and ANS responses related to executive function tasks was unknown. Therefore, this study aimed to determine whether water immersion alters ANS response during executive tasks. Fourteen healthy participants performed color–word-matching Stroop tasks before and after non-immersion and water immersion intervention for 15 min in separate sessions. The Stroop task-related skin conductance response (SCR) was measured during every task. In addition, the skin conductance level (SCL) and electrocardiograph signals were measured over the course of the experimental procedure. The main findings of the present study were as follows: 1) water immersion decreased the executive task-related sympathetic nervous response, but did not affect executive function as evaluated by Stroop tasks, and 2) decreased SCL induced by water immersion was maintained for at least 15 min after water immersion. In conclusion, the present results suggest that water immersion decreases the sympathetic skin response during the color–word Stroop test without altering executive performance. PMID:28742137

  2. Water immersion decreases sympathetic skin response during color-word Stroop test.

    PubMed

    Sato, Daisuke; Yamazaki, Yudai; Takahashi, Akari; Uetake, Yoshihito; Nakano, Saki; Iguchi, Kaho; Baba, Yasuhiro; Nara, Rio; Shimoyama, Yoshimitsu

    2017-01-01

    Water immersion alters the autonomic nervous system (ANS) response in humans. The effect of water immersion on executive function and ANS responses related to executive function tasks was unknown. Therefore, this study aimed to determine whether water immersion alters ANS response during executive tasks. Fourteen healthy participants performed color-word-matching Stroop tasks before and after non-immersion and water immersion intervention for 15 min in separate sessions. The Stroop task-related skin conductance response (SCR) was measured during every task. In addition, the skin conductance level (SCL) and electrocardiograph signals were measured over the course of the experimental procedure. The main findings of the present study were as follows: 1) water immersion decreased the executive task-related sympathetic nervous response, but did not affect executive function as evaluated by Stroop tasks, and 2) decreased SCL induced by water immersion was maintained for at least 15 min after water immersion. In conclusion, the present results suggest that water immersion decreases the sympathetic skin response during the color-word Stroop test without altering executive performance.

  3. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  4. The Flostation - an Immersive Cyberspace System

    NASA Technical Reports Server (NTRS)

    Park, Brian

    2006-01-01

    A flostation is a computer-controlled apparatus that, along with one or more computer(s) and other computer-controlled equipment, is part of an immersive cyberspace system. The system is said to be immersive in two senses of the word: (1) It supports the body in a modified form neutral posture experienced in zero gravity and (2) it is equipped with computer-controlled display equipment that helps to give the occupant of the chair a feeling of immersion in an environment that the system is designed to simulate. Neutral immersion was conceived during the Gemini program as a means of training astronauts for working in a zerogravity environment. Current derivatives include neutral-buoyancy tanks and the KC-135 airplane, each of which mimics the effects of zero gravity. While these have performed well in simulating the shorter-duration flights typical of the space program to date, a training device that can take astronauts to the next level will be needed for simulating longer-duration flights such as that of the International Space Station. The flostation is expected to satisfy this need. The flostation could also be adapted and replicated for use in commercial ventures ranging from home entertainment to medical treatment. The use of neutral immersion in the flostation enables the occupant to recline in an optimal posture of rest and meditation. This posture, combines savasana (known to practitioners of yoga) and a modified form of the neutral posture assumed by astronauts in outer space. As the occupant relaxes, awareness of the physical body is reduced. The neutral body posture, which can be maintained for hours without discomfort, is extended to the eyes, ears, and hands. The occupant can be surrounded with a full-field-of-view visual display and nearphone sound, and can be stimulated with full-body vibration and motion cueing. Once fully immersed, the occupant can use neutral hand controllers (that is, hand-posture sensors) to control various aspects of the

  5. Alterations in acid-base homeostasis during water immersion in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Schneider, N. S.; Vaamonde, C. A.

    1974-01-01

    The effects of water immersion on renal bicarbonate and acid excretion were assessed in 10 normal male subjects. Immersion resulted in a highly significant progressive increase in the rate of sodium and bicarbonate excretion, and in urine pH. Immersion was also associated with a significant increase in urine P-CO2; this increase presupposes a maintained rate of hydrogen secretion in the distal tubular segment. The rapidity of onset of the bicarbonaturia (2 hrs of immersion) and the concomitant increase in urinary P-CO2 suggest that enhanced bicarbonate excretion of immersion cannot be completely accounted for by immersion-induced suppression of aldosterone, and that the natriuresis and bicarbonaturia of immersion is mediated in part by an increased proximal rejection of sodium and bicarbonate.

  6. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  7. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion

    NASA Astrophysics Data System (ADS)

    Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong

    2018-01-01

    Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.

  8. Impact of continuous positive airway pressure on the pulmonary changes promoted by immersion in water

    PubMed Central

    Rizzetti, Danize Aparecida; Quadros, Janayna Rodembuch Borba; Ribeiro, Bruna Esmerio; Callegaro, Letícia; Veppo, Aline Arebalo; Wiggers, Giulia Alessandra; Peçanha, Franck Maciel

    2017-01-01

    ABSTRACT Objective: To determine whether different levels of CPAP improve the lung volumes and capacities of healthy subjects immersed in water. Methods: This was a randomized clinical trial, conducted between April and June of 2016, involving healthy female volunteers who were using oral contraceptives. Three 20-min immersion protocols were applied: control (no CPAP); CPAP5 (CPAP at 5 cmH2O); and CPAP10 (CPAP at 10 cmH2O). We evaluated HR, SpO2, FVC, FEV1, the FEV1/FVC ratio, peak expiratory flow rate (PEFR), and FEF25-75%) at three time points: pre-immersion; 10 min after immersion; and 10 min after the end of each protocol. Results: We evaluated 13 healthy volunteers. The CPAP10 protocol reversed the restrictive pattern of lung function induced by immersion in water, maintaining pulmonary volumes and capacities for a longer period than did the CPAP5 protocol. Conclusions: When the hemodynamic change causing a persistent lung disorder, only the application of higher positive pressures is effective in maintaining long-term improvements in the pulmonary profile. PMID:29340488

  9. Effect of hydration on plasma volume and endocrine responses to water immersion

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.; Keil, L. C.; Wade, C. A.; Silver, J. E.; Geelen, G.

    1986-01-01

    The effect of hydration status on early endocrine responses and on osmotic and intravascular volume changes during immersion was determined in humans undergoing successive periods of dehydration, immersion, rehydration, and immersion. Immersion caused an isotonic expansion of plasma volume, as well as suppression of plasma renin activity and aldosterone, which all occurred independently of hydration status. On the other hand, the concentration of plasma vasopressin (PVP) was found to decrease during dehydrated immersion, but not during rehydrated immersion. It is concluded that plasma tonicity is not a factor influencing PVP suppression during water immersion.

  10. Comparison of neural histomorphology in tail tips from pigs docked using clippers or cautery iron.

    PubMed

    Kells, N J; Beausoleil, N J; Johnson, C B; Sutherland, M A; Morrison, R S; Roe, W

    2017-07-01

    Tail docking of pigs is commonly performed to reduce the incidence of unwanted tail-biting behaviour. Two docking methods are commonly used: blunt trauma cutting (i.e. using side clippers), or cutting and concurrent cauterisation using a hot cautery iron. A potential consequence of tail amputation is the development of neuromas at the docking site. Neuromas have been linked to neuropathic pain, which can influence the longer-term welfare of affected individuals. To determine whether method of tail docking influences the extent of neuroma formation, 75 pigs were allocated to one of three treatments at birth: tail docked using clippers; tail docked using cautery iron; tail left intact. Tail docking was performed at 2 days of age and pigs were kept under conventional conditions until slaughter at 21 weeks of age. Tails were removed following slaughter and subjected to histological examination. Nerve histomorphology was scored according to the following scale: 1=discrete well-organised nerve bundles; 2=moderate neural proliferation and disorganisation affecting more than half of the circumference of the tail; 3=marked neural proliferation to form almost continuous disorganised bundles or non-continuous enlarged bundles compressing the surrounding connective tissue. Scores of 2 or 3 indicated neuroma formation. Scores were higher in docked pigs than undocked pigs (P<0.001), but did not differ between pigs docked using clippers and those docked using cautery (P=0.23). The results indicate that tail docking using either clippers or cautery results in neuroma formation, thus having the potential to affect long-term pig welfare.

  11. Comparison of methods to estimate population densities of black-tailed prairie dogs

    Treesearch

    Kieth E. Severson; Glenn E. Plumb

    1999-01-01

    Recent reintroduction of the black-footed ferret (Mustela nigripes) in west-central South Dakota has focused new attention on black-tailed prairie dogs (Cynomys ludovicanus), because prairie dog colonies provide essential habitat for ferrets. Currently, management agencies are assessing prairie dog populations by counting active...

  12. Late Immersion in Perspective: The Peel Study.

    ERIC Educational Resources Information Center

    Lapkin, Sharon; And Others

    1983-01-01

    Presents the 1979 evaluation of the Peel County (Ontario) late immersion French program, in the context of some current issues in second language education in Canada. These include the comparative effectiveness of early and late immersion, the importance of intense exposure, and total accumulated hours of instruction. (Author/AMH)

  13. Intrapericardial Denervation: Responses to Water Immersion in Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    McKeever, Kenneth H.; Keil, Lanny C.; Sandler, Harold

    1995-01-01

    Eleven anesthetized rhesus monkeys were used to study cardiovascular, renal, and endocrine alterations associated with 120 min of head-out water immersion. Five animals underwent complete intrapericardial denervation using the Randall technique, while the remaining six monkeys served as intact controls. Each animal was chronically instrumented with an electromagnetic flow probe on the ascending aorta, a strain gauge pressure transducer implanted in the apex of the left ventricle (LV), and electrocardiogram leads anchored to the chest wall and LV. During immersion, LV end-diastolic pressure, urine flow, glomerular filtration rate, sodium excretion, and circulating atrial natriuretic peptide (ANP) each increased (P less than 0.05) for intact and denervated monkeys. There were no alterations in free water clearance in either group during immersion, yet fractional excretion of free water increased (P less than 0.05) in the intact monkeys. Plasma renin activity (PRA) decreased (P less than 0.05) during immersion in intact monkeys but not the denervated animals. Plasma vasopressin (PVP) concentration decreased (P less than 0.05) during the first 30 min of immersion in both groups but was not distinguishable from control by 60 min of immersion in denervated monkeys. These data demonstrate that complete cardiac denervation does not block the rise in plasma ANP or prevent the natriuresis associated with head-out water immersion. The suppression of PVP during the first minutes of immersion after complete cardiac denervation suggests that extracardiac sensing mechanisms associated with the induced fluid shifts may be responsible for the findings.

  14. Wettability changes in polyether impression materials subjected to immersion disinfection

    PubMed Central

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-01-01

    Background: Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. Materials and Methods: A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. Results: The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material. PMID:24130593

  15. Into hot water head first: distribution of intentional and unintentional immersion burns.

    PubMed

    Daria, Sonya; Sugar, Naomi F; Feldman, Kenneth W; Boos, Stephen C; Benton, Scott A; Ornstein, Amy

    2004-05-01

    Experience with several, previously unreported, intentional face-first immersion burns led us to evaluate the distribution of inflicted and unintentional immersion scald burns in a hospital series. (1) Authors' clinical and legal practices; (2) Burn center at regional Level 1 trauma hospital. : (1) Case series of face-first, inflicted immersion burn victims; (2) Consecutive hospitalized scald burn victims younger than 5 years old, 1/3/1996 to 3/25/2000. (1) Individual case reports; (2) Retrospective records review. Simple descriptive statistics, Fisher Exact test and t test. (1) Six cases of inflicted head and neck immersion injury are described. Four were tap water and 2 food/drink scalds. (2) 22/195 hospitalized victims had sustained immersion burns, 13 from tap water and 9 from other fluids. Six (46%) tap water immersions and no (0%) other immersions had inflicted injuries (P = 0.05). Two of the tap water immersions and one other source immersion included burning of the head and neck. Of these, one tap water immersion, but no other immersion, was inflicted. In no patients were head and neck injuries the sole or predominant site of scalding. In all, 9 children sustained inflicted scalds. Bilateral lower extremity tap water immersion scalds occurred in 100% (6/6) of abusive and 29% (2/7) of unintentional injuries (P = 0.02). Buttock and perineal injuries occurred in 67% (4/6) inflicted versus 29% (2/7) unintentional tap water immersion scalds (P = 0.28). Other fluids caused bilateral lower extremity immersion burns in 3/9 (33 %) unintentionally injured patients, but no abused children (NS). Craniofacial immersion injury, although seen by the authors in legal cases, is infrequent. It was present incidentally in one inflicted tap water burn in the consecutive hospital series. This series affirms the predominance of bilateral lower extremity burns in inflicted tap water immersions. Buttock/perineal immersions were more common with abuse than with unintentional injury.

  16. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages.

    PubMed

    Haghgou, Hamid R; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P < 0.05). This reduction was also statistically significant in the permanent teeth (P < 0.05). A comparison of the enamel changes in the primary teeth with permanent teeth after immersion in both beverages showed a greater microhardness reduction in the primary teeth in both the experimental groups. Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster.

  17. The ALIVE Project: Astronomy Learning in Immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Sahami, K.; Denn, G.

    2008-06-01

    The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.

  18. Social Interaction Development through Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Beach, Jason; Wendt, Jeremy

    2014-01-01

    The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…

  19. Opto-mechatronics issues in solid immersion lens based near-field recording

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  20. Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters

    NASA Astrophysics Data System (ADS)

    Elbisy, Moussa S.

    2017-06-01

    This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient C T; reflection coefficient C R, and energy dissipation coefficient C E coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that C R reaches the maximum value when B/L = 0.46 n while it is smallest when B/L=0.46 n+0.24 ( n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and C R and C T ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced C R, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.

  1. Evaluation of the mechanical properties and surface topography of as-received, immersed and as-retrieved orthodontic archwires

    PubMed Central

    POP, SILVIA IZABELLA; DUDESCU, MIRCEA; MERIE, VIOLETA VALENTINA; PACURAR, MARIANA; BRATU, CRISTINA DANA

    2017-01-01

    Background and aims This experimental study mainly aims at comparing the most important mechanical properties of the new orthodontic archwires, those immersed in fluorinated solution, the as-retrieved ones and the intra-oral used ones. Methods A total of 270 arch wires were tested, using tensile testing and three-point bending tests. The tested archwires were made of Stainless Steel, Nickel Titanium, Beta-Titanium and physiognomic covered Nickel Titanium. The tested archwires were subjected to three types of treatments: immersion into fluorinated solution, immersion into carbonated drinks and intra-oral use. Results The immersion caused variations of the activation and deactivation forces of all arch wires. The most affected arch wires, in terms of bending characteristics, were the intra-oral used ones. Conclusions The alteration of mechanical properties of the orthodontic arch wires by their immersion into fluorinated solutions and soft drinks could not be statistically demonstrated. PMID:28781528

  2. Distortion of calculated whole-body hematocrit during lower-body immersion in water.

    PubMed

    Knight, D R; Santoro, T; Bondi, K R

    1986-11-01

    We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.

  3. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  4. Theory and procedure for determining loads and motions in chine-immersed hydrodynamic impacts of prismatic bodies

    NASA Technical Reports Server (NTRS)

    Schnitzer, Emanuel

    1953-01-01

    A theoretical method is derived for the determination of the motions and loads during chine-immersed water landings of prismatic bodies. This method makes use of a variation of two-dimensional deflected water mass over the complete range of immersion, modified by a correction for three-dimensional flow. Equations are simplified through omission of the term proportional to the acceleration of the deflected mass for use in calculation of loads on hulls having moderate and heavy beam loading. The effects of water rise at the keel are included in these equations. In order to make a direct comparison of theory with experiment, a modification of the equations was made to include the effect of finite test-carriage mass. A simple method of computation which can be applied without reading the body of this report is presented as an appendix along with the required theoretical plots for determination of loads and motions in chine-immersed landings.

  5. Immersion francaise precoce: Francais I (Early French Immersion: French I).

    ERIC Educational Resources Information Center

    Burt, Andy; And Others

    This manual for first grade French instruction accompanies the early French immersion program. It is based on general and specific learning objectives for the four language skills the child needs to develop (listening, speaking, reading, and writing). The introduction to the manual provides an overview of the program for the primary grades and…

  6. Immersion versus interactivity and analytic field.

    PubMed

    Civitarese, Giuseppe

    2008-04-01

    Losing oneself in a story, a film or a picture is nothing but another step in the suspension of disbelief that permits one to become immersed in the 'novel' of reality. It is not by chance that the text-world metaphor informs classical aesthetics that, more than anything else, emphasizes emotional involvement. On the contrary, as in much of modern art, self-reflexivity and metafictional attention to the rhetoric of the real, to the framework, to the conventions and to the processes of meaning production, all involve a disenchanted, detached and sceptic vision--in short, an aesthetics of the text as game. By analogy, any analytic style or model that aims to produce a transformative experience must satisfactorily resolve the conflict between immersion (the analyst's emotional participation and sticking to the dreamlike or fictional climate of the session, dreaming knowing it's a dream) and interactivity (for the most part, interpretation as an anti-immersive device that 'wakes' one from fiction and demystifies consciousness). In analytic field theory the setting can be defined--because of the weight given to performativity of language, to the sensory matrix of the transference and the transparency of the medium--the place where an ideal balance is sought between immersion and interaction.

  7. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    PubMed Central

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545

  8. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.

    PubMed

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-05-17

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.

  9. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    PubMed

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  10. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  12. Evaluation of the Texas Technology Immersion Pilot: Third-Year (2006-07) Traits of Higher Technology Immersion Schools and Teachers

    ERIC Educational Resources Information Center

    Shapley, Kelly; Maloney, Catherine; Caranikas-Walker, Fanny; Sheehan, Daniel

    2008-01-01

    The Technology Immersion Pilot (TIP), created by the Texas Legislature in 2003, called for the Texas Education Agency (TEA) to establish a pilot project to "immerse" schools in technology by providing a wireless mobile computing device for each teacher and student, technology-based learning resources, training for teachers to integrate…

  13. An investigation on defect-generation conditions in immersion lithography

    NASA Astrophysics Data System (ADS)

    Tomita, Tadatoshi; Shimoaoki, Takeshi; Enomoto, Masashi; Kyoda, Hideharu; Kitano, Junichi; Suganaga, Toshifumi

    2006-03-01

    As a powerful candidate for a lithography technique that can accommodate the scaling-down of semiconductors, 193-nm immersion lithography-which realizes a high numerical aperture (NA) and uses deionized water as the medium between the lens and wafer in the exposure system-has been developing at a rapid pace and has reached the stage of practical application. In regards to defects that are a cause for concern in the case of 193-nm immersion lithography, however, many components are still unclear and many problems remain to be solved. It has been pointed out, for example, that in the case of 193-nm immersion lithography, immersion of the resist film in deionized water during exposure causes infiltration of moisture into the resist film, internal components of the resist dissolve into the deionized water, and residual water generated during exposure affects post-processing. Moreover, to prevent this influence of directly immersing the resist in de-ionized water, application of a protective film is regarded as effective. However, even if such a film is applied, it is still highly likely that the above-mentioned defects will still occur. Accordingly, to reduce these defects, it is essential to identify the typical defects occurring in 193-nm immersion lithography and to understand the condition for generation of defects by using some kinds of protective films and resist materials. Furthermore, from now onwards, with further scaling down of semiconductors, it is important to maintain a clear understanding of the relation between defect-generation conditions and critical dimensions (CD). Aiming to extract typical defects occurring in 193-nm immersion lithography, the authors carried out a comparative study with dry exposure lithography, thereby confirming several typical defects associated with immersion lithography. We then investigated the conditions for generation of defects in the case of some kinds of protective films. In addition to that, by investigating the defect

  14. Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink.

    PubMed

    Bajwa, Navroop Kaur; Pathak, Anuradha

    2014-01-01

    Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials.

  15. Prolonged whole-body cold water immersion: fluid and ion shifts.

    PubMed

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  16. Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia.

    PubMed

    Luhring, Katherine E; Butts, Cory L; Smith, Cody R; Bonacci, Jeffrey A; Ylanan, Ramon C; Ganio, Matthew S; McDermott, Brendon P

    2016-11-01

     Recommended treatment for exertional heat stroke includes whole-body cold-water immersion (CWI). However, remote locations or monetary or spatial restrictions can challenge the feasibility of CWI. Thus, the development of a modified, portable CWI method would allow for optimal treatment of exertional heat stroke in the presence of these challenges.  To determine the cooling rate of modified CWI (tarp-assisted cooling with oscillation [TACO]) after exertional hyperthermia.  Randomized, crossover controlled trial.  Environmental chamber (temperature = 33.4°C ± 0.8°C, relative humidity = 55.7% ± 1.9%).  Sixteen volunteers (9 men, 7 women; age = 26 ± 4.7 years, height = 1.76 ± 0.09 m, mass = 72.5 ± 9.0 kg, body fat = 20.7% ± 7.1%) with no history of compromised thermoregulation.  Participants completed volitional exercise (cycling or treadmill) until they demonstrated a rectal temperature (T re ) ≥39.0°C. After exercise, participants transitioned to a semirecumbent position on a tarp until either T re reached 38.1°C or 15 minutes had elapsed during the control (no immersion [CON]) or TACO (immersion in 151 L of 2.1°C ± 0.8°C water) treatment.  The T re , heart rate, and blood pressure (reported as mean arterial pressure) were assessed precooling and postcooling. Statistical analyses included repeated-measures analysis of variance with appropriate post hoc t tests and Bonferroni correction.  Before cooling, the T re was not different between conditions (CON: 39.27°C ± 0.26°C, TACO: 39.30°C ± 0.39°C; P = .62; effect size = -0.09; 95% confidence interval [CI] = -0.2, 0.1). At postcooling, the T re was decreased in the TACO (38.10°C ± 0.16°C) compared with the CON condition (38.74°C ± 0.38°C; P < .001; effect size = 2.27; 95% CI = 0.4, 0.9). The rate of cooling was greater during the TACO (0.14 ± 0.06°C/min) than the CON treatment (0.04°C/min ± 0.02°C/min; t 15 = -8.84; P < .001; effect size = 2.21; 95% CI = -0.13, -0

  17. Story Immersion in a Health Videogame for Childhood Obesity Prevention.

    PubMed

    Lu, Amy Shirong; Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom

    2012-02-15

    Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Eighty-seven 10-12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, "Escape from Diab" (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. African-American and Hispanic participants reported higher immersion scores than Caucasian participants ( P = 0.01). Story immersion correlated positively ( P values < 0.03) with an increase in Fruit and Vegetable Preference ( r = 0.27), Intrinsic Motivation for Water ( r = 0.29), Vegetable Self-Efficacy ( r = 0.24), and Physical Activity Self-Efficacy ( r = 0.32). Ethnic similarity between videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors.

  18. The Promise and Potential of Two-Way Immersion in Catholic Schools

    ERIC Educational Resources Information Center

    Fraga, Luis R.

    2016-01-01

    Two-Way Immersion (TWI) is a method of instruction designed to facilitate the learning of a second language by non-native speakers. Unlike traditional methods of teaching a second language, TWI is grounded in the equal presence, respect, and value of the two languages and their related cultures. Moreover, the goal of TWI is the building of…

  19. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  20. Is Immersion of Any Value? Whether, and to What Extent, Game Immersion Experience during Serious Gaming Affects Science Learning

    ERIC Educational Resources Information Center

    Cheng, Meng-Tzu; Lin, Yu-Wen; She, Hsiao-Ching; Kuo, Po-Chih

    2017-01-01

    Many studies have shown the positive impact of serious gaming on learning outcomes, but few have explored the relationships between game immersion and science learning. Accordingly, this study was conducted to investigate the effectiveness of learning by playing, as well as the dynamic process of game immersion experiences, and to further identify…

  1. Exploring Mercury Tail

    NASA Image and Video Library

    2008-08-26

    As the MESSENGER spacecraft approached Mercury, the UVVS field of view was scanned across the planet's exospheric "tail," which is produced by the solar wind pushing Mercury's exosphere (the planet's extremely thin atmosphere) outward. This figure, recently published in Science magazine, shows a map of the distribution of sodium atoms as they stream away from the planet (see PIA10396); red and yellow colors represent a higher abundance of sodium than darker shades of blue and purple, as shown in the colored scale bar, which gives the brightness intensity in units of kiloRayleighs. The escaping atoms eventually form a comet-like tail that extends in the direction opposite that of the Sun for many planetary radii. The small squares outlined in black correspond to individual measurements that were used to create the full map. These measurements are the highest-spatial-resolution observations ever made of Mercury's tail. In less than six weeks, on October 6, 2008, similar measurements will be made during MESSENGER's second flyby of Mercury. Comparing the measurements from the two flybys will provide an unprecedented look at how Mercury's dynamic exosphere and tail vary with time. Date Acquired: January 14, 2008. http://photojournal.jpl.nasa.gov/catalog/PIA11076

  2. Early Fluid and Protein Shifts in Men During Water Immersion

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Harrison, M. H.; Greenleaf, J. E.

    1987-01-01

    High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 C; immersion was preceded by 30 min control standing in air at 28 +/- 1 C. Blood was sampled from an antecubital catheter for determination of Blood Density (BD), Plasma Density (PD), Haematocrit (Ht), total Plasma Protein Concentration (PPC), and Plasma Albumin Concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g/l; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intra-vascular fluid shift.

  3. Forensic species identification of elephant (Elephantidae) and giraffe (Giraffidae) tail hair using light microscopy.

    PubMed

    Yates, Bonnie C; Espinoza, Edgard O; Baker, Barry W

    2010-09-01

    Here we present methods for distinguishing tail hairs of African elephants (Loxodonta africana), Asian elephants (Elephas maximus), and giraffes (Giraffa camelopardalis) from forensic contexts. Such hairs are commonly used to manufacture jewelry artifacts that are often sold illegally in the international wildlife trade. Tail hairs from these three species are easily confused macroscopically, and morphological methods for distinguishing African and Asian tail hairs have not been published. We used cross section analysis and light microscopy to analyze the tail hair morphology of 18 individual African elephants, 18 Asian elephants, and 40 giraffes. We found that cross-sectional shape, pigment placement, and pigment density are useful morphological features for distinguishing the three species. These observations provide wildlife forensic scientists with an important analytical tool for enforcing legislation and international treaties regulating the trade in elephant parts.

  4. Direct Immersion Annealing of Thin Block Copolymer Films.

    PubMed

    Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir

    2015-10-07

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.

  5. French immersion in Canada: Theory and practice

    NASA Astrophysics Data System (ADS)

    Safty, Adel

    1991-12-01

    French immersion programs are rapidly becoming an integral part of the Canadian education system. Its educational and linguistic achievements have been the subject of an abundant literature that continues to grow. The popularity of the program has helped it expand at a phenomenal rate. From one school and a handful of students in the experimental classes 25 years ago, there are now more than 17,000 schools offering French immersion instruction to close to 250,000 students in all major Canadian cities. The major theoretical foundations on which French immersion was explicitly and sometimes implicitly based may be summarized as follows: Early exposure to a second language is better than late exposure.

  6. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  7. Altered Perspectives: Immersive Environments

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  8. Characterization of renal response to prolonged immersion in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Denunzio, A. G.; Ramachandran, M.

    1980-01-01

    ?jDuring the initial phase of space flight, there is a translocation of fluid from the lower parts of the body to the central vascular compartment with a resultant natriuresis, diuresis, and weight loss. Because water immersion is regarded as an appropriate model for studying the redistribution of fluid that occurs in weightlessness, an immersion study of relatively prolonged duration was carried out in order to characterize the temporal profile of the renal adaptation to central hypervolemia. Twelve normal male subjects underwent an immersion study of 8-h duration in the sodium-replete state. Immersion resulted in marked natriuresis and diuresis which were sustained throughout the immersion period. The failure of that natriuresis and diuresis of immersion to abate or cease despite marked extracellular fluid volume contraction as evidenced by a mean weight loss of -2.2 + or - 0.3 kg suggests that central blood volume was not restored to normal and that some degree of central hypervolemia probably persisted.

  9. Enhancing the immersive reality of virtual simulators for easily accessible laparoscopic surgical training

    NASA Astrophysics Data System (ADS)

    McKenna, Kyra; McMenemy, Karen; Ferguson, R. S.; Dick, Alistair; Potts, Stephen

    2008-02-01

    Computer simulators are a popular method of training surgeons in the techniques of laparoscopy. However, for the trainee to feel totally immersed in the process, the graphical display should be as lifelike as possible and two-handed force feedback interaction is required. This paper reports on how a compelling immersive experience can be delivered at low cost using commonly available hardware components. Three specific themes are brought together. Firstly, programmable shaders executing in standard PC graphics adapter's deliver the appearance of anatomical realism, including effects of: translucent tissue surfaces, semi-transparent membranes, multilayer image texturing and real-time shadowing. Secondly, relatively inexpensive 'off the shelf' force feedback devices contribute to a holistic immersive experience. The final element described is the custom software that brings these together with hierarchically organized and optimized polygonal models for abdominal anatomy.

  10. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  11. A dummy cell immersed boundary method for incompressible turbulence simulations over dirty geometries

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2016-11-01

    A methodology to eliminate the manual work required for correcting the surface imperfections of computer-aided-design (CAD) data, will be proposed. Such a technique is indispensable for CFD analysis of industrial applications involving complex geometries. The CAD geometry is degenerated into cell-oriented values based on Cartesian grid. This enables the parallel pre-processing as well as the ability to handle 'dirty' CAD data that has gaps, overlaps, or sharp edges without necessitating any fixes. An arbitrary boundary representation is used with a dummy-cell technique based on immersed boundary (IB) method. To model the IB, a forcing term is directly imposed at arbitrary ghost cells by linear interpolation of the momentum. The mass conservation is satisfied in the approximate domain that covers fluid region except the wall including cells. Attempts to Satisfy mass conservation in the wall containing cells leads to pressure oscillations near the IB. The consequence of this approximation will be discussed through fundamental study of an LES based channel flow simulation, and high Reynolds number flow around a sphere. And, an analysis comparing our results with wind tunnel experiments of flow around a full-vehicle geometry will also be presented.

  12. Progress in video immersion using Panospheric imaging

    NASA Astrophysics Data System (ADS)

    Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.

    1998-09-01

    Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).

  13. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    PubMed

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  14. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  15. The effect of laparotomy on hydroxyl radicals, singlet oxygen and antioxidants measured by EPR method in the tails of rats.

    PubMed

    Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard

    2009-01-01

    The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.

  16. Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Nicholas J.

    Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit

  17. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man

    NASA Technical Reports Server (NTRS)

    Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.

    1976-01-01

    A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.

  18. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  19. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  20. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  1. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  2. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  3. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.

    PubMed

    Niskanen, I; Räty, J; Peiponen, K E

    2013-10-15

    The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units. © 2013 Elsevier B.V. All rights reserved.

  4. Surface properties of multilayered, acrylic resin artificial teeth after immersion in staining beverages

    PubMed Central

    NEPPELENBROEK, Karin Hermana; KUROISHI, Eduardo; HOTTA, Juliana; MARQUES, Vinicius Rizzo; MOFFA, Eduardo Buozi; SOARES, Simone; URBAN, Vanessa Migliorini

    2015-01-01

    Objective To evaluate the effect of staining beverages (coffee, orange juice, and red wine) on the Vickers hardness and surface roughness of the base (BL) and enamel (EL) layers of improved artificial teeth (Vivodent and Trilux). Material and Methods Specimens (n=8) were stored in distilled water at 37°C for 24 h and then submitted to the tests. Afterwards, specimens were immersed in one of the staining solutions or distilled water (control) at 37°C, and the tests were also performed after 15 and 30 days of immersion. Data were analyzed using 3-way ANOVA and Tukey’s test (α=0.05). Results Vivodent teeth exhibited a continuous decrease (p<0.0005) in hardness of both layers for up to 30 days of immersion in all solutions. For Trilux teeth, similar results were found for the EL (p<0.004), and the BL showed a decrease in hardness after 15 days of immersion (p<0.01). At the end of 30 days, this reduction was not observed for coffee and water (p>0.15), but red wine and orange juice continuously reduced hardness values (p<0.0004). Red wine caused the most significant hardness changes, followed by orange juice, coffee, and water (p<0.006). No significant differences in roughness were observed for both layers of the teeth during the immersion period, despite the beverage (p>0.06). Conclusions Hardness of the two brands of acrylic teeth was reduced by all staining beverages, mainly for red wine. Roughness of both layers of the teeth was not affected by long-term immersion in the beverages. PMID:26398509

  5. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  6. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  7. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  8. Active tails enhance arboreal acrobatics in geckos

    PubMed Central

    Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.

    2008-01-01

    Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft. PMID:18347344

  9. Liquid Chromatographic Detection of Permethrin from Filter Paper Wipes of White-tailed Deer

    USDA-ARS?s Scientific Manuscript database

    A simple, small-scale method for the determination of the presence or absence of permethrin on the hair coat of white-tailed deer, Odocoileus virginianus (Zimmermann), by high performance liquid chromatography was developed. White-tailed deer in South Texas and the northeastern U.S. are routinely tr...

  10. Change in Surface Roughness of Esthetic Restorative Materials after Exposure to Different Immersion Regimes in a Cola Drink

    PubMed Central

    Bajwa, Navroop Kaur; Pathak, Anuradha

    2014-01-01

    Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials. PMID:25006464

  11. Effect of cold-water immersion on skeletal muscle contractile properties in soccer players.

    PubMed

    García-Manso, Juan Manuel; Rodríguez-Matoso, Darío; Rodríguez-Ruiz, David; Sarmiento, Samuel; de Saa, Yves; Calderón, Javier

    2011-05-01

    This study was designed to analyze changes in muscle response after cold-water immersion. The vastus lateralis of the dominant leg was analyzed in 12 professional soccer players from the Spanish 2nd Division B using tensiomyography, before and after four cold-water immersions at 4°C lasting 4 mins each. Core temperature, skin temperature, and heart rate were monitored. A significant interaction (P ≤ 0.05) was found in muscle deformation between control conditions (5.12 ± 2.27 mm) and (1) immersion 3 (3.64 ± 2.27 mm) and (2) immersion 4 (3.38 ± 1.34 mm). A steady decrease was also observed in response velocity (immersion 1, -7.3%; immersion 2, -25.9%; immersion 3, -30.0%; immersion 4, -36.6%) and contraction velocity (immersion 1, -11.5%; immersion 2, -22.1%; immersion 3, -35.0%; immersion 4, -41.9%), with statistically significant differences (P ≤ 0.05) in relation to the reference values commencing with the third immersion. No significant differences were found between control conditions in subsequent exposures to cold water for the values of response time and contraction time. Sustained time and reaction time showed an increase during repeated exposures and with longer exposure time, although the increase was not statistically significant. This study shows that repeated cold-water immersions (4 × 4 mins at 4°C) cause considerable alterations to muscle behavior. These alterations significantly affect the state of muscles and their response capacity, particularly in relation to muscle stiffness and muscle contraction velocity.

  12. Comparison of postoperative refractive outcomes: IOLMaster® versus immersion ultrasound.

    PubMed

    Whang, Woong-Joo; Jung, Byung-Ju; Oh, Tae-Hoon; Byun, Yong-Soo; Joo, Choun-Ki

    2012-01-01

    To compare the postoperative refractive outcomes between IOLMaster biometry (Carl Zeiss Meditec, Inc., Dublin, CA) and immersion ultrasound biometry for axial length measurements. Refractive outcomes in 354 eyes were compared using the IOLMaster and the immersion ultrasound biometry. Predicted refraction was determined using manual keratometry and the SRK-T formula with personalized A-constant. The axial lengths measured using the IOLMaster and immersion ultrasound were 24.49 ± 2.11 and 24.46 ± 2.11 mm, respectively, and the difference was significant (P < .05). The mean errors were 0.000 ± 0.578 D with the IOLMaster, and 0.000 ± 0.599 D with the immersion ultrasound, but the difference was not significant. The mean absolute error was smaller with the IOLMaster than with immersion ultrasound (0.463 ± 0.341 vs 0.479 ± 0.359 D), but the difference was not significant. IOLMaster biometry yields highly accurate results in cataract surgery. However, if the IOLMaster is unavailable, immersion ultrasound biometry with personalized intraocular lens constants is an acceptable alternative. Copyright 2012, SLACK Incorporated.

  13. Effects of vasopressin administration on diuresis of water immersion in normal humans

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Denunzio, A. G.; Loutzenhiser, R. D.

    1981-01-01

    The influence of vasopressin suppression on the diuresis encountered during water immersion is investigated in studies on normal humans immersed to the neck. Six hydrated male subjects were studied on two occasions while undergoing 6 h of immersion without or during the administration of aqueous vasopressin for the initial 4 h. Neck immersion is found to result in a significant increase in urinary flow rate beginning in the first hour and persisting throughout the immersion. The administration of vasopressin markedly attenuated the diuretic response throughout the period of infusion, while cessation of vasopressin administration during the final 2 h of immersion resulted in a marked offset of the antidiuresis. Results thus support the view that the suppression of antidiuretic hormone contributes to the immersion diuresis of hydrated subjects.

  14. Comparison of the breeding biology of sympatric red-tailed Hawks, White-tailed Hawks, and Crested Caracaras in south Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2009-01-01

    We compared the breeding biology of sympatric nesting Red-tailed Hawks (Buteo jamaicensis), White-tailed Hawks (Buteo albicaudatus), and Crested Caracaras (Caracara cheriway) in south Texas during 2003 and 2004. We monitored 46 breeding attempts by Red-tailed Hawks, 56 by White-tailed Hawks, and 27 by Crested Caracaras. Observed nesting success was similar for Red-tailed Hawks (62%) and Crested Caracaras (61%), but lower for White-tailed Hawks (51%). Daily survival rates (0.99) were the same for all three species. Red-tailed Hawks and White-tailed Hawks both fledged 1.13 young per nesting pair and Crested Caracaras fledged 1.39 young per nesting pair. All three species nested earlier in 2004 than in 2003; in addition, the overall nesting density of these three species almost doubled from 2003 (1.45 pairs/km2) to 2004 (2.71 pairs/km2). Estimated productivity of all three species was within the ranges reported from other studies. Given extensive and progressive habitat alteration in some areas of south Texas, and the limited distributions of White-tailed Hawks and Crested Caracaras, the presence of large ranches managed for free-range cattle production and hunting leases likely provides important habitat and may be key areas for conservation of these two species. ?? 2009 The Raptor Research Foundation, Inc.

  15. Experience dans une classe d'immersion francaise aux Milles-Iles (An Experience in a French Immersion Class in Mille-Iles)

    ERIC Educational Resources Information Center

    Pariseau, Cecile

    1978-01-01

    A description of an immersion program for 6-year-old anglophone children modeled on "les classes d'accueil" for immigrant children. The program of intensive instruction in oral and written French is outlined. This school district has found this type of immersion superior to the usual kind. (The text is in French.) (AMH)

  16. How incorporation of scents could enhance immersive virtual experiences

    PubMed Central

    Ischer, Matthieu; Baron, Naëm; Mermoud, Christophe; Cayeux, Isabelle; Porcherot, Christelle; Sander, David; Delplanque, Sylvain

    2014-01-01

    Under normal everyday conditions, senses all work together to create experiences that fill a typical person's life. Unfortunately for behavioral and cognitive researchers who investigate such experiences, standard laboratory tests are usually conducted in a nondescript room in front of a computer screen. They are very far from replicating the complexity of real world experiences. Recently, immersive virtual reality (IVR) environments became promising methods to immerse people into an almost real environment that involves more senses. IVR environments provide many similarities to the complexity of the real world and at the same time allow experimenters to constrain experimental parameters to obtain empirical data. This can eventually lead to better treatment options and/or new mechanistic hypotheses. The idea that increasing sensory modalities improve the realism of IVR environments has been empirically supported, but the senses used did not usually include olfaction. In this technology report, we will present an odor delivery system applied to a state-of-the-art IVR technology. The platform provides a three-dimensional, immersive, and fully interactive visualization environment called “Brain and Behavioral Laboratory—Immersive System” (BBL-IS). The solution we propose can reliably deliver various complex scents during different virtual scenarios, at a precise time and space and without contamination of the environment. The main features of this platform are: (i) the limited cross-contamination between odorant streams with a fast odor delivery (< 500 ms), (ii) the ease of use and control, and (iii) the possibility to synchronize the delivery of the odorant with pictures, videos or sounds. How this unique technology could be used to investigate typical research questions in olfaction (e.g., emotional elicitation, memory encoding or attentional capture by scents) will also be addressed. PMID:25101017

  17. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.

    PubMed

    Maboeta, M S; Oladipo, O G; Botha, S M

    2018-05-01

    Earthworms are bioindicators of soil pollution. The ecotoxicity of tailings from selected gold mines in South Africa was investigated utilizing Eisenia andrei bioassays and biomarkers. Samples were obtained from unrehabilitated, rehabilitated and naturally vegetated sites. Biomass, neutral red retention time (NRRT), survival and reproduction were assessed using standardized protocols. Earthworm biomass, NRRT and reproductive success in rehabilitated tailings (comparable to naturally vegetated site) were significantly higher (p < 0.05) than in unrehabilitated tailings. In addition, significantly lower (p < 0.05) body tissue concentrations of As, Cd, Co, Cu and Ni contents were found in the rehabilitated tailings compared to the unrehabilitated. Further, significantly lower (p < 0.05) soil Mn and Zn concentrations were obtained in unrehabilitated tailings than the rehabilitated and naturally vegetated sites. Overall, reduced ecotoxicity effects were confirmed in rehabilitated compared to unrehabilitated tailings. This suggests that rehabilitation as a post-mining restorative strategy has strong positive influence on mine tailings.

  19. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits themore » potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.« less

  20. Immersion Suit Usage Within the RAAF

    DTIC Science & Technology

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  1. Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels.

    PubMed

    Terrell, James Ross; Gumpper, Ryan H; Luo, Ming

    2018-01-08

    Human hemoglobin (HbA) transports molecular oxygen (O 2 ) from the lung to tissues where the partial pressure of O 2 is lower. O 2 binds to HbA at the heme cofactor and is stabilized by a distal histidine (HisE7). HisE7 has been observed to occupy opened and closed conformations, and is postulated to act as a gate controlling the binding/release of O 2 . However, it has been suggested that HbA also contains intraprotein oxygen channels for entrances/exits far from the heme. In this study, we developed a novel method of crystal immersion in liquid oxygen prior to X-ray data collection. In the crystals immersed in liquid oxygen, the heme center was oxidized to generate aquomethemoglobin. Increases of structural flexibility were also observed in regions that are synonymous with previously postulated oxygen channels. These regions also correspond to medically relevant mutations which affect O 2 affinity. The way HbA utilizes these O 2 channels could have a profound impact on understanding the relationship of HbA O 2 transport within these disease conditions. Finally, the liquid oxygen immersion technique can be utilized as a new tool to crystallographically examine proteins and protein complexes which utilize O 2 for enzyme catalysis or transport. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Blood volume reduction counteracts fluid shifts in water immersion

    NASA Technical Reports Server (NTRS)

    Simanonok, Karl E.; Bernauer, Edmund

    1993-01-01

    Six healthy men were bled by 15 percent of their total blood volume (TBV) before 7 h of seated water immersion, to test the hypothesis that some of the major physiological responses to an expansion of central blood volume can be counteracted by prior reduction of TBV. Subjects were their own controls under two conditions: seated dry in air and seated immersed to the suprasternal notch in water. Immersion without prior reduction of TBV Wet Control (WC) caused a statistically significant 22-percent increase in cardiac output (CO), 368-percent increase in urine production, and 200-percent increase in sodium excretion relative to dry control (DC) sessions. When TBV was reduced before immersion, CO was the same as during DC sessions; however there were significant increases above DC in urine flow (+73 percent) and sodium excretion (+120 percent), although they were significantly reduced from WC values. Potassium excretion was similar during DC and WC sessions, but was significantly increased (+75 percent) when subjects were immersed after 15-percent reduction of TBV.

  3. Influence of nitric oxide-mediated vasodilation on the blood pressure measured with the tail-cuff method in the rat.

    PubMed

    Fritz, Mariana; Rinaldi, Gustavo

    2007-11-01

    Systolic blood pressure (SBP) is frequently measured in rats by the tail cuff method, which usually comprises pulse/flow disappearance and reappearance during cuff inflation (Inf) and deflation (Def), separated by an interval between cycles (IBC). Although Def values are habitually used to estimate SBP, in 58 Wistar rats we found (Def-Inf) to be -6 +/- 1 mmHg, indicating that Def < Inf in most cases. When the IBC was lengthened to 2 min, (Def-Inf) was increased to -17 +/- 2 mmHg, indicating the probable accumulation of a vasodilating metabolite. This increase of (Def-Inf) was prevented by papaverine, indicating its relation to smooth muscle contractility. Adrenergic blockade did not prevent the increase of (Def-Inf), but pretreatment with L-NAME decreased it to -5 +/- 2 mmHg (p < 0.05). Simultaneous measurement of SBP by tail-cuff method and carotid cannulation revealed that the Inf value was the most accurate estimation of intravascular SBP. We conclude that: (1) the Inf value should be taken as representative of SBP, since depending on the duration of suprasystolic compression the Def value can underestimate it, and (2) nitric oxide accumulation due to flow deprivation was the main cause of SBP underestimation by Def values.

  4. Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Nickel (Ni)-doped zinc oxide (ZnO) nanorod array films were synthesised using sonicated sol-gel immersion method. The FESEM images showed that the Ni-doped ZnO nanorod arrays possess hexagonal shape with average diameter about 120 nm and thickness about 1.10 µm. The Ni-doped ZnO nanorod arrays possess better transmittance properties with 3.27 eV of optical band gap energy and 40 meV of urbach energy. The current-voltage (I-V) measurement indicated that the conductivity of ZnO film slightly improved with Ni-doping. The doped film displayed good humidity sensing performance with sensitivity of 1.21.

  5. Color stability of ceramic brackets immersed in potentially staining solutions.

    PubMed

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  6. Active Tails Enhance Arboreal Acrobatics in Geckos

    DTIC Science & Technology

    2008-03-18

    the secret to the gecko s arboreal acrobatics includes an active tail. We examine the tail s role during rapid climbing, aerial descent, and gliding. We show that a gecko s tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle s kickstand. Should a gecko fall with its back to the

  7. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation.

    PubMed

    Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi

    2016-06-01

    Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. © 2016 Federation of European Biochemical Societies.

  8. A critical analysis of Australian policies and guidelines for water immersion during labour and birth.

    PubMed

    Cooper, Megan; McCutcheon, Helen; Warland, Jane

    2017-10-01

    Accessibility of water immersion for labour and/or birth is often dependent on the care provider and also the policies/guidelines that underpin practice. With little high quality research about the safety and practicality of water immersion, particularly for birth, policies/guidelines informing the practice may lack the evidence necessary to ensure practitioner confidence surrounding the option thereby limiting accessibility and women's autonomy. The aims of the study were to determine how water immersion policies and/or guidelines are informed, who interprets the evidence to inform policies/guidelines and to what extent the policy/guideline facilitates the option for labour and birth. Phase one of a three-phase mixed-methods study critically analysed 25 Australian water immersion policies/guidelines using critical discourse analysis. Policies/guidelines pertaining to the practice of water immersion reflect subjective opinions and views of the current literature base in favour of the risk-focused obstetric and biomedical discursive practices. Written with hegemonic influence, policies and guidelines impact on the autonomy of both women and practitioners. Policies and guidelines pertaining to water immersion, particularly for birth reflect opinion and varied interpretations of the current literature base. A degree of hegemonic influence was noted prompting recommendations for future maternity care policy and guidelines'. The Human Research Ethics Committee of the University of South Australia approved the research. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  9. Neuromuscular function during knee extension exercise after cold water immersion.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Tochihara, Yutaka

    2017-06-23

    Human adaptability to cold environment has been focused on in the physiological anthropology and related research area. Concerning the human acclimatization process in the natural climate, it is necessary to conduct a research assessing comprehensive effect of cold environment and physical activities in cold. This study investigated the effect of cold water immersion on the exercise performance and neuromuscular function during maximal and submaximal isometric knee extension. Nine healthy males participated in this study. They performed maximal and submaximal (20, 40, and 60% maximal load) isometric knee extension pre- and post-immersion in 23, 26, and 34 °C water. The muscle activity of the rectus femoris (RF) and vastus lateralis (VL) was measured using surface electromyography (EMG). The percentages of the maximum voluntary contraction (%MVC) and mean power frequency (MPF) of EMG data were analyzed. The post-immersion maximal force was significantly lower in 23 °C than in 26 and 34 °C conditions (P < 0.05). The post-immersion %MVC of RF was significantly higher than pre-immersion during 60% maximal exercise in 23 and 26 °C conditions (P < 0.05). In the VL, the post-immersion %MVC was significantly higher than pre-immersion in 23 and 26 °C conditions during 20% maximal exercise and in 26 °C at 40 and 60% maximal intensities (P < 0.05). The post-immersion %MVC of VL was significantly higher in 26 °C than in 34 °C at 20 and 60% maximal load (P < 0.05). The post-immersion MPF of RF during 20% maximal intensity was significantly lower in 23 °C than in 26 and 34 °C conditions (P < 0.05), and significantly different between three water temperature conditions at 40 and 60% maximal intensities (P < 0.05). The post-immersion MPF of VL during three submaximal trials were significantly lower in 23 and 26 °C than in 34 °C conditions (P < 0.05). The lower shift of EMG frequency would be connected with the decrease in the

  10. Simulation Exploration through Immersive Parallel Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  11. Removal of heavy metals from Missouri lead mill tailings by froth flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benn, F.W.; Cornell, W.L.

    Froth flotation techniques to remove heavy metals (Pb, Cu, and Zn) from southeast Missouri lead mill tailings were investigated. It has been estimated that southeast Missouri contains between 200 and 300 million st of Pb tailings stored above ground. The tailings were classified as two distinct types: (1) pre-1968 tailings from the Old Lead Belt (some more than 100 years old) and (2) post-1968 tailings from the New Lead Belt. The objectives of the investigation were to reduce the Pb remaining in the tailings to < 500 ppm (< 0.05 pct Pb) and to attempt to recover a marketable concentratemore » to offset a portion of the remediation costs. The remaining dolomite-limestone would then be used as mining backfill or agricultural limestone. Bench-scale froth flotation removed, in percent, 95 Pb, 84 Cu, and 54 Zn, leaving 94 pct of the original weight containing, in parts per million, 400 Pb, 40 Cu, and 300 Zn from the Old Lead Belt tailings. Separate flotation tests also removed, in percent, 85 Pb, 84 Cu, and 80 Zn, leaving 75 pct of the original weight containing, in parts per million, 400 Pb, 200 Cu, and 500 Zn from the New Lead Belt tailings. Concentrates recovered from the Old Lead Belt were retreated to produce a final Pb concentrate containing 72 pct Pb with a cleaner flotation recovery of 79 pct. Froth flotation proved to be a viable method to remove the heavy metals.« less

  12. Suppression of ADH during water immersion in normal man. [antidiuretic hormone

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Miller, M.

    1975-01-01

    A study was undertaken to ascertain whether diuresis induced by immersion is medicated by an inhibition of ADH. Immersion resulted in a progressive decrease in ADH excretion from 80.1 + or - 7 (SEM) to 37.3 + or - 6.3 microU/min (P less than 0.025). Cessation of immersion was associated with a marked increase in ADH from 37.3 + or - 6.3 microU/min to 176.6 + or - 72.6 microU/min during the recovery hour (P less than 0.05). Concomitant with these changes, urine osmolality decreased significantly beginning as early as the initial hour of immersion from 1044 + or - 36 to 542 + or - 66 mosmol/kg H2O during the final hour of immersion (P less than 0.001). These findings are consistent with the earlier suggestion that suppression of ADH release contributes to enhanced free water clearance in hydrated subjects undergoing immersion.

  13. Comparative study on collaborative interaction in non-immersive and immersive systems

    NASA Astrophysics Data System (ADS)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  14. Studies on shock interactions with moving cylinders using immersed boundary method

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Luo, Yujuan; Jin, Tai; Fan, Jianren

    2017-06-01

    The process of shock interaction with a rigid cylinder is studied using a compressible immersed boundary method combined with a high-order weighted essentially nonoscillatory scheme. Movement of the cylinder is coupled to the flow field. First, the accuracy of the numerical scheme is validated. Then the influences of the incident shock Mach number and the cylinder diameter are discussed. The results are compared with those from cases with stationary cylinders. It is found that variation of either the incident shock Mach number or the cylinder diameter can cause different schlieren images. At a given dimensionless time, the trajectory of the upper triple point varies nonmonotonically with the incident shock Mach number while the primary reflected shock gets closer to the cylinder with increasing incident shock Mach number. For any moving case with a given incident shock Mach number and cylinder diameter, the trajectory of the upper triple point, the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder, and the time evolution of the normalized shock detachment distance can all be predicted by linear correlation. As for the time evolution of the force exerted on the cylinder, the peak of the moving cylinder appears earlier than the stationary one in dimensionless time, with much lower value. Correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers and cylinder diameters are proposed. The resulting cylinder movement is also briefly discussed.

  15. Thyroxine Induced Resorption of Xenopus Laevis Tail Tissue in Vitro.

    ERIC Educational Resources Information Center

    Scadding, Steven R.

    1984-01-01

    A simple method of studying thyroxine-induced resorption of tadpole tails in vitro is described. This procedure demonstrates that resorption is dependent on thyroxine and requires protein synthesis. It introduces students to the use of tissue culture methods. (Author)

  16. A universal constraint-based formulation for freely moving immersed bodies in fluids

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh A.

    2012-11-01

    Numerical simulation of moving immersed bodies in fluids is now practiced routinely. A variety of variants of these approaches have been published, most of which rely on using a background mesh for the fluid equations and tracking the body using Lagrangian points. In this talk, generalized constraint-based governing equations will be presented that provide a unified framework for various immersed body techniques. The key idea that is common to these methods is to assume that the entire fluid-body domain is a ``fluid'' and then to constrain the body domain to move in accordance with its governing equations. The immersed body can be rigid or deforming. The governing equations are developed so that they are independent of the nature of temporal or spatial discretization schemes. Specific choices of time stepping and spatial discretization then lead to techniques developed in prior literature ranging from freely moving rigid to elastic self-propelling bodies. To simulate Brownian systems, thermal fluctuations can be included in the fluid equations via additional random stress terms. Solving the fluctuating hydrodynamic equations coupled with the immersed body results in the Brownian motion of that body. The constraint-based formulation leads to fractional time stepping algorithms a la Chorin-type schemes that are suitable for fast computations of rigid or self-propelling bodies whose deformation kinematics are known. Support from NSF is gratefully acknowledged.

  17. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  18. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  19. Influence of pyridostigmine bromide on human thermoregulation during cold-water immersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadarette, B.S.; Prusaczyk, W.K.; Sawka, M.N.

    1991-03-11

    This study examined the effects of an oral 30 mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses during cold stress. Six men were immersed in chilled stirred water for up to 180 minutes; once 2 hours following ingestion of PYR and once 2 hours following ingestion of a placebo (CON). With PYR, mean ({plus minus} SD) red blood cell cholinesterase inhibition was 33 ({plus minus}12)% at 110 minutes post-ingestion. Cholinesterase inhibition was negatively related to lean body mass. Abdominal discomfort caused termination in 3 of 6 PYR experiments ({bar X} immersion time = 117 min) but inmore » no CON experiments ({bar X} immersion time = 142 min, p > 0.05). During immersion, metabolic rate increased significantly over pre-immersion levels, and increased with duration of immersion, but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensation, heart rate, or plasma cortisol concentration. It was concluded that a 30 mg dose of PYR does not increase susceptibility to hypothermia in humans immersed in cold-water; however, in combination with cold-stress, PYR may result in marked abdominal cramping and limit cold tolerance.« less

  20. Comparison of intraocular lens power prediction using immersion ultrasound and optical biometry with and without formula optimization.

    PubMed

    Nemeth, Gabor; Nagy, Attila; Berta, Andras; Modis, Laszlo

    2012-09-01

    Comparison of postoperative refraction results using ultrasound biometry with closed immersion shell and optical biometry. Three hundred and sixty-four eyes of 306 patients (age: 70.6 ± 12.8 years) underwent cataract surgery where intraocular lenses calculated by SRK/T formula were implanted. In 159 cases immersion ultrasonic biometry, in 205 eyes optical biometry was used. Differences between predicted and actual postoperative refractions were calculated both prior to and after optimization with the SRK/T formula, after which we analysed the similar data in the case of Holladay, Haigis, and Hoffer-Q formulas. Mean absolute error (MAE) and the percentage rate of patients within ±0.5 and ±1.0 D difference in the predicted error were calculated with these four formulas. MAE was 0.5-0.7 D in cases of both methods with SRK/T, Holladay, and Hoffer-Q formula, but higher with Haigis formula. With no optimization, 60-65 % of the patients were under 0.5 D error in the immersion group (except for Haigis formula). Using the optical method, this value was slightly higher (62-67 %), however, in this case, Haigis formula also did not perform so well (45 %). Refraction results significantly improved with Holladay, Hoffer-Q, and Haigis formulas in both groups. The rate of patients under 0.5 D error increased to 65 % by the immersion technique, and up to 80 % by the optical one. According to our results, optical biometry offers only slightly better outcomes compared to those of immersion shell with no optimized formulas. However, in case of new generation formulas with both methods, the optimization of IOL-constants give significantly better results.

  1. VILLAGE--Virtual Immersive Language Learning and Gaming Environment: Immersion and Presence

    ERIC Educational Resources Information Center

    Wang, Yi Fei; Petrina, Stephen; Feng, Francis

    2017-01-01

    3D virtual worlds are promising for immersive learning in English as a Foreign Language (EFL). Unlike English as a Second Language (ESL), EFL typically takes place in the learners' home countries, and the potential of the language is limited by geography. Although learning contexts where English is spoken is important, in most EFL courses at the…

  2. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  3. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  4. Declarative Knowledge Acquisition in Immersive Virtual Learning Environments

    ERIC Educational Resources Information Center

    Webster, Rustin

    2016-01-01

    The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…

  5. Direct Immersion Annealing of Thin Block Copolymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.

    2015-09-09

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less

  6. Influence of water immersion on the mechanical properties of fiber posts.

    PubMed

    Komada, Wataru; Inagaki, Tasuku; Ueda, Yoji; Omori, Satoshi; Hosaka, Keiichi; Tagami, Junji; Miura, Hiroyuki

    2017-01-01

    The purpose of this study was to evaluate the influence of water immersion on the mechanical properties of three kinds of glass fiber posts and the fracture resistance of structures using resin composites with glass fiber posts. Each post was divided into three groups; a control group and two water immersion groups (30 and 90 days). Flexural strength was determined by three-point bending test. Each structure was divided into two groups; a control group and a water immersion group for 30 days. The fracture strength of structures was determined by a static loading test. In the flexural strength, two kinds of post in water immersion groups showed lower values than control groups. In the fracture strength, two kinds of structures in water immersion group showed lower values than control groups. The prefabricated glass fiber posts and structures using resin composites with glass fiber posts were affected by water immersion. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Characterization of Emergent Data Networks Among Long-Tail Data

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa; Kumar, Praveen; Hedstrom, Margaret; Myers, James; Plale, Beth; Marini, Luigi; McDonald, Robert

    2014-05-01

    Data curation underpins data-driven scientific advancements. It manages the information flux across multiple users throughout data life cycle as well as increases data sustainability and reusability. The exponential growth in data production spanning across the Earth Science involving individual and small research groups, which is termed as log-tail data, increases the data-knowledge latency among related domains. It has become clear that an advanced framework-agnostic metadata and ontologies for long-tail data is required to increase their visibility to each other, and provide concise and meaningful descriptions that reveal their connectivity. Despite the advancement that has been achieved by various sophisticated data management models in different Earth Science disciplines, it is not always straightforward to derive relationships among long-tail data. Semantic data clustering algorithms and pre-defined logic rules that are oriented toward prediction of possible data relationships, is one method to address these challenges. Our work advances the connectivity of related long-tail data by introducing the design for an ontology-based knowledge management system. In this work, we present the system architecture, its components, and illustrate how it can be used to scrutinize the connectivity among datasets. To demonstrate the capabilities of this "data network" prototype, we implemented this approach within the Sustainable Environment Actionable Data (SEAD) environment, an open-source semantic content repository that provides a RDF database for long-tail data, and show how emergent relationships among datasets can be identified.

  8. Immersion in water during labour and birth.

    PubMed

    Cluett, Elizabeth R; Burns, Ethel; Cuthbert, Anna

    2018-05-16

    Water immersion during labour and birth is increasingly popular and is becoming widely accepted across many countries, and particularly in midwifery-led care settings. However, there are concerns around neonatal water inhalation, increased requirement for admission to neonatal intensive care unit (NICU), maternal and/or neonatal infection, and obstetric anal sphincter injuries (OASIS). This is an update of a review last published in 2011. To assess the effects of water immersion during labour and/or birth (first, second and third stage of labour) on women and their infants. We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) (18 July 2017), and reference lists of retrieved trials. We included randomised controlled trials (RCTs) comparing water immersion with no immersion, or other non-pharmacological forms of pain management during labour and/or birth in healthy low-risk women at term gestation with a singleton fetus. Quasi-RCTs and cluster-RCTs were eligible for inclusion but none were identified. Cross-over trials were not eligible for inclusion. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. Two review authors assessed the quality of the evidence using the GRADE approach. This review includes 15 trials conducted between 1990 and 2015 (3663 women): eight involved water immersion during the first stage of labour; two during the second stage only; four during the first and second stages of labour, and one comparing early versus late immersion during the first stage of labour. No trials evaluated different baths/pools, or third-stage labour management. All trials were undertaken in a hospital labour ward setting, with a varying degree of medical intervention considered as routine practice. No study was carried out in a midwifery-led care setting. Most trial authors did not specify the

  9. The X-ray Crystal Structure of the Phage Tail Terminator Protein Reveals the Biologically Relevant Hexameric Rang Structure and Demonstrates a Conserved mechanism of Tail Termination among Divrse Long Tailed Phages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pell, L.; Liu, A; Edmonds, L

    The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changesmore » occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.« less

  10. Influence of Sound Immersion and Communicative Interaction on the Lombard Effect

    ERIC Educational Resources Information Center

    Garnier, Maeva; Henrich, Nathalie; Dubois, Daniele

    2010-01-01

    Purpose: To examine the influence of sound immersion techniques and speech production tasks on speech adaptation in noise. Method: In Experiment 1, we compared the modification of speakers' perception and speech production in noise when noise is played into headphones (with and without additional self-monitoring feedback) or over loudspeakers. We…

  11. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  12. Heat transfer comparison of nanofluid filled transformer and traditional oil-immersed transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    Dispersing nanoparticles with high thermal conductivity into transformer oil is an innovative approach to improve the thermal performance of traditional oil-immersed transformers. This mixture, also known as nanofluid, has shown the potential in practical application through experimental measurements. This paper presents the comparisons of nanofluid filled transformer and traditional oil-immersed transformer in terms of their computational fluid dynamics (CFD) solutions from the perspective of optimal design. Thermal performance of transformers with the same parameters except coolants is compared. A further comparison on heat transfer then is made after minimizing the oil volume and maximum temperature-rise of these two transformers. Adaptive multi-objective optimization method is employed to tackle this optimization problem.

  13. Influence of water immersion, water gymnastics and swimming on cardiac output in patients with heart failure

    PubMed Central

    Schmid, Jean‐Paul; Noveanu, Markus; Morger, Cyrill; Gaillet, Raymond; Capoferri, Mauro; Anderegg, Matthias; Saner, Hugo

    2007-01-01

    Background Whole‐body water immersion leads to a significant shift of blood from the periphery to the intrathoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically induced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. Aim To assess the haemodynamic response to water immersion, gymnastics and swimming in patients with chronic heart failure (CHF). Methods 10 patients with compensated CHF (62.9 (6.3) years, ejection fraction 31.5% (4.1%), peak oxygen consumption (V̇o2) 19.4 (2.8) ml/kg/min), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 (5.6) years, ejection fraction 63.9% (5.5%), peak V̇o2 28 (6.3) ml/kg/min), and 10 healthy controls (32.8 (7.2) years, peak V̇o2 45.6 (6) ml/kg/min) were examined. Haemodynamic response to thermoneutral (32°C) water immersion and exercise was measured using a non‐invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in controls, by 21% in patients with CAD and by 16% in patients with CHF. Although some patients with CHF showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, by 77% in patients with CAD and by 53% in patients with CHF). V̇o2 during swimming was 9.7 (3.3) ml/kg/min in patients with CHF, 12.4 (3.5) ml/kg/min in patients with CAD and 13.9 (4) ml/kg/min in controls. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak V̇o2 of at least 15 ml/kg/min during a symptom‐limited exercise stress test tolerate water immersion and swimming in thermoneutral water well. Although cardiac index and V̇o2 are lower than in patients

  14. Degradation of partially immersed glass: A new perspective

    NASA Astrophysics Data System (ADS)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  15. Sterilization of sea lampreys (Petromyzon marinus) by immersion in an aqueous solution of bisazir

    USGS Publications Warehouse

    Hanson, Lee H.

    1981-01-01

    Groups of sea lamprey (Petromyzon marinus) eggs fertilized by males previously immersed in an aqueous solution of p,p-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir) at concentrations of 10–100 mg/L produced fewer normal, live prolarvae after 15–17 d of incubation than did groups of eggs fertilized by normal males. Mortality of embryos or prolarvae was nearly 100% in groups of eggs fertilized by males that had been immersed in a 50 mg/L solution of bisazir for 4 h or in a 100 mg/L solution for 2 h. The immersion technique appears to be an efficient method of sterilizing large numbers of male sea lampreys for use in a proposed sterile-male-release program.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes

  16. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model.

    PubMed

    Kamiya, Seitaro; Hagimori, Masayori; Ogasawara, Masayoshi; Arakawa, Masayuki

    2010-01-01

    Thrombosis is characterized by congenital and acquired procatarxis. Nattokinase inhibits thrombus formation in vitro. However, in vivo evaluation of the therapeutic efficacy of nattokinase against thrombosis remains to be conducted. Subcutaneous nattokinase injections of 1 or 2 mg/ml were administered to the tails of rats. Subsequently, κ-carrageenan was intravenously administered to the tails at 12 h after nattokinase injections. The mean length of the infarcted regions in the tails of rats was significantly shorter in rats administered 2 mg/ml of nattokinase than those in control rats. Nattokinase exhibited significant prophylactic antithrombotic effects. Previously, the in vitro efficacy of nattokinase against thrombosis had been reported; now our study has revealed the in vivo efficacy of nattokinase against thrombosis. Copyright © 2010 S. Karger AG, Basel.

  17. Influence of a peracetic acid-based immersion on indirect composite resin.

    PubMed

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  18. Evaluation of knowledge transfer in an immersive virtual learning environment for the transportation community.

    DOT National Transportation Integrated Search

    2014-05-01

    Immersive Virtual Learning Environments (IVLEs) are extensively used in training, but few rigorous scientific investigations regarding the : transfer of learning have been conducted. Measurement of learning transfer through evaluative methods is key ...

  19. EAR AND TAIL LESIONS ON CAPTIVE WHITE-TAILED DEER FAWNS (ODOCOILEUS VIRGINIANUS): A CASE STUDY.

    PubMed

    Ferguson, Treena L; Demarais, Stephen; Cooley, Jim; Fleming, Sherrill; Michel, Eric S; Flinn, Emily

    2016-06-01

    During the 2008-2011 time period, undiagnosed lesions were observed in 21 of 150 white-tailed deer fawns (Odocoileus virginianus) that were part of a captive deer herd at Mississippi State University. Clinical findings in healthy and diseased fawns from 0 to 90 days of age included bite and scratch marks followed by moderate to severe ear and tail necrosis. Gross necropsy findings of necrotizing ulcerative dermatitis correlated with histopathologic findings that included focally severe multifocal vasculitis, vascular necrosis, and thrombosis. This article is a clinical description of these previously unreported lesions associated with tissue necrosis in young captive white-tailed deer.

  20. On the average configuration of the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1978-01-01

    Over 3000 hours of IMP-6 magnetic field data obtained between 20 and 33 R sub E in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5 minute averages of B sub Z as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks than near midnight. The tail field projected in the solar magnetospheric equatorial plane deviates from the X axis due to flaring and solar wind aberration by an angle alpha = -0.9 y sub SM - 1.7 where Y sub SM is in earth radii and alpha is in degrees. After removing these effects the Y component of the tail field is found to depend on interplanetary sector structure. During an away sector the B sub Y component of the tail field is on average 0.5 gamma greater than that during a toward sector, a result that is true in both tail lobes and is independent of location across the tail.

  1. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    PubMed

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  2. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion.

    PubMed

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo; Pott, Frank Christian

    2008-08-01

    In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires several cold immersions. This study examines whether thorough instruction enables non-habituated persons to attenuate the ventilatory component of cold-shock response. There were nine volunteers (four women) who were lowered into a 0 degrees C immersion tank for 60 s. Middle cerebral artery mean velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation in respiratory rate (from 12 +/- 3 to 21 +/- 5 breaths, min(-1)) and tidal volume (1022 +/- 142 to 1992 +/- 253 ml). Though end-tidal carbon dioxide tension decreased from 4.9 +/- 0.13 to 3.9 +/- 0.21 kPa, CBFV was insignificantly reduced by 7 +/- 4% during immersion with a brief nadir of 21 +/- 4%. Even without prior cold-water experience, subjects were able to suppress reflex hyperventilation following ice-water immersion, maintaining the cerebral blood flow velocity at a level not associated with impaired consciousness. This study implies that those susceptible to accidental cold-water immersion could benefit from education in cold-shock response and the possibility of reducing the ventilatory response voluntarily.

  3. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    PubMed

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  4. Administrative Problems of Early Immersion.

    ERIC Educational Resources Information Center

    McGillivray, W. R.

    1978-01-01

    Administrative problems that have been solved or accepted during eight years of early immersion programs are discussed including choosing locations, staffing, costs, logistics, and the need for suitable pupil progress reporting. (JMF)

  5. Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field

    NASA Astrophysics Data System (ADS)

    Higuchi, Katsuhiko; Hamal, Dipendra Bahadur; Higuchi, Masahiko

    2018-05-01

    We propose a nonperturbative method to calculate the butterfly diagram of energy spectra for materials immersed in a magnetic field. We apply the proposed method to a crystalline silicon immersed in a magnetic field. It is shown that the conventional Hofstadter butterfly diagram is of low accuracy not only in the high magnetic field region of the diagram but also even in the experimentally available magnetic field region. This means that the present butterfly diagram is regarded as a replacement for the Hofstadter butterfly diagram. We also show that the correction to the Hofstadter buttery diagram would be observed under the ultrahigh magnetic field that is available in experiments.

  6. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    PubMed

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P < 0.005). Significant decreases in skin temperature, sweat rate, heart rate, and heat storage was also noted in the HI vs. the CO trials. Tolerance time in the HI exposure were longer than in the CO exposure (only 12 subjects in the CO trial endured the entire heat exposure session, as opposed to all 17 subjects in the HI group). It is concluded that hand immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  7. Foreign Language Immersion Programs and School Policy: Conflicting Agendas

    ERIC Educational Resources Information Center

    Olson Beal, Heather K.; Haj-Broussard, Michelle; Boudreaux, Nicole

    2012-01-01

    In this position article, we explore what happens when school district policies regarding desegregation, accountability, and foreign language immersion education collide. Specifically, we contrast 2 immersion programs that experienced distinct outcomes as a result of the conflicting agendas underlying these 3 policies. One program, originally…

  8. Changes in Landing Mechanics after Cold-Water Immersion

    ERIC Educational Resources Information Center

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  9. Efficiency, dispersion and straylight performance tests of immersed gratings for high resolution spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernandez-Saldivar, J.; Culfaz, F.; Angli, N.; Bhatti, I.; Lobb, D.; Baister, G.; Touzet, B.; Desserouer, F.; Guldimann, B.

    2017-11-01

    New immersed grating technology is needed particularly for use in imaging spectrometers that will be used in sensing the atmosphere O2A spectral band (750nm - 775 nm) at spectral resolution in the order of 0.1 nm whilst ensuring a high efficiency and maintaining low stray light. In this work, the efficiency, dispersion and stray light performance of an immersed grating are tested and compared to analytical models. The grating consists of an ion-beam etched grating in a fused-silica substrate of 120 mm x 120mm immersed on to a prism of the same material. It is designed to obtain dispersions > 0.30°/nm-1 in air and >70% efficiency. The optical performance of the immersed grating is modelled and methods to measure its wavefront, efficiency, dispersion and scattered radiance are described. The optical setup allows the measurement of an 80mm beam diameter to derive the bidirectional scatter distribution function (BSDF) from the immersed grating from a minimum angle of 0.1° from the diffracted beam with angular resolution of 0.05°. Different configurations of the setup allow the efficiency and dispersion measurements using a tuneable laser in the 750nm-775nm range. The results from the tests are discussed with the suitability of the immersed gratings in mind for future space based instruments for atmospheric monitoring.

  10. Immersed boundary lattice Boltzmann model based on multiple relaxation times

    NASA Astrophysics Data System (ADS)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  11. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  12. The immersion freezing behavior of size-segregated soot and kaolinite particles

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  13. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  14. Power law tails in phylogenetic systems.

    PubMed

    Qin, Chongli; Colwell, Lucy J

    2018-01-23

    Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.

  15. Water immersion and its computer simulation as analogs of weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    Experimental studies and computer simulations of water immersion are summarized and discussed with regard to their utility as analogs of weightlessness. Emphasis is placed on describing and interpreting the renal, endocrine, fluid, and circulatory changes that take place during immersion. A mathematical model, based on concepts of fluid volume regulation, is shown to be well suited to simulate the dynamic responses to water immersion. Further, it is shown that such a model provides a means to study specific mechanisms and pathways involved in the immersion response. A number of hypotheses are evaluated with the model related to the effects of dehydration, venous pressure disturbances, the control of ADH, and changes in plasma-interstitial volume. By inference, it is suggested that most of the model's responses to water immersion are plausible predictions of the acute changes expected, but not yet measured, during space flight. One important prediction of the model is that previous attempts to measure a diuresis during space flight failed because astronauts may have been dehydrated and urine samples were pooled over 24-hour periods.

  16. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  17. Wing-Fuselage Interference, Tail Buffeting, and Air Flow About the Tail of a Low-Wing Monoplane

    NASA Technical Reports Server (NTRS)

    White, James A; Hood, Manley J

    1935-01-01

    This report presents the results of wind tunnel tests on a Mcdonnell Douglas airplane to determine the wing-fuselage interference of a low-wing monoplane. The tests included a study of tail buffeting and the air flow in the region of the tail. The airplane was tested with and without the propeller slipstream, both in the original condition and with several devices designed to reduce or eliminate tail buffeting. The devices used were wing-fuselage fillets, a NACA cowling, reflexed trailing edge of the wing, and stub auxiliary airfoils.

  18. Immersive Environments - A Connectivist Approach

    NASA Astrophysics Data System (ADS)

    Loureiro, Ana; Bettencourt, Teresa

    We are conducting a research project with the aim of achieving better and more efficient ways to facilitate teaching and learning in Higher Level Education. We have chosen virtual environments, with particular emphasis to Second Life® platform augmented by web 2.0 tools, to develop the study. The Second Life® environment has some interesting characteristics that captured our attention, it is immersive; it is a real world simulator; it is a social network; it allows real time communication, cooperation, collaboration and interaction; it is a safe and controlled environment. We specifically chose tools from web 2.0 that enable sharing and collaborative way of learning. Through understanding the characteristics of this learning environment, we believe that immersive learning along with other virtual tools can be integrated in today's pedagogical practices.

  19. Immersion of virtual reality for rehabilitation - Review.

    PubMed

    Rose, Tyler; Nam, Chang S; Chen, Karen B

    2018-05-01

    Virtual reality (VR) shows promise in the application of healthcare and because it presents patients an immersive, often entertaining, approach to accomplish the goal of improvement in performance. Eighteen studies were reviewed to understand human performance and health outcomes after utilizing VR rehabilitation systems. We aimed to understand: (1) the influence of immersion in VR performance and health outcomes; (2) the relationship between enjoyment and potential patient adherence to VR rehabilitation routine; and (3) the influence of haptic feedback on performance in VR. Performance measures including postural stability, navigation task performance, and joint mobility showed varying relations to immersion. Limited data did not allow a solid conclusion between enjoyment and adherence, but patient enjoyment and willingness to participate were reported in care plans that incorporates VR. Finally, different haptic devices such as gloves and controllers provided both strengths and weakness in areas such movement velocity, movement accuracy, and path efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  1. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOEpatents

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  2. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  3. The graphene oxide membrane immersing in the aqueous solution studied by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjing; Chen, Zhe; Yao, Lei; Wang, Xiao; Fu, Ping; Lin, Zhidong

    2018-04-01

    The interlayer spacing of graphene oxide (GO) is a key property for GO membrane. To probe the variation of interlayer spacing of the GO membrane immersing in KCl aqueous solution, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and computational calculation was utilized in this study. The XRD patterns show that soaking in KCl aqueous solution leads to an increase of interlayer spacing of GO membrane. And the EIS results indicate that during the immersing process, the charge transfer resistance of GO membrane decreases first and then increases. Computational calculation confirms that intercalated water molecules can result in an increase of interlayer spacing of GO membrane, while the permeation of K+ ions would lead to a decrease of interlayer spacing. All the results are in agreement with each other. It suggests that during the immersing process, the interlayer spacing of GO enlarges first and then decreases. EIS can be a promisingly online method for examining the interlayer spacing of GO in the aqueous solution.

  4. Some Effects of Horizontal-Tail Position on the Vertical-Tail Pressure Distributions of a Complete Model in Sideslip at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Alford, William J., Jr.

    1958-01-01

    An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with

  5. Sciences Humaines Assessment, Manitoba 1991. Final Report: French Immersion Program = Evaluation en sciences humaines, Manitoba 1991. Rapport finale: Programme d'immersion francaise.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg. Curriculum Services Branch.

    This document is the second of two reports of the findings of the 1991 "Sciences...humaines" Assessment for grades 8 and 10 conducted in Franco-Manitoban schools and in French immersion programs in Manitoba, Canada. The report on the French immersion course is presented in parallel French and English versions, and a separate report, in…

  6. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 μm) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as

  7. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  8. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    PubMed Central

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  9. The Distant Sodium Tail of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.; Morgan, T. H.

    2001-01-01

    Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.

  10. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, Peter A.; Knopf, Daniel A.

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically

  11. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE PAGES

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-24

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically

  12. The effects of cold immersion and hand protection on grip strength.

    PubMed

    Vincent, M J; Tipton, M J

    1988-08-01

    The maximal voluntary grip strength (MVGS) of male volunteers was examined following a series of five intermittent 2 min cold water (5 degrees C) immersions of the unprotected hand or forearm. MVGS changes due to wearing a protective glove were also investigated. The surface electrical activity over the hand flexor muscles was recorded, as was the skin temperature of the hand and forearm. MVGS decreased significantly (p less than 0.01) following hand immersions (16%) and forearm immersion (13%). The majority of these reductions occurred during the first 2-min period of immersion. The effect of wearing a glove after unprotected hand cooling also produced significant (p less than 0.01) MVGS reductions which averaged 14%. These reductions were in addition to those caused by hand cooling. We conclude that both hand and forearm protection are important for the maintenance of hand-grip strength following cold water immersion.

  13. Detection of Mercury's Potassium Tail

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Leblanc, Francois; Moore, Luke; Bida, Thomas A.

    2017-10-01

    Ground-based observations of Mercury's exosphere bridge the gap between the MESSENGER and BepiColombo missions and provide a broad counterpart to their in situ measurements. Here we report the first detection of Mercury's potassium tail in both emission lines of the D doublet. The sodium to potassium abundance ratio at 5 planetary radii down-tail is approximately 95, near the mid-point of a wide range of values that have been quoted over the planet's disk. This is several times the Na/K present in atmospheres of the Galilean satellites and more than an order of magnitude above Mercury's usual analogue, the Moon. The observations confirm that Mercury's anomalously high Na/K ratios cannot be explained by differences in neutral loss rates. The width and structure of the Na and K tails is comparable and both exhibit a persistent enhancement in their northern lobe. We interpret this as a signature of Mercury's offset magnetosphere; the exosphere's source rates are locally enhanced at the southern surface, and sloshing from radiation pressure and gravity guides this population into the northern region of the tail.

  14. The immersion freezing behavior of ash particles from wood and brown coal burning

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  15. Exploring Student Integration Patterns in Two-Way Immersion Schools

    ERIC Educational Resources Information Center

    Martinez, Martha I.

    2011-01-01

    Two-way immersion (TWI) programs teach English Learners (ELs) and native English speakers in the same classroom using both languages in an immersion approach. Studies suggest that TWI programs result in greater student integration, thus providing a promising alternative for Spanish speaking ELs, who are frequently concentrated in high poverty,…

  16. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  17. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  18. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.

    PubMed

    Varas, Macarena; Fariña, Alonso; Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Marcoleta, Andrés E; Allende, Miguel L; Santiviago, Carlos A; Chávez, Francisco P

    2017-04-01

    The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  20. Simulation Exploration through Immersive Parallel Planes: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  1. SEARCH AND MAPPING OF THE OLD BURIED TAILINGS WITH RADIOACTIVE WASTES AT THE URBAN TERRITORY.

    PubMed

    Molchanov, O I; Soroka, Y N; Podrezov, A A; Soroka, M N

    2017-11-01

    The article presents results of investigation on search and mapping of the old buried tailings with radioactive wastes on the territory of Kamianske City. For solving the problem used complex of methods. These methods are as follows: soil-gas 222Rn measurement and measurement of 222Rn flux density from the ground surface, gamma-radiation survey, prospecting drilling, gamma-ray logging and laboratory analysis of radionuclides. The leading method in this complex was the method of soil-gas 222Rn measurement. Using this method location of the tailings has been precisely defined. The tailings boundaries have been contoured in the plan. Other methods permitted to define such parameters as thickness of the wastes, their volume (~330 000 m3), radionuclide and chemical composition. It was found that radioactive residues occur at a depth from 2 to 11 m and contain in its composition 226Ra, 210Pb and 210Po in the range from 8370 to 37 270 Bq kg-1. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  3. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method.

    PubMed

    Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka

    2010-05-01

    Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.

  4. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  5. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  6. The Sodium Tail of the Moon

    NASA Technical Reports Server (NTRS)

    Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.

    2009-01-01

    During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.

  7. A direct immersion solid-phase microextraction gas chromatography/mass spectrometry method for the simultaneous detection of levamisole and minor cocaine congeners in hair samples from chronic abusers.

    PubMed

    Fucci, Nadia; Gambelunghe, Cristiana; Aroni, Kyriaki; Rossi, Riccardo

    2014-12-01

    Because levamisole has been increasingly found as a component of illicit drugs, a robust method to detect its presence in hair samples is needed. However, no systematic research on the detection of levamisole in hair samples has been published. The method presented here uses direct immersion solid-phase microextraction coupled with gas chromatography and mass spectrometry (DI-SPME-GC/MS) to detect levamisole and minor cocaine congeners in hair samples using a single-extraction method. Fifty hair samples taken in the last 4 years were obtained from cocaine abusers, along with controls taken from drug-free volunteers. Sampling was performed using direct immersion with a 30-μm polydimethylsiloxane fused silica/stainless steel fiber. Calibration curves were prepared by adding known amounts of analytes and deuterated internal standards to the hair samples taken from drug-free volunteers. This study focused on the adulterant levamisole and some minor cocaine congeners (tropococaine, norcocaine, and cocaethylene). Levamisole was detected in 38% of the hair samples analyzed; its concentration ranged from 0.2 to 0.8 ng/mg. The limit of quantification and limit of detection for levamisole, tropococaine, norcocaine, and cocaine were 0.2 and 0.1 ng/mg, respectively. DI-SPME-GC/MS is a sensitive and specific method to detect the presence of levamisole and cocaine congeners in hair samples.

  8. Chemical and ecotoxicity evaluation of tailings rehabilitated using Technosol

    NASA Astrophysics Data System (ADS)

    Arán, Diego; Santos, Erika S.; Abreu, Maria Manuela; Macías, Felipe

    2017-04-01

    The Fé mining area was the most important uranium deposit in Spain. In this deposit, the uranium mineralization contains sulfides. Consequently, tailings are a source of polymetallic contamination requiring their rehabilitation in order to decrease the dispersion of potentially hazardous elements (PHEs). The main objective of this work is to evaluate the efficiency of a Technosol application on the rehabilitation of these tailings at chemical and ecotoxicological level. In the field, a layer of 20 cm Technosol with andic and eutrophic characteristic was applied over the tailing (total area: 625 m2). After 20 months, composite samples of Technosol (TEC), recovered tailing (bottom of the Technosol, RT) and tailings without recuperation (T) were collected. These samples were characterized for pH, electric conductivity (EC), PHEs concentration in total fraction and available fraction extracted with rhizosphere-based method. Ecotoxicity bioassays were carried out with two species, Lollium perenne and Trifolium pratense following OECD Guidelines. Three bioassays were carried out: filter paper test and hydroponic test with leachates, and soil test. In leachates (extracted with DIN method) were determined pH, EC and same PHEs than in Technosol/Tailings. Visual aspects, germination, root and shoot elongation and dry biomass were evaluated. The substrate effect on growth of both species was evaluated in pot experiment (500 g Technosol/Tailings per pot, 70% of water-holding capacity) under greenhouse conditions after 69 days by dry shoot biomass. Materials from T had pH 4, EC: 1.2 mS/cm and high total concentrations of several PHEs (g/kg; Al: 46.2; As, Co and Pb: 0.02-0.03; Cu: 0.04; Fe: 63.2 Mn: 1.3; Ni and Zn: 0.1-0.2). However, PHEs concentrations in leachates and available fraction corresponded to <2.5% of total concentrations, except for Co, Mn and Ni where 7-18% of their total concentrations can be available to organisms. Leachates from RT showed a significant

  9. Probability of detecting band-tailed pigeons during call-broadcast versus auditory surveys

    USGS Publications Warehouse

    Kirkpatrick, C.; Conway, C.J.; Hughes, K.M.; Devos, J.C.

    2007-01-01

    Estimates of population trend for the interior subspecies of band-tailed pigeon (Patagioenas fasciata fasciata) are not available because no standardized survey method exists for monitoring the interior subspecies. We evaluated 2 potential band-tailed pigeon survey methods (auditory and call-broadcast surveys) from 2002 to 2004 in 5 mountain ranges in southern Arizona, USA, and in mixed-conifer forest throughout the state. Both auditory and call-broadcast surveys produced low numbers of cooing pigeons detected per survey route (x?? ??? 0.67) and had relatively high temporal variance in average number of cooing pigeons detected during replicate surveys (CV ??? 161%). However, compared to auditory surveys, use of call-broadcast increased 1) the percentage of replicate surveys on which ???1 cooing pigeon was detected by an average of 16%, and 2) the number of cooing pigeons detected per survey route by an average of 29%, with this difference being greatest during the first 45 minutes of the morning survey period. Moreover, probability of detecting a cooing pigeon was 27% greater during call-broadcast (0.80) versus auditory (0.63) surveys. We found that cooing pigeons were most common in mixed-conifer forest in southern Arizona and density of male pigeons in mixed-conifer forest throughout the state averaged 0.004 (SE = 0.001) pigeons/ha. Our results are the first to show that call-broadcast increases the probability of detecting band-tailed pigeons (or any species of Columbidae) during surveys. Call-broadcast surveys may provide a useful method for monitoring populations of the interior subspecies of band-tailed pigeon in areas where other survey methods are inappropriate.

  10. Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM

    NASA Astrophysics Data System (ADS)

    Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.

    2016-07-01

    The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.

  11. Physical space and long-tail markets

    NASA Astrophysics Data System (ADS)

    Bentley, R. Alexander; Madsen, Mark E.; Ormerod, Paul

    2009-03-01

    The Internet is known to have had a powerful impact on on-line retailer strategies in markets characterised by long-tail distribution of sales [C. Anderson, Long Tail: Why the Future of Business is Selling Less of More, Hyperion, New York, 2006]. Such retailers can exploit the long tail of the market, since they are effectively without physical limit on the number of choices on offer. Here we examine two extensions of this phenomenon. First, we introduce turnover into the long-tail distribution of sales. Although over any given period such as a week or a month, the distribution is right-skewed and often power law distributed, over time there is considerable turnover in the rankings of sales of individual products. Second, we establish some initial results on the implications for shelf-space and physical retailers in such markets.

  12. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study.

    PubMed

    Chirico, Alice; Cipresso, Pietro; Yaden, David B; Biassoni, Federica; Riva, Giuseppe; Gaggioli, Andrea

    2017-04-27

    Awe, a complex emotion composed by the appraisal components of vastness and need for accommodation, is a profound and often meaningful experience. Despite its importance, psychologists have only recently begun empirical study of awe. At the experimental level, a main issue concerns how to elicit high intensity awe experiences in the lab. To address this issue, Virtual Reality (VR) has been proposed as a potential solution. Here, we considered the highest realistic form of VR: immersive videos. 42 participants watched at immersive and normal 2D videos displaying an awe or a neutral content. After the experience, they rated their level of awe and sense of presence. Participants' psychophysiological responses (BVP, SC, sEMG) were recorded during the whole video exposure. We hypothesized that the immersive video condition would increase the intensity of awe experienced compared to 2D screen videos. Results indicated that immersive videos significantly enhanced the self-reported intensity of awe as well as the sense of presence. Immersive videos displaying an awe content also led to higher parasympathetic activation. These findings indicate the advantages of using VR in the experimental study of awe, with methodological implications for the study of other emotions.

  13. Quantifying Vocal Mimicry in the Greater Racket-Tailed Drongo: A Comparison of Automated Methods and Human Assessment

    PubMed Central

    Agnihotri, Samira; Sundeep, P. V. D. S.; Seelamantula, Chandra Sekhar; Balakrishnan, Rohini

    2014-01-01

    Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential. PMID:24603717

  14. Tail shortening by discrete hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Visscher, P. B.

    1982-02-01

    A discrete formulation of hydrodynamics was recently introduced, whose most important feature is that it is exactly renormalizable. Previous numerical work has found that it provides a more efficient and rapidly convergent method for calculating transport coefficients than the usual Green-Kubo method. The latter's convergence difficulties are due to the well-known "long-time tail" of the time correlation function which must be integrated over time. The purpose of the present paper is to present additional evidence that these difficulties are really absent in the discrete equation of motion approach. The "memory" terms in the equation of motion are calculated accurately, and shown to decay much more rapidly with time than the equilibrium time correlations do.

  15. Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Parmar, Dhaval

    Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational

  16. The effects of immersiveness on physiology.

    PubMed

    Wiederhold, B K; Davis, R; Wiederhold, M D

    1998-01-01

    The effects of varying levels of immersion in virtual reality environments on participant's heart rate, respiration rate, peripheral skin temperature, and skin resistance levels were examined. Subjective reports of presence were also noted. Participants were presented with a virtual environment of an airplane flight both as seen from a two-dimensional computer screen and as seen from within a head-mounted display. Subjects were randomly assigned to different order of conditions presented, but all subjects received both conditions. Differences between the non-phobics' physiological responses and the phobic's response when placed in a virtual environment related to the phobia were noted. Also noted were changes in physiology based on degree of immersion.

  17. Prolonged whole body immersion in cold water: hormonal and metabolic changes.

    PubMed

    Smith, D J; Deuster, P A; Ryan, C J; Doubt, T J

    1990-03-01

    To characterize metabolic and hormonal responses during prolonged whole body immersion, 16 divers wearing dry suits completed four immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 meters of sea water. One immersion began in the AM (1000 h) and one began in the PM (2200 h) to evaluate diurnal variations. Venous blood samples were obtained before and after completion of each immersion. Cortisol and ACTH levels demonstrated diurnal variation, with larger increases occurring after PM immersions. A greater than three-fold postimmersion increase occurred in norepinephrine (NE). There were significant increases in triiodothyronine (T3) uptake and epinephrine, but no change in T3, thyroxine, thyrotrophic hormone, and dopamine. Postimmersion free fatty acid levels increased 409% from preimmersion levels; glucose levels declined, and lactate increased significantly. Only changes in NE correlated significantly with changes in rectal temperature. In summary, when subjects are immersed in cold water for prolonged periods, with a slow rate of body cooling afforded by thermal protection and intermittent exercise, hormonal and metabolic changes occur that are similar in direction and magnitude to short-duration unprotected exposures. Except for cortisol and ACTH, none of the other measured variables exhibited diurnal alterations.

  18. Performance Study of Fluidized Bed Dryer with Immersed Heater for Paddy Drying

    NASA Astrophysics Data System (ADS)

    Suherman, S.; Azaria, N. F.; Karami, S.

    2018-03-01

    This paper investigated the performance of fluidized bed dryer with immersed heater for paddy drying. The influence of drying temperature and the temperature of immersed heater on drying curve, thermal efficiency, and quality of paddy was investigated. The fixed operating conditions are drying time of 60 minutes, paddy weight of 200 grams and the air velocity of 0.4 m/s. The variables are drying temperature and the temperature immersed heater namely 50, 60, 70, 80, 90 (°C). The results show addition immersed heater will increase drying rates. No constant drying rate was found. Increasing the temperature will decrease the utilized energy. The thermal efficiency decreases with increasing temperature. The increasing temperature and use immersed heater will decrease the residual moisture content, increase damaged and yellow paddy grain, and increase red paddy grain.

  19. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-01-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  20. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of immersion water temperature on whole-body fluid distribution in humans.

    PubMed

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-09-01

    In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P < 0.05], along with a significant haemodilution in the control state (P < 0.05). Plasma atrial natriuretic peptide concentration increased from 18.0 +/- 1.6 to 58.7 +/- 15.1 ng L(-1) (P < 0.05) during cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.

  2. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  3. Laboratory validation of two real-time RT-PCR methods with 5'-tailed primers for an enhanced detection of foot-and-mouth disease virus.

    PubMed

    Vandenbussche, Frank; Lefebvre, David J; De Leeuw, Ilse; Van Borm, Steven; De Clercq, Kris

    2017-08-01

    The 3D and 5UTR real-time RT-PCR assays (RT-qPCR) from Callahan et al. (2002) and Reid et al. (2002) are commonly used reference methods for the detection of foot-and-mouth disease virus (FMDV). For an optimal detection of FMDV in clinical samples, it is advised to use both assays simultaneously (King et al., 2006). Recently, Vandenbussche et al. (2016) showed that the addition of 5'-tails to the FMDV-specific primers enhances the detection of FMDV in both the 3D and the 5UTR RT-qPCR assay. To validate the 3D and 5UTR RT-qPCR assays with 5'-tailed primers for diagnostic purposes, both assays were run in parallel in a triplex one-step RT-qPCR protocol with beta-actin as an internal control and synthetic RNA as an external control. We obtained low limits of detection and high linearity's, high repeatability and reproducibility, near 100% analytical specificity and >99% diagnostic accuracy for both assays. It was concluded that the 3D and 5UTR RT-qPCR assays with 5'-tailed primers are particularly suited for the detection of FMDV as well as to exclude the presence of FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Wetting of a partially immersed compliant rod

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yuen; Jagota, Anand

    2016-11-01

    The force on a solid rod partially immersed in a liquid is commonly used to determine the liquid-vapor surface tension by equating the measured force required to remove the rod from the liquid to the vertical component of the liquid-vapor surface tension. Here, we study how this process is affected when the rod is compliant. For equilibrium, we enforce force and configurational energy balance, including contributions from elastic energy. We show that, in general, the contact angle does not equal that given by Young's equation. If surface stresses are tensile, the strain in the immersed part of the rod is found to be compressive and to depend only on the solid-liquid surface stress. The strain in the dry part of the rod can be either tensile or compressive, depending on a combination of parameters that we identify. We also provide results for compliant plates partially immersed in a liquid under plane strain and plane stress. Our results can be used to extract solid surface stresses from such experiments.

  5. Grism and immersion grating for space telescope

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  6. Renal and cardiovascular responses to water immersion in trained runners and swimmers

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Tatro, D. L.; Rogan, R. B.

    1993-01-01

    The purpose of this study was to determine if fluid-electrolyte, renal, hormonal, and cardiovascular responses during and after multi-hour water immersion were associated with aerobic training. Additionally, we compared these responses in those who trained in a hypogravic versus a 1-g environment. Seventeen men comprised three similarly aged groups: six long-distance runners, five competitive swimmers, and six untrained control subjects. Each subject underwent 5 h of immersion in water [mean (SE)] 36.0 (0.5) degrees C to the neck. Immediately before and at each hour of immersion, blood and urine samples were collected and analyzed for sodium (Na), potassium, osmolality, and creatinine (Cr). Plasma antidiuretic hormone and aldosterone were also measured. Hematocrits were used to calculate relative changes in plasma volume (% delta Vpl). Heart rate response to submaximal cycle ergometer exercise (35% peak oxygen uptake) was measured before and after water immersion. Water immersion induced significant increases in urine flow, Na clearance (CNa), and a 3-5% decrease in Vpl. Urine flow during immersion was greater (P < 0.05) in runners [2.4 (0.4) ml.min-1] compared to controls [1.3 (0.1) ml.min-1]. However, % delta Vpl, CCr, CNa and CH2O during immersion were not different (P > 0.05) between runners, swimmers, and controls. After 5 h of immersion, there was an increase (P < 0.05) in submaximal exercise heart rate of 9 (3) and 10 (3) beats.min-1 in both runners and controls, respectively, but no change (P > 0.05) was observed in swimmers.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction.

    PubMed

    Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi

    2018-06-15

    Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu  = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise.

    PubMed

    Bleakley, Chris; McDonough, Suzanne; Gardner, Evie; Baxter, G David; Hopkins, J Ty; Davison, Gareth W

    2012-02-15

    Many strategies are in use with the intention of preventing or minimising delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15°C, is currently one of the most popular interventional strategies used after exercise. To determine the effects of cold-water immersion in the management of muscle soreness after exercise. In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1), MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health (CINAHL), British Nursing Index and archive (BNI), and the Physiotherapy Evidence Database (PEDro). We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts.In November 2011, we updated the searches of CENTRAL (2011, Issue 4), MEDLINE (up to November Week 3 2011), EMBASE (to 2011 Week 46) and CINAHL (to 28 November 2011) to check for more recent publications. Randomised and quasi-randomised trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention), contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness) or tenderness (pain on palpation), and subjective recovery (return to previous activities without signs or symptoms). Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and frequency of cold-water immersion varied between the different trials as did the exercises and settings. The

  9. The "Total Immersion" Meeting Environment.

    ERIC Educational Resources Information Center

    Finkel, Coleman

    1980-01-01

    The designing of intelligently planned meeting facilities can aid management communication and learning. The author examines the psychology of meeting attendance; architectural considerations (lighting, windows, color, etc.); design elements and learning modes (furniture, walls, audiovisuals, materials); and the idea of "total immersion meeting…

  10. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  11. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  12. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  13. Water immersion recovery for athletes: effect on exercise performance and practical recommendations.

    PubMed

    Versey, Nathan G; Halson, Shona L; Dawson, Brian T

    2013-11-01

    Water immersion is increasingly being used by elite athletes seeking to minimize fatigue and accelerate post-exercise recovery. Accelerated short-term (hours to days) recovery may improve competition performance, allow greater training loads or enhance the effect of a given training load. However, the optimal water immersion protocols to assist short-term recovery of performance still remain unclear. This article will review the water immersion recovery protocols investigated in the literature, their effects on performance recovery, briefly outline the potential mechanisms involved and provide practical recommendations for their use by athletes. For the purposes of this review, water immersion has been divided into four techniques according to water temperature: cold water immersion (CWI; ≤20 °C), hot water immersion (HWI; ≥36 °C), contrast water therapy (CWT; alternating CWI and HWI) and thermoneutral water immersion (TWI; >20 to <36 °C). Numerous articles have reported that CWI can enhance recovery of performance in a variety of sports, with immersion in 10-15 °C water for 5-15 min duration appearing to be most effective at accelerating performance recovery. However, the optimal CWI duration may depend on the water temperature, and the time between CWI and the subsequent exercise bout appears to influence the effect on performance. The few studies examining the effect of post-exercise HWI on subsequent performance have reported conflicting findings; therefore the effect of HWI on performance recovery is unclear. CWT is most likely to enhance performance recovery when equal time is spent in hot and cold water, individual immersion durations are short (~1 min) and the total immersion duration is up to approximately 15 min. A dose-response relationship between CWT duration and recovery of exercise performance is unlikely to exist. Some articles that have reported CWT to not enhance performance recovery have had methodological issues, such as failing

  14. A proactive approach to sustainable management of mine tailings

    NASA Astrophysics Data System (ADS)

    Edraki, Mansour; Baumgartl, Thomas

    2015-04-01

    The reactive strategies to manage mine tailings i.e. containment of slurries of tailings in tailings storage facilities (TSF's) and remediation of tailings solids or tailings seepage water after the decommissioning of those facilities, can be technically inefficient to eliminate environmental risks (e.g. prevent dispersion of contaminants and catastrophic dam wall failures), pose a long term economic burden for companies, governments and society after mine closure, and often fail to meet community expectations. Most preventive environmental management practices promote proactive integrated approaches to waste management whereby the source of environmental issues are identified to help make a more informed decisions. They often use life cycle assessment to find the "hot spots" of environmental burdens. This kind of approach is often based on generic data and has rarely been used for tailings. Besides, life cycle assessments are less useful for designing operations or simulating changes in the process and consequent environmental outcomes. It is evident that an integrated approach for tailings research linked to better processing options is needed. A literature review revealed that there are only few examples of integrated approaches. The aim of this project is to develop new tailings management models by streamlining orebody characterization, process optimization and rehabilitation. The approach is based on continuous fingerprinting of geochemical processes from orebody to tailings storage facility, and benchmark the success of such proactive initiatives by evidence of no impacts and no future projected impacts on receiving environments. We present an approach for developing such a framework and preliminary results from a case study where combined grinding and flotation models developed using geometallurgical data from the orebody were constructed to predict the properties of tailings produced under various processing scenarios. The modelling scenarios based on the

  15. 14 CFR 23.481 - Tail down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail down landing conditions. 23.481 Section 23.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Ground Loads § 23.481 Tail down landing conditions. (a) For a tail down landing, the airplane is assumed...

  16. The effect of water immersion delivery on the strength of pelvic floor muscle and pelvic floor disorders during postpartum period

    PubMed Central

    Zhao, Yun; Xiao, Mei; Tang, Fei; Tang, Wan; Yin, Heng; Sun, Guo-Qiang; Lin, Yin; Zhou, Yong; Luo, Yan; Li, Lu-Man; Tan, Zhi-Hua

    2017-01-01

    Abstract Background: Water immersion delivery is a non-pharmacological approach to ease labor pain. This paper aims to investigate the effect of water immersion delivery on increasing strength of pelvic floor muscle (PFM) and relieving pelvic floor disorders (PFDs) during postpartum period. Methods: A total of 2749 vaginal-delivery primiparas in postpartum 6-8 weeks were selected as research objects. Based on the modes of delivery, 600 patients were assigned into water immersion delivery group, 2149 were assigned into conventional delivery group. The scales of PFM strength and pelvic organ prolapsed (POP) were determined by specially trained personnel using digital palpation, and the symptoms of stress urinary incontinence (SUI) were investigated by questionnaire survey. The weak PFM strength was improved by doing Kegel exercise at home for 6-8 weeks. Results: We found that ①The rate of episiotomy in water immersion delivery group was 77.50% (465/600), which was lower than that in conventional delivery group (84.69%, 1820/2149) (P < .01); The primiparas without having an episiotomy have higher PFM strength than those having an episiotomy for both groups (P < .01). ②There was a negative correlation between the scale of PFM strength and SUI or POP, wherein the r-values were −0.135 and −0.435, respectively (P < .01). ③The rate of SUI was 6.50% (39/600) in water immersion delivery group and 6.89% (148/2149) in the conventional delivery group, wherein the intergroup difference was not significant (P > .05); ④The rates of vaginal wall prolapsed and uterus prolapsed were 29.83% (179/600) and 2.83% (17/600) in water immersion delivery group and 30.95% (665/2149) and 4.37% (94/2149) in the conventional delivery group, wherein the intergroup difference was not significant (P > .05). ⑤After Kegel exercise, the strength of PFM was promoted (P < .01). Conclusion: Water immersion delivery has been proved to a beneficial alternative method

  17. Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens

    USGS Publications Warehouse

    Gale, W.L.; Fitzpatrick, M.S.; Lucero, M.; Contreras-Sanchez, W.M.; Schreck, C. B.

    1999-01-01

    The use of all-male populations increases the efficiency and feasibility of tilapia aquaculture. The objective of this study was to determine the efficacy of a short-term immersion procedure for masculinizing Nile tilapia (Oreochromis niloticus). Two synthetic androgens were evaluated: 17α-methyldihydrotestosterone (MDHT) and 17α-methyltestosterone (MT). Exposure (3 h) on 10 and again on 13 days post-fertilization to MDHT at 500 μg/1 successfully masculinized fry in all experiments, resulting in 100, 94 and 83 ± 2% males in Experiments 1, 2 and 3, respectively. Immersions in MDHT or MT at 100 μg/1 resulted in significantly skewed sex ratios in Experiments 1 and 3 (MT resulted in 73 and 83 ± 3% males; and MDHT resulted in 72 and 91 ± 1% males) but not in Experiment 2. Immersion in MT at 500 μg/1 only caused masculinization in Experiment 3. Although further research and refinement is needed, immersion of Nile tilapia in MDHT may provide a practical alternative to the use of steroid-treated feed. Furthermore, when compared with current techniques for steroid-induced sex inversion of tilapia, short-term immersion reduces the period of time that workers are exposed to anabolic steroids.

  18. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins.

    PubMed

    Teulier, Loïc; Rey, Benjamin; Tornos, Jérémy; Le Coadic, Marion; Monternier, Pierre-Axel; Bourguignon, Aurore; Dolmazon, Virginie; Romestaing, Caroline; Rouanet, Jean-Louis; Duchamp, Claude; Roussel, Damien

    2016-07-01

    The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

  19. An immersed boundary-simplified sphere function-based gas kinetic scheme for simulation of 3D incompressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Yang, W. M.; Wang, Y.; Wu, J.

    2017-08-01

    In this work, an immersed boundary-simplified sphere function-based gas kinetic scheme (SGKS) is presented for the simulation of 3D incompressible flows with curved and moving boundaries. At first, the SGKS [Yang et al., "A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows," J. Comput. Phys. 295, 322 (2015) and Yang et al., "Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows," J. Comput. Phys. 319, 129 (2016)], which is often applied for the simulation of compressible flows, is simplified to improve the computational efficiency for the simulation of incompressible flows. In the original SGKS, the integral domain along the spherical surface for computing conservative variables and numerical fluxes is usually not symmetric at the cell interface. This leads the expression of numerical fluxes at the cell interface to be relatively complicated. For incompressible flows, the sphere at the cell interface can be approximately considered to be symmetric as shown in this work. Besides that, the energy equation is usually not needed for the simulation of incompressible isothermal flows. With all these simplifications, the simple and explicit formulations for the conservative variables and numerical fluxes at the cell interface can be obtained. Second, to effectively implement the no-slip boundary condition for fluid flow problems with complex geometry as well as moving boundary, the implicit boundary condition-enforced immersed boundary method [Wu and Shu, "Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications," J. Comput. Phys. 228, 1963 (2009)] is introduced into the simplified SGKS. That is, the flow field is solved by the simplified SGKS without considering the presence of an immersed body and the no-slip boundary condition is implemented by the immersed boundary method. The accuracy and efficiency of

  20. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  1. Immersive viewing engine

    NASA Astrophysics Data System (ADS)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  2. Determination of immersion factors for radiance sensors in marine and inland waters: a semi-analytical approach using refractive index approximation

    NASA Astrophysics Data System (ADS)

    Dev, Pravin J.; Shanmugam, P.

    2016-05-01

    Underwater radiometers are generally calibrated in air using a standard source. The immersion factors are required for these radiometers to account for the change in the in-water measurements with respect to in-air due to the different refractive index of the medium. The immersion factors previously determined for RAMSES series of commercial radiometers manufactured by TriOS are applicable to clear oceanic waters. In typical inland and turbid productive coastal waters, these experimentally determined immersion factors yield significantly large errors in water-leaving radiances (Lw) and hence remote sensing reflectances (Rrs). To overcome this limitation, a semi-analytical method with based on the refractive index approximation is proposed in this study, with the aim of obtaining reliable Lw and Rrs from RAMSES radiometers for turbid and productive waters within coastal and inland water environments. We also briefly show the variation of pure water immersion factors (Ifw) and newly derived If on Lw and Rrs for clear and turbid waters. The remnant problems other than the immersion factor coefficients such as transmission, air-water and water-air Fresnel's reflectances are also discussed.

  3. Reclassification Patterns among Latino English Learner Students in Bilingual, Dual Immersion, and English Immersion Classrooms

    ERIC Educational Resources Information Center

    Umansky, Ilana M.; Reardon, Sean F.

    2014-01-01

    Schools are under increasing pressure to reclassify their English learner (EL) students to "fluent English proficient" status as quickly as possible. This article examines timing to reclassification among Latino ELs in four distinct linguistic instructional environments: English immersion, transitional bilingual, maintenance bilingual,…

  4. Critical Factors in Cultural Immersion: A Synthesis of Relevant Literature

    ERIC Educational Resources Information Center

    Barden, Sejal M.; Cashwell, Craig S.

    2013-01-01

    This synthesis of the literature on cross-cultural immersion experiences gives emphasis to the need for effective pedagogy for enhancing multicultural counseling competency, with cultural immersion being a potentially valuable training tool. The authors examine the empirical literature towards identifying both helpful and hindering structural and…

  5. A Culturally Competent Immersion Protocol: Petit Goâve, Haiti

    ERIC Educational Resources Information Center

    Streets, Barbara Faye; Wolford, Karen; Nicolas, Guerda

    2015-01-01

    In the human services professions, cultural immersion experiences help satisfy multicultural training standards established by national accreditation bodies. Immersion in a culturally sensitive manner is necessary as we prepare professionals to work with and serve citizens of the globe. The authors describe an international cultural immersion…

  6. Cranial implant design using augmented reality immersive system.

    PubMed

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  7. Yes, You Can Help! Information and Inspiration for French Immersion Parents. National Edition.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Language Services Branch.

    The guide for parents of French immersion students in Alberta (Canada) public schools is designed to answer frequently asked questions and encourage parent participation in the student's immersion experience. Chapters address these topics: terminology (program types, school types offering immersion programs, other terms); reasons for learning a…

  8. Using heart rate to prescribe physical exercise during head-out water immersion.

    PubMed

    Kruel, Luiz F M; Peyré-Tartaruga, Leonardo A; Coertjens, Marcelo; Dias, Adriana B C; Da Silva, Rafael C; Rangel, Antônio C B

    2014-01-01

    The purpose of this study was to compare and correlate the effect of age group, sex, depth of water immersion, and the heart rate (HR) assessed out of the water on the HR behavior in individuals subjected to head-out water immersion. A total of 395 healthy individuals of both sexes, aged between 07 and 75 years, underwent vertical head-out water immersion. Heart rate was assessed out of the water in the supine and orthostatic (OHR) positions and at immersion depths corresponding to the ankle, knee, hip, umbilicus, xiphoid process, acromion, neck, and also the neck with the arms out of the water. The formula (ΔHR = OHR - HR immersion depth) was used to calculate the reduction in HR at each immersion depth. No age-based or sex-based differences in HR were found. The greater the depth of the water, the greater was the decrease in HR (p < 0.05); however, no differences were found between the HR values obtained below the depth corresponding to the umbilicus. Similarly, there was a significant relationship between OHR and ΔHR measured at levels below the depth corresponding to the umbilicus (e.g., xiphoid process level: r = 0.62; p < 0.05). Therefore, this study suggests to appropriately prescribe the intensity of water-based exercise intensity performed during vertical immersion: OHR should be measured before the individual entering the aquatic environment; ΔHR should be measured according to the depth at which exercise is to be performed, and we suggest an adaptation to Karvonen's HRmax prediction formula (predicted HRmax: 220 - age - ΔHR) to prescribe and control the intensity of the exercise performed during vertical immersion.

  9. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    PubMed

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in

  10. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    PubMed Central

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-01-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even

  11. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with

  12. Expanding worldview: Australian nursing students' experience of cultural immersion in India.

    PubMed

    Charles, Loretta; Maltby, Hendrika; Abrams, Sarah; Shea, Jeanne; Brand, Gabrielle; Nicol, Pamela

    2014-01-01

    Abstract Increasing cultural diversity and a sense of global community has necessitated the introduction of cultural competence in the education of health care providers. Some institutions have utilised cultural immersion programmes to address this need of cultural competence. Studies have not yet described what this experience is for Australian nursing students. The purpose of this study is to describe the immersion experience of a group of senior Australian nursing students who participated in a 5-week cultural immersion programme in India.

  13. Expanding Worldview: Australian Nursing Students' Experience of Cultural Immersion in India.

    PubMed

    Charles, Loretta; Maltby, Hendrika; Abrams, Sarah; Shea, Jeanne; Brand, Gabrielle; Nicol, Pamela

    2014-06-27

    Abstract Increasing cultural diversity and a sense of global community has necessitated the introduction of cultural competence in the education of health care providers. Some institutions have utilized cultural immersion programs to address this need of cultural competence. Studies have not yet described what this experience is for Australian nursing students. The purpose of this study is to describe the immersion experience of a group of senior Australian nursing students who participated in a five week cultural immersion program in India.

  14. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  15. Flexible histone tails in a new mesoscopic oligonucleosome model.

    PubMed

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  16. Optimal heavy tail estimation - Part 1: Order selection

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred; Bermejo, Miguel A.

    2017-12-01

    The tail probability, P, of the distribution of a variable is important for risk analysis of extremes. Many variables in complex geophysical systems show heavy tails, where P decreases with the value, x, of a variable as a power law with a characteristic exponent, α. Accurate estimation of α on the basis of data is currently hindered by the problem of the selection of the order, that is, the number of largest x values to utilize for the estimation. This paper presents a new, widely applicable, data-adaptive order selector, which is based on computer simulations and brute force search. It is the first in a set of papers on optimal heavy tail estimation. The new selector outperforms competitors in a Monte Carlo experiment, where simulated data are generated from stable distributions and AR(1) serial dependence. We calculate error bars for the estimated α by means of simulations. We illustrate the method on an artificial time series. We apply it to an observed, hydrological time series from the River Elbe and find an estimated characteristic exponent of 1.48 ± 0.13. This result indicates finite mean but infinite variance of the statistical distribution of river runoff.

  17. Story immersion in a health videogame for childhood obesity prevention

    USDA-ARS?s Scientific Manuscript database

    Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion’s role in health video games among children by addressing two main questions: Will children be more immersed...

  18. Derivation of charts for determining the horizontal tail load variation with any elevator motion

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A

    1943-01-01

    The equations relating the wing and tail loads are derived for a unit elevator displacement. These equations are then converted into a nondimensional form and charts are given by which the wing- and tail-load-increment variation may be determined under dynamic conditions for any type of elevator motion and for various degrees of airplane stability. In order to illustrate the use of the charts, several examples are included in which the wing and tail loads are evaluated for a number of types of elevator motion. Methods are given for determining the necessary derivatives from results of wind-tunnel tests when such tests are available.

  19. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  20. Direct Immersion Annealing of Block Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene -poly(methyl methacrylate) (PS -PMMA) system: rapid short range order, optimal long-range order, and a film instability regime. Kinetic studies in the ``optimal long-range order'' processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. Inclusion of nanoparticles in these films at high concentrations and fast ordering kinetics study with neutron reflectivity and SANS will be discussed. This is (late) Contributed Talk Abstract for Dillon Medal Symposium at DPOLY - discussed with DPOLY Chair Dvora Perahia.