Sample records for tail thin stubby

  1. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    PubMed

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  3. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  4. Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex.

    PubMed

    Martínez-Torres, N I; González-Tapia, D; Flores-Soto, M; Vázquez-Hernández, N; Salgado-Ceballos, H; González-Burgos, I

    2018-03-16

    Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord. Spinophilin, synaptophysin, and β iii-tubulin expression was also measured. Pharmacological lesions resulted in poor motor performance. Spine density and the proportion of thin and stubby spines were greater. We also observed increased expression of the 3 proteins analysed. The clinical symptoms of neurological damage secondary to Wallerian degeneration of the corticospinal tract are associated with spontaneous, compensatory plastic changes at the synaptic level. Based on these findings, spontaneous plasticity is a factor to consider when designing more efficient strategies in the early phase of rehabilitation. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The Root Cause of Post-Traumatic and Developmental Stress Disorder

    DTIC Science & Technology

    2014-10-01

    cortex = mOFCtx) involving mushroom spines, 2) Increased density of stubby spines, suggesting that some mature mushroom spines have regressed to a more...and a trend for decreased mushroom spine density in PTSD (BA11), consistent with animal models. A subset of mature mushroom spines appear to have...been partially replaced by stubby spines. Stubby spines are less sophisticated than mushroom spines because they do not have necks, where modulatory

  6. The Root Cause of Post-traumatic and Developmental Stress Disorder

    DTIC Science & Technology

    2015-10-01

    mOFCtx) involving mushroom spines (Young et al., 2015), 2) Increased density of stubby spines, suggesting that some mature mushroom spines have...BA11 (mOFCtx) and a trend for decreased mushroom spine density in PTSD (BA11), consistent with animal models. A subset of mature mushroom spines...appear to have been partially replaced by stubby spines. Stubby spines are less sophisticated than mushroom spines because they do not have necks

  7. First report of the stubby root nematode Paratrichodorus allius on sugar beet in Minnesota

    USDA-ARS?s Scientific Manuscript database

    Stubby root nematodes (Paratrichodorus and Trichodorus) are migratory ectoparasites that feed on roots, transmit tobraviruses, and cause significant crop loss. In June 2015, three soil samples from a sugar beet field near Felton (Clay County), MN were submitted to the Nematology Laboratory at North ...

  8. Detection and management of stunt and stubby root nematodes in a southern forest nursery

    Treesearch

    Michelle M. Cram; Stephen W. Fraedrich

    2007-01-01

    Populations of stunt (Tylenchorhynchus claytoni) and stubby-root (Paratrichodorus minor) nematodes, as well as predaceous nematodes (Mylonchulus spp., Mononchus spp.), were monitored in 2005 for 8 months in three loblolly pine fields at a southern forest nursery. The fields were selected based...

  9. First report of the stubby root nematode Paratrichodorus allius on potato in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Stubby root nematodes (Paratrichodorus and Trichodorus) are migratory ectoparasites that feed on roots and vector tobraviruses. These nematodes are important to the potato industry as they transmit Tobacco rattle virus (TRV) causing corky ringspot (CRS) disease that has a direct economic impact on g...

  10. Detection of Dendritic Spines Using Wavelet Packet Entropy and Fuzzy Support Vector Machine.

    PubMed

    Wang, Shuihua; Li, Yang; Shao, Ying; Cattani, Carlo; Zhang, Yudong; Du, Sidan

    2017-01-01

    The morphology of dendritic spines is highly correlated with the neuron function. Therefore, it is of positive influence for the research of the dendritic spines. However, it is tried to manually label the spine types for statistical analysis. In this work, we proposed an approach based on the combination of wavelet contour analysis for the backbone detection, wavelet packet entropy, and fuzzy support vector machine for the spine classification. The experiments show that this approach is promising. The average detection accuracy of "MushRoom" achieves 97.3%, "Stubby" achieves 94.6%, and "Thin" achieves 97.2%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition

    PubMed Central

    2012-01-01

    Background Identification of genomic regions that have been targets of selection for phenotypic traits is one of the most important and challenging areas of research in animal genetics. However, currently there are relatively few genomic regions identified that have been subject to positive selection. In this study, a genome-wide scan using ~50,000 Single Nucleotide Polymorphisms (SNPs) was performed in an attempt to identify genomic regions associated with fat deposition in fat-tail breeds. This trait and its modification are very important in those countries grazing these breeds. Results Two independent experiments using either Iranian or Ovine HapMap genotyping data contrasted thin and fat tail breeds. Population differentiation using FST in Iranian thin and fat tail breeds revealed seven genomic regions. Almost all of these regions overlapped with QTLs that had previously been identified as affecting fat and carcass yield traits in beef and dairy cattle. Study of selection sweep signatures using FST in thin and fat tail breeds sampled from the Ovine HapMap project confirmed three of these regions located on Chromosomes 5, 7 and X. We found increased homozygosity in these regions in favour of fat tail breeds on chromosome 5 and X and in favour of thin tail breeds on chromosome 7. Conclusions In this study, we were able to identify three novel regions associated with fat deposition in thin and fat tail sheep breeds. Two of these were associated with an increase of homozygosity in the fat tail breeds which would be consistent with selection for mutations affecting fat tail size several thousand years after domestication. PMID:22364287

  12. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus.

    PubMed

    Luczynski, Pauline; Whelan, Seán O; O'Sullivan, Colette; Clarke, Gerard; Shanahan, Fergus; Dinan, Timothy G; Cryan, John F

    2016-11-01

    Increasing evidence implicates the microbiota in the regulation of brain and behaviour. Germ-free mice (GF; microbiota deficient from birth) exhibit altered stress hormone signalling and anxiety-like behaviours as well as deficits in social cognition. Although the mechanisms underlying the ability of the gut microbiota to influence stress responsivity and behaviour remain unknown, many lines of evidence point to the amygdala and hippocampus as likely targets. Thus, the aim of this study was to determine if the volume and dendritic morphology of the amygdala and hippocampus differ in GF versus conventionally colonized (CC) mice. Volumetric estimates revealed significant amygdalar and hippocampal expansion in GF compared to CC mice. We also studied the effect of GF status on the level of single neurons in the basolateral amygdala (BLA) and ventral hippocampus. In the BLA, the aspiny interneurons and pyramidal neurons of GF mice exhibited dendritic hypertrophy. The BLA pyramidal neurons of GF mice had more thin, stubby and mushroom spines. In contrast, the ventral hippocampal pyramidal neurons of GF mice were shorter, less branched and had less stubby and mushroom spines. When compared to controls, dentate granule cells of GF mice were less branched but did not differ in spine density. These findings suggest that the microbiota is required for the normal gross morphology and ultrastructure of the amygdala and hippocampus and that this neural remodelling may contribute to the maladaptive stress responsivity and behavioural profile observed in GF mice. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Theoretical calculations of the pressure, forces, and moments at supersonic speeds due to various lateral motions acting on thin isolated vertical tails

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Bobbitt, Percy J

    1956-01-01

    Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.

  14. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    PubMed

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  15. Simultaneous measurements of magnetotail dynamics by IMP spacecraft

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Lepping, R. P.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.

    1980-01-01

    Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail.

  16. A New Stubby Species of Demodectic Mite (Acari: Demodicidae) From the Domestic Dog (Canidae).

    PubMed

    Morita, Tatsushi; Ohmi, Aki; Kiwaki, Akihito; Ike, Kazunori; Nagata, Katsuyuki

    2018-02-28

    A new species of Demodex was detected in the earwax of a dog with otitis externa in Saitama Prefecture, Japan, in July 2010. The opisthosoma length of the mite was slightly shorter than 1/2 of its body length, which was different from the other species in domestic dogs, D. canis and D. injai, but was similar to the form of mites termed "short-bodied species", including D. cornei. However, the stubby external form was morphologically different from those of "short-bodied species", excluding a case without a species description reported from Greece. Among known species, the mite was similar to D. equi and D. acutipes.

  17. CURRENT SHEET THINNING AND ENTROPY CONSTRAINTS DURING THE SUBSTORM GROWTH PHASE

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hall, F., IV

    2009-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 R_E. We propose that the cause for the current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux which is eroded at the dayside as a result of dayside reconnection. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is documented by three-dimensional MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution during the substorm growth phase.

  18. The Productivity of Male Thin-Tailed Lambs and Sheep Fed Complete Feed

    NASA Astrophysics Data System (ADS)

    Aluns, M. S.; Luthfi, N.

    2018-02-01

    The aim of this study is to examine the productivity of thin tailed lambs and sheep fed complete feed. The material used in this study were 6 thin tailed lambs aged ± 5 months with an average body weight of 15.41 ± 2.11 kg (CV 37.04%) and 6 thin tailed rams aged ± 1 year with an average body weight of 23, 01 ± 1.91 kg (CV 28.83%). The animals were raised intensively with complete feed as much as 3.5% of body weight. The feed contained 12% crude protein (CP) and 55% Total Digestible Nutrients (TDNs). The results showed that the average feed intake was 567.10 g DMI/d in lambs and 726.24 g DMI per day in sheep. An average of body gain of lambs was 0.02 kg/d and 0.01 kg/d. The day matter digestibility of lambs achieves 50.23% and 50.74% in sheep. Based on results, it can be inferred that lambs has same digestibility with sheep and has more efficient to be fattened than sheep.

  19. Nonguiding Center Motion and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Kontodinas, Ioannis D.; Ball, Bryan M.; Larson, Douglas J.

    1997-01-01

    Thick and thin models of the middle magnetotail were developed using a consistent orbit tracing technique. It was found that currents carried near the equator by groups of ions with anisotropic distribution functions are not well approximated by the guiding center expressions. The guiding center equations fail primarily because the calculated pressure tensor is not magnetic field aligned. The pressure tensor becomes field aligned as one moves away from the equator, but here there is a small region in which the guiding center equations remain inadequate because the two perpendicular components of the pressure tensor are unequal. The significance of nonguiding center motion to substorm processes then was examined. One mechanism that may disrupt a thin cross-tail current sheet involves field changes that cause ions to begin following chaotic orbits. The lowest-altitude chaotic region, characterized by an adiabaticity parameter kappa approx. equal to 0.8, is especially important. The average cross-tail particle drift is slow, and we were unable to generate a thin current sheet using such ions. Therefore, any process that tends to create a thin current sheet in a region with kappa approaching 0.8 may cause the cross-tail current to get so low that it becomes insufficient to support the lobes. A different limit may be important in resonant orbit regions of a thin current sheet because particles reach a maximum cross-tail drift velocity. If the number of ions per unit length decreases as the tail is stretched, this part of the plasma sheet also may become unable to carry the cross-tail current needed to support the lobes. Thin sheets are needed for both resonant and chaotic orbit mechanisms because the distribution function must be highly structured. A description of current continuity is included to show how field aligned currents can evolve during the transition from a two-dimensional (2-D) to a 3-D configuration.

  20. Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD

    PubMed Central

    Hasegawa, Sho; Sakuragi, Shigeo; Tominaga-Yoshino, Keiko; Ogura, Akihiko

    2015-01-01

    Memory is fixed solidly by repetition. However, the cellular mechanism underlying this repetition-dependent memory consolidation/reconsolidation remains unclear. In our previous study using stable slice cultures of the rodent hippocampus, we found long-lasting synaptic enhancement/suppression coupled with synapse formation/elimination after repeated inductions of chemical LTP/LTD, respectively. We proposed these phenomena as useful model systems for analyzing repetition-dependent memory consolidation. Recently, we analyzed the dynamics of dendritic spines during development of the enhancement, and found that the spines increased in number following characteristic stochastic processes. The current study investigates spine dynamics during the development of the suppression. We found that the rate of spine retraction increased immediately leaving that of spine generation unaltered. Spine elimination occurred independent of the pre-existing spine density on the dendritic segment. In terms of elimination, mushroom-type spines were not necessarily more stable than stubby-type and thin-type spines. PMID:25573377

  1. Commercial Cuts of Carcass of Thin-Tailed Lambs and Sheep Fed Complete Feed

    NASA Astrophysics Data System (ADS)

    Nurbaeti, N.; Lestari, C. M. S.; Purbowati, E.

    2018-02-01

    This research was conducted to examine the commercial cuts of thin tailed lambs and sheep fed complete feed. This study used 6 male thin tailed sheep aged ±11 months with average body weight of 23,01 ± 1,91 kg (CV 8,31%) and 6 male thin tailed lambs aged ±4 months with average body weight of 15,41 ± 2,11 kg (CV 13,72%). They were fed a complete feed as much as 3.5% from body weight. Fed contained 12% crude protein (CP) and 55% total digestible nutrients (TDN) and was given ad libitum. The animals were raised for 12 weeks and slaughtered being carcass. Commercial cuts were obtained from a half right body part of each sheep carcass and divided into eight commercial cuts, i.e., neck, shoulder, fore shank, breast, flank, rack, loin and leg. The collected data was analysed using t- test in 5% level. The results showed that slaughter weight, carcass weight and half carcass weight were significantly different (P<0.05) while the percentage of carcass weight and half carcass was not significantly different (P>0.05). All of the weight commercial cuts of thin tailed lambs and sheep were significantly different (P<0.05) but flank (P>0.05). The percentage of neck and leg were significantly different (P<0.05), while the other commercial cuts were not significantly different (P<0.05). Based on the result, it can be concluded that commercial cuts of sheep is better than lambs.

  2. Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M.

    2012-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.

  3. Bed-Load Dispersion: A Literature Review

    DTIC Science & Technology

    2016-12-01

    buried. The observed mean and variance of particle dis- placements from experimental measurements at specific time snap-shots can be used to determine...dispersion coefficient equation: . ( 8 ) For the range of experimental conditions tested within the Chang and Yen (2002) study, their equation... surveys , 51 exhibited thin-tail distri- butions and 8 more could have been considered thin-tail based on the definition of the ‘tail’. Liebault et al

  4. Current Sheet Thinning Associated with Dayside Reconnection

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.; Ma, X.

    2011-12-01

    The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.

  5. Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: A Golgi study.

    PubMed

    Vázquez-Hernández, Nallely; González-Tapia, Diana C; Martínez-Torres, Nestor I; González-Tapia, David; González-Burgos, Ignacio

    2017-09-14

    Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Observations on the Feeding and Symptomatology of Xiphinema and Longidorus on Selected Host Roots

    PubMed Central

    Cohn, E.

    1970-01-01

    In vitro feeding of Xiphinema brevicolle, X. index and Longidorus africanus on roots of host seedlings is described. Both Xiphinema spp. fed mainly along roots rather than at tips and up to several days at a single site. Feeding of L. africanus was confined to root tips and lasted up to 15 min. No visible short term reaction of roots parasitized by the Xiphinema spp. could be discerned, but both swelling and cessation of growth of root tips were observed within 20 hr after feeding by L. africanus. Long-term (12-month) symptoms on roots of several host plants caused by cultured populations of X. brevicolle, X. index, X. italiae, L. africanus and L. brevicaudatus are described. All the Xiphinema spp. caused a thinning and distinct darkening of root systems and, at some sites, a breakdown of the cortex. Both species of Longidorus caused stubby and swollen root tips. Root symptom severity was in proportion to nematode population levels. PMID:19322291

  7. Detecting novel SNPs and breed-specific haplotypes at calpastatin gene in Iranian fat- and thin-tailed sheep breeds and their effects on protein structure.

    PubMed

    Aali, Mohsen; Moradi-Shahrbabak, Mohammad; Moradi-Shahrbabak, Hosein; Sadeghi, Mostafa

    2014-03-01

    Calpastatin has been introduced as a potential candidate gene for growth and meat quality traits. In this study, genetic variability was investigated in the exon 6 and its intron boundaries of ovine CAST gene by PCR-SSCP analysis and DNA sequencing. Also a protein sequence and structural analysis were performed to predict the possible impact of amino acid substitutions on physicochemical properties and structure of the CAST protein. A total of 487 animals belonging to four ancient Iranian sheep breeds with different fat metabolisms, Lori-Bakhtiari and Chall (fat-tailed), Zel-Atabay cross-bred (medium fat-tailed) and Zel (thin-tailed), were analyzed. Eight unique SSCP patterns, representing eight different sequences or haplotypes, CAST-1, CAST-2 and CAST-6 to CAST-11, were identified. Haplotypes CAST-1 and CAST-2 were most common with frequency of 0.365 and 0.295. The novel haplotype CAST-8 had considerable frequency in Iranian sheep breeds (0.129). All the consensus sequences showed 98-99%, 94-98%, 92-93% and 82-83% similarity to the published ovine, caprine, bovine and porcine CAST locus sequences, respectively. Sequence analysis revealed four SNPs in intron 5 (C24T, G62A, G65T and T69-) and three SNPs in exon 6 (c.197A>T, c.282G>T and c.296C>G). All three SNPs in exon 6 were missense mutations which would result in p.Gln 66 Leu, p.Glu 94 Asp and p.Pro 99 Arg substitutions, respectively, in CAST protein. All three amino acid substitutions affected the physicochemical properties of ovine CAST protein including hydrophobicity, amphiphilicity and net charge and subsequently might influence its structure and effect on the activity of Ca2+ channels; hence, they might regulate calpain activity and afterwards meat tenderness and growth rate. The Lori-Bakhtiari population showed the highest heterozygosity in the ovine CAST locus (0.802). Frequency difference of haplotypes CAST-10 and CAST-8 between Lori-Bakhtiari (fat-tailed) and Zel (thin-tailed) breeds was highly significant (P<0.001), indicating that these two haplotypes might be breed-specific haplotypes that distinguish between fat-tailed and thin-tailed sheep breeds. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Deer browse response to pine-hardwood thinning regimes in southeastern Arkansas

    Treesearch

    David G. Peitz; Philip A. Tappe; Michael G. Shelton; Michael G. Sams

    1999-01-01

    Understanding relationships between stand thinning and browse production allows land managers to encourage both white-tailed deer (Odocoileus virginianus) browse production and timber production. In our study, browse biomass was determined before thinning and two and four growing seasons after thinning a 35 yr. old natural loblolly pine-hardwood stand (initially 27 m...

  9. X-15 ship #1 on lakebed

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The X-15 aircraft, ship #1 (56-6670), sits on the lakebed early in its illustrious career of high speed flight research. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  10. Experimental aerodynamic characteristics for slender bodies with thin wings and tail at angles of attack from 0 deg to 58 deg and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Nelson, E. R.

    1976-01-01

    An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.

  11. Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Zhang, Renping

    2018-03-01

    A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.

  12. Late afternoon view of the interior of the eastcentral wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Late afternoon view of the interior of the east-central wall section to be removed; camera facing north. Stubby crape myrtle in front of wall. Metal Quonset hut in background. - Beaufort National Cemetery, Wall, 1601 Boundary Street, Beaufort, Beaufort County, SC

  13. Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, He-Lou; Li, Xiao; Ren, Jiaxing

    Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-09-24

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  15. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  16. 7 CFR 201.56-8 - Flax family, Linaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Flax. (a) General description. (1) Germination habit: Epigeal dicot. (Due to the mucilaginous nature of... development within the test period. (4) Root system: A primary root, with secondary roots usually developing... markedly shortened, curled, or thickened. (4) Root: (i) None. (ii) Weak, stubby, or missing primary root...

  17. 7 CFR 201.56-8 - Flax family, Linaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Flax. (a) General description. (1) Germination habit: Epigeal dicot. (Due to the mucilaginous nature of... development within the test period. (4) Root system: A primary root, with secondary roots usually developing... markedly shortened, curled, or thickened. (4) Root: (i) None. (ii) Weak, stubby, or missing primary root...

  18. X-15 launch from B-52 mothership

    NASA Technical Reports Server (NTRS)

    1959-01-01

    This photo illustrates how the X-15 rocket-powered aircraft was taken aloft under the wing of a B-52. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. This was one of the early powered flights using a pair of XLR-11 engines (until the XLR-99 became available). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  19. X-15 test pilots - Thompson, Dana, and McKay

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA pilots Milton O. Thompson, William H. 'Bill' Dana, and John B. 'Jack' McKay are seen here in front of the #2 X-15 (56-6671) rocket-powered research aircraft. Among them, the three NASA research pilots made 59 flights in the X-15 (14 for Thompson, 16 for Dana, and 29 for McKay). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  20. X-15 #2 just after launch

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The X-15 #2 (56-6671) launches away from the B-52 mothership with its rocket engine ignited. The white patches near the middle of the ship are frost from the liquid oxygen used in the propulsion system, although very cold liquid nitrogen was also used to cool the payload bay, cockpit, windshields, and nose. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  1. X-15A-2 with test pilot Pete Knight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air Force pilot William J. 'Pete' Knight is seen here in front of the X-15A-2 aircraft (56-6671). Pete Knight made 16 flights in the X-15, and set the world unofficial speed record for fixed wing aircraft, 4,520 mph (mach 6.7), in the X-15A-2. He also made one flight above 50 miles, qualifying him for astronaut wings. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  2. X-15 landing on lakebed

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The North American X-15 settles to the lakebed after a research flight from what is now the NASA Dryden Flight Research Center, Edwards, California. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  3. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  4. Quantification of Paratrichodorus allius in DNA extracted from soil using TaqMan probe and SYBR green real-time PCR assays

    USDA-ARS?s Scientific Manuscript database

    The ectoparasitic stubby root nematode Paratrichodorus allius transmits Tobacco rattle virus, which causes corky ringspot disease resulting in significant economic losses in the potato industry. This study developed a diagnostic method for direct quantification of P. allius from soil DNA using a Taq...

  5. Development of real-time and conventional PCR assays for identifying stubby root nematode Paratrichodorus allius

    USDA-ARS?s Scientific Manuscript database

    Paratrichodorus allius is an important pest on many crops, particularly, on potato due to its ability to transmit Tobacco rattle virus causing corky ringspot disease on tubers. Detection and identification of P. allius are important for effective disease management. In this study, a rapid and reliab...

  6. Residual effects of thinning and high white-tailed deer densities on northern redback salamanders in southern New England oak forests

    Treesearch

    Robert T. Brooks

    1999-01-01

    Research has demonstrated that even-aged regeneration harvests, especially clearcutting, can have a major and long-lasting detrimental effect on forest amphibians, but the effects of less intensive silvicultural treatments have not been well documented. Additionally, the chronic overabundance of white-tailed deer (Odocoileus virginianus) has become a...

  7. Effects of submarine mine tailings on macrobenthic community structure and ecosystem processes.

    PubMed

    Trannum, Hilde C; Gundersen, Hege; Escudero-Oñate, Carlos; Johansen, Joachim T; Schaanning, Morten T

    2018-07-15

    A mesocosm experiment with intact benthic communities was conducted to evaluate the effects of mine tailings on benthic community structure and biogeochemical processes. Two types of tailings were supplied from process plants using flotation and flocculation chemicals, while a third type was absent of added chemicals. All tailings impacted the sediment community at thin layers, and through more mechanisms than merely hypersedimentation. In general, the strongest impact was observed in a very fine-grained tailings containing flotation chemicals. The second strongest occurred in tailings with no process chemicals. The tailings with flocculation chemicals initiated the weakest response. Fluxes of oxygen, nitrate and ammonium provided some indications on biodegradation of organic phases. Release of phosphate and silicate decreased with increasing layer thickness of all three tailings. A threshold level of 2cm was identified both for faunal responses and for fluxes of phosphate and silicate. The particular impact mechanisms should receive more attention in future studies in order to minimize the environmental risk associated with tailings disposal. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

    PubMed Central

    Neto, Júlio M.; Gordinho, Luís; Belda, Eduardo J.; Marín, Marcial; Monrós, Juan S.; Fearon, Peter; Crates, Ross

    2013-01-01

    Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection. PMID:23667594

  9. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  10. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  11. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  12. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Chabinyc, M. L.

    2013-06-01

    The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

  13. Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons

    PubMed Central

    Jang, Miae; Bum Um, Ki; Jang, Jinyoung; Jin Kim, Hyun; Cho, Hana; Chung, Sungkwon; Kyu Park, Myoung

    2015-01-01

    Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubby types of spines. However, the number of dendritic spines of the dopamine neurons was approximately five times lower than that of CA1 pyramidal neurons. Immunostaining and morphological analysis revealed that glutamatergic shaft synapses were present two times more than spine synapses. Using local two-photon glutamate uncaging techniques, we confirmed that shaft synapses and spine synapses had both AMPA and NMDA receptors, but the AMPA/NMDA current ratios differed. The evoked postsynaptic potentials of spine synapses showed lower amplitudes but longer half-widths than those of shaft synapses. Therefore, we provide the first evidence that the midbrain dopamine neurons have two morphologically and functionally distinct types of glutamatergic synapses, spine synapses and shaft synapses, on the same dendrite. This peculiar organization could be a new basis for unraveling many physiological and pathological functions of the midbrain dopamine neurons. PMID:26435058

  14. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus.

    PubMed

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.

  15. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus

    PubMed Central

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548

  16. Evaluation of Feed for Thin-Tailed Sheep Fattening with Supplemented Protected and Unprotected Aldehide

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Sudibya

    2018-02-01

    The purpose of this study was to determine the effect of the use of soybean protection supplements in sheep ration in vivo in terms of consumption, digestibility, nutrient value index, and the digestible nutrients in the ration. Livestock used in this study were 15 heads of thintailed sheep male with an average body weight of 20.81 ± 1.40kg. The rations used in this study consisted of elephant grass, basal concentrate, soybean groats protected and without protected. The comparison between elephant grass and basalt concentrate is 30:70. Feed treatment in the form of supplementary concentrate from soybean groats ingredients without protection and protection. Protection of soybeans using 37% formaldehyde. The treatment given is P0 = 30% Elephant grass + 70% Basal concentrate, P1 = 30% Elephant grass + 60% Basal Concentrate + 10% soybeans groats without formaldehyde protection, and P2 = 30% Elephant grass + 60% Basal Concentrate + 10% soybeans groats formaldehyde protection. Supplementation of 10% soybean protected feeding in male thin tail sheep fattening ration had significant effect (P <0.05) on crude protein digestibility, nutrient value index and digested crude protein. The use of 10% of soybean protected 37% formaldehyde protected soy by 1% of the dry weight of the concentrate in thin tail fattening rations could improve protein digestibility, nutrient value index and abrasive proteins that can be ingested in vivo.

  17. Liposomes assembled from a dual drug-tailed phospholipid for cancer therapy.

    PubMed

    Fang, Shuo; Niu, Yuge; Zhu, Wenjun; Zhang, Yemin; Yu, Liangli; Li, Xinsong

    2015-05-01

    We report a novel dual drug-tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil-tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug-tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Balsam Fir Dominant Species Under Rethinned Northern White-Cedar

    Treesearch

    William F. Johnston

    1972-01-01

    A 20-year thinning study in a Wisconsin swamp stand of middle-aged northern white-cedar indicates that advance tree reproduction and shrubs grow little under after a second thinning to less than 150 square feet of basal area per acre. Balsam fir will probably dominate this undergrowth, particularly if the area is used heavily by snowshoe hare or white-tailed deer....

  19. The shape and motion of gas bubbles in a liquid flowing through a thin annulus

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle

    2017-11-01

    We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.

  20. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis

    NASA Astrophysics Data System (ADS)

    Hao, Xiao-dong; Liang, Yi-li; Yin, Hua-qun; Liu, Hong-wei; Zeng, Wei-min; Liu, Xue-duan

    2017-04-01

    Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains was carried out by mixed cultures on a small scale over a period of 210 d. Lump ores as a framework were loaded at the bottom of the ore heap. The overall copper leaching rates of tailings and lump ores were 57.10wt% and 65.52wt%, respectively. The dynamic shifts of microbial community structures about attached microorganisms were determined using the Illumina MiSeq sequencing platform based on 16S rRNA amplification strategy. The results indicated that chemolithotrophic genera Acidithiobacillus and Leptospirillum were always detected and dominated the microbial community in the initial and middle stages of the heap bioleaching process; both genera might be responsible for improving the copper extraction. However, Thermogymnomonas and Ferroplasma increased gradually in the final stage. Moreover, the effects of various physicochemical parameters and microbial community shifts on the leaching efficiency were further investigated and these associations provided some important clues for facilitating the effective application of bioleaching.

  1. Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Mcpherron, R. L.

    1990-01-01

    A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central plasma sheet late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the plasma sheet both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the plasma sheet substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the plasma sheet could occur. The resulting intensified current, localized at the inner edge of the plasma sheet, would lead to a very thin plasma confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.

  2. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    PubMed

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Validation of the Dynamic Recrystallization (DRX) Mechanism for Whisker and Hillock Growth on Sn Thin Films

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Neilsen, M. K.; Rejent, J. A.; Grant, R. P.

    2015-10-01

    A study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: ɛc = A D o m Z n , (2) DRX to be cyclic: D o < 2 D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0- μm and 4.9- μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. A first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.

  4. Validation of the dynamic recrystallization (DRX) mechanism for whisker and hillock growth on thin films

    DOE PAGES

    Vianco, Paul T.; Neilsen, Michael K.; Rejent, Jerome A.; ...

    2015-05-01

    Our study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. Themore » cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A D o m Z n , (2) DRX to be cyclic: D o < 2D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. Furthermore, a first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.« less

  5. What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams?

    PubMed

    Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A

    2018-04-01

    Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.

  6. Structured plasma sheet thinning observed by Galileo and 1984-129

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, G.D.; Belian, R.D.; Fritz, T.A.

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that is crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-Earth tail during the growth phase of substorms. This period is unique in that Galileomore » provided a rapid radial profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft the authors can distinguish between spatial structures and temporal changes. Their observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft`s magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours. 28 refs., 10 figs.« less

  7. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts.

    PubMed

    Mwacharo, Joram M; Kim, Eui-Soo; Elbeltagy, Ahmed R; Aboul-Naga, Adel M; Rischkowsky, Barbara A; Rothschild, Max F

    2017-12-15

    African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.

  8. The structure of a cometary type I tail - Ground-based and ICE observations of P/Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Goldberg, B. A.; Smith, E. J.; Mccomas, D. J.; Bame, S. J.

    1986-01-01

    Comparison of ground-based and in situ observations of P/Giacobini-Zinner are used to investigate the morphology of a type I cometary tail. ICE magnetic field and plasma measurements show a well-defined cometary magnetotail composed of two magnetic lobes in pressure equilibrium with a central plasma sheet. A dependence of ion tail width on IMF direction is found which strongly suggests that the classical type I ion tails observed on the ground consist predominantly of emissions from the slab-shaped plasma sheet separating the magnetic lobes. The width of the G-Z magnetotail is determined to be 9.8 (+ or - 0.5) x 10 to the 3rd km with a quasi-circular cross section. The results of this study also indicate that some of the dynamical thinnings and thickenings observed in long type I tails may be caused by IMF variations changing the angle with which the plasma sheet is viewed at earth.

  9. Large Fluctuations for Spatial Diffusion of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Aghion, Erez; Kessler, David A.; Barkai, Eli

    2017-06-01

    We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.

  10. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  11. Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L.

    2013-10-01

    In low-temperature solution processed amorphous zinc oxide (a-ZnO) thin films, we show the thin film transistor (TFT) characteristics for the trap-filled limit (TFL), when the quasi Fermi energy exceeds the conduction band edge and all tail-states are filled. In order to apply gate fields that are high enough to reach the TFL, we use an ionic liquid tape gate. Performing capacitance voltage measurements to determine the accumulated charge during TFT operation, we find the TFL at biases higher than predicted by the electronic structure of crystalline ZnO. We conclude that the density of states in the conduction band of a-ZnO is higher than in its crystalline state. Furthermore, we find no indication of percolative transport in the conduction band but trap assisted transport in the tail-states of the band.

  12. Hybird state of the tail mangetic configuration during steady convection events

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Pulkkinen, T. I.; Pellinen, T. I.; Tsyganenko, N. A.

    1994-01-01

    Previous observations have shown that during periods of steady magnetospheric convection (SMC) a large amount of magnetic flux crosses the plasma sheet (corresponding to approximately 10 deg wide auroral oval at the nightside) and that the magnetic configuration in the midtail is relaxed (the curent sheet is thick and contains enhanced B(sub Z). These signatures are typical for the substorm recovery phase. Using near-geostationary magnetic field data, magnetic field modeling and a noval diagostic technique (isotropic boundary algorithm), we show that in the near-Earth tail the magnetic confirguration is very stretched during the SMC events. This stretching is caused by an intense, thin westward current. Because of the srongly depressed B(sub Z), there is a large radial gradient in the near-tail magetic field. These signatures have been peviously associated only with the substorm growth phase. Our results indicate that during the SMC periods the magnetic configuration is very peculiar, with co-existing thin near-Earth current sheet and thick midtail plasma sheet. The deep local minimum of the equatorial B(sub Z) that devleops at R approximately 12 R(sub E) is consistent with steady, adiabatic, Earthward convection in the midtail. These results impose contraints on the existing substorm theories, and call for an explanation of how such a stressed configuration can persist for such a long time without tail current disruptions that occur at the end of a substorm growth phase.

  13. X-15 mounted to B-52 mothership pylon - preparation for an attempt at two X-15 launches in one day

    NASA Technical Reports Server (NTRS)

    1960-01-01

    This photo shows one of the four attempts NASA made at launching two X-15 aircraft in one day. This attempt occurred November 4, 1960. None of the four attempts was successful, although one of the two aircraft involved in each attempt usually made a research flight. In this case, Air Force pilot Robert A. Rushworth flew X-15 #1 on its 16th flight to a speed of Mach 1.95 and an altitude of 48,900 feet. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  14. X-15 test pilots - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force pilot William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. of their 125 X-15 flights, 8 were above the 50 miles that constituted the Air Force's definition of the beginning of space (Engle 3, Dana 2, Rushworth, Knight, and McKay one each). NASA used the international definition of space as beginning at 62 miles above the earth. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  15. X-15 with test pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Bill Dana is seen here next to the X-15 #3 rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HiDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made 3 X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  16. X-15 flight crew - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force Major William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. These six pilots made 125 of the 199 total flights in the X-15. Rushworth made 34 flights (the most of any X-15 pilot); McKay flew 29 times; Engle, Knight, and Dana each flew 16 times; Thompson's total was 14. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  17. X-15 #3 being secured by ground crew after flight

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The X-15-3 (56-6672) research aircraft is secured by ground crew after landing on Rogers Dry Lakebed. The work of the X-15 team did not end with the landing of the aircraft. Once it had stopped on the lakebed, the pilot had to complete an extensive post-landing checklist. This involved recording instrument readings, pressures and temperatures, positioning switches, and shutting down systems. The pilot was then assisted from the aircraft, and a small ground crew depressurized the tanks before the rest of the ground crew finished their work on the aircraft. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  18. Effect of Tail Dihedral on Lateral Control Effectiveness at High Subsonic Speeds of Differentially Deflected Horizontal-Tail Surfaces on a Configuration having a Thin Highly Tapered Wing

    NASA Technical Reports Server (NTRS)

    Fournier, Paul G.

    1959-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effect of tail dihedral on lateral control effectiveness of a complete-model configuration having differentially deflected horizontal-tail surfaces. Limited tests were made to determine the lateral characteristics as well as the longitudinal characteristics in sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14, 28.80 deg sweep of the quarter-chord line with zero sweep at the 80-percent-chord line, and NACA 65A004 airfoil sections. The test Mach number range extended from 0.60 to 0.92. There are only small variations in the roll effectiveness parameter C(sub iota delta) with negative tail dihedral angle. The tail size used on the test model, however, is perhaps inadequate for providing the roll rates specified by current military requirements at subsonic speeds. The lateral aerodynamic characteristics were essentially constant throughout the range of sideslip angle from 12 deg to -12 deg. A general increase in yawing moment was noted with increased negative dihedral throughout the Mach number range.

  19. Aerodynamic characteristics of horizontal tail surfaces

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S

    1940-01-01

    Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.

  20. Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Mcpherron, R. L.

    1990-01-01

    A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the plasma sheet both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the plasma sheet substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.

  1. Giant surfactants of poly(ethylene oxide)- b-polystyrene-(molecular nanoparticle): nanoparticle-driven self-assembly with sub-10-nm nanostructures in thin films

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Hao; Lin, Zhiwei; Dong, Xue-Hui; Hsieh, I.-Fan; Cheng, Stephen Z. D.

    2014-03-01

    Giant surfactants are built upon precisely attaching shape- and volume-persistent molecular nanoparticles (MNP) to polymeric flexible tails. The unique class of self-assembling materials, giant surfactants, has been demonstrated to form self-assembled ordered nanostructures, and their self-assembly behaviors are remarkably sensitive to primary chemical structures. In this work, two sets of giant surfactants with functionalized MNP attached to diblock copolymer tails were studied in thin films. Carboxylic acid-functionalized [60]fullerene (AC60) tethered with PEO- b-PS (PEO-PS-AC60) represents an ABA' (hydrophilic-hydrophobic-hydrophilic) giant surfactant, and fluoro-functionalized polyhedral oligomeric silsesquioxane (FPOSS) tethered with PEO- b-PS (PEO-PS-FPOSS) represents an ABC (hydrophilic-hydrophobic-omniphobic) one. The dissimilar chemical natures of the MNPs result in different arrangement of MNPs in self-assembled structures, the dispersion of AC60 in PEO domain and the single domain of FPOSS. Moreover, the chemically bonded MNPs could induce the originally disordered small molecular PEO- b-PS to form ordered cylindrical and lamellar structure, as evidenced by TEM and GISAXS, leading to sub-10-nm nanostructures of copolymer in the thin film state.

  2. Energy storage and dissipation in the magnetotail during substorms. I - Particle simulations. II - MHD simulations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Steinolfson, R. S.

    1993-01-01

    2D electromagnetic particle simulations are used to investigate the dynamics of the tail during development of substorms under the influence of the pressure in the magnetospheric boundary layer and the dawn-to-dusk electric field. It is shown that pressure pulses result in thinning of the tail current sheet as the magnetic field becomes pinched near the region where the pressure pulse is applied. The pinching leads to the tailward flow of the current sheet plasma and the eventual formation and injection of a plasmoid. Surges in the dawn-to-dusk electric field cause plasma on the flanks to convect into the center of the current sheet, thereby thinning the current sheet. The pressure in the magnetospheric boundary laser is coupled to the dawn-to-dusk electric field through the conductivity of the tail. Changes in the predicted evolution of the magnetosphere during substorms due to changes in the resistivity are investigated under the assumption that MHD theory provides a suitable representation of the global or large-scale evolution of the magnetotail to changes in the solar wind and to reconnection at the dayside magnetopause. It is shown that the overall evolution of the magnetosphere is about the same for three different resistivity distributions with plasmoid formation and ejection in each case.

  3. X-ray structural investigation of nonsymmetrically and symmetrically alkylated [1]benzothieno[3,2-b]benzothiophene derivatives in bulk and thin films.

    PubMed

    Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele

    2014-08-27

    A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

  4. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  5. Illuminating the Potential of Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Katahara, John K.

    Widespread adoption of photovoltaics (PV) as an alternative electricity source will be predicated upon improvements in price performance compared to traditional power sources. Solution processing of thin-film PV is one promising way to reduce the capital expenditure (CAPEX) of manufacturing solar cells. However, it is imperative that a shift to solution processing does not come at the expense of device performance. One particularly problematic parameter for thin-film PV has historically been the open-circuit voltage (VOC ). As such, there is a pressing need for characterization tools that allow us to quickly and accurately evaluate the potential performance of solution-processed PV absorber layers. This work describes recent progress in developing photoluminescence (PL) techniques for probing optoelectronic quality in semiconductors. We present a generalized model of absorption that encompasses ideal direct-gap semiconductor absorption and various band tail models. This powerful absorption model is used to fit absolute intensity PL data and extract quasi-Fermi level splitting (maximum attainable VOC) for a variety of PV absorber technologies. This technique obviates the need for full device fabrication to get feedback on optoelectronic quality of PV absorber layers and has expedited materials exploration. We then use this absorption model to evaluate the thermodynamic losses due to different band tail cases and estimate tail losses in Cu 2ZnSn(S,Se)4 (CZTSSe). The effect of sub-bandgap absorption on PL quantum yield (PLQY) and voltage is elucidated, and new analysis techniques for extracting VOC from PLQY are validated that reduce computation time and provide us even faster feedback on material quality. We then use PL imaging to develop a mechanism describing the degradation of solution-processed CH3NH3PbI3 films under applied bias and illumination.

  6. Hypersonic shock tunnel heat transfer tests of the Space Shuttle SILTS pod configuration

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1983-01-01

    Heat transfer measurements have been made on a 0.0175-scale NASA Space Shuttle orbiter model having a simulated SILTS (Shuttle Infrared Leeside Temperature Sensor) pod on top of the vertical tail. Heat transfer distributions were measured both on the pod and on the vertical tail. The test program covered Mach numbers of 8, 11 and 16 in air, at Reynolds numbers from 100,000 to 18 million, based on model length. The angle of attack ranged from 30 deg to 40 deg at sideslip angles from -2 to +2 deg. Data were obtained with 92 thin film assistance thermometers located on the SILTS pod and on the upper 30 percent of the vertical tail. Heat transfer rates measured on the vertical tail show good agreement with flight data obtained from missions STS-1, -2 and -3. The variation of heat transfer to the pod with Reynolds number, Mach number and angle of attack is discussed.

  7. Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea.

    PubMed

    Ahn, Joo Sung; Park, Young Seog; Kim, Ju-Yong; Kim, Kyoung-Woong

    2005-04-01

    The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As-Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As-Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7-91.1% of the As in tailings were NH(4)-oxalate extractable As, further confirmed the predominance of amorphous As-Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01-3.10) and high concentrations of dissolved As (up to 29.5 mg L(-1)), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7-522 microg L(-1) of As. The amorphous As-Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.

  8. Modeling and characterization of the low frequency noise behavior for amorphous InGaZnO thin film transistors in the subthreshold region

    NASA Astrophysics Data System (ADS)

    Cai, Minxi; Yao, Ruohe

    2017-10-01

    An analytical model of the low-frequency noise (LFN) for amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) in the subthreshold region is developed. For a-IGZO TFTs, relations between the device noise and the subgap defects are characterized based on the dominant multiple trapping and release (MTR) mechanism. The LFN is considered to be contributed from trapping/detrapping of carriers both into the border traps and the subgap density of states (DOS). It is revealed that the LFN behavior of a-IGZO TFTs in the subthreshold region is significantly influenced by the distribution of tail states, where MTR process prevails. The 1/f α (with α < 1) spectrum of the drain current noise is also related to the characteristic temperature of the tail states. The new method is introduced to calculate the LFN of devices by extracting the LFN-related DOS parameters from the current-voltage characteristics.

  9. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  10. The Effect of Crude Protein Content on Meat and Fat Production in Sheep

    NASA Astrophysics Data System (ADS)

    Mawati, S.; Restitrisnani, V.; Soedarsono

    2018-02-01

    This study was undertaken to evaluate the effect of crude protein (CP) content on meat protein and fat production in sheep. Twenty four male thin tail sheep aged 6-7 months with average body weight of 13±1.56 kg were used in this study. The sheep were fed 10-14% CP. Sheep with the average body weight amount 16.75 kg were slaughter after 4 months rising. Parameters observed in this study were carcass weight, meat weight and fat weight of thin tail sheep. The data were analyzed using correlation analysis. The result of this study showed that CP content on diet had weak and negative correlation with meat production (r = -0.06) (y = -0.148x + 62.54) but had weak and possitive correlation with fat production (r = 0.3) (y = 0.807x2 -18.40x + 119.1). Based on the result, it can be concluded that the optimum CP content for sheep is 12.5% CP.

  11. Effect of breed and age on sexual behaviour of rams.

    PubMed

    Simitzis, Panagiotis E; Deligeorgis, Stelios G; Bizelis, Joseph A

    2006-05-01

    The objective of this study was to highlight the problems that arise during the reproduction between thin-tailed rams and fat-tailed ewes. At the same time, particular emphasis laid on the influence of sheep breed, sheep age, time after ram introduction and day of the ewe estrus cycle on ram and ewe sexual behaviour. Rams were subjected to sexual performance tests by being individually exposed to 12 ewes for 3 h daily, 19 consecutive days. The 16 rams of the experiment were separated according to their age (9 and 21 months old) and breed (Chios and Karagouniki), and the 96 ewes of Chios fat-tailed breed, were divided by age (9 and 21 months old). The main characteristics of courtship behaviour, like sniffing, nudging, flehmen response and following were recorded and studied in detail. Mature Chios rams, which were the only one with previous experience of Chios ewes, exhibited higher rates of sexual interest per ewe than the other rams (P < 0.05). On the other hand, rams sniffed and nudged more young than mature ewes (P < 0.05), probably due to the fact that young ewes did not express intense symptoms of estrus. Young rams exhibited substandard sexual interest towards mature ewes, when they first came in contact with them (P < 0.05). In general, Karagouniki thin-tailed rams exhibited reduced rates of mating behaviour when they courted with Chios fat-tailed ewes in comparison with Chios rams (P < 0.05). Moreover, as the time after ram introduction passed, the frequency and duration of sexual behaviour components decreased (P < 0.001). Finally, the effect of the day of the experiment was only significant in the case of sniffing, which increased during the first 2 days and then declined and stabilized (P < 0.01). As it was demonstrated, ram age and ram breed played a fundamental role in the exhibition of sexual interest elements.

  12. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  13. X-15 ship #3 on lakebed

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The X-15-3 (56-6672), seen here on the lakebed at Edwards Air Force Base, Edwards, California, was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1 serial number 56-6670, seen in this photo, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  14. Energy coupling in the magnetospheres of earth and Mercury

    NASA Technical Reports Server (NTRS)

    Baker, D. N.

    1990-01-01

    The mechanisms involved in the dissipation of solar-wind energy during magnetospheric substorms are considered theoretically, comparing models for earth and Mercury. In the model for terrestrial substorms, IMF lines interconnect with terrestrial field lines near the front of the magnetosphere and are dragged back, carrying plasma and energy, to form tail lobes; a magnetic neutral region is then formed by reconnection of the open lines as the plasma sheet thins, and reconnective heating and acceleration of tail plasma lead to plasma inflow at the poles and formation of a plasmoid flowing down the tail at high velocity. Analogous phenomena on Mercury could produce precipitation of particles carrying 10-1000 GW of power into 'auroral zones' on the dark side of the planet. The feasibility of remote or in situ observations to detect such processes is discussed.

  15. Exploring Mercury Tail

    NASA Image and Video Library

    2008-08-26

    As the MESSENGER spacecraft approached Mercury, the UVVS field of view was scanned across the planet's exospheric "tail," which is produced by the solar wind pushing Mercury's exosphere (the planet's extremely thin atmosphere) outward. This figure, recently published in Science magazine, shows a map of the distribution of sodium atoms as they stream away from the planet (see PIA10396); red and yellow colors represent a higher abundance of sodium than darker shades of blue and purple, as shown in the colored scale bar, which gives the brightness intensity in units of kiloRayleighs. The escaping atoms eventually form a comet-like tail that extends in the direction opposite that of the Sun for many planetary radii. The small squares outlined in black correspond to individual measurements that were used to create the full map. These measurements are the highest-spatial-resolution observations ever made of Mercury's tail. In less than six weeks, on October 6, 2008, similar measurements will be made during MESSENGER's second flyby of Mercury. Comparing the measurements from the two flybys will provide an unprecedented look at how Mercury's dynamic exosphere and tail vary with time. Date Acquired: January 14, 2008. http://photojournal.jpl.nasa.gov/catalog/PIA11076

  16. Changes in myosin S1 orientation and force induced by a temperature increase.

    PubMed

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  17. Stability and control characteristics of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49

    NASA Technical Reports Server (NTRS)

    Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W

    1947-01-01

    Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.

  18. Observation of alpha particle loss from JET plasmas during ion cyclotron resonance frequency heating using a thin foil Faraday cup detector array.

    PubMed

    Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A

    2010-10-01

    The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

  19. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    PubMed

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  20. Magnetospheric Substorm Evolution in the Magnetotail: Challenge to Global MHD Modeling.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Dorelli, J.; Rastaetter, L.

    2003-12-01

    Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at CCMC. We perform simulations of magnetotail dynamics using global MHD models residing at CCMC. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. We will analyze the effects of spatial resolution in the plasma sheet on modeled expansion phase evolution, maximum energy stored in the tail, and details of magnetotail reconnection. We will pay special attention to current sheet thinning and multiple plasmoid formation.

  1. Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Hall, R. M.; Wahls, R. A.; Luckring, J. M.; Owens, L. R.

    2002-01-01

    A wind tunnel test of a generic fighter configuration was tested in the National Transonic Facility through a cooperative agreement between NASA Langley Research Center and McDonnell Douglas. The primary purpose of the test was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The test included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: (1) Fuselage/Wing; (2) Fuselage/Wing/Centerline Vertical Tail/Horizontal Tail; and (3) Fuselage/Wing/Trailing-Edge Extension/Twin Vertical Tails. Reynolds number effects on the longitudinal aerodynamic characteristics are presented herein.

  2. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less

  3. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors

    PubMed Central

    Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao

    2018-01-01

    A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492

  4. A physical mechanism producing suprathermal populations and initiating substorms in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Sarafopoulos, D. V.

    2008-06-01

    We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≍7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≍10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.

  5. Multiscale empirical modeling of the geomagnetic field: From storms to substorms

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Korth, H.; Gkioulidou, M.; Ukhorskiy, A. Y.; Merkin, V. G.

    2017-12-01

    An advanced version of the TS07D empirical geomagnetic field model, herein called SST17, is used to model the global picture of the geomagnetic field and its characteristic variations on both storm and substorm scales. The new SST17 model uses two regular expansions describing the equatorial currents with each having distinctly different scales, one corresponding to a thick and one to a thin current sheet relative to the thermal ion gyroradius. These expansions have an arbitrary distribution of currents in the equatorial plane that is constrained only by magnetometer data. This multi-scale description allows one to reproduce the current sheet thinning during the growth phase. Additionaly, the model uses a flexible description of field-aligned currents that reproduces their spiral structure at low altitudes and provides a continuous transition from region 1 to region 2 current systems. The empirical picture of substorms is obtained by combining magnetometer data from Geotail, THEMIS, Van Allen Probes, Cluster II, Polar, IMP-8, GOES 8, 9, 10 and 12 and then binning this data based on similar values of the auroral index AL, its time derivative and the integral of the solar wind electric field parameter (from ACE, Wind, and IMP-8) in time over substorm scales. The performance of the model is demonstrated for several events, including the 3 July 2012 substorm, which had multi-probe coverage and a series of substorms during the March 2008 storm. It is shown that the AL binning helps reproduce dipolarization signatures in the northward magnetic field Bz, while the solar wind electric field integral allows one to capture the current sheet thinning during the growth phase. The model allows one to trace the substorm dipolarization from the tail to the inner magnetosphere where the dipolarization of strongly stretched tail field lines causes a redistribution of the tail current resulting in an enhancement of the partial ring current in the premidnight sector.

  6. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, James E.; Purdue University, West Lafayette, Indiana 47907; Hages, Charles J.

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependencemore » and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.« less

  7. Investigation of light induced effect on density of states of Pb doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.

    2016-05-01

    Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.

  8. Absorption Coefficient of a Semiconductor Thin Film from Photoluminescence

    NASA Astrophysics Data System (ADS)

    Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C.

    2018-06-01

    The photoluminescence (PL) of semiconductors can be used to determine their absorption coefficient (α ) using Planck's generalized law. The standard method, suitable only for self-supported thick samples, like wafers, is extended to multilayer thin films by means of the transfer-matrix method to include the effect of the substrate and optional front layers. α values measured on various thin-film solar-cell absorbers by both PL and photothermal deflection spectroscopy (PDS) show good agreement. PL measurements are extremely sensitive to the semiconductor absorption and allow us to advantageously circumvent parasitic absorption from the substrate; thus, α can be accurately determined down to very low values, allowing us to investigate deep band tails with a higher dynamic range than in any other method, including spectrophotometry and PDS.

  9. 77 FR 66409 - Airworthiness Directives; Diamond Aircraft Industries GmbH Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... of an unsuitable self-locking nut on the bell crank of the elevator push rod that can cause failure... in the tail section of the fuselage, as a result of installation of a non-suitable self-locking nut... identified that its current configuration has a failure potential when components such as thin self-securing...

  10. Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris)

    PubMed Central

    Rommel, Sentiel A; Caplan, Heather

    2003-01-01

    Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1 : 2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures. PMID:12739612

  11. Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris).

    PubMed

    Rommel, Sentiel A; Caplan, Heather

    2003-04-01

    Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1:2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures.

  12. X-15 #3 pedestal-mounted full-scale replica covered in snow

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The full scale mock-up of X-15 #3 was installed September 1995 at the NASA Dryden Flight Research Center, Edwards, California. The original X-15 #3, serial number 56-6672, was destroyed on 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from the X-15-3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.

  13. X-15 cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photo shows the X-15 cockpit. The X-15 was unique for many reasons, including the fact that it had two types of controls for the pilot. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wing provided roll control. The conventional aerodynamic controls used a stick, located in the middle of the floor, and pedals. The reaction control system used a side arm controller, seen in this photo on the left. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  14. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy

    NASA Astrophysics Data System (ADS)

    Guergouz, Celia; Martin, Laure; Vanderhaeghe, Olivier; Thébaud, Nicolas; Fiorentini, Marco

    2018-05-01

    In order to improve the understanding of thermal-tectonic evolution of high-grade terranes, we conducted a systematic study of textures, REE content and U-Pb ages of zircon and monazite grains extracted from migmatitic metapelites across the amphibolite to granulite facies metamorphic gradient exposed in the Ivrea-Verbano and Strona-Ceneri Zones (Italy). This study documents the behaviour of these accessory minerals in the presence of melt. The absence of relict monazite grains in the metasediments and the gradual decrease in the size of inherited zircon grains from amphibolite to granulite facies cores indicate partial to total dissolution of accessory minerals during the prograde path and partial melting. The retrograde path is marked by (i) growth of new zircon rims (R1 and R2) around inherited cores in the mesosome, (ii) crystallisation of stubby zircon grains in the leucosome, especially at granulite facies, and (iii) crystallisation of new monazite in the mesosome. Stubby zircon grains have a distinctive fir-tree zoning and a constant Th/U ratio of 0.20. Together, these features reflect growth in the melt; conversely, the new zircon grains with R1 rims have dark prismatic habits and Th/U ratios < 0.1, pointing to growth in solid residues. U-Pb ages obtained on both types are similar, indicating contemporaneous growth of stubby zircon and rims around unresorbed zircon grains, reflecting the heterogeneous distribution of the melt at the grain scale. In the Ivrea-Verbano Zone the interquartile range (IQR) of U-Pb ages on zircon and monazite are interpreted to represent the length of zircon and monazite crystallisation in the presence of melt. Accordingly, they provide an indication on the minimum duration for high-temperature metamorphism and partial melting of the lower crust: 20 Ma and 30 Ma in amphibolite and granulite facies, respectively. In amphibolite facies, zircon crystallisation between 310 and 294 Ma (IQR) is interpreted to reflect metamorphic peak condition and earlier retrograde history; conversely, monazite crystallisation between 297 and 271 Ma (IQR) reflects cooling under 750 °C to a temperature close to the solidus. In granulite facies, zircon crystallisation between 295 and 265 Ma (IQR) is interpreted to reflect high-temperature conditions, which were attained after peak of metamorphism during isothermal decompression and subsequent cooling under 850-950 °C. The observed decrease of U-Pb ages in metamorphic zircon and monazite from amphibolite to granulite facies (i.e. from the middle to the lower crust) is interpreted to record slow cooling and crystallisation of the Variscan orogenic root at the transition from orogenic collapse to opening of the Tethys Ocean.

  15. Investigation of Aerodynamics Scale Effects for a Generic Fighter Configuration in the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Wahls, R. A.; Owens, L. R.; Burner, A. B.; Graves, S. S.; Luckring, J. M.

    2003-01-01

    Two wind tunnel tests of a generic fighter configuration have been completed in the National Transonic Facility. The primary purpose of the tests was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The tests included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: 1) Fuselage / Wing, 2) Fuselage / Wing / Centerline Vertical Tail / Horizontal Tail, and 3) Fuselage / Wing / Trailing-Edge Extension / Twin Vertical Tails. Reynolds number effects on the lateral-directional aerodynamic characteristics are presented herein, along with longitudinal data demonstrating the effects of fixing the boundary layer transition location for low Reynolds number conditions. In addition, an improved model videogrammetry system and results are discussed.

  16. Environmental impact analysis of mine tailing reservoir

    NASA Astrophysics Data System (ADS)

    Gong, J. Z.

    2016-08-01

    Under certain conditions landscape topography which utilizes mine tailing reservoir construction using is likely to increase lateral recharge source regions, resulting in dramatic changes to the local hydrological dynamic field and recharge of downstream areas initiated by runoff, excretion state, elevated groundwater depth, shallow groundwater, rainfall direct communication, and thinning of the vadose zone. Corrosive leaching of topsoil over many years of exposure to chemical fertilizers and pesticides may result in their dissolution into the groundwater system, which may lead to excessive amounts of many harmful chemicals, therby affecting the physical and mental health of human residents and increase environmental vulnerability and risk associated with the water and soil. According to field survey data from Yujiakan, Qian'an City, and Hebei provinces, this paper analyzes the hydrogeological environmental mechanisms of areas adjacent to mine tailing reservoirs and establishes a conceptual model of the local groundwater system and the concentration-response function between NO3 - content in groundwater and the incidence of cancer in local residents.

  17. X-15A-2 with dummy ramjet

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photo shows the X-15A-2 (56-6671) on a research flight with a dummy ramjet engine attached to the bottom of its wedge-shaped vertical tail. One of the experiments planned for the X-15A-2 involved tests of a functional ramjet at speeds above Mach 5. This photo was taken with a dummy ramjet. On this research flight, the X-15A-2 did not carry the two drop tanks used on its Mach 6.7 flight. It also had not yet been covered with an ablative coating. The X-15A-2 made several flights with the dummy ramjet, leading to the record Mach 6.7 flight on October 3, 1967. Delays in producing the operational ramjet, aerodynamic heating damage to the aircraft during the record flight (despite the ablative coating), and the end of the X-15 program in 1968 resulted in no flights with the actual ramjet. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  18. X-15 #2 with test pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Joe Walker is seen here after a flight in front of the X-15 #2 (56-6671) rocket-powered research aircraft. Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,200 feet (67.08 miles) on August 22, 1963 (his last X-15 flight). This was one of three flights by Walker that achieved altitudes over 50 miles. Walker was killed on June 8, 1966, when his F-104 collided with the XB-70. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  19. Localization through surface folding in solid foams under compression.

    PubMed

    Reis, P M; Corson, F; Boudaoud, A; Roman, B

    2009-07-24

    We report a combined experimental and theoretical study of the compression of a solid foam coated with a thin elastic film. Past a critical compression threshold, a pattern of localized folds emerges with a characteristic size that is imposed by an instability of the thin surface film. We perform optical surface measurements of the statistical properties of these localization zones and find that they are characterized by robust exponential tails in the strain distributions. Following a hybrid continuum and statistical approach, we develop a theory that accurately describes the nucleation and length scale of these structures and predicts the characteristic strains associated with the localized regions.

  20. 10 CFR Appendix A to Part 40 - Criteria Relating to the Operation of Uranium Mills and the Disposition of Tailings or Wastes...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... relatively thin, in-situ clay soils are to be relied upon for seepage control, tests must be conducted with... itself. (6) The design requirements in this criterion for longevity and control of radon releases apply... licensee shall control, minimize, or eliminate post-closure escape of nonradiological hazardous...

  1. The Logarithmic Tail of Néel Walls

    NASA Astrophysics Data System (ADS)

    Melcher, Christof

    We study the multiscale problem of a parametrized planar 180° rotation of magnetization states in a thin ferromagnetic film. In an appropriate scaling and when the film thickness is comparable to the Bloch line width, the underlying variational principle has the form where the reduced stray-field operator Q approximates (-Δ)1/2 as the quality factor Q tends to zero. We show that the associated Néel wall profile u exhibits a very long logarithmic tail. The proof relies on limiting elliptic regularity methods on the basis of the associated Euler-Lagrange equation and symmetrization arguments on the basis of the variational principle. Finally we study the renormalized limit behavior as Q tends to zero.

  2. An Evolutionarily Conserved Family of Virion Tail Needles Related to Bacteriophage P22 gp26: Correlation between Structural Stability and Length of the -Helical Trimeric Coiled Coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, A.; Walker-Kopp, N; Casjens, S

    2009-01-01

    Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution.more » All gp26-like factors contain an elongated {alpha}-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 {angstrom}. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 C. To determine how the structural stability of these phage fibers correlates with the length of the {alpha}-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the {alpha}-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the {alpha}-helical core.« less

  3. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle.

    PubMed

    Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A

    2006-06-23

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.

  4. Topography and geomorphology of the Huygens landing site on Titan

    USGS Publications Warehouse

    Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.

    2007-01-01

    The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.

  5. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep.

    PubMed

    Cameron, Timothy C; Cooke, Ira; Faou, Pierre; Toet, Hayley; Piedrafita, David; Young, Neil; Rathinasamy, Vignesh; Beddoe, Travis; Anderson, Glenn; Dempster, Robert; Spithill, Terry W

    2017-08-01

    A more thorough understanding of the immunological interactions between Fasciola spp. and their hosts is required if we are to develop new immunotherapies to control fasciolosis. Deeper knowledge of the antigens that are the target of the acquired immune responses of definitive hosts against both Fasciola hepatica and Fasciola gigantica will potentially identify candidate vaccine antigens. Indonesian Thin Tail sheep express a high level of acquired immunity to infection by F. gigantica within 4weeks of infection and antibodies in Indonesian Thin Tail sera can promote antibody-dependent cell-mediated cytotoxicity against the surface tegument of juvenile F. gigantica in vitro. Given the high protein sequence similarity between F. hepatica and F. gigantica, we hypothesised that antibody from F. gigantica-infected sheep could be used to identify the orthologous proteins in the tegument of F. hepatica. Purified IgG from the sera of F. gigantica-infected Indonesian Thin Tail sheep collected pre-infection and 4weeks p.i. were incubated with live adult F. hepatica ex vivo and the immunosloughate (immunoprecipitate) formed was isolated and analysed via liquid chromatography-electrospray ionisation-tandem mass spectrometry to identify proteins involved in the immune response. A total of 38 proteins were identified at a significantly higher abundance in the immunosloughate using week 4 IgG, including eight predicted membrane proteins, 20 secreted proteins, nine proteins predicted to be associated with either the lysosomes, the cytoplasm or the cytoskeleton and one protein with an unknown cellular localization. Three of the membrane proteins are transporters including a multidrug resistance protein, an amino acid permease and a glucose transporter. Interestingly, a total of 21 of the 38 proteins matched with proteins recently reported to be associated with the proposed small exosome-like extracellular vesicles of adult F. hepatica, suggesting that the Indonesian Thin Tail week 4 IgG is either recognising individual proteins released from extracellular vesicles or is immunoprecipitating intact exosome-like extracellular vesicles. Five extracellular vesicle membrane proteins were identified including two proteins predicted to be associated with vesicle transport/ exocytosis (VPS4, vacuolar protein sorting-associated protein 4b and the Niemann-Pick C1 protein). RNAseq analysis of the developmental transcription of the 38 immunosloughate proteins showed that the sequences are expressed over a wide abundance range with 21/38 transcripts expressed at a relatively high level from metacercariae to the adult life cycle stage. A notable feature of the immunosloughates was the absence of cytosolic proteins which have been reported to be secreted markers for damage to adult flukes incubated in vitro, suggesting that the proteins observed are not inadvertent contaminants leaking from damaged flukes ex vivo. The identification of tegument protein antigens shared between F. gigantica and F. hepatica is beneficial in terms of the possible development of a dual purpose vaccine effective against both fluke species. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  6. Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D

    PubMed Central

    Penazzi, Lorène; Tackenberg, Christian; Ghori, Adnan; Golovyashkina, Nataliya; Niewidok, Benedikt; Selle, Karolin; Ballatore, Carlo; Smith, Amos B.; Bakota, Lidia; Brandt, Roland

    2016-01-01

    Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer’s disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD. PMID:26772969

  7. Multiple Beam Optical Processing

    DTIC Science & Technology

    1989-12-01

    the interference of multiple reflections between the two mirrors. The most promising optical bistable devices, at present, are very thin, solid Fabry...MEDIUM b) R - Ir ,, PMASE SHIFTr Figure 1.3 (a) Nonlinear Fabry-Perot etalon consisting of solid material with parallel surfaces with coatings of...instead of the solid planar structure [2.10]. Voids between columns cause an Inhomogeneous broadening and an exponential extension (Urbach tail) of the

  8. Precommercial thinning: implications of early results from the Tongass-Wide Young-Growth Studies experiments for deer habitat in southeast Alaska

    Treesearch

    Thomas A. Hanley; Michael H. McClellan; Jeffrey C. Barnard; Mary A. Friberg

    2013-01-01

    This report documents the results from the first “5-year” round of understory responses to the Tongass-Wide Young-Growth Studies (TWYGS) treatments, especially in relation to their effects on food resources for black-tailed deer (Odocoileus hemionus sitkensis). Responses of understory vegetation to precommercial silviculture experiments after their...

  9. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  10. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  11. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.

    PubMed

    Planes, G A; Rodríguez, J L; Miras, M C; García, G; Pastor, E; Barbero, C A

    2010-09-21

    Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

  12. Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail

    NASA Astrophysics Data System (ADS)

    Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.

    2009-04-01

    Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45

  13. Granular controls on the dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.

    2014-12-01

    Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.

  14. Force Balance and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  15. Magnetic configurations of the tilted current sheets in magnetotail

    NASA Astrophysics Data System (ADS)

    Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.

    2008-11-01

    In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity.

  16. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  17. Structured plasma sheet thinning observed by Galileo and 1984-129

    NASA Technical Reports Server (NTRS)

    Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.

    1993-01-01

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.

  18. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Bobela, David C.; Yang, Ye

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  19. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE PAGES

    Chen, Chao; Bobela, David C.; Yang, Ye; ...

    2017-03-17

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  20. Energetics and optimum motion of oscillating lifting surfaces of finite span

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1986-01-01

    In certain modes of animal propulsion in nature, such as bird flight and fish swimming, the efficiency compared to man-made vehicles is very high. In such cases, wing and tail motions are typically associated with relatively high Reynolds numbers, where viscous effects are confined to a thin boundary layer at the surface and a thin trailing wake. The propulsive forces, which are generated primarily by the inertial forces, can be calculated from potential-flow theory using linearized unsteady-wing theory (for small-amplitude oscillations). In the present study, a recently developed linearized, low-frequency, unsteady lifting-line theory is employed to calculate the (sectional and total) energetic quantities and optimum motion of an oscillating wing of finite span.

  1. The effect of Birkeland currents on magnetic field topology

    NASA Technical Reports Server (NTRS)

    Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

    1996-01-01

    A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

  2. Thinness in the era of obesity: trends in children and adolescents in The Netherlands since 1980.

    PubMed

    Schönbeck, Yvonne; van Dommelen, Paula; HiraSing, Remy A; van Buuren, Stef

    2015-04-01

    Although children both at the upper and lower tail of the body mass index (BMI) distribution are at greater health risk, relatively little is known about the development of thinness prevalence rates in developed countries over time. We studied trends in childhood thinness and assessed changes in the BMI distribution since the onset of the obesity epidemic. Growth data from 54 814 children aged 2-18 years of Dutch, Turkish and Moroccan origin living in The Netherlands were used. Anthropometric measurements were performed during nationwide cross-sectional growth studies in 1980 (only Dutch), 1997 and 2009. Prevalence rates of thinness grades I, II and III were calculated according to international cut-offs. BMI distributions for 1980, 1997 and 2009 were compared. Since 1980, thinness (all grades combined) reduced significantly from 14.0% to 9.8% in children of Dutch origin, but the proportion of extremely thin children (grade III) remained constant. Thinness in children of Moroccan origin decreased significantly from 8.8% to 6.2% between 1997 and 2009. No significant difference was observed in children of Turkish origin (5.4% in 1997 vs. 5.7% in 2009). Thinness occurred most often in children aged 2-5 years. There were no differences between boys and girls. The BMI distribution widened since 1980, mainly due to an upward shift of the upper centiles. Since the onset of the obesity epidemic, prevalence rates of thinness decreased. However, we found a small but persistent group of extremely thin children. More research is needed to gain insight into their health status. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  3. Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus.

    PubMed

    Dhar, Matasha; Wayman, Gary A; Zhu, Mingyan; Lambert, Talley J; Davare, Monika A; Appleyard, Suzanne M

    2014-07-23

    Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and β-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, β-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation. Copyright © 2014 the authors 0270-6474/14/3410022-12$15.00/0.

  4. Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films

    NASA Astrophysics Data System (ADS)

    Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2009-01-01

    We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.

  5. Direct measurement of density of states in pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Yogev, S.; Halpern, E.; Matsubara, R.; Nakamura, M.; Rosenwaks, Y.

    2011-10-01

    We report on direct high lateral resolution measurements of density of states in pentacene thin film transistors using Kelvin probe force microscopy. The measurements were conducted on passivated (hexamethyldisilazane) and unpassivated field effect transistors with 10- and 30-nm-thick pentacene polycrystalline layers. The analysis takes into account both the band bending in the organic film and the trapped charge at the SiO2-pentacene interface. We found that the density of states for the highest occupied molecular orbital band of pentacene film on the treated substrate is Gaussian with a width (variance) of σ=0.07±0.01eV and an exponential tail. The concentration of the density of states in the gap for pentacene on bare SiO2 substrate was larger by one order of magnitude, had a different energy distribution, and induced Fermi level pinning. The results are discussed in view of their effect on pentacene thin film transistors’ performance.

  6. Avian pox in a red-tailed hawk (Buteo jamaicensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Miller, R.A. Pierce, C.A.; Rowe, S.E.

    1985-07-01

    Avian pox has been reported in at least 60 species of birds belonging to 20 different families. However, poxvirus infection in birds of prey is apparently uncommon. On 18 May 1981, an adult male red-tailed hawk was found on the US Department of Energy's Arid Land Ecology Reserve in Benton County, Washington. The bird was incapable of flight and was extremely thin. Nodular proliferations were noted on both feet and cutaneous scab-like lesions around the beak and eyes. The bird was killed in the field and submitted promptly to the diagnostic laboratory for necropsy. This report of pox infection inmore » a free-living adult red-tailed hawk represents one of the few such cases reported in the US. The potential for spread of the virus to other hawks may occur particularly during the nesting season when an infected adult could conceivably pass the virus to a mate and nestlings by direct contact or fomites. Little is known of the natural of avian pox infection in birds of prey. In other birds it is generally considered mild and self-limiting; however, eye lesions resulting in impaired vision may lead to starvation.« less

  7. Cathodoluminescence of Irradiated Hafnium Dioxide

    DTIC Science & Technology

    2011-03-01

    d allows for a smaller A for a given C, but the insulator can only become so thin before tunneling occurs, which causes high power consumption and... coefficient is given by 4 Inπα λ = , (2.7) where λ is the vacuum wavelength of the light [11]. Luminescence is the general term for the...between localized states in the band tails, while the 4.2 eV feature is excited due to the interband absorption. Strzhemechny et al., 2008, studied

  8. The Onset of Magnetic Reconnection in Tail-Like Equilibria

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Kuznetsova, Masha

    1999-01-01

    Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.

  9. Evaluation of ethanol vortex ELISA for detection of bovine tuberculosis in cattle and deer.

    PubMed

    Wadhwa, Ashutosh; Johonson, Rachel E; Eda, Keiko; Waters, W Ray; Palmer, Mitchell V; Bannantine, John P; Eda, Shigetoshi

    2014-07-04

    The use of serological assays for diagnosis of bovine tuberculosis (TB) has been intensively studied and use of specific antigens have aided in improving the diagnostic accuracy of the assays. In the present study, we report an in-house enzyme linked immunosorbent assay (ELISA), developed by using ethanol extract of Mycobacterium bovis (M. bovis). The assay, named (ethanol vortex ELISA [EVELISA]), was evaluated for detection of anti- M. bovis antibodies in the sera of cattle and white-tailed deer. By using the EVELISA, we tested sera obtained from two species of animals; cattle (n = 62 [uninfected, n = 40; naturally infected, n = 22]) and white-tailed deer (n = 41 [uninfected, n = 25; naturally infected, n = 7; experimentally infected, n = 9]). To detect species specific molecules, components in the ethanol extract were analyzed by thin layer chromatography and western blotting. Among the tested animals, 77.2% of infected cattle and 87.5% of infected deer tested positive for anti- M. bovis antibody. There were only minor false positive reactions (7.5% in cattle and 0% in deer) in uninfected animals. M. bovis -specific lipids and protein (MPB83) in the ethanol extract were detected by thin layer chromatography and western blotting, respectively. The results warrant further evaluation and validation of EVELISA for bovine TB diagnosis of traditional and alternative livestock as well as for free-ranging animal species.

  10. Propulsion Strategy Analysis of High-Speed Swordfish

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Jong, Yow-Jeng; Chang, Li-Min; Wu, Wen-Lin

    Fish have appeared since Precambrian more than 500 million years ago. Yet, there are still much untamed areas for fish propulsion research. The swordfish has evolved a light thin/high crescent tail fin for pushing a large amount of water backward with a small velocity difference. Together with a streamlined forward-enlarged thin/high body and forward-biased dorsal fin enclosing sizable muscles as the power source, the swordfish can thus achieve unimaginably high propulsion efficiency and an awesome maximum speed of 130 km/h as the speed champion at sea. This paper presents the innovative concepts of “kidnapped airfoils” and “circulating horsepower” using a vivid neat-digit model to illustrate the swordfish’s superior swimming strategy. The body and tail work like two nimble deformable airfoils tightly linked to use their lift forces in a mutually beneficial manner. Moreover, they use sensitive rostrum/lateral-line sensors to detect upcoming/ambient water pressure and attain the best attack angle to capture the body lift power aided by the forward-biased dorsal fin to compensate for most of the water resistance power. This strategy can thus enhance the propulsion efficiency greatly to easily exceed an astonishing 500%. Meanwhile, this amazing synergy of force/beauty also solves the perplexity of dolphin’s Gray paradox lasting for more than 70 years and gives revelations for panoramic fascinating future studies.

  11. The Effect of Concentrate Supplementation on Creatinine Excretion in Thin-Tailed Lambs and Sheep

    NASA Astrophysics Data System (ADS)

    Purnami, N. A.; Prima, A.

    2018-02-01

    An experimental study was carried out to examine the effect of concentrates supplementation on creatinine excretion in lambs and sheep. The study used 8 male thin tailed lambs (aged ±3-4 months, weighed ±15.20 kg) and 8 sheep (aged ±1 year and weighed ±22.71kg). The animals were fed the diet contained 100% napier grass (100G) and 50% napier grass 50% concentrate as much as 3.5% of body weight (50G50C). This study used a complete randomized nested design. The parameters observed were dry matter intake (DMI) and creatinine excretion. The results showed that the diet significantly affect (P<0.05) DMI. The consumption of 100G was lower than that of 50G50C both lambs (0.32 vs 0.62 kg/d) and sheep (0.47 vs 0.88 kg/d). On the other hand, the diet did not affect the creatinine excretion (P 0.05) either G100 or G50C50 in lambs or sheep. However, the creatinine excretion in sheep (185.66 mg/d) was higher than that of lambs (299.1 md/d) (P<0.05). It can be concluded that concentrate supplementation of grass diet increased DMI but did not affect creatinine excretion. The creatinine excretion of sheep was higher than that of lambs .

  12. Greedy algorithms and Zipf laws

    NASA Astrophysics Data System (ADS)

    Moran, José; Bouchaud, Jean-Philippe

    2018-04-01

    We consider a simple model of firm/city/etc growth based on a multi-item criterion: whenever entity B fares better than entity A on a subset of M items out of K, the agent originally in A moves to B. We solve the model analytically in the cases K  =  1 and . The resulting stationary distribution of sizes is generically a Zipf-law provided M  >  K/2. When , no selection occurs and the size distribution remains thin-tailed. In the special case M  =  K, one needs to regularize the problem by introducing a small ‘default’ probability ϕ. We find that the stationary distribution has a power-law tail that becomes a Zipf-law when . The approach to the stationary state can also be characterized, with strong similarities with a simple ‘aging’ model considered by Barrat and Mézard.

  13. Analysis of electronic structure of amorphous InGaZnO/SiO{sub 2} interface by angle-resolved X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueoka, Y.; Ishikawa, Y.; Maejima, N.

    2013-10-28

    The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO{sub 2} layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO{sub 2} interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increasemore » in the number of tail states decreased the channel mobility of AT samples.« less

  14. A Computational and Experimental Investigation of a Delta Wing with Vertical Tails

    NASA Technical Reports Server (NTRS)

    Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    2004-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  15. A computational and experimental investigation of a delta wing with vertical tails

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    1993-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 deg and a Reynolds number of 500,000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  16. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    PubMed

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  17. X-15 with test pilot Capt. Joe Engle

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Captain Joe Engle is seen here next to the X-15-2 (56-6671) rocket-powered research aircraft after a flight. Engle made 16 flights in the X-15 between October 7, 1963, and October 14, 1965. Three of the flights, on June 29, August 10, and October 14, 1965, were above 50 miles, qualifying him for astronaut wings under the Air Force definition. (NASA followed the international definition of space as starting at 62 miles.) Engle was selected as a NASA astronaut in 1966, making him the only person who had flown in space before being selected as an astronaut. First assigned to the Apollo program, he served on the support crew for Apollo X and then as backup lunar module pilot for Apollo XIV. In 1977, he was commander of one of two crews who were launched from atop a modified Boeing 747 in order to conduct approach and landing tests with the Space Shuttle Enterprise. Then in November 1981, he commanded the second flight of the Shuttle Columbia and manually flew the re-entry--performing 29 flight test maneuvers--from Mach 25 through landing roll out. This was the first and, so far, only time that a winged aerospace vehicle has been manually flown from orbit through landing. He accumulated the last of his 224 hours in space when he commanded the Shuttle Discovery during STS-51-I in August of 1985. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  18. Retinal Spectral Domain Optical Coherence Tomography in Early Atrophic Age-Related Macular Degeneration (AMD) and a New Metric for Objective Evaluation of the Efficacy of Ocular Nutrition

    PubMed Central

    Richer, Stuart; Cho, Jane; Stiles, William; Levin, Marc; Wrobel, James S.; Sinai, Michael; Thomas, Carla

    2012-01-01

    Purpose: A challenge in ocular preventive medicine is identification of patients with early pathological retinal damage that might benefit from nutritional intervention. The purpose of this study is to evaluate retinal thinning (RT) in early atrophic age-related macular degeneration (AMD) against visual function data from the Zeaxanthin and Visual Function (ZVF) randomized double masked placebo controlled clinical trial (FDA IND #78973). Methods: Retrospective, observational case series of medical center veterans with minimal visible AMD retinopathy (AREDS Report #18 simplified grading 1.4/4.0 bilateral retinopathy). Foveal and extra-foveal four quadrant SDOCT RT measurements were evaluated in n = 54 clinical and ZVF AMD patients. RT by age was determined and compared to the OptoVue SD OCT normative database. RT by quadrant in a subset of n = 29 ZVF patients was correlated with contrast sensitivity and parafoveal blue cone increment thresholds. Results: Foveal RT in AMD patients and non-AMD patients was preserved with age. Extrafoveal regions, however, showed significant slope differences between AMD patients and non-AMD patients, with the superior and nasal quadrants most vulnerable to retinal thinning (sup quad: −5.5 μm/decade thinning vs. Non-AMD: −1.1 μm/decade, P < 0.02; nasal quad: −5.0 μm/decade thinning vs. Non-AMD: −1.0 μm/decade, P < 0.04). Two measures of extrafoveal visual deterioration were correlated: A significant inverse correlation between % RT and contrast sensitivity (r = −0.33, P = 0.01, 2 Tailed Paired T) and an elevated extrafoveal increment blue cone threshold (r = +0.34, P = 0.01, 2 Tailed T). Additional SD OCT RT data for the non-AMD oldest age group (ages 82–91) is needed to fully substantiate the model. Conclusion: A simple new SD OCT clinical metric called “% extra-foveal RT” correlates well with functional visual loss in early AMD patients having minimal visible retinopathy. This metric can be used to follow the effect of repleting ocular nutrients, such as zinc, antioxidants, carotenoids, n-3 essential fats , resveratrol and vitamin D. PMID:23363992

  19. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  20. Role of target-substrate distance on the growth of CuInSe{sub 2} thin films by pulsed laser ablation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Dhruvashi; Department of Electronic Science, University of Delhi South Campus, Delhi 110021

    2016-05-06

    CuInSe{sub 2} thin films have been deposited on corning glass substrates by pulsed laser ablation technique. The chamber pressure and substrate temperature was maintained at 1 × 10{sup −6} torr and 550°C respectively during deposition of the films. The influence of target to substrate (T-S) distance on the structural and optical properties of thin films have been investigated by grazing incidence x-ray diffraction, Raman spectroscopy, scanning electron microscope and UV-Vis-NIR spectroscopy. The study reveals that thin films crystallized in a chalcopyrite structure with highly preferential orientation along (112) plane. Optimum T-S distance has been attained for the growth of thinmore » films with large grain size. An intense Raman peak at 174 cm{sup −1} corresponding to dominant A{sub 1} vibration mode is gradually shifted to smaller wavenumber with the increase in T-S distance. The optical bandgap energy of the films was evaluated and found to vary with the T-S distance. The bandgap tailing was observed to obey the Urbach rule and the Urbach energy was also calculated for the films. Scanning electron micrographs depicts uniform densely packed grains and EDAX studies revealed the elemental composition of CuInSe{sub 2} thin films.« less

  1. A surface-potential-based drain current compact model for a-InGaZnO thin-film transistors in Non-Degenerate conduction regime

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai

    2017-11-01

    A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.

  2. X-15 #3 with test pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1967-01-01

    NASA research pilot Bill Dana is seen here next to the X-15 #3 (56-6672) rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HIDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 306,900 feet (over 58 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio.X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  3. X-15A-2 with full-scale ablative coating (pink X-15) in Building 4821

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket-powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with hypersonic flight (above Mach 5). This pink eraser-like substance, applied to the X-15A-2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  4. X-15A-2 with full scale ablative coating (pink X-15) on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with supersonic flight. This pink eraser-like substance, applied to the #2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of piloted hypersonic flight. Information gained fromthe highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J Adams.

  5. Installation of X-15 full-scale mock-up at Dryden

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows workers installing the full-scale mock-up of X-15 #3 at the NASA Dryden Flight Research Center, Edwards, California, in September 1995. The mock-up is now on a pedestal outside the main gate at the center. The original X-15 #3, serial number 56-6672, was destroyed 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, recovered by Peter Merlin and Tony Moore (The X-Hunters) in 1992, are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from the X-15-3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.

  6. X-15 #2 on lakebed after engine failure forced pilot Jack McKay to make an emergency landing at Mud

    NASA Technical Reports Server (NTRS)

    1962-01-01

    On 9 November 1962, an engine failure forced Jack McKay, a NASA research pilot, to make an emergency landing at Mud Lake, Nevada, in the second X-15 (56-6671); its landing gear collapsed and the X-15 flipped over on its back. McKay was promptly rescued by an Air Force medical team standing by near the launch site, and eventually recovered to fly the X-15 again. But his injuries, more serious than at first thought, eventually forced his retirement from NASA. The aircraft was sent back to the manufacturer, where it underwent extensive repairs and modifications. It returned to Edwards in February 1964 as the X-15A-2, with a longer fuselage (52 ft 5 in) and external fuel tanks. The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  7. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.

    PubMed

    French, Scott W; Romanowicz, Barbara

    2015-09-03

    Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.

  8. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide.

    PubMed

    van Wyk, Jan A; Mayhew, Estelle

    2013-03-13

    In 2004, a new concept was introduced for simplifying identification of larvae of the common nematodes of cattle, sheep and goats that comprises estimates of the lengths of the sheath tail extensions of infective third-stage larvae (L3) of each genus and/or species to that of Trichostrongylus spp., instead of having to be dependent only on measurements in micrometre. For example, if the mean length of the sheath tail extension (the extension of the sheath caudad, beyond the caudal tip of the larva) of Trichostrongylus colubriformis and Trichostrongylus axei is assumed to be 'X', then that of Haemonchus contortus is 2.0-2.7 'X' - a difference that is not difficult to estimate. An additional new approach suggested now, particularly for L3 of species and/or genera difficult to differentiate (such as Chabertia ovina and Oesophagostomum columbianum), is to estimate the proportion of the larval sheath tail extension comprising a terminal thin, whip-like filament. For the experienced person, it is seldom necessary to measure more than one or two sheath tail extensions of L3 in a mixed culture, because the identity of most of the remaining L3 can thereafter be estimated in relation to those measured, without having to take further measurements. The aim of this article was to present the novel approach in the form of a working guide for routine use in the laboratory. To facilitate identification, figures and a separate organogram for each of small ruminants and cattle have been added to illustrate the distinguishing features of the common L3.

  9. Velo-facio-skeletal syndrome in a mother and daughter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teebi, A.S.; Meyn, M.S.; Meyers-Seifer, C.H.

    We present a woman and her daughter with an apparently new short stature syndrome associated with facial and skeletal anomalies and hypernasality. Manifestations included hypertelorism with broad and high nasal bridge, epicanthal folds, narrow and high arched palate, mild mesomelic brachymelia, short broad hands, prominent finger pads, hyperextensibility of hand joints, small feet, nasal voice, and normal intelligence. The mother had short stubby thumbs and the daughter had posteriorly angulated ears and delayed bone age. The morphology of the nose and the hypernasality are reminiscent to those in the velo-cardio-facial syndrome. High resolution banding and fluorescent in situ hybridization studiesmore » showed no evidence of 22q11 deletions. Differentiation from Aarskog syndrome and Robinow syndrome is discussed. 9 refs., 5 figs., 3 tabs.« less

  10. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  11. Significant mobility enhancement in extremely thin highly doped ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, David C., E-mail: david.look@wright.edu; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431; Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H}more » vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.« less

  12. A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Budge, A. M.; Duque, E. P. N.

    1996-01-01

    This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.

  13. Entropies of negative incomes, Pareto-distributed loss, and financial crises.

    PubMed

    Gao, Jianbo; Hu, Jing; Mao, Xiang; Zhou, Mi; Gurbaxani, Brian; Lin, Johnny

    2011-01-01

    Health monitoring of world economy is an important issue, especially in a time of profound economic difficulty world-wide. The most important aspect of health monitoring is to accurately predict economic downturns. To gain insights into how economic crises develop, we present two metrics, positive and negative income entropy and distribution analysis, to analyze the collective "spatial" and temporal dynamics of companies in nine sectors of the world economy over a 19 year period from 1990-2008. These metrics provide accurate predictive skill with a very low false-positive rate in predicting downturns. The new metrics also provide evidence of phase transition-like behavior prior to the onset of recessions. Such a transition occurs when negative pretax incomes prior to or during economic recessions transition from a thin-tailed exponential distribution to the higher entropy Pareto distribution, and develop even heavier tails than those of the positive pretax incomes. These features propagate from the crisis initiating sector of the economy to other sectors.

  14. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite

    PubMed Central

    2018-01-01

    Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay of mobile charges upon pulsed irradiation. Optical excitation of films results in the formation of charges with a yield times mobility product, φΣμ > 1 cm2/Vs. On excitation of millimeter-sized crystals, the TRMC signals show, apart from a fast decay, a long-lived tail. Interestingly, this tail is dominant when exciting close to the bandgap, implying the presence of mobile charges with microsecond lifetimes. From the temperature and intensity dependence of the TRMC signals, we deduce a shallow trap state density of around 1016/cm3 in the bulk of the crystal. Despite this high concentration, trap-assisted recombination of charges in the bulk appears to be slow, which is promising for photovoltaic applications. PMID:29545908

  15. Functional morphology of the radialis muscle in shark tails.

    PubMed

    Flammang, Brooke E

    2010-03-01

    The functional morphology of intrinsic caudal musculature in sharks has not been studied previously, though the kinematics and function of body musculature have been the focus of a great deal of research. In the tail, ventral to the axial myomeres, there is a thin strip of red muscle with fibers angled dorsoposteriorly, known as the radialis. This research gives the first anatomical description of the radialis muscle in sharks, and addresses the hypothesis that the radialis muscle provides postural stiffening in the tail of live swimming sharks. The radialis muscle fibers insert onto the deepest layers of the stratum compactum, the more superior layers of which are orthogonally arrayed and connect to the epidermis. The two deepest layers of the stratum compactum insert onto the proximal ends of the ceratotrichia of the caudal fin. This anatomical arrangement exists in sharks and is modified in rays, but was not found in skates or chimaeras. Electromyography of the caudal muscles of dogfish swimming steadily at 0.25 and 0.5 body lengths per second (Ls(-1)) exhibited a pattern of anterior to posterior activation of the radialis muscle, followed by activation of red axial muscle in the more anteriorly located ipsilateral myomeres of the caudal peduncle; at 0.75 L s(-1), only the anterior portion of the radialis and white axial muscle of the contralateral peduncular myomeres were active. Activity of the radialis muscle occurred during periods of the greatest drag incurred by the tail during the tail beat and preceded the activity of more anteriorly located axial myomeres. This nonconformity to the typical anterior to posterior wave of muscle activation in fish swimming, in combination with anatomical positioning of the radialis muscles and stratum compactum, suggests that radialis activity may have a postural function to stiffen the fin, and does not function as a typical myotomal muscle.

  16. Dynamical interpretation of observed plasmasphere deformations

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Grebowsky, J. M.

    1978-01-01

    Density measurements made by OGO-5 during the period from March 1968 to May 1969 were used to locate enhanced light ion abundances in the midst of ion-depleted regions in the plasmasphere. Such abundances were found to be more frequent on the night side. As a possible mechanism for the observed light ion distribution, convection electric fields and subsequent thinning and corotation of plasma tails are considered. Attention is given to wave-particle interactions, especially as influenced by a magnetic field (both during plasmaspheric magnetic storms, and magnetospheric substorms).

  17. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and amore » higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.« less

  18. Statistical Origin of the Meyer-Neldel Rule in Amorphous Semiconductor Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Minoru

    1990-09-01

    The origin of the Meyer-Neldel (MN) rule [G0{\\propto}\\exp (AEσ)] in the dc conductance of amorphous semiconductor thin-film transistors (TFT) is investigated based on the statistical model. We analyzed the temperature derivative of the band bending energy eVs(T) at the semiconductor interface as a function of Vs. It is shown that the condition for the validity of the rule, i.e., the linearity of the derivative deVs/dkT to Vs, certainly holds as a natural consequence of the interplay between the steep tail states and the low gap density of states spectrum. An expression is derived which relates the parameter A in the rule to the gap states spectrum. Model calculations show a magnitude of A in fair agreement with the experimental observations. The effects of the Fermi level position and the magnitude of the midgap density of states are also discussed.

  19. Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.

    2016-12-01

    TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.

  20. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Yasunobu; Takezawa, Yasunori; Matsuo, Tatsuhito

    2008-04-25

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relativemore » to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.« less

  1. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  2. Migration of trace elements from pyrite tailings in carbonate soils.

    PubMed

    Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J

    2002-01-01

    In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.

  3. AN ELECTRON MICROSCOPE STUDY OF SPERMATID DIFFERENTIATION IN THE TOAD, BUFO ARENARUM HENSEL

    PubMed Central

    Burgos, Mario H.; Fawcett, Don W.

    1956-01-01

    The differentiation of the spermatids of Bufo arenarum has been described from a study of electron micrographs of thin sections of testis. The development of the acrosome from the Golgi complex takes place in much the same manner as in mammalian spermatogenesis but no acrosome granule is formed. A perforatorium is described for the first time in this species. It is formed by a convergence of dense filaments that arise between the nuclear membrane and the head cap. During maturation of the spermatid the chromatin undergoes striking physicochemical alterations. Fine chromatin granules uniformly dispersed in the karyoplasm are replaced by larger and larger aggregates and these ultimately coalesce to form a very dense sperm head. Two centrioles of cylindrical form are situated very near the base of the sperm head. The longitudinal fibrils of the tail flagellum take origin from one, and the dense fibrous substance of the undulating membrane is closely related to the other. Phase contrast cinematographic observations on the swimming movements of living toad sperm, when considered in relation to the fine structural components of the tail, suggest that there is a contractile component in the undulating membrane as well as in the axial fibrils. The differences in the structure of mammalian and amphibian sperm tails are discussed in relation to differences in the character of their movements. PMID:13331956

  4. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Lim, Jun-Hyung; Lee, Je-Hun; Kim, Yong-Sung; Ahn, Byung Du; Kim, Dae Hwan

    2014-10-01

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy VO2+ or peroxide O22- with the increase of EOT. It was also found that the VO2+-related extrinsic factor accounts for 80%-92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O22- related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu

    Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less

  6. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications.

    PubMed

    Makaremi, Maziyar; Pasbakhsh, Pooria; Cavallaro, Giuseppe; Lazzara, Giuseppe; Aw, Yoong Kit; Lee, Sui Mae; Milioto, Stefana

    2017-05-24

    Pectin bionanocomposite films filled with various concentrations of two different types of halloysite nanotubes were prepared and characterized in this study as potential films for food packaging applications. The two types of halloysite nanotubes were long and thin (patch) (200-30 000 nm length) and short and stubby (Matauri Bay) (50-3000 nm length) with different morphological, physical, and dispersibility properties. Both matrix (pectin) and reinforcer (halloysite nanotubes) used in this study are considered as biocompatible, natural, and low-cost materials. Various characterization tests including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, release kinetics, contact angle, and dynamic mechanical analysis were performed to evaluate the performance of the pectin films. Exceptional thermal, tensile, and contact angle properties have been achieved for films reinforced by patch halloysite nanotubes due to the patchy and lengthy nature of these tubes, which form a bird nest structure in the pectin matrix. Matauri Bay halloysite nanotubes were dispersed uniformly and individually in the matrix in low and even high halloysite nanotube concentrations. Furthermore, salicylic acid as a biocidal agent was encapsulated in the halloysite nanotubes lumen to control its release kinetics. On this basis, halloysite nanotubes/salicylic acid hybrids were dispersed into the pectin matrix to develop functional biofilms with antimicrobial properties that can be extended over time. Results revealed that shorter nanotubes (Matauri Bay) had better ability for the encapsulation of salicylic acid into their lumen, while patchy structure and longer tubes of patch halloysite nanotubes made the encapsulation process more difficult, as they might need more time and energy to be fully loaded by salicylic acid. Moreover, antimicrobial activity of the films against four different strains of Gram-positive and Gram-negative bacteria indicated the effective antimicrobial properties of pectin/halloysite functionalized films and their potential to be used for food packaging applications.

  7. [Studies on macroscopic and microscopic identification of Cordyceps sinensis and its counterfeits].

    PubMed

    Chan, Siutsau; Liu, Baoling; Zhao, Zhongzhen; Lam, Markin; Law, Kwokwai; Chen, Hubiao

    2011-05-01

    To provide a rapid, simple, accurate and reproducible identification method from which Cordyceps sinensis can be distinguished from other species. To observe the larva and stroma of Cordyceps family with macroscopic identification method, and with powder microscopic identification method. For macroscopic, only stroma of C. sinensis is mostly non-inflated, and un-obtuse at the tip, the caterpillar annulations of C. sinensis and the C. gracilis is distinct, about 20-30, and feet of above two are 8 pairs, 4 of 8 pairs are relatively distinct. The above appearance shows its unique characteristic. For microscopic identification, only C. sinensis exists microtrichia, the tip is pointed. The arranging order of stubby setae is irregular, the tip is blunt while the basal is gradually broader; the top of some setae bends slightly like a hook.

  8. On the energy budget in the current disruption region. [of geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1993-01-01

    This study investigates the energy budget in the current disruption region of the magnetotail, coincident with a pre-onset thin current sheet, around substorm onset time using published observational data and theoretical estimates. We find that the current disruption/dipolarization process typically requires energy inflow into the primary disruption region. The disruption dipolarization process is therefore endoenergetic, i.e., requires energy input to operate. Therefore we argue that some other simultaneously operating process, possibly a large scale magnetotail instability, is required to provide the necessary energy input into the current disruption region.

  9. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  10. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  11. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  12. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    PubMed Central

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119

  13. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  14. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  15. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  16. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that themore » trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.« less

  17. Equatorial disc and dawn-dusk currents in the frontside magnetosphere of Jupiter - Pioneer 10 and 11

    NASA Technical Reports Server (NTRS)

    Jones, D. E.; Thomas, B. T.; Melville, J. G., II

    1981-01-01

    Observations by Pioneer 10 and 11 show that the strongest azimuthal fields are observed near the dawn meridian (Pioneer 10) while the weakest occur near the noon meridian (Pioneer 11), suggesting a strong local time dependence for the corresponding radial current system. Modeling studies of the radial component of the field observed by both spacecraft suggest that the corresponding azimuthal current system must also be a strong function of local time. Both the azimuthal and the radial field component signatures exhibit sharp dips and reversals, requiring thin radial and azimuthal current systems. There is also a suggestion that these two current systems either are interacting or are due, at least in part, to the same current. It is suggested that a plausible current model consists of the superposition of a thin, local-time-independent azimuthal current system plus the equatorial portion of a tail-like current system that extends into the dayside magnetosphere.

  18. Electron and hole transport in ambipolar, thin film pentacene transistors

    NASA Astrophysics Data System (ADS)

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-01

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ˜78 and ˜28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  19. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  20. Hybrid accretion disks in active galactic nuclei. I - Structure and spectra

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Liang, Edison P.

    1991-01-01

    A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.

  1. Monitoring of raptors and their contamination levels in Norway.

    PubMed

    Gjershaug, Jan Ove; Kålås, John Atle; Nygård, Torgeir; Herzke, Dorte; Folkestad, Alv Ottar

    2008-09-01

    This article summarizes results from raptor monitoring and contamination studies in Norway of the golden eagle, gyrfalcon, white-tailed sea eagle, osprey, peregrine, and merlin. Golden eagle and gyrfalcon populations have been monitored since 1990 as part of the "Monitoring Programme for Terrestrial Ecosystems" (TOV). No long-term trend in the population size or productivity of golden eagle has been shown in any of the 5 study areas. The reproductive output of gyrfalcon is monitored in 3 areas. It is positively correlated with the populations of its main prey species, the rock ptarmigan and the willow ptarmigan. The white-tailed sea eagle population has been monitored since 1974 by the Norwegian Ornithological Society, and the population is increasing. The levels of pesticides and polychlorinated biphenyls are low in the eggs of both the golden eagle and the gyrfalcon, but elevated levels and effects on reproduction have been indicated for a coastal subpopulation of golden eagle. The pollutant levels in white-tailed sea eagle are lower than in the Baltic population of sea eagles, and shell thinning was never severe overall, but individual eggs have contained pollutant concentrations above critical levels. The levels of pollutants in the bird-eating falcons, peregrine, and merlin were higher than in other species. New emerging pollutants, like brominated diphenylethers and perfluorinated organic compounds, could be detected in all species. By incorporating available published and unpublished data, we were able to produce time trends for pollutants and shell thickness over 4 decades.

  2. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  3. Structural and optical characterization of pure Si-rich nitride thin films

    NASA Astrophysics Data System (ADS)

    Debieu, Olivier; Nalini, Ramesh Pratibha; Cardin, Julien; Portier, Xavier; Perrière, Jacques; Gourbilleau, Fabrice

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiN x>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiN x<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiN x>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiN x>0.9 could be then due to a size effect of Si-np but having an amorphous phase.

  4. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites.

    PubMed

    Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik

    2017-01-11

    Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.

  5. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.

  6. Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet

    NASA Astrophysics Data System (ADS)

    Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.

    2017-12-01

    Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.

  7. Cervid forage utilization in noncommercially thinned ponderosa pine forests

    USGS Publications Warehouse

    Gibbs, M.C.; Jenks, J.A.; Deperno, C.S.; Sowell, B.F.; Jenkins, Kurt J.

    2004-01-01

    To evaluate effects of noncommercial thinning, utilization of forages consumed by elk (Cervus elaphus L.), mule deer (Odocoileus hemionus Raf.), and white-tailed deer (Odocoileus virginianus Raf.) was measured in ponderosa pine (Pinus ponderosa P. & C. Lawson) stands in Custer State Park, S. D. Treatments consisted of unthinned (control; 22 to 32 m2/ha basal area), moderately thinned (12 to 22 m2/ha basal area), and heavily thinned (3 to 13 m2/ha basal area) stands of ponderosa pine. During June, July, and August, 1991 and 1992, about 7,000 individual plants were marked along permanent transects and percent-weight-removed by grazing was ocularly estimated. Sample plots were established along transects and plants within plots were clipped to estimate standing biomass. Pellet groups were counted throughout the study area to determine summer habitat use of elk and deer. Diet composition was evaluated using microhistological analysis of fecal samples. Average percent-weight-removed from all marked plants and percent-plants-grazed were used to evaluate forage utilization. Standing biomass of graminoids, shrubs, and forbs increased (P 0.05) across treatments. Forb use averaged less than 5% within sampling periods when measured as percent-weight-removed and percent-of-plants grazed and did not differ among treatments. Results of pellet group surveys indicated that cervids were primarily using meadow habitats. When averaged over the 2 years, forbs were the major forage class in deer diets, whereas graminoids were the major forage class in diets of elk.

  8. Persistent photocurrent (PPC) in solution-processed organic thin film transistors: Mechanisms of gate voltage control

    NASA Astrophysics Data System (ADS)

    Singh, Subhash; Mohapatra, Y. N.

    2016-07-01

    There is a growing need to understand mechanisms of photoresponse in devices based on organic semiconductor thin films and interfaces. The phenomenon of persistent photocurrent (PPC) has been systematically investigated in solution processed TIPS-Pentacene based organic thin film transistors (OTFTs) as an important example of an organic semiconductor material system. With increasing light intensity from dark to 385 mW/cm2, there is a significant shift in threshold voltage (VTh) while the filed-effect mobility remains unchanged. The OTFT shows large photoresponse under white light illumination due to exponential tail states with characteristic energy parameter of 86 meV. The photo-induced current is observed to persist even for several hours after turning the light off. To investigate the origin of PPC, its quenching mechanism is investigated by a variety of methods involving a combination of gate bias, illumination and temperature. We show that a coherent model of trap-charge induced carrier concentration is able to account for the quenching behavior. Analysis of isothermal transients using time-analyzed transient spectroscopy shows that the emission rates are activated and are also field enhanced due to Poole-Frankel effect. The results shed light on the nature, origin, and energetic distribution of the traps controlling PPC in solution processed organic semiconductors and their interfaces.

  9. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  10. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  11. A NUMERICAL SIMULATION OF COSMIC RAY MODULATION NEAR THE HELIOPAUSE. II. SOME PHYSICAL INSIGHTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xi; Feng, Xueshang; Potgieter, Marius S.

    Cosmic ray (CR) transport near the heliopause (HP) is studied using a hybrid transport model, with the parameters constrained by observations from the Voyager 1 spacecraft. We simulate the CR radial flux along different directions in the heliosphere. There is no well-defined thin layer between the solar wind region and the interstellar region along the tail and polar directions of the heliosphere. By analyzing the radial flux curve along the direction of Voyager 2 , together with its trajectory information, the crossing time of the HP by Voyager 2 is predicted to be in 2017.14. We simulate the CR radialmore » flux for different energy values along the direction of Voyager 1 . We find that there is only a modest modulation region of about 10 au wide beyond the HP, so that Voyager 1 observing the Local Interstellar Spectra is justified in numerical modeling. We analyze the heliospheric exit information of pseudo-particles in our stochastic numerical (time-backward) method, conjecturing that they represent the behavior of CR particles, and we find that pseudo-particles that have been traced from the nose region exit in the tail region. This implies that many CR particles diffuse directly from the heliospheric tail region to the nose region near the HP. In addition, when pseudo-particles were traced from the Local Interstellar Medium (LISM), it is found that their exit location (entrance for real particles) from the simulation domain is along the prescribed Interstellar Magnetic Field direction. This indicates that parallel diffusion dominates CR particle transport in the LISM.« less

  12. High resolution integral-field spectroscopy of gas and ion distributions in the coma of Comet C/2012 S1 ISON

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl

    2016-02-01

    Neutral and ion species in cometary comae exhibit significant differences in their spatial distributions. These distributions reflect the combined effects of sublimation, ion pickup, collisions, solar radiation pressure, photolysis scale lengths of any parent molecules, and photolysis of the species of interest. An image-slicer spectrograph (R ∼ 20,000) is used here to measure C2, NH2, Na, and H2O+ emission lines in Comet C/2012 S1 ISON's coma within a narrow spectral window spanning 5868-5926 Å. These species are mapped over a 1.6 × 2.7 arcmin field made up of 240 individual spectra. While prior cometary observations have found that peak column densities of these species appear either sunward or anti-sunward, ISON's coma was elongated several thousand kilometers along an axis perpendicular to its motion and the sunward vector. The peak brightness of each species was located within 5000 km of the dusty continuum concentration. ISON's water ion tail appeared distinctly broader than the neutral Na tail and no evidence is seen for an extended source of Na by dissociative recombination of a molecular ion. The Na D2/D1 ratio in the head is 1.49 ± 0.06 despite being optically thin, increasing to 1.93 ± 0.07 in the tail. The dust distribution falls off less steeply than the canonical inverse with distance from the nucleus and C2 and NH2 scale lengths indicate an extended source, possibly due to nucleus fragmentation.

  13. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.

    PubMed

    Reiss, Katie L; Bonnan, Matthew F

    2010-07-01

    The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.

  14. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out undermore » axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.« less

  15. Characterization of Bacillus phage-K2 isolated from chungkookjang, a fermented soybean foodstuff.

    PubMed

    Kim, Eun Ju; Hong, Jeong Won; Yun, Na-Rae; Lee, Young Nam

    2011-01-01

    An investigation of a virulent Bacillus phage-K2 (named Bp-K2) isolated from chungkookjang (a fermented soybean foodstuff) was made. Bp-K2 differed in infectivity against a number of Bacillus subtilis strains including starter strains of chungkookjang and natto, being more infectious to Bacillus strains isolated from the chungkookjang, but much less active against a natto strain. Bp-K2 is a small DNA phage whose genome size is about 21 kb. Bp-K2 is a tailed bacteriophage with an isometric icosahedral head (50 nm long on the lateral side, 80 nm wide), a long contractile sheath (85-90 nm × 28 nm), a thin tail fiber (80-85 nm long, 10 nm wide), and a basal plate (29 nm long, 47 nm wide) with a number of spikes, but no collar. The details of the structures of Bp-K2 differ from natto phage ϕBN100 as well as other known Bacillus phages such as SPO1-like or ϕ 29-like viruses. These data suggest that Bp-K2 would be a new member of the Myoviridae family of Bacillus bacteriophages.

  16. Nonequilibrium Saturation States and Fractional Kinetic Processes In The Turbulent Magnetotail

    NASA Astrophysics Data System (ADS)

    Milovanov, A. V.; Zelenyi, L. M.

    Magnetotail regions with the considerably stretched and thinned magnetic lobe field offer a fertile playground for studying the fundamental properties of the self-organized turbulent systems. The focus of this report is on the turbulent nonequilibrium satu- ration states (NESS's) of the tail, where the plasma strongly couples with the self- organized magnetic and inductive electric fields. We advocate an unconventional de- scription of the NESS's, which brings together the ideas of fractal geometry, topology of manifolds, and fractional ("strange") kinetics. A self-consistent nonlinear fractional kinetic equation is proposed for the particle dynamics near the marginal NESS. We ar- gue that the inherent variability of the NESS is manifest in the low-frequency fluctu- ation spectrum f-1 often referred to as "flicker noise". The self-consistent plasma distribution function at the NESS is shown to reveal a power-law nonthermal tail (E) E-, where the slope 6 7 depends on the type of the spatiotem- poral correlations in the medium. Basic theoretical predictions are discussed against observations. This study was sponsored by the INTAS project 97-1612 and RFBR grants 00-02-17127 and 00-15-96631.

  17. Axial p-n-junctions in nanowires.

    PubMed

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work.

  18. One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2

    NASA Astrophysics Data System (ADS)

    Koppelman, Helmer; Helmi, Amina; Veljanoski, Jovan

    2018-06-01

    We explore the phase-space structure of nearby halo stars identified kinematically from the Gaia second data release (DR2). We focus on their distribution in velocity and in “integrals of motion” space, as well as on their photometric properties. Our sample of stars selected to be moving at a relative velocity of at least 210 km s‑1, with respect to the Local Standard of Rest, contains an important contribution from the low rotational velocity tail of the disk(s). The V R -distribution of these stars depicts a small asymmetry similar to that seen for the faster rotating thin disk stars near the Sun. We also identify a prominent, slightly retrograde “blob” that traces the metal-poor halo main sequence reported by Gaia Collaboration et al. We also find many small clumps that are especially noticeable in the tails of the velocity distribution of the stars in our sample. Their Hertzsprung–Russell (HR) diagrams disclose narrow sequences characteristic of simple stellar populations. This stream-frosting confirms predictions from cosmological simulations, namely that substructure is most apparent among the fastest moving stars, typically reflecting more recent accretion events.

  19. X-15 mock-up with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA research pilot Milt Thompson is seen here with the mock-up of X-15 #3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. (On a different flight, he reached a Mach number of 5.48 but his mph was only 3712.) Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  20. X-15 mock-up with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA research pilot Milt Thompson stands next to a mock-up of X-15 number 3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and moving horizontal stabilizers which control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 Novemebr 1967, resulting in the death of Maj. Michael J. Adams.

  1. X-15 #3 with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1964-01-01

    NASA research pilot Milt Thompson stands next to the X-15 #3 ship after a research flight. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the Flight Research Facility on March 19, 1956, when it was still under the auspices of NACA. He became a research pilot on May 25, 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on October 29, 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on August 8, 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, andunique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudders on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a ballistic control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  2. Pilot Neil Armstrong with X-15 #1

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Dryden pilot Neil Armstrong is seen here next to the X-15 ship #1 (56-6670) after a research flight. Armstrong made his first X-15 flight on November 30, 1960, in the #1 X-15. He made his second flight on December 9, 1960, in the same aircraft. This was the first X-15 flight to use the ball nose, which provided accurate measurement of air speed and flow angle at supersonic and hypersonic speeds. The servo-actuated ball nose can be seen in this photo in front of Armstrong's right hand. The X-15 employed a non-standard landing gear. It had a nose gear with a wheel and tire, but the main landing consisted of skids mounted at the rear of the vehicle. In the photo, the left skid is visible, as are marks on the lakebed from both skids. Because of the skids, the rocket-powered aircraft could only land on a dry lakebed, not on a concrete runway. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  3. X-15 with test pilot Major Robert M. White

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Major Robert M. White is seen here next to the X-15 aircraft after a research flight. White was one of the initial pilots selected for the X-15 program, representing the Air Force in the joint program with NASA, the Navy, and North American Aviation. Between 13 April 1960 and 14 December 1962, he made 16 flights in the rocket-powered aircraft. He was the first pilot to fly to Mach 4, 5, and 6 (respectively 4, 5, and 6 times the speed of sound). He also flew to the altitude of 314,750 feet on 17 July 1962, setting a world altitude record. This was 59.6 miles, significantly higher than the 50 miles the Air Force accepted as the beginning of space, qualifying White for astronaut wings. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  4. X-15 #3 and F-104A chase plane landing

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Followed by a Lockheed F-104A Starfighter chase plane, the North American X-15 ship #3 (56-6672) sinks toward touchdown on Rogers Dry Lake following a research flight. In the foreground is green smoke, used to indicate wind direction. The F-104 chase pilot joined up with the X-15 as it glided to the landing. The chase pilot was there to warn the X-15 pilot of any problems and to call out the altitude above the lakebed. F-104 aircraft were also used for X-15 pilot training to simulate the landing characteristics of the rocket-powered airplane, which landed without engine power since the rocket engine had already burned all of its propellant before the landing. The F-104s could simulate the steep descent of the X-15 as it glided to a landing. They did this by extending the landing gear and speed brakes while setting the throttle to idle. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, whichmore » provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.« less

  6. Prevalence of overweight, obesity and thinness in 9-10 year old children in Mauritius.

    PubMed

    Caleyachetty, Rishi; Rudnicka, Alicja R; Echouffo-Tcheugui, Justin B; Siegel, Karen R; Richards, Nigel; Whincup, Peter H

    2012-07-23

    To document the prevalence of overweight, obesity and thinness in 9-10 year old children in Mauritius. 412 boys and 429 girls aged 9-10 years from 23 primary schools were selected using stratified cluster random sampling. All data was cross-sectional and collected via anthropometry and self-administered questionnaire. Outcome measures were BMI (kg/m2), prevalence of overweight, obesity (International Obesity Task Force definitions) and thinness (low BMI for age). Linear and logistic regression analyses, accounting for clustering at the school level, were used to assess associations between gender, ethnicity, school location, and school's academic performance (average) to each outcome measure. The distribution of BMI was marginally skewed with a more pronounced positive tail in the girls. Median BMI was 15.6 kg/m2 in boys and 15.4 kg/m2 in girls, respectively. In boys, prevalence of overweight was 15.8% (95% CI: 12.6, 19.6), prevalence of obesity 4.9% (95% CI: 3.2, 7.4) and prevalence of thinness 12.4% (95% CI: 9.5, 15.9). Among girls, 18.9% (95% CI: 15.5, 22.9) were overweight, 5.1% (95% CI: 3.4, 7.7) were obese and 13.1% (95% CI: 10.2, 16.6) were thin. Urban children had a slightly higher mean BMI than rural children (0.5 kg/m2, 95% CI: 0.01, 1.00) and were nearly twice as likely to be obese (6.7% vs. 4.0%; adjusted odds ratio 1.6; 95% CI: 0.9, 3.5). Creole children were less likely to be classified as thin compared to Indian children (adjusted odds ratio 0.3, 95% CI: 0.2, 0.6). Mauritius is currently in the midst of nutritional transition with both a high prevalence of overweight and thinness in children aged 9-10 years. The coexistence of children representing opposite sides of the energy balance equation presents a unique challenge for policy and interventions. Further exploration is needed to understand the specific causes of the double burden of malnutrition and to make appropriate policy recommendations.

  7. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while biosolids contain important nutrients that may greatly improve physicochemical conditions and enhance vegetation reestablishment in mined soils, the threat of the build-up of higher levels of trace elements in treated tailings compared to surrounding adjacent soils must not be underestimated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1-xBrx)3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Tejada, A.; Braunger, S.; Korte, L.; Albrecht, S.; Rech, B.; Guerra, J. A.

    2018-05-01

    The complex refractive indices of formamidinium cesium lead mixed-halide [FA0.83Cs0.17Pb(I1- xBrx)3] perovskite thin films of compositions ranging from x = 0 to 0.4, with both flat and wrinkle-textured surface topographies, are reported. The films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuation model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.

  9. Dielectric properties of Ba0.6Sr0.4TiO3 thin films deposited by mist plasma evaporation using aqueous solution precursor

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Shi, Peng; Wang, Minqiang; Yao, Xi; Tan, O. K.

    2006-06-01

    Mist plasma evaporation (MPE) technique has been developed to deposit Ba0.6Sr0.4TiO3 (BST) thin films on SiO2/Si and Pt/Ti/SiO2/Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630 °C. The dielectric constant and dielectric loss of the film at 100 kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100 kV cm-1.

  10. Strain-tuned enhancement of ferromagnetic TC to 176 K in Sm-doped BiMnO3 thin films and determination of magnetic phase diagram.

    PubMed

    Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L

    2017-03-03

    BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.

  11. Two-dimensional plasmons in the random impedance network model of disordered thin film nanocomposites

    NASA Astrophysics Data System (ADS)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric nanocomposites. Two-dimensional networks are applied when considering thin films despite the fact that such networks correspond to the two-dimensional electrodynamics [Clerc et al., J. Phys. A 29, 4781 (1996), 10.1088/0305-4470/29/16/006]. In the present work, we propose a model of two-dimensional systems with the three-dimensional Coulomb interaction and show that this model is equivalent to the planar network with long-range capacitive links between distant sites. In the case of a metallic film, we obtain the well-known dispersion of two-dimensional plasmons ω ∝√{k } . We study the evolution of resonances with a decrease in the metal filling factor within the framework of the proposed model. In the subcritical region with the metal filling p lower than the percolation threshold pc, we observe a gap with Lifshitz tails in the spectral density of states (DOS). In the supercritical region p >pc , the DOS demonstrates a crossover between plane-wave two-dimensional plasmons and resonances of finite clusters.

  12. Observations at venus encounter by the plasma science experiment on mariner 10.

    PubMed

    Bridge, H S; Lazarus, A J; Scudder, J D; Ogilvie, K W; Hartle, R E; Asbridge, J R; Bame, S J; Feldman, W C; Siscoe, G L

    1974-03-29

    Preliminary results from the rearward-looking electrostatic analyzer of the plasma science experiment during the Mariner 10 encounter with Venus are described. They show that the solar-wind interaction with the planet probably involves a bow shock rather than an extended exosphere, but that this is not a thin boundary at the point where it was crossed by Mariner 10. An observed reduction in the flux of electrons with energies greater than 100 electron volts is interpreted as evidence for somne direct interaction with the exosphere. Unusual intermittent features observed downstream of the planet indicate the presence of a comet-like tail hundreds of scale lengths in length.

  13. Observations at Venus encounter by the plasma science experiment on Mariner 10

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Lazarus, A. J.; Scudder, J. D.; Ogilvie, K. W.; Hartle, R. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Siscoe, G. L.

    1974-01-01

    Preliminary results from the rearward-looking electrostatic analyzer of the plasma science experiment during the Mariner 10 encounter with Venus are described. They show that the solar-wind interaction with the planet probably involves a bow shock rather than an extended exosphere, but that this is not a thin boundary at the point where it was crossed by Mariner 10. An observed reduction in the flux of electrons with energies greater than 100 electron volts is interpreted as evidence for some direct interaction with the exosphere. Unusual intermittent features observed downstream of the planet indicate the presence of a comet-like tail hundreds of scale lengths in length.

  14. South Polar 'Poodle'

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-422, 15 July 2003

    Have you ever stared up at the clouds in the sky and seen the shapes of animals, people, or objects? Sometimes when the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) team is looking at newly-returned pictures from Mars, the same thing happens. This is a picture of pits and scarps in the frozen south polar carbon dioxide ice cap. Sunlight illuminates the scene from the upper right. At the bottom of the picture is a feature that resembles a long, thin poodle; its head faces to the left, the tail to the right. This picture is located near 86.9oS, 55.8oW.

  15. The influence of aggregation on the third-order nonlinear optical property of π-conjugated chromophores: the case of cyanine dyes.

    PubMed

    Wang, Chao; Yuan, Yizhong

    2018-06-20

    The external molecular environment like the aggregation of molecules can significantly change the intrinsic third-order nonlinear optical (NLO) property of π-conjugated chromophores. A combined experimental and theoretical study was performed to understand the influence of the aggregation of cyanines on the third-order NLO property in spin-coated thin films. Our result indicates that the H and J type cyanine dimers prefer the polyene-like structures and the P type dimer displays a comparatively smaller bond length alternation (BLA). The polarizable continuum model (PCM)-tuned, range-separated (RSE) density functional approach was used to describe the screening effect of the cyanine aggregation. In the thin film, the P aggregate has very small positive isotropic averaged second hyperpolarizability γ, while the J aggregate has the largest positive γ due to the most polarized face-to-tail cyanine-cyanine interaction. Hence, the γ of the isolated cyanines (negative γ) may get cancelled against that of the cyanine aggregates (positive γ) in the thin film. The forward degenerate four-wave mixing technique also confirms a decrease in the magnitude of γ with an increase in the aggregation degree of cyanines. Since the large positive γ of the cyanine also implies strong two-photon absorption (TPA), the J aggregation of cyanines can be used as a potential fabrication method for applications involving TPA.

  16. Superconducting properties of NbN film, bridge and meanders

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit M.; Verma, Apoorva; Gupta, Anurag; Rout, P. K.; Husale, Sudhir; Budhani, R. C.

    2018-05-01

    The transport properties of superconducting NbN nanostructures in the form of thin film, bridge of width (w) = 50 μm and three meanders of w = 500, 250 and 100 nm have been investigated by resistance (R) measurements in temperature (T) range = 2 -300 K and magnetic field (B) range = 0 - 7 Tesla. The nanostructuring was carried out using Focused Ion Beam (FIB) milling. Reduction of sample width results in significant changes in the normal and superconducting state properties. For instance, the observed metallic behavior in the thin film sample is lost and the normal state resistance increases drastically from 2.4 Ω to 418 kΩ for the 100 nm meander. In the superconducting state, the value of critical temperature Tc (upper critical field Bc2 at T = 0 K) reduces gradually with width reduction, it changes from 13.15 K (42.8 Tesla) in the case of thin film sample to 5.7 K (12.7 Tesla) for the 100 nm meander sample. The superconducting transitions are found to get broader for the bridge sample and the meanders additionally show low-temperature resistive tails. In case of all the samples with reduced width, the transition onsets are found to be rounded at surprisingly high values of T ˜ 25 K >> Tc. These results are discussed in terms of the possible effects of FIB processing and weak localization in our samples.

  17. Characterization of the tribological coating composition 77 wt % CaF2 - 23 wt % Li F fused to IN-750 alloy

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Sliney, H. E.

    1986-01-01

    A coating composed of 77 wt % CaF2 - 23 wt % LiF fused on IN-750 nickel-based alloy was studied using SEM, XRD, EDX, and optical microscopic methods. The surfaces examined were the as-fused coating with no subsequent treatment, the coating after ultrasonic cleaning in water, and the uncoated polished and etched metal. It was found that the coating reacts during fusion with Ti and Nb rich inclusions in the alloy. Numerous small rectangular crystallites of Ca(Ti,Nb) oxide are formed beneath an overlay of fused fluoride composition. These crystallines are stubby and appear to be embedded in the metal substrate surface. It is known from previous studies that this coating-alloy system has good tribological properties in extreme conditions, such as liquid fluorine. It has been concluded from the present study that the short firmly embedded crystalline protuberances contribute to the coating adherence and thereby to enhanced coating wear life.

  18. Different dietary energy intake affects skeletal muscle development through an Akt-dependent pathway in Dorper × Small Thin-Tailed crossbred ewe lambs.

    PubMed

    Zhao, J X; Liu, X D; Li, K; Liu, W Z; Ren, Y S; Zhang, J X

    2016-10-01

    The objective of this experiment was to investigate the mechanisms through which different levels of dietary energy affect postnatal skeletal muscle development in ewe lambs. Twelve Dorper × Small Thin-Tailed crossbred ewe lambs (100 d of age; 20 ± 0.5 kg BW) were selected randomly and divided into 2 groups in a completely randomized design. Animals were offered identical diets at 100% or 65% of ad libitum intake. Lambs were euthanized when BW in the ad libitum group reached 35 kg and the semitendinosus muscle was sampled. Final BW and skeletal muscle weight were decreased (P < 0.01) by feed restriction. Both muscle fiber size distribution and myofibril cross-sectional area were altered by feed restriction. Insulin-like growth factor 1 (IGF-1) messenger RNA (mRNA) content was decreased (P < 0.05) when lambs were underfed, whereas no difference for IGF-2 mRNA expression was observed (P > 0.05). Feed restriction altered phosphor-Akt protein abundance (P < 0.01). Moreover, the mammalian target of rapamycin (mTOR) pathway was inhibited by feed restriction, which was associated with decreased phosphor-mTOR, phosphorylated eukaryotic initiation factor 4E binding protein 1 (phosphor-4EBP1), and phosphorylated ribosomal protein S6 kinase (phosphor-S6K). Both mRNA expression of myostatin and its protein content were elevated in feed-restricted ewe lambs (P < 0.05). In addition, mRNA expression of both muscle RING finger 1 and muscle atrophy F-box was increased when ewe lambs were underfed. In summary, feed restriction in young growing ewe lambs attenuates skeletal muscle hypertrophy by inhibiting protein synthesis and increasing protein degradation, which may act through the Akt-dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    NASA Astrophysics Data System (ADS)

    Hammer, François; Yang, Yanbin; Fouquet, Sylvain; Pawlowski, Marcel S.; Kroupa, Pavel; Puech, Mathieu; Flores, Hector; Wang, Jianling

    2013-06-01

    The recent discovery by Ibata et al. of a vast thin disc of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disc. We find that the VTDS plane is coinciding with several stellar, tidally induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the giant stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disc, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS spheroidal dwarfs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.

  20. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    PubMed

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  1. Stars and gas in the very large interacting galaxy NGC 6872

    NASA Astrophysics Data System (ADS)

    Horellou, C.; Koribalski, B.

    2007-03-01

    The dynamical evolution of the large (>100 kpc), barred spiral galaxy NGC 6872 and its small companion IC 4970 in the southern group Pavo is investigated. We present N-body simulations with stars and gas and 21 cm Hi observations carried out with the Australia Telescope Compact Array of the large-scale distribution and kinematics of atomic gas. Hi is detected toward the companion, corresponding to a gas mass of ~ 1.3× 10^9~ M_⊙. NGC 6872 contains ˜ 1.4× 1010~ M_⊙ of Hi gas, distributed in an extended rotating disk. Massive concentrations of gas (˜ 10^9~ M_⊙) are found at the tip of both tidal tails and towards the break seen in the optical northern arm near the companion. We detect no Hi counterpart to the X-ray trail between NGC 6872 and NGC 6876, the dominant elliptical galaxy in the Pavo group located ˜ 8' to the southeast. At the sensitivity and the resolution of the observations, there is no sign in the overall Hi distribution that NGC 6876 has affected the evolution of NGC 6872. There is no evidence of ram pressure stripping either. The X-ray trail could be due to gravitational focusing of the hot gas in the Pavo group behind NGC 6872 as the galaxy moves supersonically through the hot medium. The simulations of a gravitational interaction with a small nearby companion on a low-inclination prograde passage are able to reproduce most of the observed features of NGC 6872, including the general morphology of the galaxy, the inner bar, the extent of the tidal tails and the thinness of the southern tail.

  2. [Massive pleural effusion complicating chronic pancreatitis. Treatment by endoscopic closure of a pancreatic-mediastinal fistula].

    PubMed

    Trudzinski, F C; Rädle, J; Treiber, G; Kramm, T; Sybrecht, G W

    2008-11-01

    A 53-year-old man was admitted because of anuria, dyspnea and a septic temperature. The patients' history included chronic alcoholism, chronic pancreatitis, COPD and a right nephrectomy because of nephrolithiasis. Urosepsis was initially suspected. The patients' clinical condition and nutritional state were severely reduced. Laboratory findings revealed severe systemic inflammation (leucocyte count: 22.4/nl, CRP: 324 mg/l). Computed tomography showed a large left-sided pleural effusion, encapsulated abdominal fluid below the diaphragm and alongside the pancreatic tail. After aspiration of the pleural effusion the diagnosis of an exsudate with elevated concentration of lipase (56,000 U/l) was confirmed. Endoscopic ultrasound showed a 3-4 cm pseudocystic mass originating in the region of the pancreatic tail. The ERP depicted chronic pancreatitis with strictures and destruction of the pancreatic duct. Two fistulae were identified, one proximal to a ductal stricture in the pancreatic head and a second one in the pancreatic tail which corresponded to the reported pseudocyst. The patient was admitted to the ICU with symptoms of impending sepsis. The pleural effusion was treated with CT-guided chest drainage. The initial endoscopic attempt at stent closure of the fistula failed because it was possible to pass through the ductal stricture only with a thin hydrophilic wire and small-lumen catheter. However, injection of fibrin glue into the proximal pancreatic duct over a length of 2 cm obliterated the fistula and the pleural effusion was resolved. Pancreatic-pleural or pancreatic-mediastinal fistula is a rare complication of pancreatitis associated with unilateral pleural effusion. Combined internal endoscopic drainage and external chest drainage is the treatment of choice. After failure of routine endoscopic therapy, endoscopic closure of fistulas using fibrin glue might offer an alternative treatment strategy.

  3. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  4. Optical Absorption and Visible Photoluminescence from Thin Films of Silicon Phthalocyanine Derivatives

    PubMed Central

    Rodríguez Gómez, Arturo; Moises Sánchez-Hernández, Carlos; Fleitman-Levin, Ilán; Arenas-Alatorre, Jesús; Carlos Alonso-Huitrón, Juan; Elena Sánchez Vergara, María

    2014-01-01

    The interest of microelectronics industry in new organic compounds for the manufacture of luminescent devices has increased substantially in the last decade. In this paper, we carried out a study of the usage feasibility of three organic bidentate ligands (2,6-dihydroxyanthraquinone, anthraflavic acid and potassium derivative salt of anthraflavic acid) for the synthesis of an organic semiconductor based in silicon phthalocyanines (SiPcs). We report the visible photoluminescence (PL) at room temperature obtained from thermal-evaporated thin films of these new materials. The surface morphology of these films was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM indicated that the thermal evaporation technique is an excellent resource in order to obtain low thin film roughness when depositing these kinds of compounds. Fourier transform infrared spectroscopy (FTIR) spectroscopy was employed to investigate possible changes in the intra-molecular bonds and to identify any evidence of crystallinity in the powder compounds and in the thin films after their deposition. FTIR showed that there was not any important change in the samples after the thermal deposition. The absorption coefficient (α) in the absorption region reveals non-direct transitions. Furthermore, the PL of all the investigated samples were observed with the naked eye in a bright background and also measured by a spectrofluorometer. The normalized PL spectra showed a Stokes shift ≈ 0.6 eV in two of our three samples, and no PL emission in the last one. Those results indicate that the Vis PL comes from a recombination of charge carriers between conduction band and valence band preceded by a non-radiative relaxation in the conduction band tails. PMID:28788200

  5. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.

    PubMed

    Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella

    2014-03-01

    X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments.

  6. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog

    PubMed Central

    Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella

    2014-01-01

    X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6–3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments. PMID:24344169

  7. Langmuir-Gibbs Surface Phases and Transitions

    NASA Astrophysics Data System (ADS)

    Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin

    2007-03-01

    Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).

  8. Characterization of Interactions between Curcumin and Different Types of Lipid Bilayers by Molecular Dynamics Simulation.

    PubMed

    Lyu, Yuan; Xiang, Ning; Mondal, Jagannath; Zhu, Xiao; Narsimhan, Ganesan

    2018-03-01

    Curcumin (CUR) is a natural food ingredient with known ability to target microbial cell membrane. In this study, the interactions of CUR with different types of model lipid bilayers (POPE, POPG, POPC, DOPC, and DPPE), mixtures of model lipid bilayers (POPE/POPG), and biological membrane mimics (Escherichia coli and yeast) were investigated by all-atom explicit solvent molecular dynamics (MD) simulation. CUR readily inserts into different types of model lipid bilayer systems in the liquid crystalline state, staying in the lipid tails region near the interface of lipid head and lipid tail. Parallel orientation to the membrane surface is found to be more probable than perpendicular for CUR, as indicated by the tilt angle distribution. This orientation preference is less significant as the fraction of POPE is increased in the system, likely due to the better water solvation of perpendicular orientation in the POPE bilayer. In E. coli and yeast bilayers, tilt angle distributions were similar to that for POPE/POPG mixed bilayer, with water hydration number around CUR for the former being higher. Insertion of CUR resulted in membrane thinning. The results from these simulations provide insights into the possible differences in membrane disrupting activity of CUR against different types of microorganisms.

  9. An embedding structure of the cross-tail CSs and its relation to the ion composition according to MAVEN observations in the Martian magnetotai

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Shuvalov, S. D.; Malova, H. V.; Zelenyi, L. M.

    2017-12-01

    The multilayered (embedded) Current Sheets (CS) are often observed in the Earth's magnetotail. Simulations based on quasi-adiabatic dynamics of different ion components showed that the observed embedding structures can be reconstructed by taking into account the net electric currents carried by ions with different masses and, thus, with different gyroradii. The last determines the spatial scales of the corresponding current layers. The embedding can be quantitatively described by the ratio of the magnetic field value at the edges of a thin embedded layer Bext to the value of the magnetic field outside a thick CS, B0. For the Earth's magnetotail it was shown that there is a relation between the Bext/B0 and the relative densities of heavy and light ion components. In the Martian magnetotail the embedding feature is also often observed in the cross-tail CS formed by the draping of the IMF field lines. The analysis of 100 CS crossings by MAVEN spacecraft showed that in the Martian magnetotail the relation between the embedding characteristics and ion composition is similar to the one observed in the Earth's magnetotail and the spatial scales of the embedded layers are defined by the gyroradii of the current carrying ion component.

  10. Beyond 11% efficient sulfide kesterite Cu 2Zn xCd 1–xSnS 4 solar cell: Effects of cadmium alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chang; Sun, Kaiwen; Huang, Jialiang

    2017-04-03

    Here, kesterite Cu 2ZnSnS 4 (CZTS) thin-film solar cells have drawn worldwide attention because of outstanding performance and earth-abundant constituents. However, problems such as coexistence of complex secondary phases, the band tailing issue, short minority lifetime, bulk defects, and undesirable band alignment at p-n interfaces need to be addressed for further efficiency improvement. In this regard, Cd alloying shows promise for dealing with some of these problems. In this work, a beyond 11% efficient Cd-alloyed CZTS solar cell is achieved, and the effects of Cd-alloying and mechanism underpinning the performance improvement have been investigated. The introduction of Cd can significantlymore » reduce the band tailing issue, which is confirmed by the reduction in the difference between the photoluminescence peak and optical band gap (E g) as well as decreased Urbach energy. The microstructure, minority lifetime, and electrical properties of CZTS absorber are greatly improved by Cd alloying. Further XPS analyses show that the partial Cd alloying slightly reduces the band gap of CZTS via elevating the valence band maximum of CZTS. This suggests that there are opportunities for further efficiency improvement by engineering the absorber and the associated interface with the buffer.« less

  11. Description of Amplimerlinius uramanatiensis sp. n. (Nematoda: Merliniidae) and observations on three other species of the genus from Iran.

    PubMed

    Ghaderi, Reza; Karegar, Akbar

    2014-09-29

    A new species of the genus Amplimerlinius is described and illustrated from the rhizosphere of Vitis sp. from Kurdistan province in western Iran. A. uramanatiensis sp. n. is characterized by having seven to eight head annuli up to the end of the outer extension of the cephalic framework, 29-31 µm long stylet and cylindrical-clavate tail with a thin hyaline region (9-11 µm) and smooth terminus. Furthermore, A. paraglobigerus and A. macrurus were identified and intra-specific variability of A. globigerus was studied in detail, based on 21 populations collected from different regions of Iran. A key and diagnostic compendium to the species of the genus is provided.

  12. Magnetic propulsion of robotic sperms at low-Reynolds number

    NASA Astrophysics Data System (ADS)

    Khalil, Islam S. M.; Fatih Tabak, Ahmet; Klingner, Anke; Sitti, Metin

    2016-07-01

    We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s-1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.

  13. Sojourner Rover View of Cloddy Deposits near Pooh Bear

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner's observations in the Ares region on Mars raise and answer questions about the origins of the rocks and other deposits found there. Deposits are not the same everywhere. Bright, fine-grained drifts (right center) are abundant as thin (less than a few centimeters), discontinuous ridged sheets and wind tails that overlie cloddy deposits of dust, clods, and tiny (less than 1 cm) rocks.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  14. A fatal impaling injury in a road traffic accident: a case report.

    PubMed

    Rautji, R; Girdhar, S; Lalwani, S; Dogra, T D

    2004-04-01

    A 17-year old, thin-built male was sitting in a bus on the right side of the rear seat. The same side of the bus accidentally hit some iron rods, meant for construction work, projecting from the tail end of a small truck. The incident happened when the bus driver tried to manoeuvre the bus towards the left side of the truck, standing at a red traffic light intersection. One of the iron-rods entered the bus through the glass window next to which the victim had been sitting and penetrated his chest cavity from the side, lacerating both the lungs and exiting through the left shoulder blade. The individual died on his way to hospital.

  15. Prevalence of overweight, obesity and thinness in 9–10 year old children in Mauritius

    PubMed Central

    2012-01-01

    Objective To document the prevalence of overweight, obesity and thinness in 9–10 year old children in Mauritius. Methods 412 boys and 429 girls aged 9–10 years from 23 primary schools were selected using stratified cluster random sampling. All data was cross-sectional and collected via anthropometry and self-administered questionnaire. Outcome measures were BMI (kg/m2), prevalence of overweight, obesity (International Obesity Task Force definitions) and thinness (low BMI for age). Linear and logistic regression analyses, accounting for clustering at the school level, were used to assess associations between gender, ethnicity, school location, and school's academic performance (average) to each outcome measure. Results The distribution of BMI was marginally skewed with a more pronounced positive tail in the girls. Median BMI was 15.6 kg/m2 in boys and 15.4 kg/m2 in girls, respectively. In boys, prevalence of overweight was 15.8% (95% CI: 12.6, 19.6), prevalence of obesity 4.9% (95% CI: 3.2, 7.4) and prevalence of thinness 12.4% (95% CI: 9.5, 15.9). Among girls, 18.9% (95% CI: 15.5, 22.9) were overweight, 5.1% (95% CI: 3.4, 7.7) were obese and 13.1% (95% CI: 10.2, 16.6) were thin. Urban children had a slightly higher mean BMI than rural children (0.5 kg/m2, 95% CI: 0.01, 1.00) and were nearly twice as likely to be obese (6.7% vs. 4.0%; adjusted odds ratio 1.6; 95% CI: 0.9, 3.5). Creole children were less likely to be classified as thin compared to Indian children (adjusted odds ratio 0.3, 95% CI: 0.2, 0.6). Conclusion Mauritius is currently in the midst of nutritional transition with both a high prevalence of overweight and thinness in children aged 9–10 years. The coexistence of children representing opposite sides of the energy balance equation presents a unique challenge for policy and interventions. Further exploration is needed to understand the specific causes of the double burden of malnutrition and to make appropriate policy recommendations. PMID:22823949

  16. Fabrication and characterization of anthracene thin films for wide-scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters

    NASA Astrophysics Data System (ADS)

    Nawar, Ahmed M.; Yahia, I. S.

    2017-08-01

    This research work is devoted to studying the linear and nonlinear optical properties of anthracene thin films. For the first time, the fabrication of nanocrystalline anthracene films is presented by using the thermal evaporation conventional technique. All the studied anthracene films exhibit monoclinic crystal structure with dominant preferred orientation along the (001) plane in accordance with X-ray diffraction analysis. The average crystalline size and the strain parameter were calculated and found to be ≈ 14 nm and 42 lines2. nm, respectively. The transparency of the fabricated anthracene films is high (>80%) from the end of the visible to the near-infrared region at 1500 nm, after that; it reaches to 87%. The characteristic behavior, analysis of refractive index and absorption coefficient based on the measured spectrophotometric data of the transmittance and reflectance spectra. The transition is allowed one and the evaluated optical band gap ∼3.1 eV with energy tail ∼105 meV. The dispersion curves of the refractive index were found to follow the Wemple-DiDomenico model. The static optical dielectric constant was found to be 2.592. The molecular polarizability of anthracene thin films presented and its value ∼56.58 (Å)3. A simple spectroscopic method is used to characterize and estimate the nonlinear optical susceptibilities. Thermal evaporation technology could be useful to fabricate blue OLED and window film in photodetector devices based-anthracene films.

  17. Water entry of cylindrical bodies with various aspect ratios

    NASA Astrophysics Data System (ADS)

    Kim, Nayoung; Park, Hyungmin

    2017-11-01

    We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.

  18. Description of a new species of the genus Anguillonema Fuchs, 1938 (Nematoda: Sphaerularioidea) with an identification key to the species.

    PubMed

    Yaghoubi, A; Pourjam, E; Pedram, M

    2018-06-21

    Anguillonema iranicum n. sp. is described and illustrated as the second species of this genus from Iran, based on morphological, morphometric and molecular characteristics. It is identified by a short, thin body, a continuous lip region, six lines on the lateral field, a short, thin stylet, a posteriorly located pharyngo-intestinal junction to excretory pore, the presence of a post-vulval uterine sac, vulval position at 89% (87.4-89.9%) of body length, an elongate conoid tail with a rounded to pointed tip and not dorsally bent, and common functional males with short spicules and lacking a bursa. Morphological differences between the new species and the three known species of the genus, namely A. amolensis, A. crenati and A. poligraphi, are discussed. Molecular phylogenetic studies of the new species using partial 18S rDNA sequence revealed that it formed a sister clade with three species of Howardula, one species of Anguillonema and one unidentified isolate. In phylogenetic analyses using partial sequences of 28S rDNA D2-D3 segment, the new species formed a clade with two isolates of Parasitylenchus. A key to identification of Anguillonema species is also presented.

  19. Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Kanjilal, A.; Sarangi, S. N.; Majumder, S.; Sathyamoorthy, R.; Som, T.

    2010-06-01

    We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm-2 (corresponding to 0.38-12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.

  20. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  1. Wind-tunnel Investigation of End-plate Effects of Horizontal Tails on a Vertical Tail Compared with Available Theory

    NASA Technical Reports Server (NTRS)

    Murray, Harry E

    1946-01-01

    A vertical-tail model with stub fuselage was tested in combination with various simulated horizontal tails to determine the effect of horizontal-tail span and location on the aerodynamic characteristics of the vertical tail. Available theoretical data on end-plate effects were collected and presented in the form most suitable for design purposes. Reasonable agreement was obtained between the measured and theoretical end-plate effects of horizontal tails on vertical tails, and the data indicated that the end-plate effect was determined more by the location of the horizontal tail than by the span of the horizontal tail. The horizontal tail gave most end-plate effect when located near either tip of the vertical tail and, when located near the base of the vertical tail, the end-plate effect was increased by moving the horizontal tail rearward.

  2. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    PubMed

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  3. TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya

    2016-03-01

    Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less

  4. International cometary explorer encounter with giacobini-zinner: magnetic field observations.

    PubMed

    Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A

    1986-04-18

    The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.

  5. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak

    PubMed Central

    Jack, Mhairi; Futro, Agnieszka; Talbot, Darren; Zhu, Qiming; Barclay, David; Baxter, Emma M.

    2018-01-01

    Tail biting is a major welfare and economic problem for indoor pig producers worldwide. Low tail posture is an early warning sign which could reduce tail biting unpredictability. Taking a precision livestock farming approach, we used Time-of-flight 3D cameras, processing data with machine vision algorithms, to automate the measurement of pig tail posture. Validation of the 3D algorithm found an accuracy of 73.9% at detecting low vs. not low tails (Sensitivity 88.4%, Specificity 66.8%). Twenty-three groups of 29 pigs per group were reared with intact (not docked) tails under typical commercial conditions over 8 batches. 15 groups had tail biting outbreaks, following which enrichment was added to pens and biters and/or victims were removed and treated. 3D data from outbreak groups showed the proportion of low tail detections increased pre-outbreak and declined post-outbreak. Pre-outbreak, the increase in low tails occurred at an increasing rate over time, and the proportion of low tails was higher one week pre-outbreak (-1) than 2 weeks pre-outbreak (-2). Within each batch, an outbreak and a non-outbreak control group were identified. Outbreak groups had more 3D low tail detections in weeks -1, +1 and +2 than their matched controls. Comparing 3D tail posture and tail injury scoring data, a greater proportion of low tails was associated with more injured pigs. Low tails might indicate more than just tail biting as tail posture varied between groups and over time and the proportion of low tails increased when pigs were moved to a new pen. Our findings demonstrate the potential for a 3D machine vision system to automate tail posture detection and provide early warning of tail biting on farm. PMID:29617403

  6. Band Edge Positions and Their Impact on the Simulated Device Performance of ZnSnN 2-Based Solar Cells

    DOE PAGES

    Arca, Elisabetta; Fioretti, Angela; Lany, Stephan; ...

    2017-12-07

    ZnSnN 2 (ZTN) has been proposed as a new earth abundant absorber material for PV applications. While carrier concentration has been reduced to values suitable for device implementation, other properties such as ionization potential, electron affinity and work function are not known. Here, we experimentally determine the value of ionization potential (5.6 eV), electron affinity (4.1 eV) and work function (4.4 eV) for ZTN thin film samples with Zn cation composition Zn/(Zn+Sn) = 0.56 and carrier concentration n = 2x10 19cm -3. Using both experimental and theoretical results, we build a model to simulate the device performance of a ZTN/Mg:CuCrOmore » 2 solar cell, showing a potential efficiency of 23% in the limit of no defects present. We also investigate the role of band tails and recombination centers on the cell performance. In particular device simulations show that band tails are highly detrimental to the cell efficiency, and recombination centers are a major limitation if present in concentration comparable to the net carrier density. The effect of the position of the band edges of the p-type junction partner was assessed too. Through this study, we determine the major bottlenecks for the development of ZTN-based solar cell and identify avenues to mitigate them.« less

  7. [Pancreatic mucinous cystadenoma doubly complicated by acute pancreatitis and retroperitoneal rupture].

    PubMed

    Maghrebi, Houcine; Makni, Amine

    2017-01-01

    Mucinous cystadenomas are benign tumors with malignant potential. They are often revealed by non-specific abdominal pain, jaundice or an episode of acute pancreatitis. We here report an exceptional case of mucinous cystadenoma doubly complicated by acute pancreatitis and retroperitoneal rupture. The study involved a 30-year old non-weighted female patient, presenting with epigastric pain associated with left hypochondrium evolving over the last three months and which had intensified without fever or jaundice in the last 3 days. Clinical examination showed impingement on palpation of the epigastrium and of the left hypochondrium. There was no palpable mass. Laboratory tests were without abnormalities, except for lipasemia that was 8-times the upper normal. Abdominal CT scan showed bi-loculated cystic mass in the pancreas tail, measuring 111 mm * 73 mm, with a thin wall and a fluid content, associated with an infiltration of the left perirenal fascia. MRI (Panel A) showed mucinous cystadenoma with retroperitoneal rupture. The caudal portion of the main pancreatic duct was slightly dilated and communicated with the pancreatic cyst. The patient underwent surgery via bi-sub-costal approach. A cystic mass in the pancreas tail with retroperitoneal rupture associated with acute pancreatitis (outflow of necrotic content from left anterior prerenal space) was found. Caudal splenopancreatectomy was performed (Panel B). The postoperative course was uneventful. The anatomo-pathological examination of the surgical specimen showed pancreatic mucinous cystadenoma with low-grade dysplasia.

  8. Evidences of early aqueous Mars: Implications on the origin of branched valleys in the Ius Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Martha, Tapas R.; Jain, Nirmala; Vamshi, Gasiganti T.; Vinod Kumar, K.

    2017-11-01

    This study shows results of morphological and spectroscopic analyses of Ius Chasma and its southern branched valleys using Orbiter datasets such as Mars Reconnaissance Orbiter (MRO)-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High Resolution Imaging Science Experiment (MRO-HiRISE) and digital terrain model (HRSC-DTM). Result of the spectral analysis reveals presence of hydrated minerals such as opal, nontronite and vermiculite in the floor and wall rock areas Ius Chasma indicating alteration of parent rock in an water rich environment of early Mars. Topographic gradient and morphological evidences such as V-shaped valleys with theatre shaped stubby channels, dendritic drainage and river piracy indicate that these valleys were initially developed by surface runoff due to episodic floods and further expanded due to groundwater sapping controlled by faults and fractures. Minerals formed by aqueous alteration during valley formation and their intricate association with different morphological domains suggest that surface runoff played a key role in the development of branched valleys south of Ius Chasma on Mars.

  9. [Clinical features and COMP gene mutation in a family with a pseudoachondroplasia child].

    PubMed

    Lu, Chun-Ting; Guo, Li; Zahng, Zhan-Hui; Lin, Wei-Xia; Song, Yuan-Zong; Feng, Lie

    2013-11-01

    This study aimed to report the clinical characteristics and COMP gene mutation of a family with pseudoachondroplasia (PSACH), a relatively rare spinal and epiphyseal dysplasia that is inherited as an autosomal dominant trait. Clinical information on a 5-year-2-month-old PSACH child and his parents was collected and analyzed. Diagnosis was confirmed by PCR amplification and direct sequencing of all the 19 exons and their flanking sequences of COMP gene, and the mutation was further ascertained by cloning analysis of exon 10. The child presented with short and stubby fingers, bow leg, short limb dwarfism and metaphysic broadening in long bone as well as lumbar lordosis. A mutation c.1048_1116del (p.Asn350_Asp372del) in exon 10, inherited from his father who did not demonstrate any phenotypic feature of PSACH, was detected in the child. PSACH was diagnosed definitively by means of COMP mutation analysis, on the basis of the child's clinical and imaging features. The non-penetrance phenomenon of COMP mutation was described for the first time in PSACH.

  10. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications.

    PubMed

    Fauzi, M B; Lokanathan, Y; Aminuddin, B S; Ruszymah, B H I; Chowdhury, S R

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The “Main-Belt Comets” are not comets, nor active asteroids; they are temporary shaken asteroids

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo

    2015-08-01

    Several objects in asteroidal orbits have presented comaes and tails similar to the ones presented by comets for short period of times. There are at present 16 objects in this group. Several hypotheses have been proposed to explain the activity of this object [Jewitt 2012]. Among them, the most accepted scenario for many objects is the ice sublimation and the ejection of dust, in a similar way as the cometary activity. Therefore several authors have coined these objects “Main Belt Comets” [Hsieh & Jewitt 2006]. Nevertheless, in some cases, some authors have concluded that the ejection of dust must be due to an impact.We propose an alternative model for the formation of the dusty comaes and tails.The impact of a small body against a larger one initially produces a crater and the ejection of dust at high velocity (>100 m/s). The dust is rapidly dispersed and it should be only observable just after the impact. In addition the impact generates a shock wave, which propagates to the body interior. The asteroid is globally shaken. Material is ejected at low velocities from the entire surface, similar to the low escape velocities at the surface. The particles move away from the asteroid due to the solar radiation pressure, forming the thin tails aligned with the orbital plane. These tails could persist for various months, as they have been seen in these objects.In addition, chunks of rock could be ejected in suborbital flights lasting for days; which, at return they would induce a new low-velocity ejection of particles. This process can explain some of the long-lasting events.The recurrence of the activity for some objects could be explained due to the collision with a dense meteor shower present in the main-belt.The so-called “Main Belt Comets” could be explained with a hypothesis that does not require the presence of ice on the surface of these objects. We also do not favor the term “Activated asteroids”, because it implies some kind of endogenous process. The objects are plain asteroids that suffered a recent collision, and the entire body is shaken, ejecting dust from the surface at low velocities.

  12. Comparative sacral morphology and the reconstructed tail lengths of five extinct primates: Proconsul heseloni, Epipliopithecus vindobonensis, Archaeolemur edwardsi, Megaladapis grandidieri, and Palaeopropithecus kelyus.

    PubMed

    Russo, Gabrielle A

    2016-01-01

    This study evaluated the relationship between the morphology of the sacrum-the sole bony link between the tail or coccyx and the rest of the body-and tail length (including presence/absence) and function using a comparative sample of extant mammals spanning six orders (Primates, Carnivora, Rodentia, Diprotodontia, Pilosa, Scandentia; N = 472). Phylogenetically-informed regression methods were used to assess how tail length varied with respect to 11 external and internal (i.e., trabecular) bony sacral variables with known or suspected biomechanical significance across all mammals, only primates, and only non-primates. Sacral variables were also evaluated for primates assigned to tail categories ('tailless,' 'nonprehensile short-tailed,' 'nonprehensile long-tailed,' and 'prehensile-tailed'). Compared to primates with reduced tail lengths, primates with longer tails generally exhibited sacra having larger caudal neural openings than cranial neural openings, and last sacral vertebrae with more mediolaterally-expanded caudal articular surfaces than cranial articular surfaces, more laterally-expanded transverse processes, more dorsally-projecting spinous processes, and larger caudal articular surface areas. Observations were corroborated by the comparative sample, which showed that shorter-tailed (e.g., Lynx rufus [bobcat]) and longer-tailed (e.g., Acinonyx jubatus [cheetah]) non-primate mammals morphologically converge with shorter-tailed (e.g., Macaca nemestrina) and longer-tailed (e.g., Macaca fascicularis) primates, respectively. 'Prehensile-tailed' primates exhibited last sacral vertebrae with more laterally-expanded transverse processes and greater caudal articular surface areas than 'nonprehensile long-tailed' primates. Internal sacral variables performed poorly compared to external sacral variables in analyses of extant primates, and were thus deemed less useful for making inferences concerning tail length and function in extinct primates. The tails lengths of five extinct primates were reconstructed from the external sacral variables: Archaeolemur edwardsi had a 'nonprehensile long tail,' Megaladapis grandidieri, Palaeopropithecus kelyus, and Epipliopithecus vindobonensis probably had 'nonprehensile short tails,' and Proconsul heseloni was 'tailless.' Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. X-15 simulator

    NASA Technical Reports Server (NTRS)

    1961-01-01

    This photo shows the X-15 flight simulator located at the NASA Flight Research Center, Edwards, California, in the 1960s. One of the major advances in aircraft development, pilot training, mission planning, and research flight activities in the 1950s and 1960s was the use of simulators. For the X-15, a computer was programmed with the flight characteristics of the aircraft. Before actually flying a mission, a research pilot could discover many potential problems with the aircraft or the mission while still on the ground by 'flying' the simulator. The problem could then be analyzed by engineers and a solution found. This did much to improve safety. The X-15 simulator was very limited compared to those available in the 21st century. The video display was simple, while the computer was analog rather than digital (although it became hybrid in 1964 with the addition of a digital computer for the X-15A-2; this generated the nonlinear aerodynamic coefficients for the modified No. 2 aircraft). The nonlinear aerodynamic function generators used in the X-15 simulator had hundreds of fuses, amplifiers, and potentiometers without any surge protection. After the simulator was started on a Monday morning, it would be noon before it had warmed up and stabilized. The electronics for the X-15 simulator took up many large consoles. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  14. Pilot Neil Armstrong in the X-15 #1 cockpit

    NASA Technical Reports Server (NTRS)

    1961-01-01

    NASA pilot Neil Armstrong is seen here in the cockpit of the X-15 ship #1 (56-6670) after a research flight. A U.S. Navy pilot in the Korean War who flew 78 combat missions in F9F-2 jet fighters and who was awarded the Air Medal and two Gold Stars, Armstrong graduated from Purdue University in 1955 with a bachelor degree in aeronautical engineering. That same year, he joined the National Advisory Committee for Aeronautics' Lewis Flight Propulsion Laboratory in Cleveland, Ohio (today, the NASA Glenn Research Center). In July 1955, Armstrong transferred to the High-Speed Flight Station (HSFS, as Dryden Flight Research Center was then called) as an aeronautical research engineer. Soon thereafter, he became a research pilot. For the first few years at the HSFS, Armstrong worked on a number of projects. He was a pilot on the Navy P2B-1S used to launch the D-558-2 and also flew the F-100A, F-100C, F-101, F-104A, and X-5. His introduction to rocket flight came on August 15, 1957, with his first flight (of four, total) on the X-1B. He then became one of the first three NASA pilots to fly the X-15, the others being Joe Walker and Jack McKay. (Scott Crossfield, a former NACA pilot, flew the X-15 first but did so as a North American Aviation pilot.) The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  15. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    PubMed

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  16. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    PubMed

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  17. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.

    PubMed

    Beverly, Michael; Hagen, Caitlin; Slack, Olga

    2018-02-01

    The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.

  18. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus

    PubMed Central

    Prieto, G. Aleph; Petrosyan, Arpine; Loertscher, Brad M.; Dieskau, André P.; Overman, Larry E.; Cotman, Carl W.

    2016-01-01

    An increasing number of studies show that an altered epigenetic landscape may cause impairments in regulation of learning and memory-related genes within the aged hippocampus, eventually resulting in cognitive deficits in the aged brain. One such epigenetic repressive mark is trimethylation of H3K9 (H3K9me3), which is typically implicated in gene silencing. Here, we identify, for the first time, an essential role for H3K9me3 and its histone methyl transferase (SUV39H1) in mediating hippocampal memory functions. Pharmacological inhibition of SUV39H1 using a novel and selective inhibitor decreased levels of H3K9me3 in the hippocampus of aged mice, and improved performance in the objection location memory and fear conditioning tasks and in a complex spatial environment learning task. The inhibition of SUV39H1 induced an increase in spine density of thin and stubby but not mushroom spines in the hippocampus of aged animals and increased surface GluR1 levels in hippocampal synaptosomes, a key index of spine plasticity. Furthermore, there were changes at BDNF exon I gene promoter, in concert with overall BDNF levels in the hippocampus of drug-treated animals compared with control animals. Together, these data demonstrate that SUV39H1 inhibition and the concomitant H3K9me3 downregulation mediate gene transcription in the hippocampus and reverse age-dependent deficits in hippocampal memory. SIGNIFICANCE STATEMENT Cognitive decline is a debilitating condition associated with not only neurodegenerative diseases but also aging in general. However, effective treatments have been slow to emerge so far. In this study, we demonstrate that epigenetic regulation of key synaptic proteins may be an underlying, yet reversible, cause of this decline. Our findings suggest that histone 3 trimethylation is a probable target for pharmacological intervention that can counteract cognitive decline in the aging brain. Finally, we provide support to the hypothesis that, by manipulating the enzyme that regulates H3K9me3 (using a newly developed specific inhibitor of SUV39H1), it is possible to alter the chromatin state of subjects and restore memory and synaptic function in the aging brain. PMID:27013689

  19. Structures far from the head of comet Kohoutek. II - A discussion of the Swan Cloud of January 11 and of the general morphology of cometary plasma tails

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.

    1980-01-01

    Photographs show that the 'Swan Cloud' observed in comet Kohoutek on January 11, 1974 was an advanced stage of a plasma tail disconnection event, of which the rejected tail appeared to decelerate as it receded from the head. The event commenced with the development of strong tail ray activity followed by the actual tail disconnection, the merging of the disconnected tail with the new tail to form the Swan and the formation of arcade loops in the space between closing tail rays. The observed morphological sequence is easily understood in the sector boundary model (Niedner et al., 1978), and the arcade loops are proposed to be reconnected flux tubes between oppositely polarized tail rays in the incipient new tail which followed the disconnection

  20. Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.

    2017-11-01

    Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.

  1. A Tale of Two Tails: Exploring Stellar Populations in the Tidal Tails of NGC 3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Konstantopoulos, Iraklis

    2016-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. We have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC 3256's twin tidal tails serve as a case study for this new technique. Our results show color values of u - g = 1.15 and r - i = 0.08 for the Western tail, and u - g = 1.33 and r - i = 0.22 for the Eastern tail, corresponding to discrepant ages between the tails of approximately 320 Myr and 785 Myr, respectively. With the interaction age of the system measured at 400 Myr, we find the stellar light in Western tail to be dominated by disrupted star clusters formed during and after the interaction, whereas the light from the Eastern tail is dominated by a 10 Gyr population originating from the host galaxies. We fit the Eastern tail color to a Mixed Stellar Population (MSP) model comprised 94% by mass of a 10 Gyr stellar population, and 6% of a 309 Myr population. We find 52% of the bolometric flux originating from this 10 Gyr population. We also detect a blue to red color gradient in each tail, running from galactic center to tail tip. In addition to tidal tail light, we detect 29 star cluster candidates (SCCs) in the Western tail and 19 in the Eastern, with mean ages of 282 Myr and 98 Myr respectively. Interestingly, we find an excess of very blue SCCs in the Eastern tail as compared to the Western tail, marking a recent, small episode of star formation.

  2. On magnetic reconnection in the Venusian wake. The experimental evidences

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Volwerk, M.; Zhang, T.; Barabash, S.; Sauvaud, J.

    2009-12-01

    The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by acceleration of planetary ions antisunward. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. The present paper is devoted to the study of such sunward flows observed by IMA mass spectrometer onboard of the Venus Express orbiter. The case study shows rare accidently observed precipitations of the heavy ions in the nightside of the planet. The statistical study gives us the spatial distribution of such precipitations and conditions of their appearance.

  3. Spectral properties of rf emission from high Tc films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, G.; Konopka, J.; Vitale, S.

    1990-09-15

    Spectral properties of rf radiation from intrinsic Josephson junctions in high {Tc} Y-Ba-Cu-O thin film have been measured in the frequency range up to 1.5 GHz. Narrow emission lines with the 3 dB bandwidth of the order of 20 MHz were detected indicating that Josephson clusters radiate coherently. Synchronization conditions are determined by dc current and external magnetic field bias. Frequency locking of radiation to external resonant circuit was also observed. Spectral line narrowing due to resonant lock was distinguished from the coherence-induced narrowing by different tuning properties of the emission line. Noncoherent Josephson radiation manifests itself as a broadbandmore » background noise increase. A pronounced 1/{ital f}-like tail sensitive to dc bias and magnetic field was observed in a low frequency part of the spectrum.« less

  4. Near-tail reconnection as the cause of cometary tail disconnections

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Saunders, M. A.; Phillips, J. L.; Fedder, J. A.

    1986-01-01

    In a cometary tail disconnection event the plasma tail appears to separate from the coma and to accelerate away from it. As this occurs a new tail begins to form. It is proposed that these disconnections arise in a manner analogous to geomagnetic substorms, i.e., by the formation of a strongly reconnecting region in the near tail that forms a magnetic island in the coma and ejects the plasma tail by strengthening the magnetic 'slingshot' within the tail. This reconnection process may be triggered by several different processes, such as interplanetary shocks or variations in the Alfven Mach number.

  5. Numerical modeling of cracking pattern's influence on the dynamic response of thickened tailings disposals: a periodic approach

    NASA Astrophysics Data System (ADS)

    Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian

    2018-01-01

    Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.

  6. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  7. Tips pentacene crystal alignment for improving performance of solution processed organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Zhengran

    A newly-developed p-type organic semiconductor 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) demonstrates various advantages such as high mobility, air stability and solution processibility, but at the same time its application is restricted by major issues, such as crystal misorientation and performance variation of organic thin-film transistors (OTFTs). This dissertation demonstrates several different approaches to address these issues. As a result, both crystal orientation and areal coverage can be effectively improved, leading to an enhancement of average mobility and performance consistency of OTFTs. Chapter 1 presents an introduction and background of this dissertation. Chapter 2 explores the usage of inorganic silica nanoparticles to manipulate the morphology of TIPS pentacene thin films and the performance of solution-processed organic OTFTs. The resultant drop-cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3-fold increase in average mobility and nearly 4-times reduction in the ratio of standard deviation of mobility (μStdev) to average mobility (μAvg). The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and that 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity. Chapter 3 discusses the utilization of air flow to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs. Under air-flow navigation (AFN), TIPS pentacene forms thin films with improved crystal orientation and increased areal coverage, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency. Chapter 4 investigates the critical roles of lateral and vertical phase separation in the performance of the next-generation organic and hybrid electronic devices. A novel method is demonstrated here to switch between lateral and vertical phase separation in semiconducting TIPS pentacene/ polymer blend films by simply varying the alkyl length of the polyacrylate polymer component. The phase separation modes depend on intermolecular interactions between small molecule TIPS pentacene and polymer additives. The blend film with a dominant vertical phase separation exhibits a significant enhancement in average mobility and performance consistency of organic OTFTs. Chapter 5 demonstrates an effective approach to improve both charge transport and performance consistency in solution-processed OTFTs by blending TIPS pentacene with a series of small-molecule additives: 4-butylbenzoic acid (BBA), 4-hexylbenzoic acid (HBA), and 4-octylbenzoic acid (OBA). These three small molecules share a benzoic acid moiety, but have different length of hydrophobic tails. The self-assembled interfacial layer of small molecules on the gate oxide surface leads to uniform deposition of TIPS pentacene crystal seeds and facilitates TIPS pentacene to grow along the tilted orientation of substrate, which results in a film of enhanced crystal orientation and areal coverage. OTFTs based on TIPS pentacene/small molecule blends demonstrate greatly improved average hole mobility and performance consistency, which correlates with the length of hydrophobic tail of the small-molecule additives. Chapter 6 summarizes the conclusions of this dissertation and the related future work.

  8. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    PubMed

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  9. Radiation data input for the design of dry or semi-dry U tailings disposal.

    PubMed

    Kvasnicka, J

    1986-09-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m-2 s-1 and the Rn flux for Ranger is 10 Bq m-2 s-1. The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg-1 h-1 and 0.28 microC kg-1 h-1, respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m-3 for workers and 0.034 Bq m-3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m-3 for QML tailings and 2.2 mg m-3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m-3 for QML tailings and 0.064 mg m-3 for RUM tailings.

  10. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  11. Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements

    NASA Astrophysics Data System (ADS)

    Shen, C.; Li, X.; Dunlop, M.; Liu, Z. X.; Balogh, A.; Baker, D. N.; Hapgood, M.; Wang, X.

    2003-05-01

    The geometrical structure of the magnetic field is a critical character in the magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation satellites, the geometrical structure including the curvature radius, directions of curvature, and normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet have been investigated. The results are (1) Inside of the tail neutral sheet (NS), the curvature of magnetic field lines points towards Earth, the normal of the osculating plane points duskward, and the characteristic half width (or the minimum curvature radius) of the neutral sheet is generally less than 2 RE, for many cases less than 1600 km. (2) Outside of the neutral sheet, the curvature of magnetic field lines pointed northward (southward) at the north (south) side of NS, the normal of the osculating plane points dawnward, and the curvature radius is about 5 RE ˜ 10 RE. (3) Thin NS, where the magnetic field lines have the minimum of the curvature radius less than 0.25 RE, may appear at all the local time between LT 20 hours and 4 hours, but thin NS occurs more frequently near to midnight than that at the dawnside and duskside. (4) The size of the NS is dependent on substorm phases. Generally, the NS is thin during the growth and expansion phases and grows thick during the recovery phase. (5) For the one-dimensional NS, the half thickness and flapping velocity of the NS could be quantitatively determined. Therefore the differential geometry analyses based on Cluster 4-point magnetic measurements open a window for visioning the three-dimensional static and dynamic magnetic field structure of geomagnetosphere.

  12. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  13. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE PAGES

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...

    2017-07-07

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  14. Exploring Stellar Populations in the Tidal Tails of NGC3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Konstantopoulos, Iraklis; Charlton, Jane C.

    2015-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. With this in mind, we have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC3256's Western and Eastern tidal tails serve as a case study for this new technique. Our results show median color values of u - g = 1.12 and r - i = 0.09 for the Western tail, and u - g = 1.29 and r - i = 0.21 for the Eastern tail, corresponding to ages of approximately 450 Myr and 900 Myr for the tails, respectively. A u - g color gradient is seen in the Western tail as well, running from 1.32 to 1.08 (~2000 Myr to 400 Myr), suggesting ages inside tidal tails can have significant variations.

  15. A Stiffness Switch in Human Immunodeficiency Virus

    PubMed Central

    Kol, Nitzan; Shi, Yu; Tsvitov, Marianna; Barlam, David; Shneck, Roni Z.; Kay, Michael S.; Rousso, Itay

    2007-01-01

    After budding from the cell, human immunodeficiency virus (HIV) and other retrovirus particles undergo a maturation process that is required for their infectivity. During maturation, HIV particles undergo a significant internal morphological reorganization, changing from a roughly spherically symmetric immature particle with a thick protein shell to a mature particle with a thin protein shell and conical core. However, the physical principles underlying viral particle production, maturation, and entry into cells remain poorly understood. Here, using nanoindentation experiments conducted by an atomic force microscope (AFM), we report the mechanical measurements of HIV particles. We find that immature particles are more than 14-fold stiffer than mature particles and that this large difference is primarily mediated by the HIV envelope cytoplasmic tail domain. Finite element simulation shows that for immature virions the average Young's modulus drops more than eightfold when the cytoplasmic tail domain is deleted (930 vs. 115 MPa). We also find a striking correlation between the softening of viruses during maturation and their ability to enter cells, providing the first evidence, to our knowledge, for a prominent role for virus mechanical properties in the infection process. These results show that HIV regulates its mechanical properties at different stages of its life cycle (i.e., stiff during viral budding versus soft during entry) and that this regulation may be important for efficient infectivity. Our report of this maturation-induced “stiffness switch” in HIV establishes the groundwork for mechanistic studies of how retroviral particles can regulate their mechanical properties to affect biological function. PMID:17158573

  16. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    USGS Publications Warehouse

    Iwasaki, Toshiki; Nelson, Jonathan M.; Shimizu, Yasuyuki; Parker, Gary

    2017-01-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  17. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Nelson, Jonathan; Shimizu, Yasuyuki; Parker, Gary

    2017-04-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  18. Design, construction and management of tailings storage facilities for surface disposal in China: case studies of failures.

    PubMed

    Wei, Zuoan; Yin, Guangzhi; Wang, J G; Wan, Ling; Li, Guangzhi

    2013-01-01

    Rapid development of China's economy demands for more mineral resources. At the same time, a vast quantity of mine tailings, as the waste byproduct of mining and mineral processing, is being produced in huge proportions. Tailings impoundments play an important role in the practical surface disposal of these large quantities of mining waste. Historically, tailings were relatively small in quantity and had no commercial value, thus little attention was paid to their disposal. The tailings were preferably discharged near the mines and few tailings storage facilities were constructed in mainland China. This situation has significantly changed since 2000, because the Chinese economy is growing rapidly and Chinese regulations and legislation require that tailings disposal systems must be ready before the mining operation begins. Consequently, data up to 2008 shows that more than 12 000 tailings storage facilities have been built in China. This paper reviews the history of tailings disposal in China, discusses three cases of tailings dam failures and explores failure mechanisms, and the procedures commonly used in China for planning, design, construction and management of tailings impoundments. This paper also discusses the current situation, shortcomings and key weaknesses, as well as future development trends for tailings storage facilities in China.

  19. Can tail damage outbreaks in the pig be predicted by behavioural change?

    PubMed

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-03-01

    Tail biting, resulting in outbreaks of tail damage in pigs, is a multifactorial welfare and economic problem which is usually partly prevented through tail docking. According to European Union legislation, tail docking is not allowed on a routine basis; thus there is a need for alternative preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The impact of tail tip amputation and ink tattoo on C57BL/6JBomTac mice.

    PubMed

    Sørensen, Dorte Bratbo; Stub, Charlotte; Jensen, Henrik Elvang; Ritskes-Hoitinga, Merel; Hjorth, Peter; Ottesen, Jan Lund; Hansen, Axel Kornerup

    2007-01-01

    Genetic material for polymerase chain reaction (PCR) and Southern blot analysis on transgenic mice is normally obtained by tail biopsy. Additionally, it may be necessary to tattoo the mice, as it is essential to have a good and permanent identification. The aim of this study was to evaluate the effects of amputating the tip of the tail to obtain a biopsy for genetic analysis and of ink tattooing on welfare in C57BL/6J mice, a strain often used as genetic background for transgenes. The behaviour of the animals, fluctuating asymmetry (FA, a measure of developmental instability) and the level of restitution in the remaining part of the tail were evaluated and used for an assessment of the impact of these procedures on the welfare of the animals. One group of mice was marked by tail tattooing at various ages. Another group of mice were tail amputated at 12 or 20 days of age. Body weight and FA were followed, and at the end of the experiment, the level of fear/anxiety was assessed using a light-dark box. In the group of tail-amputated animals observation of climbing behaviour and a beam walking test for balance was performed. Seven weeks after tail amputation, the animals were euthanized. The remaining part of the tail was evaluated histopathologically. Body weight, behaviour in the light-dark box and balance test results were not influenced by tail amputation or tattooing. FA was only transiently increased by tattooing. Climbing behaviour was reduced just after tail amputation at 20 days of age. No signs of neuromas were found in the amputated tails, but seven weeks after amputation a significant number of mice did not have fully regenerated glandular tissue and hair follicles in the tail. It is concluded that both tail amputation and tail tattooing seem to have minor short-term negative effects on welfare and that the tissues on the tail probably do not regenerate fully after amputation.

  1. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  2. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  3. Research on Long Tail Recommendation Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xuezhi; Zhang, Chuang; Wu, Ming; Zeng, Yang

    2017-10-01

    Most recommendation systems in the major electronic commerce platforms are influenced by the long tail effect more or less. There are sufficient researches of how to assess recommendation effect while no criteria to evaluate long tail recommendation rate. In this study, we first discussed the existing problems of recommending long tail products through specific experiments. Then we proposed a long tail evaluation criteria and compared the performance in long tail recommendation between different models.

  4. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  5. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  6. Application of a life cycle assessment to compare environmental performance in coal mine tailings management.

    PubMed

    Adiansyah, Joni Safaat; Haque, Nawshad; Rosano, Michele; Biswas, Wahidul

    2017-09-01

    This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and variations of OPT 1 using combinations of technology improvement and renewable energy sources (OPT 1A-D). Electrical energy was found to contribute more than 90% of the environmental impacts. The magnitude of land-use impacts associated with OPT 3 (thickened tailings) were 2.3 and 1.55 times higher than OPT 1 (tailings cake) and OPT 2 (tailings paste) respectively, while OPT 1B (tailings belt filter press with technology improvement and solar energy) and 1D (tailings belt press filter with technology improvement and wind energy) had the lowest ratio of environmental impact to land-use. Further analysis of an economic cost model and reuse opportunities is required to aid decision making on sustainable tailings management and industrial symbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  8. Some Effects of Horizontal-Tail Position on the Vertical-Tail Pressure Distributions of a Complete Model in Sideslip at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Alford, William J., Jr.

    1958-01-01

    An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with Mach number of any of the configurations investigated.

  9. Evaluation of the grass mixture (Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp.) as Sb phyto-stabilizer in tailings and Sb-rich soils.

    NASA Astrophysics Data System (ADS)

    Aurora Armienta, M.; Beltrán-Villavicencio, Margarita; Ruiz-Villalobos, Carlos E.; Labastida, Israel; Ceniceros, Nora; Cruz, Olivia; Aguayo, Alejandra

    2017-04-01

    Green house experiments were carried out to evaluate the growth and Sb assimilation of a grass assemblage: Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp, in tailings and Sb-rich soils. Tailings and soil samples were obtained at the Mexican historical mining zone of Zimapán, Central México. More than 6 tailings impoundments are located at the town outskirts and constitute a contamination source from windblown and waterborne deposit on soils, besides acid mine drainage. Four substrates were used in the experiments: 100% tailings, 20% tailings + 80% soil, 50% tailings + 50% soil , and a soil sample far from tailings as a background. Concentrations of Sb ranged from 310 mg/kg to 413 mg/kg in tailings. A pH of 7.43, 1.27% organic matter, and high concentrations of N, K and P indicated adequate conditions for plant growth. The grass assemblage was raised during 21 days as indicated by OECD (Organisation for Economic Co-operation and Development) Guideline 208 Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. The highest Sb concentrations were measured in plants grown on tailings with 139 mg/kg in the aerial part and 883 mg/kg in roots. Concentrations of Sb decreased as the proportion of tailings diminished with 22.1 mg/kg in the aerial part and 10 mg/kg in roots corresponding to the plants grown in the 20 % tailings + 80% soil . Bioaccumulation (BAC) and bioconcentration factors (BF) of plants grown on tailings (BAC= 0.42, BCF=3.93) indicated their suitability as a phyto-stabilization option. The grass mixture may be thus applied to control windblown particulate tailings taking advantage to their tolerance to high Sb levels.

  10. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less

  11. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  12. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy.

    PubMed

    Paktunc, Dogan; Foster, Andrea; Laflamme, Gilles

    2003-05-15

    Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.

  13. Speciation and characterization of arsenic in Ketza River mine tailings using x-ray absorption spectroscopy

    USGS Publications Warehouse

    Paktunc, D.; Foster, A.; Laflamme, G.

    2003-01-01

    Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A?? for the exposed tailings and 3.33-3.35 A?? for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A?? and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentatebinuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.

  14. Historic mills and mill tailings as potential sources of contamination in and near the Humboldt River basin, northern Nevada. Chapter D.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2003-01-01

    Reconnaissance field studies of 40 mining districts in and near the Humboldt River basin have identified 83 mills and associated tailings impoundments and several other kinds of mineral-processing facilities (smelters, mercury retorts, heap-leach pads) related to historic mining. The majority of the mills and tailings sites are not recorded in the literature. All tailings impoundments show evidence of substantial amounts of erosion. At least 11 tailings dams were breached by flood waters, carrying fluvial tailings 1 to 15 km down canyons and across alluvial fans. Most of the tailings sites are dry most of the year, but some are near streams. Tailings that are wet for part of the year do not appear to be reacting significantly with those waters because physical factors such as clay layers and hard-pan cement appear to limit permeability and release of metals to surface waters. The major impact of mill tailings on surface- water quality may be brief flushes of runoff during storm events that carry acid and metals released from soluble mineral crusts. Small ephemeral ponds and puddles that tend to collect in trenches and low areas on tailings impoundments tend to be acidic and extremely enriched in metals, in part through cycles of evaporation. Ponded water that is rich in salts and metals could be acutely toxic to unsuspecting animals. Rare extreme storms have the potential to cause catastrophic failure of tailings impoundments, carry away metals in stormwaters, and transport tailings as debris flows for 1 to 15 km. In most situations these stormwaters and transported tailings could impact wildlife but probably would impact few or no people or domes-tic water wells. Because all identified historic tailings sites are several kilometers or more from the Humboldt River and major tributaries, tailings probably have no measurable impact on water quality in the main stem of the Humboldt River.

  15. Study on immobilization and migration of nuclide u in superficial soil of uranium tailings pond

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Zhou, Shukui

    2017-05-01

    The uranium tailings in southern China was used as the object of study to study the fixation and migration characteristics of nuclide U in shallow tailings. The results showed that the precipitation of tailings in the tailings soil was not linearly related to the depth during the acid rain leaching process. Tailings soil in the role of fixatives, when the lime as a fixative, the tailings of different soil uranium in 20 days after the re-precipitation. However, when lime and ammonium phosphate were used as fixing agents, the cumulative precipitation of U had a significant effect, and the migration of uranium was inhibited.

  16. Modeling Jupiter's current disc - Pioneer 10 outbound

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Melville, J. G.; Blake, M. L.

    1980-07-01

    A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.

  17. Resistance noise in epitaxial thin films of ferromagnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Semonti; Kandala, Abhinav; Richardella, Anthony; Islam, Saurav; Samarth, Nitin; Ghosh, Arindam

    2016-02-01

    We report detailed temperature and gate-voltage dependence of 1/f resistance noise in magnetically doped topological insulators (TI) Crx(Bi,Sb)2-xTe3. The noise is remarkably sensitive to the gate voltage, increasing rapidly as the chemical potential is moved towards the charge neutrality point. Unlike in identically prepared (Bi,Sb)2Te3 films, where mobility-fluctuations in the surface states is the dominant mechanism, the noise in the magnetic Crx(Bi,Sb)2-xTe3 originates from transport in the localized band tail of the bulk valence band. A strong increase in noise with decreasing temperature supports this scenario. At higher temperature (≥10 K), we observed large noise peaks at gate voltage-dependent characteristic temperature scales. In line with similar observations in other non-magnetic TI systems, we attribute these peaks to generation-recombination in the Cr-impurity band.

  18. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  19. PIG (partially ionized globule) anatomy - Density and temperature structure of the bright-rimmed globule IC 1396E

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Guesten, R.; Mundy, L.

    1993-01-01

    The density and temperature structure of the bright-rimmed cometary globule IC 1396E is estimated, and the possibility that recent internal star formation was triggered by the ionization front in its southern surface is assessed. On the basis of NH3 data, gas temperatures in the globule are found to increase outward from the center, from a minimum of 17 K in its tail to a maximum of 26 K on the surface most directly facing the stars ionizing IC 1396. On the basis of a microturbulent radiative transfer code to model the radial dependence of the CS line intensities, and also the intensities of the optically thin 2-1 and 5-4 lines toward the cloud center, a radial density dependence of r exp -1.55 to r exp -1.75 is found.

  20. Goal-directed tail use in Colombian spider monkeys (Ateles fusciceps rufiventris) is highly lateralized.

    PubMed

    Nelson, Eliza L; Kendall, Giulianna A

    2018-02-01

    Behavioral laterality refers to a bias in the use of one side of the body over the other and is commonly studied in paired organs (e.g., hands, feet, eyes, antennae). Less common are reports of laterality in unpaired organs (e.g., trunk, tongue, tail). The goal of the current study was to examine tail use biases across different tasks in the Colombian spider monkey ( Ateles fusciceps rufiventris ) for the first time (N = 14). We hypothesized that task context and task complexity influence tail laterality in spider monkeys, and we predicted that monkeys would exhibit strong preferences for using the tail for manipulation to solve out-of-reach feeding problems, but not for using the tail at rest. Our results show that a subset of spider monkeys solved each of the experimental problems through goal-directed tail use (N = 7). However, some tasks were more difficult than others, given the number of monkeys who solved the tasks. Our results supported our predictions regarding laterality in tail use and only partially replicated prior work on tail use preferences in Geoffroy's spider monkeys ( Ateles geoffroyi ). Overall, skilled tail use, but not resting tail use, was highly lateralized in Colombian spider monkeys. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  2. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers.

    PubMed

    Zhang, Xu-Hui; Zhang, Xuan; Wang, Xu-Chu; Jin, Li-Fen; Yang, Zhang-Ping; Jiang, Cai-Xia; Chen, Qing; Ren, Xiao-Bin; Cao, Jian-Zhong; Wang, Qiang; Zhu, Yi-Min

    2011-04-12

    Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers. 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA. Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P < 0.001). The medians (range) of Olive tail moment, tail length and tail DNA% in exposed workers were 1.13 (0.14-6.77), 11.17 (3.46-52.19) and 3.69 (0.65-16.20), and were significantly higher than those in control subjects (0.14 (0.01-0.39), 3.26 (3.00-4.00) and 0.69 (0.04-2.74), P < 0.001). Urinary 8-OHdG concentration was 13.65 (3.08-66.30) μg/g creatinine in exposed workers and 8.31 (2.94-30.83) μg/g creatinine in control subjects (P < 0.001). The differences of urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA% between these two groups remained significant (P < 0.001) even after stratification by potential confounding factors such as age, gender, and smoking status. Chromium exposure was found to be positively associated with chromium levels in erythrocytes, urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA%. Positive dose-response associations were also found between chromium levels in erythrocytes and Olive tail moment, tail length and tail DNA%. The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  3. Subsonic Aerodynamic Characteristics of an Airplane Configuration with a 63 deg Sweptback Wing and Twin-Boom Tails

    NASA Technical Reports Server (NTRS)

    Savage, Howard F.; Edwards, George G.

    1959-01-01

    A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective roll control.

  4. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    PubMed Central

    2011-01-01

    Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P < 0.001). The medians (range) of Olive tail moment, tail length and tail DNA% in exposed workers were 1.13 (0.14-6.77), 11.17 (3.46-52.19) and 3.69 (0.65-16.20), and were significantly higher than those in control subjects (0.14 (0.01-0.39), 3.26 (3.00-4.00) and 0.69 (0.04-2.74), P < 0.001). Urinary 8-OHdG concentration was 13.65 (3.08-66.30) μg/g creatinine in exposed workers and 8.31 (2.94-30.83) μg/g creatinine in control subjects (P < 0.001). The differences of urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA% between these two groups remained significant (P < 0.001) even after stratification by potential confounding factors such as age, gender, and smoking status. Chromium exposure was found to be positively associated with chromium levels in erythrocytes, urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA%. Positive dose-response associations were also found between chromium levels in erythrocytes and Olive tail moment, tail length and tail DNA%. Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage. PMID:21481275

  5. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    PubMed

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all ofmore » these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.« less

  7. Long-ranged electrostatic repulsion and crystallization of emulsion droplets in an ultralow dielectric medium supercritical carbon dioxide.

    PubMed

    Ryoo, Won; Webber, Stephen E; Bonnecaze, Roger T; Johnston, Keith P

    2006-01-31

    Electrostatic repulsion stabilizes micrometer-sized water droplets with spacings greater than 10 microm in an ultralow dielectric medium, CO2 (epsilon = 1.5), at elevated pressures. The morphology of the water/CO2 emulsion is characterized by optical microscopy and laser diffraction as a function of height. The counterions, stabilized with a nonionic, highly branched, stubby hydrocarbon surfactant, form an extremely thick double layer with a Debye screening length of 8.9 microm. As a result of the balance between electrostatic repulsion and the downward force due to gravity, the droplets formed a hexagonal crystalline lattice at the bottom of the high-pressure cell with spacings of over 10 microm. The osmotic pressure, calculated by solving the Poisson-Boltzmann equation in the framework of the Wigner-Seitz cell model, is in good agreement with that determined from the sedimentation profile measured by laser diffraction. Thus, the long-ranged stabilization of the emulsion may be attributed to electrostatic stabilization. The ability to form new types of colloids in CO2 with electrostatic stabilization is beneficial because steric stabilization is often unsatisfactory because of poor solvation of the stabilizers.

  8. Nuclear sensor signal processing circuit

    DOEpatents

    Kallenbach, Gene A [Bosque Farms, NM; Noda, Frank T [Albuquerque, NM; Mitchell, Dean J [Tijeras, NM; Etzkin, Joshua L [Albuquerque, NM

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  9. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly

    PubMed Central

    Sokolova, Vladyslava; Li, Frances; Polovin, George; Park, Soyeon

    2015-01-01

    In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome. PMID:26449534

  10. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress

    PubMed Central

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-01-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision—but not tail tip amputation—increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing. PMID:28535866

  11. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress.

    PubMed

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-05-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision-but not tail tip amputation-increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing.

  12. Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.

    PubMed

    Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno

    2013-10-15

    The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over the tailings was also investigated for tailings TA1 (with high sulphide content). A protective layer of only 5 cm reduced the DO flux into the tailings at about 5 mg/m(2)/d, compared to 608 mg O2/m(2)/d without a protective layer, or an approximately 99% reduction in flux. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. THE NARROW X-RAY TAIL AND DOUBLE Hα TAILS OF ESO 137-002 IN A3627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Lin, X. B.; Kong, X.

    2013-11-10

    We present the analysis of a deep Chandra observation of a ∼2 L{sub *} late-type galaxy, ESO 137-002, in the closest rich cluster A3627. The Chandra data reveal a long (∼>40 kpc) and narrow tail with a nearly constant width (∼3 kpc) to the southeast of the galaxy, and a leading edge ∼1.5 kpc from the galaxy center on the upstream side of the tail. The tail is most likely caused by the nearly edge-on stripping of ESO 137-002's interstellar medium (ISM) by ram pressure, compared to the nearly face-on stripping of ESO 137-001 discussed in our previous work. Spectralmore » analysis of individual regions along the tail shows that the gas throughout it has a rather constant temperature, ∼1 keV, very close to the temperature of the tails of ESO 137-001, if the same atomic database is used. The derived gas abundance is low (∼0.2 solar with the single-kT model), an indication of the multiphase nature of the gas in the tail. The mass of the X-ray tail is only a small fraction (<5%) of the initial ISM mass of the galaxy, suggesting that the stripping is most likely at an early stage. However, with any of the single-kT, double-kT, and multi-kT models we tried, the tail is always 'over-pressured' relative to the surrounding intracluster medium (ICM), which could be due to the uncertainties in the abundance, thermal versus non-thermal X-ray emission, or magnetic support in the ICM. The Hα data from the Southern Observatory for Astrophysical Research show a ∼21 kpc tail spatially coincident with the X-ray tail, as well as a secondary tail (∼12 kpc long) to the east of the main tail diverging at an angle of ∼23° and starting at a distance of ∼7.5 kpc from the nucleus. At the position of the secondary Hα tail, the X-ray emission is also enhanced at the ∼2σ level. We compare the tails of ESO 137-001 and ESO 137-002, and also compare the tails to simulations. Both the similarities and differences of the tails pose challenges to the simulations. Several implications are briefly discussed.« less

  14. Design for beam splitting components employing silicon-on-insulator rib waveguide structures.

    PubMed

    Hsiao, C S; Wang, Likarn

    2005-12-01

    We present a new design for beam splitting components employing a silicon-on-insulator rib waveguide structures. In the new design, a high-index thin-film layer is deposited in the rib section to reduce the wave field dispersive tails in the slab section and accordingly render the mode field a confined spot. This in turn improves the beam splitting performance of some conventional waveguide components such as y branches and multimode interference couplers (MMICs), in terms of the excess loss, fiber coupling loss, and compactness of these components. For a 1 x 2 y-branch beam splitter, the excess loss can be as small as 0.43 dB in the new design, which is much lower than that for a conventional rib waveguide structure (which is 1.28 dB). For a 1 x 2 MMIC in our example, the new rib waveguide structure presents an excess loss of 0.064 dB for the TE mode and 0.046 dB for the TM mode, with negligible nonuniformity in dimensions of 30 microm x 1040 microm, whereas its counterpart (i.e., the one with the same dimensions but without a thin-film layer) presents an excess loss of approximately 0.86 dB for both modes. A conventional MMIC must have dimensions larger than 70 microm x 5650 microm to maintain almost the same low excess loss.

  15. Effects of oxygen partial pressure, deposition temperature, and annealing on the optical response of CdS:O thin films as studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.

    2016-07-01

    Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.

  16. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and MeHg results that will be used to assess the evolution of mercury dynamics in the fen as the hydrology and vegetation become established, we are investigating the composition of dissolved organic matter (DOM) using optical techniques in the water flowing through the fen peat and underlying tailing sand aquifer. During 2013, continuous in situ measurements of chromophoric DOM fluorescence (FDOM) were measured at the fen outlet to identify sources of C and their relative contribution to discharge waters. We compare these field measurements to laboratory measurements of FDOM on discrete water samples using a benchtop spectrofluorometer to develop relationships between FDOM, DOC and filtered THg and MeHg. The use of continuous in situ FDOM measurements as a proxy for DOC and mercury concentrations will improve our understanding of the effects of hydrologic management and natural seasonal variations in fen hydrology on DOC and Hg fluxes from different soil layers in the constructed system. Furthermore, we expect that the modeling of excitation-emission matrices using parallel factor analysis on discrete water samples will provide important information on the sources and reactivity of organic carbon being transported through different soil compartments in the fen.

  17. Tail loss and thermoregulation in the common lizard Zootoca vivipara

    NASA Astrophysics Data System (ADS)

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability—which in turn are expected to influence thermal balance—there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  18. Active tails enhance arboreal acrobatics in geckos

    PubMed Central

    Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.

    2008-01-01

    Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft. PMID:18347344

  19. Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1985-01-01

    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.

  20. Tail loss and thermoregulation in the common lizard Zootoca vivipara.

    PubMed

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability-which in turn are expected to influence thermal balance-there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  1. Effect of Tail Surfaces on the Base Drag of a Body of Revolution at Mach Numbers of 1.5 and 2.0

    NASA Technical Reports Server (NTRS)

    Spahr, J Richard; Dickey, Robert R

    1951-01-01

    Wind-tunnel tests were performed at Mach numbers of 1.5 and 2.0 to investigate the influence of tail surfaces on the base drag of a body of revolution without boattailing and having a turbulent boundary layer. The tail surfaces were of rectangular plan form of aspect ratio 2.33 and has symmetrical, circular-arc airfoil section. The results of the investigation showed that the addition of these tail surfaces with the trailing edges at or near the body base incurred a large increase in the base-drag coefficient. For a cruciform tail having a 10-percent-thick airfoil section, this increase was about 70 percent at a Mach number of 1.5 and 35 percent at a Mach number of 2.0. As the trailing edge of the tail was moved forward or rearward of the base by about one tail-chord length, the base-drag increment was reduced to nearly zero. The increments in base-drag coefficient due to the presence of 10-percent-thick tail surfaces were generally twice those for 5-percent-thick surfaces. The base-drag increments due to the presence of a cruciform tail were less than twice those for a plane tail. An estimate of the change in base pressure due to the tail surfaces was made, based on a simple superposition of the airfoil-pressure field onto the base-pressure field behind the body. A comparison of the results with the experimental values indicated that in most cases the trend in the variation of the base-drag increment with changes in tail position could be predicted by this approximate method but that the quantitative agreement at most tail locations was poor.

  2. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.

    PubMed

    Wayland, Mark; Headley, John V; Peru, Kerry M; Crosley, Robert; Brownlee, Brian G

    2008-01-01

    An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands.

  3. The X-ray Crystal Structure of the Phage Tail Terminator Protein Reveals the Biologically Relevant Hexameric Rang Structure and Demonstrates a Conserved mechanism of Tail Termination among Divrse Long Tailed Phages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pell, L.; Liu, A; Edmonds, L

    The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changesmore » occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.« less

  4. Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials

    NASA Astrophysics Data System (ADS)

    Gitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N.

    2018-01-01

    The mining industries in South Africa generates huge amounts of mine waste that includes tailings; waste rocks and spoils. The tailings materials are dumped in surface impoundments that turn to be sources of hazards to the environment and the surrounding communities. The main environmental hazards posed by these tailings facilities are associated with their chemical constituents. Exposure to chemical constituents can occur through windblown dust, erosion to surface water bodies, inhalation by human beings and animals and through bioaccumulation and bio magnification by plants. Numerous un-rehabilitated tailings dumps exist in Limpopo province of South Africa. The communities found around these mines are constantly exposed to the environmental hazards posed by these tailing facilities. Development of a cost-effective technology that can beneficially utilize these tailings can reduce the environmental hazards and benefit the communities. This paper presents the initial evaluation of the copper and gold mine tailings in Limpopo, South Africa with a view to assessing the suitability of conversion into beneficial geopolymeric materials. Copper tailings leachates had alkaline pH (7.34-8.49) while the gold tailings had acidic pH. XRD confirmed presence of aluminosilicate minerals. Geochemical fractionation indicates that majority of the major and trace species are present in residual fraction. A significant amount of Ca, Cu and K was available in the mobile fraction and is expected to be released on tailings contacting aqueous solutions. Results from XRF indicates the tailings are rich in SiO2, Al2O3 and CaO which are the main ingredients in geopolymerization process. The SiO2/Al2O3 ratios indicates the tailings would require blending with Al2O3 rich feedstock for them to develop maximum strength. Moreover, the tailings have particle size in the range of fine sand which indicates potential application as aggregates in conventional brick manufacture.

  5. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Acute and repeated activation of male sexual behavior by tail pinch: opioid and dopaminergic mechanisms.

    PubMed

    Leyton, M; Stewart, J

    1996-07-01

    We studied the effect of tail pinch on male sexual behavior and its neurochemical basis. Male rats were gonadectomized and maintained on low doses of testosterone propionate (20.0 micrograms/day). Tail pinch significantly increased the percentage of males that mounted, intromitted, and ejaculated within a 30-min test, and these increases were attenuated by both pimozide (1.0 mg/kg, i.p.) and by naloxone (0.5, 1.0, and 2.0 mg/kg, s.c.). Moreover, tail pinch in the presence of an estrous female led to significantly increased female-directed behavior 48 h later during a test without tail pinch. Repeated tail pinch tests led to progressively more sexual activity, and the development of this behavioral sensitization was prevented by naloxone. These findings suggest that tail pinch increases the salience of the incentive characteristics of the female. Furthermore, during subsequent tests, with or without tail pinch, the increased salience of the female remains, as measured by the continued increases in sexual activity. These acute and sensitized behavioral increases might result from tail pinch-induced activation of the midbrain dopamine system via an opioid mechanism; either preventing tail pinch-induced dopamine activation (by an opioid antagonist) or blocking the effects of dopamine activation (by a dopamine antagonist) attenuated the long-term facilitation of sexual behavior seen after pairing the female with tail pinch.

  7. Comparison of the breeding biology of sympatric red-tailed Hawks, White-tailed Hawks, and Crested Caracaras in south Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2009-01-01

    We compared the breeding biology of sympatric nesting Red-tailed Hawks (Buteo jamaicensis), White-tailed Hawks (Buteo albicaudatus), and Crested Caracaras (Caracara cheriway) in south Texas during 2003 and 2004. We monitored 46 breeding attempts by Red-tailed Hawks, 56 by White-tailed Hawks, and 27 by Crested Caracaras. Observed nesting success was similar for Red-tailed Hawks (62%) and Crested Caracaras (61%), but lower for White-tailed Hawks (51%). Daily survival rates (0.99) were the same for all three species. Red-tailed Hawks and White-tailed Hawks both fledged 1.13 young per nesting pair and Crested Caracaras fledged 1.39 young per nesting pair. All three species nested earlier in 2004 than in 2003; in addition, the overall nesting density of these three species almost doubled from 2003 (1.45 pairs/km2) to 2004 (2.71 pairs/km2). Estimated productivity of all three species was within the ranges reported from other studies. Given extensive and progressive habitat alteration in some areas of south Texas, and the limited distributions of White-tailed Hawks and Crested Caracaras, the presence of large ranches managed for free-range cattle production and hunting leases likely provides important habitat and may be key areas for conservation of these two species. ?? 2009 The Raptor Research Foundation, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei, Mariana Lucia, E-mail: marianaluciaandrei@yahoo.com; Babes-Bolyai University, Environmental Science and Engineering Faculty, 30 Fantanele, 400294, Cluj-Napoca; Senila, Marin

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings frommore » Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.« less

  9. Tail position affects the body temperature of rats during cold exposure in a low-energy state.

    PubMed

    Uchida, Yuki; Tokizawa, Ken; Nakamura, Mayumi; Lin, Cheng-Hsien; Nagashima, Kei

    2012-02-01

    Rats place their tails underneath their body trunks when cold (tail-hiding behavior). The aim of the present study was to determine whether this behavior is necessary to maintain body temperature. Male Wistar rats were divided into 'fed' and '42-h fasting' groups. A one-piece tail holder (8.4 cm in length) that prevented the tail-hiding behavior or a three-piece tail holder (2.8 cm in length) that allowed for the tail-hiding behavior was attached to the tails of the rats. The rats were exposed to 27°C for 180 min or to 20°C for 90 min followed by 15°C for 90 min with continuous body temperature and oxygen consumption measurements. Body temperature decreased by -1.0 ± 0.1°C at 15°C only in the rats that prevented tail-hiding behavior of the 42-h fasting group, and oxygen consumption increased at 15°C in all animals. Oxygen consumption was not different between the rats that prevented tail-hiding behavior and the rats that allowed the behavior in the fed and 42-h fasting groups under ambient conditions. These results show that the tail-hiding behavior is involved in thermoregulation in the cold in fasting rats.

  10. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.

    PubMed

    Maboeta, M S; Oladipo, O G; Botha, S M

    2018-05-01

    Earthworms are bioindicators of soil pollution. The ecotoxicity of tailings from selected gold mines in South Africa was investigated utilizing Eisenia andrei bioassays and biomarkers. Samples were obtained from unrehabilitated, rehabilitated and naturally vegetated sites. Biomass, neutral red retention time (NRRT), survival and reproduction were assessed using standardized protocols. Earthworm biomass, NRRT and reproductive success in rehabilitated tailings (comparable to naturally vegetated site) were significantly higher (p < 0.05) than in unrehabilitated tailings. In addition, significantly lower (p < 0.05) body tissue concentrations of As, Cd, Co, Cu and Ni contents were found in the rehabilitated tailings compared to the unrehabilitated. Further, significantly lower (p < 0.05) soil Mn and Zn concentrations were obtained in unrehabilitated tailings than the rehabilitated and naturally vegetated sites. Overall, reduced ecotoxicity effects were confirmed in rehabilitated compared to unrehabilitated tailings. This suggests that rehabilitation as a post-mining restorative strategy has strong positive influence on mine tailings.

  11. The fecundity of fork-tailed threadfin bream (Nemipterus furcosus) in Bangka, Bangka Belitung

    NASA Astrophysics Data System (ADS)

    Utami, E.; Safitriyani, E.; Gatra Persada, Leo

    2018-04-01

    Fork-tailed threadfin bream (Nemipterus furcosus) is one of important economic fishes in Bangka. The sustainability of fork-tailed threadfin bream is threatened by degradation of natural habitat. Information of reproductive is needed for further management. The objective of this study was to examine fecundity of fork-tailed threadfin bream. The mean values of temperature was 28.83 ± 0,37°C, respectively. Sex ratio during sampling showed that female fork-tailed threadfin bream greater than male population. Berried female fork-tailed threadfin bream found from March until November. The greatest number of berried female fork-tailed threadfin bream showed in July with berried female value of 25. Fork-tailed threadfin bream fecundity was 19951 and 66628, respectively. The fecundity data can be used to access the reproductive potential of fish stock and also as an assessment on stock size of their natural population.

  12. Average dimension and magnetic structure of the distant Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Russell, C. T.

    1986-01-01

    The first major statistical investigation of the far wake of an unmagnetized object embedded in the solar wind is reported. The investigation is based on Pioneer Venus Orbiter magnetometer data from 70 crossings of the Venus wake at altitudes between 5 and 11 Venus radii during reasonably steady IMF conditions. It is found that Venus has a well-developed-tail, flaring with altitude and possibly broader in the direction parallel to the IMF cross-flow component. Tail lobe field polarities and the direction of the cross-tail field are consistent with tail accretion from the solar wind. Average values for the cross-tail field (2 nT) and the distant tail flux (3 MWb) indicate that most distant tail field lines close across the center of the tail and are not rooted in the Venus ionosphere. The findings are illustrated in a three-dimensional schematic.

  13. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    NASA Technical Reports Server (NTRS)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  14. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate.

    PubMed

    Murshed, Mohamed; Rockstraw, David A; Hanson, Adrian T; Johnson, Michael

    2003-01-01

    The chemistry of sulfide mine tailings treated with potassium ferrate (K2FeO4) in aqueous slurry has been investigated. The reaction system is believed to parallel a geochemical oxidation in which ferrate ion replaces oxygen. This chemical system utilized in a pipeline (as a plug flow reactor) may have application eliminating the potential for tailings to leach acid while recovering the metal from the tailings. Elemental analyses were performed using an ICP spectrometer for the aqueous phase extract of the treated tailings; and an SEM-EDX for the tailing solids. Solids were analyzed before and after treatments were applied. ICP shows that as the mass ratio of ferrate ion to tailings increases, the concentration of metals in the extract solution increases; while EDX indicates a corresponding decrease in sulfur content of the tailing solids. The extraction of metal and reduction in sulfide content is significant. The kinetic timeframe is on the order of minutes.

  15. Telling tails: selective pressures acting on investment in lizard tails.

    PubMed

    Fleming, Patricia A; Valentine, Leonie E; Bateman, Philip W

    2013-01-01

    Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variation in leg development and robustness and length of the body and tail. Autotomy is therefore likely to have fundamentally different effects on the overall body form and function in different species, which may be reflected directly in the incidence of lost/regenerating tails within populations or, over a longer period, in terms of relative tail length for different species. We recorded data (literature, museum specimens, field data) for relative tail length (n=350 species) and the incidence of lost/regenerating tails (n=246 species). We compared these (taking phylogeny into account) with intrinsic factors that have been proposed to influence selective pressures acting on caudal autotomy, including body form (robustness, body length, leg development, and tail specialization) and ecology (foraging behavior, physical and temporal niches), in an attempt to identify patterns that might reflect adaptive responses to these different factors. More gracile species have relatively longer tails (all 350 spp., P < 0.001; also significant for five of the six families tested separately), as do longer (all species, P < 0.001; Iguanidae, P < 0.05; Lacertidae, P < 0.001; Scindidae, P < 0.001), climbing (all species, P < 0.05), and diurnal (all species, P < 0.01; Pygopodidae, P < 0.01) species; geckos without specialized tails (P < 0.05); or active-foraging skinks (P < 0.05). We also found some relationships with the data for caudal autotomy, with more lost/regenerating tails for nocturnal lizards (all 246 spp., P < 0.01; Scindidae, P < 0.05), larger skinks (P < 0.05), climbing geckos (P < 0.05), or active-foraging iguanids (P < 0.05). The selective advantage of investing in a relatively longer tail may be due to locomotor mechanics, although the patterns observed are also largely consistent with predictions based on predation pressure.

  16. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    PubMed

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited greater resistance to fatigue, followed by the regenerate tail and then the fast iliofibularis fibers. These results suggest that the relatively slow and oxidative fibers found within the tail musculature have a significant impact on contractile function, which translates into a trade-off between longevity of performance and power after autotomy.

  17. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.

  18. Comparison of neural histomorphology in tail tips from pigs docked using clippers or cautery iron.

    PubMed

    Kells, N J; Beausoleil, N J; Johnson, C B; Sutherland, M A; Morrison, R S; Roe, W

    2017-07-01

    Tail docking of pigs is commonly performed to reduce the incidence of unwanted tail-biting behaviour. Two docking methods are commonly used: blunt trauma cutting (i.e. using side clippers), or cutting and concurrent cauterisation using a hot cautery iron. A potential consequence of tail amputation is the development of neuromas at the docking site. Neuromas have been linked to neuropathic pain, which can influence the longer-term welfare of affected individuals. To determine whether method of tail docking influences the extent of neuroma formation, 75 pigs were allocated to one of three treatments at birth: tail docked using clippers; tail docked using cautery iron; tail left intact. Tail docking was performed at 2 days of age and pigs were kept under conventional conditions until slaughter at 21 weeks of age. Tails were removed following slaughter and subjected to histological examination. Nerve histomorphology was scored according to the following scale: 1=discrete well-organised nerve bundles; 2=moderate neural proliferation and disorganisation affecting more than half of the circumference of the tail; 3=marked neural proliferation to form almost continuous disorganised bundles or non-continuous enlarged bundles compressing the surrounding connective tissue. Scores of 2 or 3 indicated neuroma formation. Scores were higher in docked pigs than undocked pigs (P<0.001), but did not differ between pigs docked using clippers and those docked using cautery (P=0.23). The results indicate that tail docking using either clippers or cautery results in neuroma formation, thus having the potential to affect long-term pig welfare.

  19. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    PubMed

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions.

    PubMed

    Lu, Cong; Wu, Yaoguo; Hu, Sihai; Raza, Muhammad Ali; Fu, Yilin

    2016-04-01

    Exposed mine tailing wastes with considerable heavy metals can release hazardous colloidal particles into soil under transient chemical and physical conditions. Two-layered packed columns with tailings above and soils below were established to investigate mobilization and transport of colloidal particles from metal-rich mine tailings into soil under transient infiltration ionic strength (IS: 100, 20, 2 mM) and flow rate (FR: 20.7, 41, and 62.3 mm h(-1)), with Cu and Pb as representatives of the heavy metals. Results show that the tailing particles within the colloidal size (below 2 μm) were released from the columns. A step-decrease in infiltration IS and FR enhanced, whereas a step-increase in the IS and FR restrained the release of tailing particles from the column. The effects of step-changing FR were unexpected due to the small size of the released tailing particles (220-342 nm, being not sensitive to hydrodynamic shear force), the diffusion-controlled particle release process and the relatively compact pore structure. The tailing particles present in the solution with tested IS were found negatively charged and more stable than soil particles, which provides favorable conditions for tailing particles to be transported over a long distance in the soil. The mobilization and transport of Cu and Pb from the tailings into soil were mediated by the tailing particles. Therefore, the inherent toxic tailing particles could be considerably introduced into soil under certain conditions (IS reduction or FR decrease), which may result in serious environmental pollution.

  1. Mean Excess Function as a method of identifying sub-exponential tails: Application to extreme daily rainfall

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Papalexiou, Simon Michael

    2017-04-01

    Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.

  2. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).

    PubMed

    Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A

    2015-10-01

    The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.

  3. The cytoplasmic tail of L-selectin interacts with the adaptor-protein complex AP-1 subunit μ1A via a novel basic binding motif

    PubMed Central

    Tikhonova, Irina G.; Ivetic, Aleksandar; Schu, Peter

    2017-01-01

    L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo. Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. PMID:28235798

  4. The cytoplasmic tail of L-selectin interacts with the adaptor-protein complex AP-1 subunit μ1A via a novel basic binding motif.

    PubMed

    Dib, Karim; Tikhonova, Irina G; Ivetic, Aleksandar; Schu, Peter

    2017-04-21

    L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans -Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues ( 356 RR 357 , 359 KK 360 , and 362 KK 363 ) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues ( 369 DD 370 ) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans -Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A proactive approach to sustainable management of mine tailings

    NASA Astrophysics Data System (ADS)

    Edraki, Mansour; Baumgartl, Thomas

    2015-04-01

    The reactive strategies to manage mine tailings i.e. containment of slurries of tailings in tailings storage facilities (TSF's) and remediation of tailings solids or tailings seepage water after the decommissioning of those facilities, can be technically inefficient to eliminate environmental risks (e.g. prevent dispersion of contaminants and catastrophic dam wall failures), pose a long term economic burden for companies, governments and society after mine closure, and often fail to meet community expectations. Most preventive environmental management practices promote proactive integrated approaches to waste management whereby the source of environmental issues are identified to help make a more informed decisions. They often use life cycle assessment to find the "hot spots" of environmental burdens. This kind of approach is often based on generic data and has rarely been used for tailings. Besides, life cycle assessments are less useful for designing operations or simulating changes in the process and consequent environmental outcomes. It is evident that an integrated approach for tailings research linked to better processing options is needed. A literature review revealed that there are only few examples of integrated approaches. The aim of this project is to develop new tailings management models by streamlining orebody characterization, process optimization and rehabilitation. The approach is based on continuous fingerprinting of geochemical processes from orebody to tailings storage facility, and benchmark the success of such proactive initiatives by evidence of no impacts and no future projected impacts on receiving environments. We present an approach for developing such a framework and preliminary results from a case study where combined grinding and flotation models developed using geometallurgical data from the orebody were constructed to predict the properties of tailings produced under various processing scenarios. The modelling scenarios based on the case study data provide the capacity to predict the composition of tailings and the resulting environmental management implications. For example, the type and content of clay minerals in tailings will affect the geotechnical stability and water recovery. Clay content will also influence decisions made for paste or thickened tailings and underground backfilling. It is possible by using an integrated assessment framework to evaluate more alternatives, including the production of additional saleable and benign streams, alternative tailings treatment and disposal, as well as options for reuse, recycling and pre-processing of existing tailings.

  6. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Development in helicopter tail boom strake applications in the US

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  8. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering

    PubMed Central

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-01-01

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail. PMID:22258552

  9. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering.

    PubMed

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-07-07

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.

  10. On the average configuration of the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1978-01-01

    Over 3000 hours of IMP-6 magnetic field data obtained between 20 and 33 R sub E in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5 minute averages of B sub Z as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks than near midnight. The tail field projected in the solar magnetospheric equatorial plane deviates from the X axis due to flaring and solar wind aberration by an angle alpha = -0.9 y sub SM - 1.7 where Y sub SM is in earth radii and alpha is in degrees. After removing these effects the Y component of the tail field is found to depend on interplanetary sector structure. During an away sector the B sub Y component of the tail field is on average 0.5 gamma greater than that during a toward sector, a result that is true in both tail lobes and is independent of location across the tail.

  11. Hydrodynamic Characteristics of a Low-drag, Planing-tail Flying-boat Hull

    NASA Technical Reports Server (NTRS)

    Suydam, Henry B

    1948-01-01

    The hydrodynamic characteristics of a flying-boat incorporating a low-drag, planing-tail hull were determined from model tests made in Langley tank number 2 and compared with tests of the same flying boat incorporating a conventional-type hull. The planing-tail model, with which stable take-offs were possible for a large range of elevator positions at all center-of-gravity locations tested, had more take-off stability than the conventional model. No upper-limit porpoising was encountered by the planing-tail model. The maximum changes in rise during landings were lower for the planing-tail model than for the conventional model at most contact trims, an indication of improved landing stability for the planing-tail model. The hydrodynamic resistance of the planing-tail hull was lower than the conventional hull at all speeds, and the load-resistance ratio was higher for the planing-tail hull, being especially high at the hump. The static trim of the planing-tail hull was much higher than the conventional hull, but the variation of trim with speed during take-off was smaller.

  12. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    PubMed

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P 2 O 5 and Mn with LOI and C org . Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au 0 particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Active Tails Enhance Arboreal Acrobatics in Geckos

    DTIC Science & Technology

    2008-03-18

    the secret to the gecko s arboreal acrobatics includes an active tail. We examine the tail s role during rapid climbing, aerial descent, and gliding. We show that a gecko s tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle s kickstand. Should a gecko fall with its back to the

  14. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  15. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  16. Mitochondrial and nuclear genetic relationships of deer (Odocoileus spp.) in western North America

    USGS Publications Warehouse

    Cronin, Matthew A.

    1991-01-01

    Odocoileus hemionus (mule deer and black-tailed deer) and Odocoileus virginanus (white-tailed deer) are sympatric in western North America and are characterized by distinct morphology, behavior, and allozyme allele frequencies. However, there is discordance among nuclear and mitochondrial genetic relationships, as mule deer (O. h. hemionus) and white-tailed deer have similar mitochondrial DNA (mtDNA) which is very different from that of black-tailed deer (O. h. columbianus, O. h. sitkensis). I expanded previous studies to clarify the genetic relationships of these groups by determining mtDNA haplotype and allozyme genotypes for 667 deer from several locations in northwestern North America. Different mtDNA haplotypes in mule deer, black-tailed deer, and white-tailed deer indicate that mitochondrial gene flow is restricted. Allozyme allele frequencies indicate that there is also restriction of nuclear gene flow between O. virginianus and O. hemionus, and to a lesser extent between mule deer and black-tailed deer. There is a low level of introgressive hybridization of mtDNA from mule deer and black-tailed deer into white-tailed deer populations and considerable interbreeding of mule deer and black-tailed deer in a contact zone. The discordance of mitochondrial and nuclear genomes is apparent only if mtDNA sequence divergences, and not haplotype frequencies, are considered.

  17. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  18. Mine tailings composition in a historic site: implications for ecological restoration.

    PubMed

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.

  19. AGES OF STAR CLUSTERS IN THE TIDAL TAILS OF MERGING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find amore » lack of very young clusters (≤10 Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, dN/dL ∝ L{sup α}, with −2.6 < α < −2.0. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of (1) newly formed stars and clusters along the dense center of the tail and (2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.« less

  20. Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology.

    PubMed

    Mendez, Monica O; Maier, Raina M

    2008-03-01

    Unreclaimed mine tailings sites are a worldwide problem, with thousands of unvegetated, exposed tailings piles presenting a source of contamination for nearby communities. Tailings disposal sites in arid and semiarid environments are especially subject to eolian dispersion and water erosion. Phytostabilization, the use of plants for in situ stabilization of tailings and metal contaminants, is a feasible alternative to costly remediation practices. In this review we emphasize considerations for phytostabilization of mine tailings in arid and semiarid environments, as well as issues impeding its long-term success. We reviewed literature addressing mine closures and revegetation of mine tailings, along with publications evaluating plant ecology, microbial ecology, and soil properties of mine tailings. Data were extracted from peer-reviewed articles and books identified in Web of Science and Agricola databases, and publications available through the U.S. Department of Agriculture, U.S. Environmental Protection Agency, and the United Nations Environment Programme. Harsh climatic conditions in arid and semiarid environments along with the innate properties of mine tailings require specific considerations. Plants suitable for phytostabilization must be native, be drought-, salt-, and metal-tolerant, and should limit shoot metal accumulation. Factors for evaluating metal accumulation and toxicity issues are presented. Also reviewed are aspects of implementing phytostabilization, including plant growth stage, amendments, irrigation, and evaluation. Phytostabilization of mine tailings is a promising remedial technology but requires further research to identify factors affecting its long-term success by expanding knowledge of suitable plant species and mine tailings chemistry in ongoing field trials.

  1. Flexible histone tails in a new mesoscopic oligonucleosome model.

    PubMed

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  2. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    PubMed Central

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  3. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR

    PubMed Central

    Vandenbussche, Frank; Mathijs, Elisabeth; Lefebvre, David; De Clercq, Kris; Van Borm, Steven

    2016-01-01

    Non-specific tail sequences are often added to the 5’-terminus of primers to improve the robustness and overall performance of diagnostic assays. Despite the widespread use of tailed primers, the underlying working mechanism is not well understood. To address this problem, we conducted a detailed in vitro and in silico analysis of the enhancing effect of primer tailing on 2 well-established foot-and-mouth disease virus (FMDV) RT-qPCR assays using an FMDV reference panel. Tailing of the panFMDV-5UTR primers mainly affected the shape of the amplification curves. Modelling of the raw fluorescence data suggested a reduction of the amplification efficiency due to the accumulation of inhibitors. In depth analysis of PCR products indeed revealed the rapid accumulation of forward-primer derived artefacts. More importantly, tailing of the forward primer delayed artefacts formation and concomitantly restored the sigmoidal shape of the amplification curves. Our analysis also showed that primer tailing can alter utilisation patterns of degenerate primers and increase the number of primer variants that are able to participate in the reaction. The impact of tailed primers was less pronounced in the panFMDV-3D assay with only 5 out of 50 isolates showing a clear shift in Cq values. Sequence analysis of the target region of these 5 isolates revealed several mutations in the inter-primer region that extend an existing hairpin structure immediately downstream of the forward primer binding site. Stabilisation of the forward primer with either a tail sequence or cationic spermine units restored the sensitivity of the assay, which suggests that the enhancing effect in the panFMDV-3D assay is due to a more efficient extension of the forward primer. ur results show that primer tailing can alter amplification through various mechanisms that are determined by both the assay and target region. These findings expand our understanding of primer tailing and should enable a more targeted and efficient use of tailed primers. PMID:27723800

  5. Assessing Risks of Mine Tailing Dam Failures

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  6. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments.

    PubMed

    Zhang, Xin; Zhu, Yongguan; Zhang, Yuebin; Liu, Yunxia; Liu, Shaochun; Guo, Jiawen; Li, Rudan; Wu, Songlin; Chen, Baodong

    2014-05-01

    A pot experiment was conducted to investigate the feasibility of growing energy sugarcane (Saccharum spp.) in three different metal mine tailings (Cu, Sn and Pb/Zn tailings) amended with uncontaminated soil at different mixing ratios. The results indicated that sugarcane was highly tolerant to tailing environments. Amendments of 20% soil to Sn tailings and 30% soil to Cu tailings could increase the biomass of cane-stem for use as the raw material for bioethanol production. Heavy metals were mostly retained in roots, which indicated that sugarcane was useful for the stabilization of the tailings. Bagasse and juice, as the most valuable parts to produce bioethanol, only accounted for 0.6%-3% and 0.6%-7% of the total metal content. Our study supported the potential use of sugarcane for tailing phytostabilization and bioenergy production. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  8. Afterbody/nozzle pressure distributions of a twin-tail twin-engine fighter with axisymmetric nozzles at Mach numbers from 0.6 to 1.2

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1995-01-01

    Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.

  9. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  10. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.

    PubMed

    Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P

    2018-07-15

    The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.

  11. Structure and function of the undulating membrane in spermatozoan propulsion in the toad Bufo marinus

    PubMed Central

    1980-01-01

    Accessory fibers in most sperm surround the axoneme so that their function in propulsion is difficult to assess. In the sperm of the toad Bufo marinus, an accessory fiber is displaced from the axoneme, being connected to it by the thin undulating membrane in such a way that the movement of axoneme and accessory fiber can be viewed independently. The axoneme is highly convoluted in whole mounts, and the axial fiber is straight. Cinemicrographic analysis shows that it is the longer, flexuous fiber, the presumed axoneme, that move actively. The accessory fiber follows it passively with a lower amplitude of movement. The accessory fiber does not move independent of the axoneme, even after demembranation and reactivation of the sperm. On the basis of anatomical relations in the neck region, it appears that the accessory fibers of amphibians are analogous to the dense fibers of mammalian sperm. SDS polyacrylamide gel electrophoresis of demembranated toad sperm tails reveals two principal proteins in addition to the tubulins, the former probably arising from the accessory fibers and the matrix of the undulating membrane. The function of displacing an accessory fiber into an undulating membrane may be to provide stiffness for the tail without incurring an energy deficit large enough to require a long middle piece. A long middle piece is not present in toad sperm, in contrast to those sperm that have accessory fibers around the axoneme. However, the toad sperm suffers a reduction in speed of about one- third, compared with the speed expected for a sperm without an undulating membrane. PMID:6771299

  12. Quantifying tidal stream disruption in a simulated Milky Way

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg

    2017-09-01

    Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.

  13. GEOMETRY AND CHARACTERISTICS OF THE HELIOSHEATH REVEALED IN THE FIRST FIVE YEARS OF INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Schwadron, N. A.

    2016-07-20

    We investigate and interpret the geometry and characteristics of the inner heliosheath (IHS) plasma and their impact on the heliotail structure as observed in energetic neutral atom (ENA) maps acquired during the first 5 yr of Interstellar Boundary Explorer ( IBEX ) observations. In particular, IBEX observations of the heliotail reveal distinct, localized emission features (lobes) that provide a rich set of information about the properties and evolution of the heliosheath plasma downstream of the termination shock (TS). We analyze the geometry of the heliotail lobes and find that the plane intersecting the port and starboard heliotail lobe centers ismore » ∼6° from the solar equatorial plane, and the plane intersecting the north and south heliotail lobe centers is ∼90° from the solar equatorial plane, both indicating strong correlation with the fast–slow solar wind asymmetry, and thus reflecting the structure of the IHS flow around the Sun. We also analyze the key parameters and processes that form and shape the port and starboard lobes, which are distinctly different from the north and south lobes. By comparing IBEX ENA observations with results from a simplistic flow model of the heliosphere and a multicomponent description for pickup ions (PUIs) in the IHS, we find that the port and starboard lobe formation is driven by a thin IHS, large nose–tail asymmetry of the distance to the TS (and consequently, a large nose–tail asymmetry of the relative abundance of PUIs at the TS) and the energy-dependent removal of PUIs by charge exchange in the IHS.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model,more » in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.« less

  15. Structure and functions of simple membrane-water interfaces. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1994-01-01

    The structure and functions of the earliest ancestors of contemporary cells are focal points in studies of the origin of life. Probably the first cell-like structures were vesicles - closed, spheroidal structures with aqueous medium trapped inside. The membranous walls of vesicles were most likely bilayers composed of simple amphiphilic material available on early earth. The membrane studied was composed of glycerol 1-monooleate (GMO). Glycerol forms the polar head group and the oily tail contains 18 carbon atoms. All head groups have been found to be located in two narrow regions at the interfaces with water. The membrane interior, formed by the hydrophobic tails, is quite fluid with chain disorder increasing towards the center of the bilayer. These results are in agreement with x-ray and neutron scattering data from related bilayers. The width of the membrane is not constant, but fluctuates in time and space. Occasional thinning defects in the membrane, observed during the course of the simulations, may have a significant influence on rates of passive transport of small molecules across membranes. It has been found that water penetrates the head group region but not the oily interior of the membrane. Water molecules near the interface are oriented by dipoles of the head groups. The resulting electrostatic potential across the interface, determined in our simulations, has been found to be markedly larger than across the water-oil interface. This quantity has been implicated as the source of selectivity, with respect to the sign of the charge, as an ion approaches the interface and during transport of hydrophobic ions across membranes.

  16. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  17. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    NASA Technical Reports Server (NTRS)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  18. Breeding biology and nest-site selection of red-tailed hawks in an altered desert grassland

    USGS Publications Warehouse

    Hobbs, R.J.; DeStefano, S.; Halvorson, W.L.

    2006-01-01

    Red-tailed Hawks (Buteo jamaicensis) have expanded their range as trees have invaded formerly-open grasslands. Desert grasslands of southern Arizona have been invaded by mesquite trees (Prosopis velutina) since Anglo-American settlement and now support a large population of Red-tailed Hawks. We studied a population of Red-tailed Hawks in an altered desert grassland in southern Arizona. Our objectives were to determine what environmental characteristics influence Red-tailed Hawk habitat selection in mesquite-invaded desert grasslands and to evaluate the habitat quality of these grasslands for Red-tailed Hawks based on nesting density, nest success, and productivity. Red-tailed Hawks had 86% (95% C.I. = 73-99) nest success and 1.82 young per breeding pair (95% C.I. = 1.41-2.23). Nesting density was 0.15 (95% CI = 0.08-0.21) breeding pairs/km2 and the mean nearest-neighbor distance was 1.95 km (95% C.I. = 1.74-2.16). Red-tailed Hawks selected nest-sites with taller nest-trees and greater tree height and cover than were available at random. Mesquite trees in desert grasslands provide abundant potential nesting structures for Red-tailed Hawks. ?? 2006 The Raptor Research Foundation, Inc.

  19. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Loverde, Sharon M.

    2017-08-01

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  20. Pig carcass tail lesions: the influence of record keeping through an advisory service and the relationship with farm performance parameters.

    PubMed

    van Staaveren, N; Teixeira, D L; Hanlon, A; Boyle, L A

    2017-01-01

    Tail lesions are important pig welfare indicators that could be recorded during meat inspection as they are more visible on the carcass than on the live animal. Tail biting is associated with reduced performance in the bitten pig, but it is not clear whether problems with tail biting are reflected in general farm performance figures. Farm advisory services aim to improve farm productivity which could be associated with improvements in pig welfare. Record keeping forms an integral part of such advisory services. The aim of this study was to examine the influence of record keeping in the Teagasc eProfit Monitor (ePM herds) on the prevalence of tail lesion severity scores in Irish slaughter pigs. In addition, we investigated associations between the prevalence of tail lesion scores and production parameters at farm level in ePM herds. Pigs were observed after scalding/dehairing and tail lesion score (0 to 4), sex and farm identification were recorded. Tail lesion scores were collapsed into none/mild lesions (score ⩽1), moderate lesions (score 2) and severe lesions (score ⩾3). The effect of record keeping (ePM herd) on the different tail lesion outcomes was analysed at batch level using the events/trials structure in generalized linear mixed models (PROC GLIMMIX). Spearman's rank correlations were calculated between average tail lesion score of a batch and production parameters. A total of 13 133 pigs were assessed from 73 batches coming from 61 farms. In all, 23 farms were identified as ePM herds. The average prevalence of moderate tail lesions was 26.8% and of severe tail lesions was 3.4% in a batch. Batches coming from ePM herds had a lower prevalence of moderate tail lesions than non-ePM herds (P<0.001). Average tail lesion score was negatively associated with age (P<0.05) and weight (P<0.05) at sale/transfer of weaners, and tended to be positively associated with the number of finishing days (P=0.06). In addition, the prevalence of severe tail lesions was negatively associated with average daily gain in weaners (P<0.05) and tended to do so with average daily gain in finishers (P=0.08). This study provides the first indication that record keeping through an advisory service may help to lower the risk of tail biting, which is associated with improved farm performance.

  1. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    PubMed

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A potential role for bat tail membranes in flight control.

    PubMed

    Gardiner, James D; Dimitriadis, Grigorios; Codd, Jonathan R; Nudds, Robert L

    2011-03-30

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control.

  3. A Potential Role for Bat Tail Membranes in Flight Control

    PubMed Central

    Gardiner, James D.; Dimitriadis, Grigorios; Codd, Jonathan R.; Nudds, Robert L.

    2011-01-01

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control. PMID:21479137

  4. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    USGS Publications Warehouse

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  5. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Kurochkina, Lidia P.

    2009-07-22

    The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of themore » tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.« less

  6. Tail regeneration affects the digestive performance of a Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Sagonas, Kostas; Karambotsi, Niki; Bletsa, Aristoula; Reppa, Aikaterini; Pafilis, Panayiotis; Valakos, Efstratios D.

    2017-04-01

    In caudal autotomy, lizards shed their tail to escape from an attacking predator. Since the tail serves multiple functions, caudal regeneration is of pivotal importance. However, it is a demanding procedure that requires substantial energy and nutrients. Therefore, lizards have to increase energy income to fuel the extraordinary requirements of the regenerating tail. We presumed that autotomized lizards would adjust their digestion to acquire this additional energy. To clarify the effects of tail regeneration on digestion, we compared the digestive performance before autotomy, during regeneration, and after its completion. Tail regeneration indeed increased gut passage time but did not affect digestive performance in a uniform pattern: though protein income was maximized, lipid and sugar acquisition remained stable. This divergence in proteins may be attributed to their particular role in tail reconstruction, as they are the main building blocks for tissue formation.

  7. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology

    PubMed Central

    Mendez, Monica O.; Maier, Raina M.

    2008-01-01

    Objective Unreclaimed mine tailings sites are a worldwide problem, with thousands of unvegetated, exposed tailings piles presenting a source of contamination for nearby communities. Tailings disposal sites in arid and semiarid environments are especially subject to eolian dispersion and water erosion. Phytostabilization, the use of plants for in situ stabilization of tailings and metal contaminants, is a feasible alternative to costly remediation practices. In this review we emphasize considerations for phytostabilization of mine tailings in arid and semiarid environments, as well as issues impeding its long-term success. Data sources We reviewed literature addressing mine closures and revegetation of mine tailings, along with publications evaluating plant ecology, microbial ecology, and soil properties of mine tailings. Data extraction Data were extracted from peer-reviewed articles and books identified in Web of Science and Agricola databases, and publications available through the U.S. Department of Agriculture, U.S. Environmental Protection Agency, and the United Nations Environment Programme. Data synthesis Harsh climatic conditions in arid and semiarid environments along with the innate properties of mine tailings require specific considerations. Plants suitable for phytostabilization must be native, be drought-, salt-, and metal-tolerant, and should limit shoot metal accumulation. Factors for evaluating metal accumulation and toxicity issues are presented. Also reviewed are aspects of implementing phytostabilization, including plant growth stage, amendments, irrigation, and evaluation. Conclusions Phytostabilization of mine tailings is a promising remedial technology but requires further research to identify factors affecting its long-term success by expanding knowledge of suitable plant species and mine tailings chemistry in ongoing field trials. PMID:18335091

  8. Flapping Tail Membrane in Bats Produces Potentially Important Thrust during Horizontal Takeoffs and Very Slow Flight

    PubMed Central

    Adams, Rick A.; Snode, Emily R.; Shaw, Jason B.

    2012-01-01

    Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m s−1) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378

  9. The Effects of Horizontal-Tail Location and Wing Modifications on the High-Speed Stability and Control Characteristics of a 01.17-Scale Model of the McDonnell XF2H-1 Airplane (TED No, NACA DE336)

    NASA Technical Reports Server (NTRS)

    Emerson, Horace F.; Axelson, John A.

    1949-01-01

    An additional series of high-speed wind-tunnel tests of a modified 0.17-scale model of the McDonnell XF2H-1 airplane was conducted to evaluate the effects of a reduction in the thickness-to-chord ratios of the tail planes, the displacement of the horizontal tail relative to the vertical tail, and the extension of the trailing edge of the wing. Two tail-intersection fairings designed to improve the flow at the tail were also tested. The pitching-moment characteristics of the model were improved slightly by the use of the thinner tail sections. Rearward or rearward and downward displacements of the horizontal tail increased the critical Mach number at the tail intersection from 0.725 to a maximum of 0.80, but caused an excessive change in pitching-moment coefficient at the higher Mach numbers. Extending the trailing edge of the wing did not improve the static longitudinal-stability characteristics, but increased the pitching-down tendency between 0.725 and 0.825 Mach numbers prior to the pitching-up tendency. The extended wing did, however, increase the Mach numbers at which these tendencies occurred. The increase in the Mach numbers of divergence and the tuft studies indicate a probable increase in the buffet limit of the prototype airplane. No perceptible improvement of flow at the tail intersection was observed with the two fairings tested on the forward tail configuration.

  10. Scar-free wound healing and regeneration following tail loss in the leopard gecko, Eublepharis macularius.

    PubMed

    Delorme, Stephanie Lynn; Lungu, Ilinca Mihaela; Vickaryous, Matthew Kenneth

    2012-10-01

    Many lizards are able to undergo scar-free wound healing and regeneration following loss of the tail. In most instances, lizard tail loss is facilitated by autotomy, an evolved mechanism that permits the tail to be self-detached at pre-existing fracture planes. However, it has also been reported that the tail can regenerate following surgical amputation outside the fracture plane. In this study, we used the leopard gecko, Eublepharis macularius, to investigate and compare wound healing and regeneration following autotomy at a fracture plane and amputation outside the fracture plane. Both forms of tail loss undergo a nearly identical sequence of events leading to scar-free wound healing and regeneration. Early wound healing is characterized by transient myofibroblasts and the formation of a highly proliferative wound epithelium immunoreactive for the wound keratin marker WE6. The new tail forms from what is commonly referred to as a blastema, a mass of proliferating mesenchymal-like cells. Blastema cells express the protease matrix metalloproteinase-9. Apoptosis (demonstrated by activated caspase 3 immunostaining) is largely restricted to isolated cells of the original and regenerating tail tissues, although cell death also occurs within dermal structures at the original-regenerated tissue interface and among clusters of newly formed myocytes. Furthermore, the autotomized tail is unique in demonstrating apoptosis among cells adjacent to the fracture planes. Unlike mammals, transforming growth factor-β3 is not involved in wound healing. We demonstrate that scar-free wound healing and regeneration are intrinsic properties of the tail, unrelated to the location or mode of tail detachment. Copyright © 2012 Wiley Periodicals, Inc.

  11. 14 CFR 23.497 - Supplementary conditions for tail wheels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...

  12. 14 CFR 23.497 - Supplementary conditions for tail wheels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...

  13. 14 CFR 23.481 - Tail down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail down landing conditions. 23.481 Section 23.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Ground Loads § 23.481 Tail down landing conditions. (a) For a tail down landing, the airplane is assumed...

  14. 77 FR 75185 - Endangered and Threatened Wildlife and Plants; Enhancement of Survival Permit Application; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...) overlaps with suitable habitat supporting black-tailed, white-tailed, and Gunnison's prairie-dog (their... acres of habitat occupied by black-tailed prairie dogs (Cynomys ludovicianus) or (b) 3,000 acres occupied by white-tailed prairie dogs (Cynomys leucurus) or Gunnison's prairie dogs (Cynomys gunnisoni...

  15. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  16. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    NASA Technical Reports Server (NTRS)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  17. A nonsingular model of the open magnetosphere

    NASA Technical Reports Server (NTRS)

    Toffoletto, F. R.; Hill, T. W.

    1993-01-01

    We present a modified version of the Toffoletto and Hill (1989) open magnetosphere model that incorporates a tail-like interconection field with a discontinuity 10 represent the slow-mode expansion fan that defines the high-latitude tail magnetopause. (The interconnection field is defined as the perturbation on an initially closed magnetosphere model to make it open.) The expansion fan controls the open field line region in the tail, and the intersection of the fan with the tail current sheet is, by design, the x line. The new interconnection field allows greater control of the tail field structure; in particular, it enables us to eliminate the nightside mapping singularity that occurs in previous models when the interplanetary magnetic field is nonsouthward. Also, in contrast to earlier models, the far tail x line extends farther downstream on the flanks than in the center of the tail, consistent with observations.

  18. Velocity field measurements in tailings dam failure experiments using a combined PIV-PTV approach

    USDA-ARS?s Scientific Manuscript database

    Tailings dams are built to impound mining waste, also called tailings, which consists of a mixture of fine-sized sediments and water contaminated with some hazardous chemicals used for extracting the ore by leaching. Non-Newtonian flow of sediment-water mixture resulting from a failure of tailings d...

  19. 76 FR 30648 - Freshwater Crawfish Tail Meat From the People's Republic of China: Amended Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Meat From the People's Republic of China: Amended Final Results of Antidumping Duty Administrative... remand of the 2005-2006 administrative review of freshwater crawfish tail meat (``crawfish tail meat... antidumping duty administrative review of crawfish tail meat from the PRC covering the period September 1...

  20. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  1. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  2. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  3. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  4. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  5. Initial speed of knots in the plasma tail of C/2013 R1(Lovejoy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Masafumi; Furusho, Reiko; Terai, Tsuyoshi

    We report short-time variations in the plasma tail of C/2013 R1(Lovejoy). A series of short (2–3 minutes) exposure images with the 8.2 m Subaru telescope shows faint details of filaments and their motions over a 24 minute observing duration. We identified rapid movements of two knots in the plasma tail near the nucleus (∼3×10{sup 5} km). Their speeds are 20 and 25 km s{sup −1} along the tail and 3.8 and 2.2 km s{sup −1} across it, respectively. These measurements set a constraint on an acceleration model of plasma tail and knots as they set the initial speed just aftermore » their formation. We also found a rapid narrowing of the tail. After correcting the motion along the tail, the narrowing speed is estimated to be ∼8 km s{sup −1}. These rapid motions suggest the need for high time-resolution studies of comet plasma tails with a large telescope.« less

  6. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation.

    PubMed

    Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi

    2016-06-01

    Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. © 2016 Federation of European Biochemical Societies.

  7. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  8. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    PubMed

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As V -ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As V -ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.

    PubMed

    Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R

    2013-10-01

    The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.

  10. Experimental trim drag values and flow-field measurements for a wide-body transport model with conventional and supercritical wings

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1982-01-01

    The purpose of this study was to determine if advanced supercritical wings incur higher trim drag values at cruise conditions than current wide body technology wings. Relative trim drag increments were measured in an experimental wind tunnel investigation conducted in the Langley 8 Foot Transonic Pressure Tunnel. The tests utilized a high aspect ratio supercritical wing and a wide body aircraft wing, in conjunction with five different horizontal tail configurations, mounted on a representative wide body fuselage. The three low tail and two T-tail configurations were designed to measure the effects of horizontal tail size, location, and camber on the trim drag increments for the two wings. Longitudinal force and moment data were taken at a Mach number of 0.82 and design cruise lift coefficients for the wide body and supercritical wings of 0.45 and 0.55, respectively. The data indicate that the supercritical wing does not have significantly higher trim drag than the wide body wing. A reduction in tail size, combined with relaxed static stability, produced trim drag reductions for both wings. The cambered tails had higher trim drag increments than the symmetrical tails for both wings, and the T-tail configurations had lower trim drag increments than the low tail configurations.

  11. Adaptive Suction and Blowing for Twin-Tail Buffet Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Yang, Zhi

    1999-01-01

    Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.

  12. Effect of Configuration Pitching Motion on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1998-01-01

    The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.

  13. Proteomic Analysis Reveals the Contribution of TGFβ/Smad4 Signaling Pathway to Cell Differentiation During Planarian Tail Regeneration.

    PubMed

    Chen, Xiaoguang; Xu, Cunshuan

    2017-06-01

    After planarian tail is cut off, posterior end of the remaining fragment will regenerate a new tail within about 1 week. However, many details of this process remain unclear up to date. For this reason, we performed the dynamic proteomic analysis of the regenerating tail fragments at 6, 12, 24, 72, 120, and 168 h post-amputation (hpa). Using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-TOF/MS analysis, a total of 1088 peptides were identified as significantly changed between tail-cutting groups and 0-h group, 482 of which have identifiable protein names. Of these 482 proteins, there were 111 originating from the Turbellaria. Protein functional categorization showed that these 111 proteins are mainly related to differentiation and development, transcription and translation, cell signal transduction, and cell proliferation. The screening of key protein considered the transcription factor Smad4 as important protein for planarian tail regeneration. Cell signaling pathway analysis, combined with proteomic profiling of regenerating tail fragment, showed that TGFβ/Smad4 pathway was activated during planarian tail regeneration. Based on a comprehensive analysis of 2-DE MALDI-TOF-TOF/MS and bioinformatics analyses, it could be concluded that TGFβ/Smad4 pathway perhaps plays an important role in tail regeneration via promoting cell differentiation.

  14. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings.

    PubMed

    Chen, Lin-Xing; Li, Jin-Tian; Chen, Ya-Ting; Huang, Li-Nan; Hua, Zheng-Shuang; Hu, Min; Shu, Wen-Sheng

    2013-09-01

    In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured oxidized tailings (T6). Geochemical results showed that the six tailings (from T1 to T6) likely represented sequential stages of the acidification process of the mine tailings. 16S rRNA pyrosequencing revealed a contrasting microbial composition between the six tailings: Proteobacteria-related sequences dominated T1-T3 with relative abundance ranging from 56 to 93%, whereas Ferroplasma-related sequences dominated T4-T6 with relative abundance ranging from 28 to 58%. Furthermore, metagenomic analysis of the microbial communities of T2 and T6 indicated that the genes encoding key enzymes for microbial carbon fixation, nitrogen fixation and sulfur oxidation in T2 were largely from Thiobacillus and Acidithiobacillus, Methylococcus capsulatus, and Thiobacillus denitrificans respectively; while those in T6 were mostly identified in Acidithiobacillus and Leptospirillum, Acidithiobacillus and Leptospirillum, and Acidithiobacillus respectively. The microbial communities in T2 and T6 harboured more genes suggesting diverse metabolic capacities for sulfur oxidation/heavy metal detoxification and tolerating low pH respectively. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  16. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    PubMed

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Radon emanation from backfilled mill tailings in underground uranium mine.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Transformation of a Virgo Cluster dwarf irregular galaxy by ram pressure stripping: IC3418 and its fireballs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Jeffrey D. P.; Geha, Marla; Jáchym, Pavel

    We present optical imaging and spectroscopy and H I imaging of the Virgo Cluster galaxy IC 3418, which is likely a 'smoking gun' example of the transformation of a dwarf irregular into a dwarf elliptical galaxy by ram pressure stripping. IC 3418 has a spectacular 17 kpc length UV-bright tail comprised of knots, head-tail, and linear stellar features. The only Hα emission arises from a few H II regions in the tail, the brightest of which are at the heads of head-tail UV sources whose tails point toward the galaxy ('fireballs'). Several of the elongated tail sources have Hα peaksmore » outwardly offset by ∼80-150 pc from the UV peaks, suggesting that gas clumps continue to accelerate through ram pressure, leaving behind streams of newly formed stars which have decoupled from the gas. Absorption line strengths, measured from Keck DEIMOS spectra, together with UV colors, show star formation stopped 300 ± 100 Myr ago in the main body, and a strong starburst occurred prior to quenching. While neither Hα nor H I emission are detected in the main body of the galaxy, we have detected 4 × 10{sup 7} M {sub ☉} of H I from the tail with the Very Large Array. The velocities of tail H II regions, measured from Keck LRIS spectra, extend only a small fraction of the way to the cluster velocity, suggesting that star formation does not happen in more distant parts of the tail. Stars in the outer tail have velocities exceeding the escape speed, but some in the inner tail should fall back into the galaxy, forming halo streams.« less

  19. Heavy Tail Behavior of Rainfall Extremes across Germany

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  20. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators-Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1997-01-01

    Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.

  1. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations.

    PubMed

    Korolev, Nikolay; Yu, Hang; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2014-10-01

    The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics. © 2014 Wiley Periodicals, Inc.

  2. Small scale turbidity currents in a tectonically active submarine graben, the Gulf of Corinth (Greece): their significance in dispersing mine tailings and their relevance to basin filling

    NASA Astrophysics Data System (ADS)

    Papatheodorou, G.; Stefatos, A.; Christodoulou, D.; Ferentinos, G.

    2003-04-01

    The Gulf of Corinth is an intra-plate active graben within the Aegean microplate, which is characterized by high frequency occurrence of gravitative mass movements. A detailed marine survey in Antikyra bay, on the northern margin of the graben, was carried out (i) to study the bathymetry and morphology of the seafloor and (ii) to examine the distribution and dispersion of bauxite “red-mud” tailings and the formation of present-day fine grained, thin bedded turbidites. The examination of high resolution seismic profiles has shown that the northern flank of the gulf of Corinth consists of the shelf, slope and basin floor. The shelf has an average width of 10 km and dips very gently at a gradient less than 1.2o to a depth of 300m. The slope extends from the 300m to the 700m isobath with a gradient ranging from 5o to 7.5o. The basin floor deeper than the 700m isobath is flat with a gradient less than 0.1o. The shelf break and upper slope are affected by mass-movements. The seafloor on slope is incised by numerous channels trending in a NNE-SSW direction. The floor of the plain is covered by ponded turbidites. The analysis of cores based on (i) the texture and the structure of the individual layers of the surficial sedimentary cover and (ii) the tracing of bauxite red-mud tailing which have been discharged since 1970 on the upper shelf of the Antikyra Bay, have shown that: (i) Shelf and upper slope sediments are transported to the basin floor by turbidity flows. (ii) The slope surface is affected by the erosional action of the turbidity currents. (iii) The basin floor is covered by thin-bedded fine-grained turbidites whose thickness ranges from 0.8-4 cm. (iv) The individual turbidite beds, which consist of silt and clay, are structureless and are separated by sharp, planar or erosional contacts. (v) Hemipelagic intercalations are absent. The number of turbiditic events recorded in the surveyed area is from 2-5 events over a period of 15 years or 122 to 333 events per 1000 years. Each turbidite is usually lobe shaped and has an areal coverage from 4 to 12 km2. The turbidites overlap and cover a total area of 48 km2. The total thickness of the turbidites deposited during this period was between 5 and 12 cm which indicate sedimentation rates from 320 to 800 cm per 1000 years. The turbidites form a sedimentary body over the surveyed area whose volume is conservatively estimated at 35 x 10-5 km3. The high sedimentation rates and the high frequency of turbiditic events suggest that they play an important role in the filling of seismically active basins and that their volumetric contribution to basin infill is comparable to that of megaturbidites.

  3. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.

    PubMed

    Cross, Adam T; Lambers, Hans

    2017-12-31

    Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the mining industry, and successful restoration on alkaline tailings likely depends upon careful management of substrate chemical conditions by targeted amendments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells.

    PubMed

    Jørgensen, Astrid S; Adogamhe, Pontian E; Laufer, Julia M; Legler, Daniel F; Veldkamp, Christopher T; Rosenkilde, Mette M; Hjortø, Gertrud M

    2018-05-16

    CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19 CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19 CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21 CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19 CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21 tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21 CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21 CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21. ©2018 Society for Leukocyte Biology.

  5. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells.

    PubMed

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J; Wahl, James K; Johnson, Keith R; Mehta, Parmender P

    2015-02-20

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.

    PubMed

    Liu, Yunjia; Huang, Longbin

    2017-01-15

    Reprocessing magnetite-rich copper (Cu) tailings prompted a concern about arsenic (As) risks in seepage water and revegetated plants at Ernest Henry Cu Mine (EHM) in North Queensland, Australia, due to the closely coupled relationship between iron (Fe) minerals and As mobility. The magnetite removal alone significantly decreased the content of crystalline Fe minerals and the maximum arsenate (As(V)) sorption capacity of the resultant tailings. A glasshouse experiment with native grass Red Flinders (Iseilema Vaginiflorum) was conducted with the reprocessed (low magnetite (LM)) and original (high magnetite (HM)) tailings, which were amended with 5% sugarcane residue (SR) as a basal treatment in combination with 0, 1 and 5% pine-biochar (BC). The organic matter treatments and plant growth stimulated the formation of secondary Fe minerals. The amount of extractable amorphous Fe in the amended and revegetated HM tailings was significantly higher than those in the LM. Arsenic forms in the specifically sorbed and the sorbed by amorphous Fe oxides were significantly increased by the SR amendment in the LM tailings, but which were decreased in the HM, compared to the unamended tailings. Soluble As levels in the porewater of the LM under revegetation were significantly higher (300-1150 μg As L -1 ) than those (up to 45-90 μg As L -1 ) in HM tailings in the same treatment, which led to the higher As concentrations in the plants grown in the LM tailings. In particular, root As concentration (62-146 mg kg -1 ) in the LM tailings was almost a magnitude higher than those (8-17 mg kg -1 ) in the HM. The present results confirmed the initial expectation that the recovery of magnetite from the Cu tailings significantly elevated the risk of As solubility in the tailings by decreasing As sorption capacity and increasing soluble As levels. Thus, it would be beneficial to retain high contents of magnetite in the top layer (e.g., root zone) of the Cu tailings for managing As risk and revegetation in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study on the Association between Tail Lesion Score, Cold Carcass Weight, and Viscera Condemnations in Slaughter Pigs

    PubMed Central

    Teixeira, Dayane Lemos; Harley, Sarah; Hanlon, Alison; O’Connell, Niamh Elizabeth; More, Simon John; Manzanilla, Edgar Garcia; Boyle, Laura Ann

    2016-01-01

    The aim of this study was to assess the relationship between tail lesions, cold carcass weight, and viscera condemnations in an Irish abattoir. The following data were collected at the evisceration point from every third pig slaughtered over 7 days: farm identification, sex, tail lesion score, viscera inspection outcome, and cold carcass weight. Tail lesions were scored according to a 5-point scale. Disease lesions responsible for lung (pleurisy, pneumonia, and abscess), heart (pericarditis), and liver (ascariasis) condemnation were recorded based on the decision of the veterinary inspector (VI). Data on 3,143 pigs from 61 batches were available. The relationship between disease lesions, tail lesion score, and cold carcass weight was studied at individual carcass level, while the relationship between disease lesions and tail lesion score was studied at both carcass and batch level. Tail lesions (score ≥1) were found in 72% of the study population, with 2.3% affected by severe tail lesions (scores ≥3). Pleurisy (13.7%) followed by pneumonia (10.4%) showed the highest prevalence, whereas the prevalence of ascariasis showed the greatest variation between batches (0–75%). Tail lesion score, pleurisy, pleuropneumonia, and pericarditis were associated with reductions in carcass cold weight (P ≤ 0.05) ranging from 3 to 6.6 kg. Tail lesion score was associated with condemnations for pleurisy, pneumonia, and pleuropneumonia (P ≤ 0.05) at a batch level. VI shift was associated with condemnations for pneumonia, pleuropneumonia, and pericarditis (P ≤ 0.05) at a carcass level and with pneumonia at a batch level. Sex was not associated with viscera condemnations but males were more likely to be affected by tail lesions. The relationship between overall tail lesion score and the lung diseases at batch level supports the relationship between poor health and poor welfare of pigs on farms. The inclusion of tail lesion scores at post-mortem meat inspection should be considered as a health and welfare diagnostic tool. PMID:27014706

  8. Predicting arsenic concentrations in porewaters of buried uranium mill tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langmuir, D.; Mahoney, J.; MacDonald, A.

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buriedmore » for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4 C. Consistent with a kinetic model that describes the rate of breakdown of scorodite to form hydrous ferric oxide, the rate of release of dissolved arsenate to tailings porewaters from slake limed tailings: (1) is proportional to pH above pH 6--7; (2) decreases exponentially as the total molar Fe/As ratio of tailings raffinates is increased from 1/1 to greater than 5/1; and (3) is proportional to temperature with an average Arrhenius activation energy of 13.4 {+-} 4.2 kcal/mol. Study results suggest that if ferric sulfate and slaked lime are added in the tailings neutralization circuit to give a raffinate Fe/As molar ratio of at least 3--5 and a nominal (initial) pH of 8 (final pH of 7--8), arsenic and nickel concentrations of 2 mg/L or less, are probable in porewaters of individual tailings in the TMF for 50 to 10,000 yrs after tailings disposal. However, the tailings will be mixed in the TMF, which will contain about 35% tailings with Fe/As = 3.0, and 65% tailings with Fe/As = 5.0--7.7. Thus, it seems likely that average arsenic pore water concentrations in the TMF may not exceed 1 mg/L.« less

  9. 75 FR 13497 - Freshwater Crawfish Tail Meat from the People's Republic of China: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration A-570-848 Freshwater Crawfish Tail Meat... administrative review of the antidumping duty order on freshwater crawfish tail meat (crawfish) from the People's... Crawfish Tail Meat From the People's Republic of China, 62 FR 48218 (September 15, 1997). On September 1...

  10. Solar wind control of magnetospheric pressure (CDAW 6)

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1985-01-01

    The CDAW 6 data base is used to compare solar wind and magnetospheric pressures. The flaring angle of the tail magnetopause is determined by assuming that the component of solar wind pressure normal to the tail boundary is equal to the total pressure within the tail. Results indicate an increase in the tail flaring angle from 18 deg to 32 deg prior to the 1055 substorm onset and a decrease to 25 deg after the onset. This behavior supports the concept of tail energy storage before the substorm and subsequent release after the onset.

  11. A Tale of Two Tails: Not Just Skin Deep

    PubMed Central

    Dutta, Abhijit; Ghosh, Sudip Kumar; Mandal, Asok Kumar

    2015-01-01

    The dorsal cutaneous appendage or the so called human tail is a rare congenital anomaly protruding from the lumbo-sacro-coccygeal area. These caudal appendages are divided into true-tails and pseudo-tails. We report here two cases of congenital pseudo-tail with underlying spina bifida and lipo-meningocele. In this article we seek to emphasize that, as the skin and nervous systems are intimately linked by their similar ectodermal origin, a dorsal appendage may be regarded as a cutaneous marker of the underlying spinal dysraphism. PMID:26288414

  12. Experimental trim drag values for conventional and supercritical wings. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1981-01-01

    Supercritical wings were studied to determine whether they incur higher trim drag values at cruise conditions than wide body technology wings. Relative trim drag increments were measured in an experimental wind tunnel investigation. The tests utilized high aspect ratio supercritical wing and a wide body wing in conjunction with five different horizontal tail configurations, mounted on a representative wide body fuselage. The three low tail configurations and two T tail configurations were chosen to measure the effects on horizontal tail size, location, and camber on the trim drag increments for the two wings. The increase in performance (lift to drag ratio) for supercritical wing over the wide body wing was 11 percent for both the optimum low tail and T tail configurations.

  13. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  14. Polyadenylation state microarray (PASTA) analysis.

    PubMed

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  15. Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes

    PubMed Central

    den Otter, W. K.; Shkulipa, S. A.

    2007-01-01

    The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168

  16. Indirect Solar Wind Measurements Using Archival Cometary Tail Observations

    NASA Astrophysics Data System (ADS)

    Zolotova, Nadezhda; Sizonenko, Yuriy; Vokhmyanin, Mikhail; Veselovsky, Igor

    2018-05-01

    This paper addresses the problem of the solar wind behaviour during the Maunder minimum. Records on plasma tails of comets can shed light on the physical parameters of the solar wind in the past. We analyse descriptions and drawings of comets between the eleventh and eighteenth century. To distinguish between dust and plasma tails, we address their colour, shape, and orientation. Based on the calculations made by F.A. Bredikhin, we found that cometary tails deviate from the antisolar direction on average by more than 10°, which is typical for dust tails. We also examined the catalogues of Hevelius and Lubieniecki. The first indication of a plasma tail was revealed only for the great comet C/1769 P1.

  17. Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.

    2001-01-01

    The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.

  18. Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Three-Dimensional Particle-In-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-04-01

    Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.

  19. Estrogen receptor β-selective phytoestrogenic formulation prevents physical and neurological changes in a preclinical model of human menopause.

    PubMed

    Zhao, Liqin; Mao, Zisu; Schneider, Lon S; Brinton, Roberta D

    2011-10-01

    As an alternative to estrogen therapy, the efficacy of an estrogen receptor β-selective phytoestrogenic (phyto-β-SERM) formulation to regulate climacteric symptoms and decline in brain responses associated with ovarian hormone loss in menopause was assessed. A phyto-β-SERM formulation-containing diet was compared with a commercial soy extract diet and a phytoestrogen-free base/control diet in an ovariectomized (OVX) mouse model of human menopause. Two treatment studies were conducted: (1) a 2-month study assessed the effects of experimental diets on tail skin temperature as a model of menopausal hot flashes, and (2) a 9-month study assessed the long-term impact of the diets on overall health, hair thinning/loss, spatial working memory, and associated protein expression in the hippocampus. The phyto-β-SERM diet prevented OVX-induced menopause-like changes including the rise in skin temperature, hair thinning/loss, deficit in spatial memory function, and reversed OVX-induced decline in the expression of hippocampal proteins involved in neural plasticity and β-amyloid degradation/clearance. The soy extract diet had no effect or exacerbated OVX-induced changes. Overall, the phyto-β-SERM diet induced physical and neurological responses comparable with ovary-intact mice, suggesting the therapeutic potential of the phyto-β-SERM formulation for the prevention/alleviation of climacteric symptoms and decline in brain responses induced by ovarian hormone loss, which provides the basis for further work in postmenopausal women.

  20. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manisha; Jamieson, Cara; Lui, Christina

    β-catenin is a key mediator of Wnt signaling and its deregulated nuclear accumulation can drive cancer progression. While the central armadillo (Arm) repeats of β-catenin stimulate nuclear entry, the N- and C-terminal “tail” sequences are thought to regulate turnover and transactivation. We show here that the N- and C-tails are also potent transport sequences. The unstructured tails of β-catenin, when individually fused to a GFP-reporter, could enter and exit the nucleus rapidly in live cells. Proximity ligation assays and pull-down assays identified a weak interaction between the tail sequences and the FG-repeats of nucleoporins, consistent with a possible direct translocationmore » of β-catenin through the nuclear pore complex. Extensive alanine mutagenesis of the tail sequences revealed that nuclear translocation of β-catenin was dependent on specific uniformly distributed patches of hydrophobic residues, whereas the mutagenesis of acidic amino acids had no effect. Moreover, the mutation of hydrophobic patches within the N-tail and C-tail of full length β-catenin reduced nuclear transport rate and diminished its ability to activate transcription. We propose that the tail sequences can contribute to β-catenin transport and suggest a possible similar role for hydrophobic unstructured regions in other proteins. - Highlights: • We show that the N- and C-tails of beta-catenin possess nuclear transport activity. • Nuclear transport of the N- or C-tails requires specific hydrophobic amino acids. • Mutagenesis of the N-terminus diminished nuclear entry of full-length beta-catenin. • We propose the N-tail contributes to beta-catenin nuclear entry and transactivation.« less

  3. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites.

    PubMed

    Cha, Youngsu; Verotti, Matteo; Walcott, Horace; Peterson, Sean D; Porfiri, Maurizio

    2013-09-01

    In this paper, we study energy harvesting from the beating of a biomimetic fish tail using ionic polymer-metal composites. The design of the biomimetic tail is based on carangiform swimmers and is specifically inspired by the morphology of the heterocercal tail of thresher sharks. The tail is constituted of a soft silicone matrix molded in the form of the heterocercal tail and reinforced by a steel beam of rectangular cross section. We propose a modeling framework for the underwater vibration of the biomimetic tail, wherein the tail is assimilated to a cantilever beam with rectangular cross section and heterogeneous physical properties. We focus on base excitation in the form of a superimposed rotation about a fixed axis and we consider the regime of moderately large-amplitude vibrations. In this context, the effect of the encompassing fluid is described through a hydrodynamic function, which accounts for inertial, viscous and convective phenomena. The model is validated through experiments in which the base excitation is systematically varied and the motion of selected points on the biomimetic tail tracked in time. The feasibility of harvesting energy from an ionic polymer-metal composite attached to the vibrating structure is experimentally and theoretically assessed. The response of the transducer is described using a black-box model, where the voltage output is controlled by the rate of change of the mean curvature. Experiments are performed to elucidate the impact of the shunting resistance, the frequency of the base excitation and the placement of the ionic polymer-metal composite on energy harvesting from the considered biomimetic tail.

  4. Plant/soil concentration ratios of SSWRa for contrasting sites around an active U mine-mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, S.A.; Whicker, F.W.

    Concentrations of 226Ra were determined in native vegetation and underlying substrate (soil and tailings) at various sites around a conventional open-pit, acid leach U production operation in Wyoming. Plant/soil concentration ratios (CRs) for 226Ra were estimated for various sites, including weathered tailings; a tailings impoundment shoreline; downwind from exposed tailings; a mine overburden reclamation area; and several background locations. Radium-226 concentrations for vegetation and substrate and CR values from the perturbed sites were elevated above background. The highest vegetation concentration (1.3 Bq g-1) was found in a grass which had invaded exposed, weathered tailings. Levels of 226Ra in soil andmore » vegetation and CR values decreased with distance from the tailings impoundment edge. CR values varied significantly among sites, but few differences were found between plant species groups. The observed CR values ranged from 0.07 at the background and reclamation areas to 0.4 downwind from the tailings area. Average CR values for plants growing on exposed tailings and within one meter from the impoundment edge were 0.15 and 0.3, respectively. CR values of 226Ra for plants on tailings substrates were comparatively low in contrast to other radionuclides in the U chain. We speculate that in the case of sulfuric acid leached tailings-derived material, 226Ra is sequestered as sulfate, which is highly insoluble relative to the sulfates of the other elements (e.g., U and Th) resulting in reduced availability for plant uptake.« less

  5. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  6. Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi

    1998-01-01

    Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.

  7. Summary of the engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblownmore » tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing.« less

  8. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard.

    PubMed

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  9. Lateral Stability Characteristics of a 1/8.33-Scale Powered Model of the Republic XF-12 Airplane

    NASA Technical Reports Server (NTRS)

    Pepper, Edward; Foster, Gerald V.

    1947-01-01

    The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.

  10. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    PubMed

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  11. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats.

    PubMed

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-08-25

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.

  12. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  13. Crystal Structure of Bacteriophage SPP1 Distal Tail Protein (gp19.1)

    PubMed Central

    Veesler, David; Robin, Gautier; Lichière, Julie; Auzat, Isabelle; Tavares, Paulo; Bron, Patrick; Campanacci, Valérie; Cambillau, Christian

    2010-01-01

    Siphophage SPP1 infects the Gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting Gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpVN and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices. PMID:20843802

  14. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

    PubMed

    Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav

    2013-11-01

    Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Markušovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation-equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 μg/L Cu, <0.1-0.3 μg/L Hg, 5.0-16 μg/L As, and 5.0-43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.

  15. Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.

    PubMed

    Brooks, Lucy; Melsom, Fredrik; Glette, Tormod

    2015-07-15

    Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  17. Single molecule FRET observation of kinesin-1’s head-tail interaction on microtubule

    PubMed Central

    Aoki, Takahiro; Tomishige, Michio; Ariga, Takayuki

    2013-01-01

    Kinesin-1 (conventional kinesin) is a molecular motor that transports various cargo such as endoplasmic reticulum and mitochondria in cells. Its two head domains walk along microtubule by hydrolyzing ATP, while the tail domains at the end of the long stalk bind to the cargo. When a kinesin is not carrying cargo, its motility and ATPase activity is inhibited by direct interactions between the tail and head. However, the mechanism of this tail regulation is not well understood. Here, we apply single molecule fluorescence resonance energy transfer (smFRET) to observe this interaction in stalk-truncated kinesin. We found that kinesin with two tails forms a folding conformation and dissociates from microtubules, whereas kinesin with one tail remains bound to the micro-tubule and is immobile even in the presence of ATP. We further investigated the head-tail interaction as well as head-head coordination on the microtubule at various nucleotide conditions. From these results, we propose a two-step inhibition model for kinesin motility. PMID:27493553

  18. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  19. The Lambert Way to Gaussianize Heavy-Tailed Data with the Inverse of Tukey's h Transformation as a Special Case

    PubMed Central

    Goerg, Georg M.

    2015-01-01

    I present a parametric, bijective transformation to generate heavy tail versions of arbitrary random variables. The tail behavior of this heavy tail Lambert  W × F X random variable depends on a tail parameter δ ≥ 0: for δ = 0, Y ≡ X, for δ > 0 Y has heavier tails than X. For X being Gaussian it reduces to Tukey's h distribution. The Lambert W function provides an explicit inverse transformation, which can thus remove heavy tails from observed data. It also provides closed-form expressions for the cumulative distribution (cdf) and probability density function (pdf). As a special case, these yield analytic expression for Tukey's h pdf and cdf. Parameters can be estimated by maximum likelihood and applications to S&P 500 log-returns demonstrate the usefulness of the presented methodology. The R package LambertW implements most of the introduced methodology and is publicly available on CRAN. PMID:26380372

  20. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailingmore » equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.« less

  1. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  2. [Assessment of anti-tremorogenic drugs--nicotine-induced tail-tremor model].

    PubMed

    Suemaru, K; Kawasaki, H; Gomita, Y

    1997-06-01

    The repeated administration of nicotine at small doses, which do not produce whole body tremor or convulsion, causes tremor only in the tail (tail-tremor) of rats. The tremor is accompanied by locomotor hyperactivity without rigidity and immobility of the whole body, suggesting that the nicotine-induced tail-tremor model is useful for studying the mechanism underlying tremor associated with movement. The tail-tremor induced by nicotine was suppressed by mecamylamine, a nicotinic antagonist, but not by atropine or scopolamine, muscalinic antagonists. Moreover, the tail-tremor was suppressed by the beta-blockers propranolol and pindolol, as well as the benzodiazepines diazepam and clonazepam. Tremor at rest is observed only in Parkinson's disease, which is improved with anti-muscalinic drugs. Essential tremor is one of the typical tremors connected with movement (postural and kinetic tremor) and is improved with beta-blocker. These findings and results suggest that nicotine-induced tail-tremor is useful for the study of essential tremor in animal models.

  3. Modeling of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1999-01-01

    Aerodynamic equations for the longitudinal motion of an aircraft with a horizontal tail were developed. In this development emphasis was given on obtaining model structure suitable for model identification from experimental data. The resulting aerodynamic models included unsteady effects in the form of linear indicial functions. These functions represented responses in the lift on the wing and tail alone, and interference between those two lifting surfaces. The effect of the wing on the tail was formulated for two different expressions concerning the downwash angle at the tail. The first expression used the Cowley-Glauert approximation known-as "lag-in-downwash," the second took into account growth of the wing circulation and delay in the development of the lift on the tail. Both approaches were demonstrated in two examples using the geometry of a fighter aircraft and a large transport. It was shown that the differences in the two downwash formulations would increase for an aircraft with long tail arm performing low-speed, rapid maneuvers.

  4. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

    PubMed Central

    Morrison, Emma A; Bowerman, Samuel; Sylvers, Kelli L

    2018-01-01

    Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome. PMID:29648537

  5. Comparison of Vee-Type and Conventional Tail Surfaces in Combination with Fuselage and Wing in the Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    Greenberg, Harry

    1941-01-01

    The pitching and the yawing moments of a vee-type and a conventional type of tail surface were measured. The tests were made in the presence of a fuselage and a wing-fuselage combination in such a way as to determine the moments contributed by the tail surfaces. The results showed that the vee-type tail tested, with a dihedral angle of 35.3 deg, was about 71 percent as effective in pitch as the conventional tail and had a yawing-moment to pitching-moment ratio of 0.3. The conventional tail, the panels of which were all congruent to those of the vee-type tail, had a yawing-moment to pitching-moment ratio of 0.48. These ratios are in fair agreement with values calculated by methods shown in this and previous reports. The values of the measured moments were reduced from 15 to 25 percent of the calculated value by fuselage interference.

  6. Thin-film microextraction coupled to LC-ESI-MS/MS for determination of quaternary ammonium compounds in water samples.

    PubMed

    Boyacı, Ezel; Sparham, Chris; Pawliszyn, Janusz

    2014-01-01

    The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection of analytes were obtained in reverse-phase mode in 8 min using a triple quadrupole mass spectrometer. Hydrophilic lipophilic balance particle-coated blades were found to be the most suitable among the different coatings tested in terms of recoveries and carryover on the blades. For desorption solvents, 70/30, v/v (A/B) with 0.1 % formic acid (where A is 10 mM ammonium acetate in acetonitrile/water (95/5 , v/v) and B is 0.1 %  (v/v) formic acid in isopropyl alcohol) was shown to be the most efficient solvent for the desorption of the analytes from the SPME sorbent. The SPME method was optimised in terms of extraction, pH, and preconditioning, as well as extraction and desorption times. Optimum conditions were 45 min of extraction time and 15 min of desorption time, all with agitation. The extraction was found to be optimum in a range of pH 6.0 to 8.0, which is consistent with the natural pH of water samples. Wide linear dynamic ranges with the developed method were obtained for each compound, enabling the application of the method for a wide range of concentrations. The developed method was validated according to the Food and Drug Administration criteria. The proposed method is the first SPME-based approach describing the applicability of the high-throughput thin-film SPME in a 96-well system for analysis of such challenging compounds.

  7. The reports of thick discs' deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light

    NASA Astrophysics Data System (ADS)

    Comerón, S.; Salo, H.; Knapen, J. H.

    2018-02-01

    Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up-bending breaks in face-on galaxies are caused by the superposition of a thin and a thick disc where the scale-length of the latter is the largest. Data of Figs. B.1 and C.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A5

  8. Study on the Influence of Elevation of Tailing Dam on Stability

    NASA Astrophysics Data System (ADS)

    Wan, Shuai; Wang, Kun; Kong, Songtao; Zhao, Runan; Lan, Ying; Zhang, Run

    2017-12-01

    This paper takes Yunnan as the object of a tailing, by theoretical analysis and numerical calculation method of the effect of seismic load effect of elevation on the stability of the tailing, to analyse the stability of two point driven safety factor and liquefaction area. The Bishop method is adopted to simplify the calculation of dynamic safety factor and liquefaction area analysis using comparison method of shear stress to analyse liquefaction, so we obtained the influence of elevation on the stability of the tailing. Under the earthquake, with the elevation increased, the safety coefficient of dam body decreases, shallow tailing are susceptible to liquefy. Liquefaction area mainly concentrated in the bank below the water surface, to improve the scientific basis for the design and safety management of the tailing.

  9. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  10. Wing-Fuselage Interference, Tail Buffeting, and Air Flow About the Tail of a Low-Wing Monoplane

    NASA Technical Reports Server (NTRS)

    White, James A; Hood, Manley J

    1935-01-01

    This report presents the results of wind tunnel tests on a Mcdonnell Douglas airplane to determine the wing-fuselage interference of a low-wing monoplane. The tests included a study of tail buffeting and the air flow in the region of the tail. The airplane was tested with and without the propeller slipstream, both in the original condition and with several devices designed to reduce or eliminate tail buffeting. The devices used were wing-fuselage fillets, a NACA cowling, reflexed trailing edge of the wing, and stub auxiliary airfoils.

  11. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    PubMed

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. 2010 Elsevier Ltd. All rights reserved.

  12. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  13. Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis.

    PubMed

    Horn, Eberhard R

    2006-08-01

    During space flights, tadpoles of the clawed toad Xenopus laevis occasionally develop upward bended tails (tail lordosis). The tail lordosis disappears after re-entry to 1g within a couple of days. The mechanisms responsible for the induction of the tail lordosis are unknown; physical conditions such as weight de-loading or physiological factors such as decreased vestibular activity in microgravity might contribute. Microgravity (microg) also exerts significant effects on the roll-induced vestibuloocular reflex (rVOR). The rVOR was used to clarify whether tail lordosis is caused by physiological factors, by correlating the occurrence of microg-induced tail lordosis with the extent of microg-induced rVOR modifications. Post-flight recordings from three space flights (D-2 Spacelab mission, STS-55 in 1993; Shuttle-to-Mir mission SMM-06, STS-84 in 1997; French Soyuz taxi flight Andromède to ISS in 2001) were analyzed in these experiments. At onset of microgravity, tadpoles were at stages 25-28, 33-36 or 45. Parameters tested were rVOR gain (ratio between the angular eye movement and the lateral 30 degrees roll) and rVOR amplitude (maximal angular postural change of the eyes during a 360 degrees lateral roll). A ratio of 22-84% of tadpoles developed lordotic tails, depending on the space flight. The overall observation was that the rVOR of tadpoles with normal tails was either not affected by microgravity, or it was enhanced. In contrast, the rVOR of lordotic animals always revealed a depression. In particular, during post-flight days 1-11, tadpoles with lordotic tails from all three groups (25-28, 33-36 and 45) showed a lower rVOR gain and amplitude than the 1g-controls. The rVOR gain and amplitude of tadpoles from the groups 25-28 and 33-36 that developed normal tails was not affected by microgravity while the rVOR of microg-tadpoles from the stage-45 group with normal tails revealed a significant rVOR augmentation. (1) the vestibular system of tadpoles with lordotic tails is developmentally retarded by microgravity; (2) after a critical status of vestibular maturation obtained during the appearance of first swimming, microgravity activates an adaptation mechanism that causes a sensitization of the vestibular system.

  14. X-15 ship #3 on lakebed

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The X-15 ship #3 (56-6672) is seen here on the lakebed at the Edwards Air Force Base, Edwards, California. Ship #3 made 65 flights during the program, attaining a top speed of Mach 5.65 and a maximum altitude of 354,200 feet. Only 10 of the 12 X-15 pilots flew Ship #3, and only eight of them earned their astronaut wings during the program. Robert White, Joseph Walker, Robert Rushworth, John 'Jack' McKay, Joseph Engle, William 'Pete' Knight, William Dana, and Michael Adams all earned their astronaut wings in Ship #3. Neil Armstrong and Milton Thompson also flew Ship #3. In fact, Armstrong piloted Ship #3 on its first flight, on 20 December 1961. On 15 November 1967, Ship #3 was launched over Delamar Lake, Nevada with Maj. Michael J. Adams at the controls. The vehicle soon reached a speed of Mach 5.2, and a peak altitude of 266,000 feet. During the climb, an electrical disturbance degraded the aircraft's controllability. Ship #3 began a slow drift in heading, which soon became a spin. Adams radioed that the X-15 'seems squirrelly,' and then said 'I'm in a spin.' Through some combination of pilot technique and basic aerodynamic stability, Adams recovered from the spin, and entered an inverted Mach 4.7 dive. As the X-15 plummeted into the increasingly thicker atmosphere, the Honeywell adaptive flight control system caused the vehicle to begin oscillating. As the pitching motion increased, aerodynamic forces finally broke the aircraft into several major pieces. Adams was killed when the forward fuselage impacted the desert. This was the only fatal accident during the entire X-15 program. The X-15 was a rocket powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph or Mach 6.7 (set by Ship #2) and 354,200 ft (set by Ship #3) in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini,and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, serial number 56-6672, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from Ship #3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.

  15. X-15 #3 in flight (USAF Photo)

    NASA Technical Reports Server (NTRS)

    1960-01-01

    This U.S. Air Force photo shows the X-15 ship #3 (56-6672) in flight over the desert in the 1960s. Ship #3 made 65 flights during the program, attaining a top speed of Mach 5.65 and a maximum altitude of 354,200 feet. Only 10 of the 12 X-15 pilots flew Ship #3, and only eight of them earned their astronaut wings during the program. Robert White, Joseph Walker, Robert Rushworth, John 'Jack' McKay, Joseph Engle, William 'Pete' Knight, William Dana, and Michael Adams all earned their astronaut wings in Ship #3. Neil Armstrong and Milton Thompson also flew Ship #3. In fact, Armstrong piloted Ship #3 on its first flight, on 20 December 1961. On 15 November 1967, Ship #3 was launched over Delamar Lake, Nevada with Maj. Michael J. Adams at the controls. The vehicle soon reached a speed of Mach 5.2, and a peak altitude of 266,000 feet. During the climb, an electrical disturbance degraded the aircraft's controllability. Ship #3 began a slow drift in heading, which soon became a spin. Adams radioed that the X-15 'seems squirrelly' and then said 'I'm in a spin.' Through some combination of pilot technique and basic aerodynamic stability, Adams recovered from the spin and entered an inverted Mach 4.7 dive. As the X-15 plummeted into the increasingly thicker atmosphere, the Honeywell adaptive flight control system caused the vehicle to begin oscillating. As the pitching motion increased, aerodynamic forces finally broke the aircraft into several major pieces. Adams was killed when the forward fuselage impacted the desert. This was the only fatal accident during the entire X-15 program. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph or Mach 6.7 (set by Ship #2) and 354,200 ft (set by Ship #3) in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, serial number 56-6672, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from Ship #3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.

  16. The Tail-Elicited Tail Withdrawal Reflex of "Aplysia" Is Mediated Centrally at Tail Sensory-Motor Synapses and Exhibits Sensitization across Multiple Temporal Domains

    ERIC Educational Resources Information Center

    Philips, Gary T.; Sherff, Carolyn M.; Menges, Steven A.; Carew, Thomas J.

    2011-01-01

    The defensive withdrawal reflexes of "Aplysia californica" have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have…

  17. Dual Approach To Superquantile Estimation And Applications To Density Fitting

    DTIC Science & Technology

    2016-06-01

    incorporate additional constraints to improve the fidelity of density estimates in tail regions. We limit our investigation to data with heavy tails, where...samples of various heavy -tailed distributions. 14. SUBJECT TERMS probability density estimation, epi-splines, optimization, risk quantification...limit our investigation to data with heavy tails, where risk quantification is typically the most difficult. Demonstrations are provided in the form of

  18. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.

    PubMed

    Reid, T; VanMensel, D; Droppo, I G; Weisener, C G

    2016-09-01

    Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75% more biostabilization than the same abiotic tailings. Further, greater microbial diversity in the aged pond could be a contributing factor to the overall increase in stability of this material over the fresh tailings source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prehensile and non-prehensile tails among syngnathid fishes: what's the difference?

    PubMed

    Neutens, Céline; de Dobbelaer, Bart; Claes, Peter; Adriaens, Dominique

    2017-02-01

    All syngnathid fishes are characterized by a tail with a vertebral column that is surrounded by dermal Plates - four per vertebra. Seahorses and pipehorses have prehensile tails, a unique characteristic among teleosts that allows them to grasp and hold onto substrates. Pipefishes, in contrast, possess a more rigid tail. Previous research (Neutens et al., 2014) showed a wide range of variation within the skeletal morphology of different members in the syngnathid family. The goal of this study is to explore whether the diversity in the three-dimensional (3D) shape of different tail types reflects grasping performance, and to what degree grasping tails occupy a different and more constrained diversity. For this, a 3D morphometrical analysis based on surfaces was performed. Four different analyses were performed on the tail skeleton of nine species exhibiting different levels of tail grasping capacities (four pipehorse, three seahorse, one pipefish and one seadragon species) to examine the intra-individual variation across the anteroposterior and dorso-ventral axis. In the two interspecific analyses, all vertebrae and all dermal plates were mutually compared. Overall, intra-individual variation was larger in species with a prehensile tail. The analysis on the vertebrae showed differences in the length and orientation of the hemal spine as well as the inclination angle between the anterior and posterior surface of the vertebral body. This was observed at an intra-individual level across the anteroposterior axis in prehensile species and at an inter-individual level between prehensile and non-prehensile species. Across the anteroposterior axis in prehensile tails, the overall shape of the plates changes from rectangular at the anterior end to square at the posterior end. Across the dorso-ventral axis, the ventral dermal plates carry a significantly longer caudal spine than the dorsal ones in all prehensile-tailed species. It can therefore be concluded that prehensile tails exhibit a larger anteroposterior and dorso-ventral shape variation than non-prehensile ones. However, the hypothesis that there is a more constrained shape variation among prehensile species compared to non-prehensile ones had to be rejected. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Impact of commercial garden growth substratum and NPK-fertilizer on copper fractionation in a copper-mine tailing

    NASA Astrophysics Data System (ADS)

    Charles, A.; Karam, A.; Jaouich, A.

    2009-04-01

    Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.

Top