Sample records for tailings pond water

  1. Metal removal from oil sands tailings pond water by indigenous micro-alga.

    PubMed

    Mahdavi, Hamed; Ulrich, Ania C; Liu, Yang

    2012-09-01

    This paper reports the removal of ten target metals of environmental concern ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo, and Ba) from oil sands tailings pond water. The organism responsible for removal was found to be an indigenous green micro-alga identified as Parachlorella kessleri by sequencing of the 23S rRNA gene. P. kessleri grew in tailings pond water samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.), and enriched with low (0.24 mM NO(3)(-) and 0.016 mM PO(4)(-3)) and high (1.98 mM NO(3)(-) and 0.20mM PO(4)(-3)) concentrations of nutrient supplements (the most realistic scenario). The removal of (60)Ni, (65)Cu, As, (88)Sr, (95)Mo, and Ba from Syncrude tailings pond water was significantly enhanced by high concentrations of nitrogen and phosphorus, whereas the high nutrient concentrations adversely affected the removal of Co, (60)Ni, As, (88)Sr, and Mo in samples of Albian tailings pond water. Based on ANOVA two-factor analysis, higher nutrient concentration does not always result in higher metal removal, and TPW source must also be considered. Copyright © 2012. Published by Elsevier Ltd.

  2. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    PubMed

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  3. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    PubMed Central

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  4. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    PubMed

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  5. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.

    PubMed

    Reid, T; VanMensel, D; Droppo, I G; Weisener, C G

    2016-09-01

    Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75

  6. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tailings Pond Characterization And Designing Through Geophysical Surveys In Dipping Sedimentary Formations

    NASA Astrophysics Data System (ADS)

    Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.

    2009-12-01

    two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.

  8. Critical study of current situation of Vrănicioara tailing pond on Cavnicului Valley, risks and consequences

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2017-05-01

    In northern Romania, there are numerous tailing ponds, resulting from mining activities that present significant environmental risks. Some of them, including Vrănicioara tailing pond, were the subject of technical projects for ecological rehabilitation. Vrănicioara pond is located on the right side of Cavnic Valley, downstream Cavnic town, about 4 kilometers far. It has about 500 m length and is located parallel to the road linking Baia Sprie and Cavnic localities. Chemical and physical stability of the tailing pond before rehabilitation interest the research, analysis and conclusions were published in several scientific meetings. In addition, close to the pond at less than 100 m, an open pit has developed, exploiting andesite by mining blast, increasing the risk of physical stability by continuous exposure to vibration. This activity currently continues, advancing towards the tailing pond body. The critical study addresses the current state of Vrănicioara Tailing Pond, analysis of some rehabilitation works done incorrectly, analysis of chemical stability that was not a priority during rehabilitation. Research intention is heading to water analysis confirming the existence of acid drainage that was not stopped or at least reduced. The scientific approach is based on the Technical Standards for Waste Deposits, in force in Romania, providing the rules to ensure physical and chemical stability.

  9. Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Cortada, Unai; Martínez, Julián; Hidalgo, Mª Carmen; Rey, Javier

    2017-04-01

    Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment Abandoned tailings ponds constitute a severe environmental problem in old Pb mining districts due to their high contents in metallic and semi-metallic elements. In most of the cases, there is a lack of information about the construction procedures and the previous environmental situation, which hinders the environmental risk evaluation. In these cases, Ground Penetrating Radar (GPR) could be an interesting technique to analyze the internal structure of the tailings ponds and detect vulnerable zones for leaching processes. Consequently, the GPR could help in the abandoned tailings ponds environmental risk assessment. In this study, a GPR 3D campaign was carried out with a 250 MHz frequency antenna in order to evaluate the efficiency of this technique in both the analysis of internal structures and the environmental risk assessment. Subsequently, 2D and 3D models were undertaken to represent graphically the obtained results. The studied tailings pond is located in the Guadiel river bank, a water course draining the mining district of Linares, Spain. The dam is 150 m length and 80 m width. The GPR 3D was done in a selected area near the central part of the pond. The analyzed grid was 25x50 m and the spacing of the slides was 1 m. The study revealed that the contact between the tailings and the substratum is located at 2.5 m. No intermediate layer was found, which means that the tailings pond was heightened on the fluvial terrace without any insulation system. Inside the first meter of the pond, a cross stratification was identified. The orientation of those laminations changed with the depth, which means that the stockpiling was performed from the different sides of the tailings pond. Furthermore, the direction of these stratifications is slightly concentric to the middle of the dam which could be associated with a central drainage system

  10. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  11. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta

    PubMed Central

    Saidi-Mehrabad, Alireza; He, Zhiguo; Tamas, Ivica; Sharp, Christine E; Brady, Allyson L; Rochman, Fauziah F; Bodrossy, Levente; Abell, Guy CJ; Penner, Tara; Dong, Xiaoli; Sensen, Christoph W; Dunfield, Peter F

    2013-01-01

    We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4–8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km2) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml−1 water d−1. Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via 13CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy 13C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase. PMID:23254511

  12. The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).

    PubMed

    Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L

    2017-10-01

    Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments

  13. Provenance and environmental risk of windblown materials from mine tailing ponds, Murcia, Spain.

    PubMed

    Khademi, Hossein; Abbaspour, Ali; Martínez-Martínez, Silvia; Gabarrón, María; Shahrokh, Vajihe; Faz, Angel; Acosta, Jose A

    2018-05-31

    Atmospheric particulates play a vital role in the transport of potentially toxic metals, being an important exposure pathways of people to toxic elements, which is faster and can occur in a much larger scale than water, soil and biota transport. Windblown materials in abandoned tailing ponds have not been well examined. The objectives of this investigation were: to study the major physical and geochemical properties of the materials eroded by wind inside the tailing ponds, and to understand the relative contribution of different sources to its heavy metals concentration. Study area is located in Cartagena-La Union mining district (SE Spain), where metallic mining of Fe, Pb and Zn has been developed for more than 2500 years. Wind-eroded particulates were monthly collected at 3 different heights (20, 50, and 80 cm) from the ground for a period of a full year using 4 dust collectors. Four tailing samples and 4 surface soil samples from the surrounding hills were also taken. Dust, soil, and tailing samples were examined for pH, particle size distribution, electrical conductivity, calcium carbonate content, Pb, Cu, Zn, Cd, Mn, Co, Ni, Ti and Zr concentrations. The results indicated that very coarse textured, slightly saline, and almost neutral wind-eroded deposits were generated with a very high temporal variability throughout the year. They also showed that the concentration of Cd, Mn, Pb and Zn, in the dust samples is extraordinarily high (18, 1254, 1831, and 5747 mg kg -1 respectively), whereas Co, Ni, and Cu had concentrations into the range of background concentrations found in the Earth's crust (3.8, 12, and 60 mg kg -1 respectively). Besides, the concentration of both categories of heavy metals in the dust samples was higher than that in tailing and less than that of the soils. The barren surfaces of tailing ponds and also the surface soils of the surrounding area seem to be the major contributors to the dust collected. Therefore, abandoned mines as

  14. 24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. 165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China.

    PubMed

    Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie

    2017-12-12

    The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10 -6 -10 -4 ). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.

  17. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China

    PubMed Central

    Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie

    2017-01-01

    The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond. PMID:29231884

  18. Initial Impacts of the Mount Polley Tailings Pond Breach on Adjacent Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Gantner, Nikolaus; Albers, Sam; Owens, Philip

    2015-04-01

    On August 4th 2014, the Mount Polley Tailings pond breach near Likely, B.C., released approximately 24 million cubic metres of tailings material into Polley Lake, Hazeltine Creek and Quesnel Lake. The discharge scoured and eroded a swath of soil and sediment delivering an unknown amount of metals and sediment into this tributary ecosystem of the Fraser River. Subsequent efforts by the mine operator to remediate by pumping tailings water from Polley Lake into Hazeltine Creek, which flows into Quesnel Lake, resulted in additional and continuous release of unknown volumes of contaminated water and sediments into the watershed. Heavy metals (e.g., selenium, copper, or mercury) reported as stored in the tailings pond entered the downstream aquatic environment and have been monitored in the water column of Quesnel Lake since August. These contaminants are likely particle-bound and thus subject to transport over long distances without appreciable degradation, resulting in the potential for chronic exposures and associated toxicological effects in exposed biota. While significant dilution is expected during aquatic transport, and the resulting concentrations in the water will likely be low, concentrations in exposed biota may become of concern over time. Metals such as mercury and selenium undergo bioaccumulation and biomagnification, once incorporated into the food chain/web. Thus, even small concentrations of such contaminants in water can lead to greater concentrations (~100 fold) in top predators. Over time, our predictions are that food web transfer will lead to an increase in concentrations from water (1-2 years)->invertebrates (1-2 yrs) ->fishes (2-5 yrs). Pacific salmon travel great distances in this watershed and may be exposed to contaminated water during their migrations. Resident species will be exposed to the contaminated waters and sediments in the study lakes year round. Little or no background/baseline data for metals in biota from Quesnel Lake exists

  19. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    PubMed

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  1. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    NASA Astrophysics Data System (ADS)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  2. 25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ON LEFT EDGE OF VIEW. THE SECONDARY THICKENER No. 7 IS OFF VIEW TO THE RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  3. Bioprocessing-Based Approach for Bitumen/Water/Fines Separation and Hydrocarbon Recovery from Oil Sands Tailings

    DOE PAGES

    Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; ...

    2016-05-04

    Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less

  4. Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area

    NASA Astrophysics Data System (ADS)

    Ma, B.; Chen, Y.; Li, X.; Wu, L.

    2018-04-01

    With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.

  5. Remediation strategy, capping construction and ongoing monitoring for the mill tailings pond, Ningyo-Toge uranium mine, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroshi Saito; Tomihiro Taki

    2013-07-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Yotsugi Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river and as the impact on its environment in case of earthquake is estimated significant, the highest priority has been put to it amongmore » mine-related facilities in the Mine. So far, basic concept has been examined and a great number of data has been acquired, and using the data, some remediation activities have already done, including capping construction for the upstream part of the Mill Tailings Pond. The capping is to reduce rainwater penetration to lower the burden of water treatment, and to reduce radon exhalation and dose rates. Only natural materials are used to alleviate the future maintenance. Data, including settlement amount and underground temperature is now being acquired and accumulated to verify the effectiveness of the capping, and used for the future remediation of the Downstream with revision of its specifications if necessary. (authors)« less

  6. Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond.

    PubMed

    Stasik, Sebastian; Wendt-Potthoff, Katrin

    2016-12-01

    Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH 4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH 4 emissions (∼5.37 million L d -1 ) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L -1  d -1 ) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO 2 by SRB and subsequent conversion to CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  8. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  9. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.

  10. Greening Solutions Applicable in the Tailing Ponds Tăusani and Bosneag from Moldova Nouă

    NASA Astrophysics Data System (ADS)

    Burlacu, I. F.; Deak, G.; Raischi, M. C.; Daescu, A.; Zamfir, S.; Uritescu, B.; Cirstinoiu, C.; Olteanu, M. V.

    2017-06-01

    This study aims to propose solutions for greening of the tailings ponds resulted from mining activities with transboundary impacts. As case study, are proposed for greening the Boşneag and Tăuşani tailing ponds because they pollute Moldova Nouă, Danube and towns on the Serbian side of the Danube with particles in suspension. We analyzed four scenarios of modeling dispersion of particles in suspension (copper and other heavy metals) from the Tăuşani and Boşneag tailing ponds in the theoretical background where pollution has cross-border nature and require studying the transport of pollutants over a long distance from the source and modeling dispersion of particles in suspension in the atmosphere, these were performed using TAPM model, able to simulate the aspects mentioned. After running the software for modeling the dispersion of particles, was revealed that the pollution generated from the pollution sources taked into consideration is very high and significantly affects quality of life on considerable areas both in Romania and Serbia, thus amplifying the need to implement greening solutions of the analyzed area. Following the results obtained are presented three alternatives solutions for greening the area studied, aiming at minimizing the impact on the environmental and population.

  11. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  12. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia).

    PubMed

    Demková, Lenka; Bobul'ská, Lenka; Árvay, Július; Jezný, Tomáš; Ducsay, Ladislav

    2017-01-02

    Three moss (Pleurozium spp., Polytrichum spp., and Rhytidiadelphus spp.) and two lichen (Hypogymnia physodes and Pseudevernia furfuracea) taxons covered in the bags were used to monitor air quality. Bags were exposed at the different distances from the tailing pond because of insufficient security and source of heavy metal pollution. Moss/lichen bags were exposed for six weeks at 0-, 50-, 100-, 150- and 200-m distances from Slovinky tailing pond, in the main wind direction (down the valley). Accumulation ability of heavy metals expressed by relative accumulation factor (RAF) increases in the order of Polytrichum spp.

  13. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  14. Sulfide tails management within the framework of sustainable development in mineral sand mines--the case study of Sierra Rutile Ltd.

    PubMed

    Kallon, Senesie B; Jabati, Ansu M; Samura, Alusine

    2011-01-01

    The study discussed here assessed Sierra Rutile Ltd.'s (SRLs) water-cover sulfide tails management method. Monthly and quarterly water samples from SRLs Sulfide Tails Pond (STP), Total Tails Pond (TTP), and the Titan Domestic Pond (TDP) were analyzed for 15 months. Results indicated acceptable quality for the STP. From Student's t-test analysis, it was found that the mean pH of the TTP was significantly lower than that of the TDP (p < .05). Results did not indicate pollution of the TDP by SRLs tailings management. The water-cover method significantly suppressed sulfide oxidation in the STP. Concerns to be addressed, however, include potential overtopping of the pond, water level fluctuations, and the need for periodic reinforcement of the tailings embankments. A dedicated environmental monitoring campaign that includes other proximate water bodies is suggested; this should inform timely mitigation of any environmental contamination and promote sound environmental and public health outcomes.

  15. Physico-chemical and microbiological characteristics of water for fish production using small ponds

    NASA Astrophysics Data System (ADS)

    Ntengwe, Felix W.; Edema, Mojisola O.

    The physical-chemical and biological characteristics of water in fish ponds were investigated with a view to optimise the conditions for fish productivity using small ponds. Five fish ponds were used in the study. The water samples were collected in each pond at a depth of 10-15 cm from the surface over a period of six months and analysed for pH, temperature, DO, alkalinity. The fish activity and growth rates were also assessed. The results showed that the ponds were slightly acidic to neutral (pH 6.69-7.66). The mean lowest and highest values of DO were 9.05 and 9.93 mg/L while the values for alkalinity were 67.86 and 90.57 mg/L respectively. The bacterial counts were in the order of 10 6 and the populations comprised Pseudomonas, Enterobacter, Salmonella, Staphylococcus, Bacillus, Azotobacter, Arthrobacter species and Escherichia coli. It was also observed that the fish activity increased as the temperature of the water varied from April to September as given by the activity ranges of 55-95, 40-80, 55-80, 70-95 and 55-95/m 2 for ponds P1, P2, P3, P4 and P5, respectively. The lowest values were in the months of April, May and June and highest values were in the months of July, August and September. The optimum conditions for increased fish productivity were found to be the warm temperatures (20 < t < 30 °C), adequate DO level (>4 mg/L) and appropriate pH (6 < pH < 9) and alkalinity (Alk) (80 < Alk < 200 mg/L). The correlations between characteristics were significant at 0.01 and 0.05 levels (2 tailed). Therefore, the fish productivity can be enhanced if the conditions in the ponds were maintained at optimum levels.

  16. Mercury Geochemistry of Gold Placer Tailings, Sediments, Bedrock, and Waters in the Lower Clear Creek Area, Shasta County, California - Report of Investigations, 2001-2003

    USGS Publications Warehouse

    Ashley, Roger P.; Rytuba, James J.

    2008-01-01

    flood-plain ponds, tailings in a dredge pond, and active stream sediment in a Clear Creek backwater have elevated levels of methylmercury. Stream waters in the area show low mercury levels during both summer and winter base-flow conditions. During winter high flows total mercury increases by about one order of magnitude; this additional mercury is associated with suspended particulate material. Methylmercury is low in stream waters. Ponds in various environments generally have higher total mercury levels in waters than Clear Creek under base-flow conditions and higher methylmercury levels in both sediments and waters. Ponds are probably the main source of bioavailable mercury in the lower Clear Creek area. Several saline springs occur in the area. The saline waters are enriched in lithium, boron, and mercury, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. Saline springs may locally contribute some mercury to pond and drainage waters.

  17. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  18. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Tomato plants are growing inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. The plant growth is being tested in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  19. Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1989-01-01

    Substantial carbonate deposits were observed on rectrices of Ruddy Ducks (Oxyura jamaicensis) collected during 1982-1984 on evaporation ponds in the San Joaquin Valley, California. Carbonate deposits were composed of about 75% aragonite and 25% calcite, both polymorphous forms of CaCO3. Significantly more carbonate deposits were observed on Ruddy Ducks as length of exposure to agricultural drain water increased, during the 1983-1984 field season when salt concentrations in the ponds were higher, and in certain evaporation-pond systems.

  20. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Tomato plants are growing under red and blue LED lights in a growth chamber inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. The plant growth is being tested in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  1. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Howard Levine, Ph.D., a research scientist at NASA's Kennedy Space Center in Florida, reviews the growth of several tomato plants in a laboratory in the Space Station Processing Facility. The tomato plants are growing in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  2. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Treesearch

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  3. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and

  4. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the

  5. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  6. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  7. Disentangling natural and anthropogenic influences on Patagonian pond water quality.

    PubMed

    Epele, Luis B; Manzo, Luz M; Grech, Marta G; Macchi, Pablo; Claverie, Alfredo Ñ; Lagomarsino, Leonardo; Miserendino, M Laura

    2018-02-01

    The water quality of wetlands is governed not only by natural variability in hydrology and other factors, but also by anthropogenic activities. Patagonia is a vast sparsely-populated in which ponds are a key component of rural and urban landscapes because they provide several ecosystem services such as habitat for wildlife and watering for livestock. Integrating field-based and geospatial data of 109 ponds sampled across the region, we identified spatial trends and assessed the effects of anthropogenic and natural factors in pond water quality. The studied ponds were generally shallow, well oxygenated, with maximum nutrient values reported in sites used for livestock breeding. TN:TP ratio values were lower than 14 in >90% of the ponds, indicating nitrogen limitation. Water conductivity decreased from de east to the west, meanwhile pH and dissolved oxygen varied associated with the latitude. To assess Patagonian ponds water status we recommend the measure of total suspended solids and total nitrogen in the water, and evaluate the mallín (wetland vegetation) coverage in a 100m radius from the pond, since those features were significantly influenced by livestock land use. To evaluate the relative importance of natural variability and anthropogenic influences as driving factors of water quality we performed three generalized linear models (GLM) that encompassed the hydrology, hydroperiod and biome (to represent natural influences), and land use (to represent anthropogenic influences) as fixed effects. Our results revealed that at the Patagonian scale, ponds water quality would be strongly dependent on natural gradients. We synthetized spatial patterns of Patagonian pond water quality, and disentangled natural and anthropic factors finding that the dominant environmental influence is rainfall gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Numerical modeling of cracking pattern's influence on the dynamic response of thickened tailings disposals: a periodic approach

    NASA Astrophysics Data System (ADS)

    Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian

    2018-01-01

    Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.

  9. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    PubMed

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  10. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These

  12. A survey of catfish pond water chemistry parameters for copper toxicity modelling

    USDA-ARS?s Scientific Manuscript database

    Water samples were collected from 20 catfish ponds in 2015 to obtain data useful in predicting copper toxicity and chemical behavior. Ponds were located in major catfish producing areas of west Alabama, east Arkansas, and Mississippi. Pond types included traditional levee ponds, split-ponds, water...

  13. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    PubMed

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Water-quality characteristics of selected public recreational lakes and ponds in Connecticut

    USGS Publications Warehouse

    Healy, D.F.; Kulp, K.P.

    1995-01-01

    Reconnaissance limnological and lakebed-sediment surveys were conducted in Connecticut during 1989-91 by the U.S. Geological Survey, in cooperation with the Connecticut Department of Environmental Protec- tion, to evaluate water-quality characteristics of selected public recreational lakes and ponds in the State. Limnological surveys were conducted on 49 lakes and ponds selected from a list of 105 publicly owned waterbodies that qualified for water- quality assessments under Section 314 of the Federal Clean Water Act. Lakebed-sediment surveys were conducted in 9 river impoundments and 1 riverine lake below industrial areas and 2 headwater lakes in relatively pristine areas. The limnological surveys consisted of two sampling events--during spring turnover and during the summer stratifi- cation. Each sampling event included depth profiles of water temperature, specific conductance, hydrogen-ion activity, and dissolved oxygen concen- trations; measurements of Secchi disc transparency; and the collection of samples for the analyses of alkalinity, chlorophyll, phosphorus, and nitrogen concentrations. Areal extent and population density of the dominant aquatic macrophytes were qualita- tively noted during the summer sampling event. These water-quality data were used to determine the trophic classification and acidification status of the 49 lakes. The trophic classification yielded the following results: 2 oligotrophic, 8 early mesotrophic, 13 mesotrophic, 5 late mesotrophic, 10 eutrophic, and 11 highly eutrophic lakes. In terms of acidification status, 7 lakes were classified as acid threatened and 42 as not threatened. A Wilcoxon two-tailed signed rank test was used to compare data for 13 lakes and ponds from the present survey with data from the 1973-75 or 1978-79 surveys conducted by the Connecticut Agricultural Experiment Station and Connecticut Department of Environmental Protection. The test showed no significant difference at the 90 percent confidence level for

  15. Continuous Hydrologic and Water Quality Monitoring of Vernal Ponds.

    PubMed

    Mina, Odette; Gall, Heather E; Chandler, Joseph W; Harper, Jeremy; Taylor, Malcolm

    2017-11-13

    Vernal ponds, also referred to as vernal pools, provide critical ecosystem services and habitat for a variety of threatened and endangered species. However, they are vulnerable parts of the landscapes that are often poorly understood and understudied. Land use and management practices, as well as climate change are thought to be a contribution to the global amphibian decline. However, more research is needed to understand the extent of these impacts. Here, we present methodology for characterizing a vernal pond's morphology and detail a monitoring station that can be used to collect water quantity and quality data over the duration of a vernal pond's hydroperiod. We provide methodology for how to conduct field surveys to characterize the morphology and develop stage-storage curves for a vernal pond. Additionally, we provide methodology for monitoring the water level, temperature, pH, oxidation-reduction potential, dissolved oxygen, and electrical conductivity of water in a vernal pond, as well as monitoring rainfall data. This information can be used to better quantify the ecosystem services that vernal ponds provide and the impacts of anthropogenic activities on their ability to provide these services.

  16. Waterfowl production on stock-watering ponds in the northern plains

    USGS Publications Warehouse

    Lokemoen, J.T.

    1973-01-01

    In a 5-year study of stock-watering ponds in western North Dakota, pond size was found to be the major factor influencing duck use. As pond size increased, total pair and brood use per pond increased. Pairs used ponds as small as 0.1 acre in size, but broods were seldom seen on ponds of less than 1.0 surface acre. Dam-type ponds larger than 1.0 surface acre comprised only 29% of all man-made ponds on the study area but received 65% of the pair use and 87% of the brood use. Utilization of fenced ponds by pairs and broods was not significantly different from utilization of unfenced ponds. Grazing rates of 2 to 3 acres per AUM and lower rates permitted the development of grassy shoreline cover preferred by pairs and brushy and emergent shorelines preferred by broods. Duck pairs were significantly more numerous on older ponds and ponds with grassy shorelines but less numerous on ponds that had heavy deposits of sediment or were isolated from other wetlands. Broods were significantly more numerous on ponds with brushy shorelines and emergent vegetation than on those without. Broods were less numerous on turbid and newly constructed ponds. The most suitable stock-watering units for maximum waterfowl production were dam-type ponds of 1.5 surface acres, or larger, built in gentle to rolling terrain away from major sources of siltation.

  17. Risk assessment and restoration possibilities of some abandoned mining ponds in Murcia Region, SE Spain

    NASA Astrophysics Data System (ADS)

    Faz, Angel; Acosta, Jose A.; Martinez-Martinez, Silvia; Carmona, Dora M.; Zornoza, Raul; Kabas, Sebla; Bech, Jaume

    2010-05-01

    In Murcia Region, SE Spain, there are 85 tailing ponds due to intensive mining activities that occurred during last century, especially in Sierra Minera de Cartagena-La Union. Although mining activity was abandoned several decades ago, those tailing ponds with high amounts of heavy metals still remain in the area. The ponds, due to their composition and location, may create environmental risks of geochemical pollution, negatively affecting soil, water, and plant, animal, and human populations, as well as infrastructures. The main objective of this research is to evaluate the restoration possibilities of two representative mining ponds in order to minimize the risk for human and ecosystems. To achieve this objective, two tailing ponds generated by mining activities were selected, El Lirio and El Gorguel. These ponds are representative of the rest of existent ponds in Sierra Minera de Cartagena-La Unión, with similar problems and characteristics. Several techniques and studies were applied to the tailing ponds for their characterization, including: geophysics, geotechnics, geochemical, geological, hydrological, and vegetation studies. In addition, effects of particulate size in the distribution of heavy metals will be used to assess the risk of dispersion of these metals in finest particles. Once the ponds were characterized, they were divided in several sectors in order to apply different amendments (pig slurry and marble waste) to reduce the risk of metal mobility and improve soil quality for a future phytostabilization. It is known that organic amendments promote soil development processes, microbial diversity, and finally, soil ecosystem restoration to a state of self-sustainability. By comparing the results before and after applications we will be able to evaluate the effect of the different amendments on soil quality and their effectively on risk reduction. Finally, plant metal-tolerant species are used to restore vegetation in the ponds, thereby decreasing

  18. Waterbird use of saltmarsh ponds created for open marsh water management

    USGS Publications Warehouse

    Erwin, R.M.; Hatfield, J.S.; Howe, M.A.; Klugman, S.K.

    1994-01-01

    Open Marsh Water Management (OMWM) as an alternative to pesticides for mosquito control in saltmarshes along the Atlantic Coast has created debate among biologists. We designed an experiment to determine waterbird (American black duck (Anas rubripes) and other waterfowl, wading birds, shorebirds, gulls, and terns) use (during daylight) of ponds created for mosquito control compared with use of pre-existing water bodies (i.e., natural tidal ponds, creeks, old ditches) and refuge impoundments. We also evaluated the influence of pond size and depth on waterbird use of wetlands. We documented bird use of different habitats for 1 year. The highest densities of waterfowl, in autumn, occurred in 0.030.06ha ponds (P lt 0.05) versus ponds either lt 0.02 ha or gt 0.08 ha; highest shorebird densities occurred in summer in ponds gt 0.10 ha (P lt 0.05). Pond depth affected shorebird and other waterfowl use in some seasons. Comparisons of mean number of birds using created (OMWM) ponds with mean number of birds using other water bodies revealed that most species showed no pattern (P gt 0.05) of disproportionate use versus availability. At high tidal levels, most species groups used OMWM ponds in the marsh more often (P lt 0.05) than other water bodies. Black ducks and other waterfowl used nearby refuge impoundments in higher densities than they did OMWM ponds, for nesting and during autumn-winter (all Ps lt 0.05). Creating small ( lt 0.1 ha) ponds for mosquito control does not enhance waterbird habitat, at least not where large impoundments are in close proximity. We recommend that in areas where OMWM practices seem appropriate, fewer large ( gt 0.10 ha) ponds be constructed with shallow ( lt 15 cm) basins and sloping sides.

  19. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  20. Hydrology, water quality, and water-supply potential of ponds at Hunter Army Airfield, Chatham County, Georgia, November 2008-July 2009

    USGS Publications Warehouse

    Clarke, John S.; Painter, Jaime A.

    2010-01-01

    The hydrology, water quality, and water-supply potential of four ponds constructed to capture stormwater runoff at Hunter Army Airfield, Chatham County, Georgia, were evaluated as potential sources of supplemental irrigation supply. The ponds are, Oglethorpe Lake, Halstrum Pond, Wilson Gate Pond, and golf course pond. During the dry season, when irrigation demand is highest, ponds maintain water levels primarily from groundwater seepage. The availability of water from ponds during dry periods is controlled by the permeability of surficial deposits, precipitation and evaporation, and the volume of water stored in the pond. Net groundwater seepage (Gnet) was estimated using a water-budget approach that used onsite and nearby climatic and hydrologic data collected during November-December 2008 including precipitation, evaporation, pond stage, and discharge. Gnet was estimated at three of the four sites?Oglethorpe Lake, Halstrum Pond, and Wilson Gate Pond?during November-December 2008. Pond storage volume in the three ponds ranged from 5.34 to 12.8 million gallons. During November-December 2008, cumulative Gnet ranged from -5.74 gallons per minute (gal/min), indicating a net loss in pond volume, to 19 gal/min, indicating a net gain in pond volume. During several periods of stage recovery, daily Gnet rates were higher than the 2-month cumulative amount, with the highest rates of 178 to 424 gal/min following major rainfall events during limited periods. These high rates may include some contribution from stormwater runoff; more typical recovery rates were from 23 to 223 gal/min. A conservative estimate of the volume of water available for irrigation supply from three of the ponds was provided by computing the rate of depletion of pond volume for a variety of withdrawal rates based on long-term average July precipitation and evaporation and the lowest estimated Gnet rate at each pond. Withdrawal rates of 1,000, 500, and 250 gal/min were applied during an 8-hour daily

  1. Can terraced pond wetland systems improve urban watershed water quality?

    NASA Astrophysics Data System (ADS)

    Li, S.; Ho, M.; Flanagan, N. E.; Richardson, C. J.

    2017-12-01

    Properly built constructed wetlands are a more economic and efficient way of wastewater treatment compared with traditional methods, although their mechanisms are far from completely understood. As part of the Stream and Wetland Assessment Management Park (SWAMP), which is aimed to improve the water quality of downstream and thereby enhance watershed ecosystem services, a terraced three-pond wetland system was created near Duke University in 2014. This project is expected to promote the retention and settling of pollutants and sediment before runoffs enter downstream flow. The goal of this study is to examine: (1) whether a terraced pond wetland system improves water quality, during both baseline (low flow) and storm events (high flow), which increases pollutant inputs; and (2) how this system functions to remove pollutants, namely what components of this system (plant, soil or water) increase or decrease the level of pollutants. By analyzing a dataset consisting of more than four-year monthly samplings from Pond 1 (first pond in the system) and Pond 3 (last pond in the system), we found that the pond system has reduced total suspended solids (TSS) but only when elevated inputs occur. Dissolved oxygen (DO) is closely related to temperature and macrophytes growth; whereas acidity (pH), total nitrogen (TN), and total phosphorus (TP) did not show retention in the early stages of the system development. This system reaches its optimum for reducing TSS at the second pond, but the third pond has important effects on DO, pH, TN and TP. A monitoring in 2017 shows this pond system significantly reduces TSS while increasing dissolved oxygen and neutralizing pH after a storm event; although greater variations incurred within the system as time progresses after storm, overall retention function remained valid. Retention of the pollutants is primarily accomplished by the settling process, which occurs in stilled waterbody of the ponds and by the filtration of macrophytes. We

  2. Suitability of ponds formed by strip mining in eastern Oklahoma for public water supply, aquatic life, waterfowl habitat, livestock watering, irrigation, and recreation

    USGS Publications Warehouse

    Parkhurst, Renee S.

    1994-01-01

    A study of coal ponds formed by strip mining in eastern Oklahoma included 25 ponds formed by strip mining from the Croweburg, McAlester, and Iron Post coal seams and 6 noncoal-mine ponds in the coal-mining area. Water-quality samples were collected in the spring and summer of 1985 to determine the suitability of the ponds for public water supply, aquatic life, waterfowl habitat, livestock watering, irrigation, and recreation. The rationale for water-quality criteria and the criteria used for each proposed use are discussed. The ponds were grouped by the coal seam mined or as noncoal-mine ponds, and the number of ponds from each group containing water that exceeded a given criterion is noted. Water in many of the ponds can be used for public water supplies if other sources are not available. Water in most of these ponds exceeds one or more secondary standards, but meets all primary standards. Water samples from the epilimnion (shallow strata as determined by temperature) of six ponds exceeded one or more primary standards, which are criteria protective of human health. Water samples from five of eight Iron Post ponds exceeded the selenium criterion. Water samples from all 31 ponds exceeded one or more secondary standards, which are for the protection of human welfare. The criteria most often exceeded were iron, manganese, dissolved solids, and sulfate, which are secondary standards. The criteria for iron and manganese were exceeded more frequently in the noncoal-mine ponds, whereas ponds formed by strip mining were more likely to exceed the criteria for dissolved solids and sulfate. The ponds are marginally suited for aquatic life. Water samples from the epilimnion of 18 ponds exceeded criteria protective of aquatic life. The criteria for mercury and iron were exceeded most often. Little difference was detected between mine ponds and noncoal-mine ponds. Dissolved oxygen concentrations in the hypolimnion (deepest strata) of all the ponds were less than the minimum

  3. Small ponds play big role in greenhouse gas emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Holgerson, M.; Raymond, P. A.

    2017-12-01

    Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.

  4. Preliminary report on mercury geochemistry of placer gold dredge tailings, sediments, bedrock, and waters in the Clear Creek restoration area, Shasta County, California

    USGS Publications Warehouse

    Ashley, Roger P.; Rytuba, James J.; Rogers, Ronald; Kotlyar, Boris B.; Lawler, David

    2002-01-01

    Clear Creek, one of the major tributaries of the upper Sacramento River, drains the eastern Trinity Mountains. Alluvial plain and terrace gravels of lower Clear Creek, at the northwest edge of the Sacramento Valley, contain placer gold that has been mined since the Gold Rush by various methods including dredging. In addition, from the 1950s to the 1980s aggregate-mining operations removed gravel from the lower Clear Creek flood plain. Since Clear Creek is an important stream for salmon production, a habitat restoration program is underway to repair damage from mining and improve conditions for spawning. This program includes using dredge tailings to fill in gravel pits in the flood plain, raising the concern that mercury lost to these tailings in the gold recovery process may be released and become available to biota. The purposes of our study are to determine concentrations and speciation of mercury in sediments, tailings, and water in the lower Clear Creek area, and to determine its mobility. Mercury concentrations in bedrock and unmined gravels both within and above the mined area are low, and are taken to represent background concentrations. Bulk mercury values in flood-plain sediments and dry tailings are elevated to several times these background concentrations. Mercury in sediments and tailings is associated with fine size fractions. Although methylmercury levels are generally low in sediments, shallow ponds in the flood plain may have above-normal methylation potential. Stream waters in the area show low mercury and methylmercury levels. Ponds with elevated methylmercury in sediments have more methylmercury in their waters as well. One seep in the area is highly saline, and enriched in mercury, lithium, and boron, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. This occurrence suggests that mercury in waters may at least in part be from sources other than placer mining.

  5. Economic Evaluation and Overall Assessment of Water Harvesting Ponds based on Scorecard System: A Case Study

    NASA Astrophysics Data System (ADS)

    Dabral, P. P.; Kumar, Santosh; Kiku, Karmchand

    2017-12-01

    In the present study, an attempt has been made to carry out an economic analysis of three (03) water harvesting ponds situated in the district of Lakhimpur (Assam), India. Economic analysis was carried out using three important economic criteria, namely Benefit Cost Ratio (BCR), Net Present Worth (NPW) and the Internal Rate of Returns (IRR). Ponds of the study area were compared with adopting score card system. All the water harvesting ponds were found economically viable as the BCR was more than unity at 12% discount rate. Net present worth was the highest for the water harvesting pond of Radhapukheri Fish Seed Farm, Department of Fisheries, Govt. of Assam, Narayanpur and the least for water harvesting pond of St. Xavier's School, Harmoti. The IRR was found to be the highest (60%) for water harvesting ponds of St. Xavier's School, Harmoti followed by water harvesting pond of a farmer of Narayanpur (48%) and water harvesting pond of Radhapukheri Fish Seed Farm (19.2%).Water harvesting pond of Radhapukheri Fish Seed Farm, Narayanpur scored the highest score (84 marks) followed by water harvesting pond of a farmer of Narayanpur (80 marks) and St. Xavier's school, Harmoti (61 marks).

  6. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    The discharge of a plume of sewagecontaminated ground water emanating from the Massachusetts Military Reservation to Ashumet Pond on Cape Cod, Massachusetts, has caused concern about excessive loading of nutrients, particularly phosphorus, to the pond. The U.S. Air Force is considering remedial actions to mitigate potentially adverse effects on the ecological characteristics of the pond from continued phosphorus loading. Concentrations as great as 3 milligrams per liter of dissolved phosphorus (as P) are in ground water near the pond's shoreline; concentrations greater than 5 milligrams per liter of phosphorus are in ground water farther upgradient. Temporary drive-point wells were used to collect water samples from 2 feet below the pond bottom to delineate concentration distributions in the pore waters of the pond-bottom sediments. Measurements in the field of specific conductance and colorimetrically determined orthophosphate concentrations provided real-time data to guide the sampling. The contaminant plume discharges to the Fishermans Cove area of Ashumet Pond as evidenced by elevated levels of specific conductance and boron, which are chemically conservative indicators of the sewage-contaminated ground water. Concentrations of nonconservative species, such as dissolved phosphorus, manganese, nitrate, and ammonium, also were elevated above background levels in ground water discharging to the pond, but in spatially complex distributions that reflect their distributions in ground water upgradient of the pond. Phosphorus concentrations exceeded background levels (greater than 0.10 milligram per liter) in the pond-bottom pore water along 875 feet of shoreline. Greatest concentrations (greater than 2 milligrams per liter) occurred within 30 feet of the shore in an area about 225 feet long. Calculations of phosphorus flux in the aquifer upgradient of Ashumet Pond, as determined from water-flux estimates from a steady-state ground-water-flow model and phosphorus

  7. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds

  8. Quality of drinking water from ponds in villages of Kolleru Lake region.

    PubMed

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  9. Hydrogeology and Simulated Ground-Water Flow in the Salt Pond Region of Southern Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Sorenson, Jason R.; Stone, Janet R.; Moran, S. Bradley; Hougham, Andrea

    2007-01-01

    The Salt Pond region of southern Rhode Island extends from Westerly to Narragansett Bay and forms the natural boundary between the Atlantic Ocean and the shallow, highly permeable freshwater aquifer of the South Coastal Basin. Large inputs of fresh ground water coupled with the low flushing rates to the open ocean make the salt ponds particularly susceptible to eutrophication and bacterial contamination. Ground-water discharge to the salt ponds is an important though poorly quantified source of contaminants, such as dissolved nutrients. A ground-water-flow model was developed and used to delineate the watersheds to the salt ponds, including the areas that contribute ground water directly to the ponds and the areas that contribute ground water to streams that flow into ponds. The model also was used to calculate ground-water fluxes to these coastal areas for long-term average conditions. As part of the modeling analysis, adjustments were made to model input parameters to assess potential uncertainties in model-calculated watershed delineations and in ground-water discharge to the salt ponds. The results of the simulations indicate that flow to the salt ponds is affected primarily by the ease with which water is transmitted through a glacial moraine deposit near the regional ground-water divide, and by the specified recharge rate used in the model simulations. The distribution of the total freshwater flow between direct ground-water discharge and ground-water-derived surface-water (streamflow) discharge to the salt ponds is affected primarily by simulated stream characteristics, including the streambed-aquifer connection and the stream stage. The simulated position of the ground-water divide and, therefore, the model-calculated watershed delineations for the salt ponds, were affected only by changes in the transmissivity of the glacial moraine. Selected changes in other simulated hydraulic parameters had substantial effects on total freshwater discharge and the

  10. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  11. Main factors controlling microbial community structure, growth and activity after reclamation of a tailing pond with aided phytostabilization

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2015-04-01

    Reclamation on bare tailing ponds has the potential to represent soil genesis in Technosols favoring the understanding of the changes of microbial communities and function. In this study we used phytostabilization aided with calcium carbonate and pig slurry/manure to reclaim an acidic bare tailing pond with the aim of investigating the effect of amending and different species on microbial community structure and function. We sampled after two years of amending and planting: unamended tailing soil (UTS), non-rhizospheric amended tailing soil (ATS), rhizospheric soil from four species, and non-rhizospheric native forest soil (NS), which acted as reference. The application of amendments increased pH up to neutrality, organic carbon (Corg), C/N and aggregate stability, while decreased salinity and heavy metals availability. No effect of rhizosphere was observed on physicochemical properties, metals immobilization and microbial community structure and function. To account for confounding effects due to soil organic matter, microbial properties were expressed per Corg. The high increments in pH and Corg have been the main factors driving changes in microbial community structure and function. Bacterial biomass was higher in UTS, without significant differences among the rest of soils. Fungal biomass followed the trend UTS < ATS = rhizospheric soils < NS. Bacterial growth increased and fungal growth decreased with increasing pH, despite the high availability of metals at low pH. Enzyme activities were lower in UTS, being β-glucosidase and β-glucosaminidase activities highly correlated with bacterial growth. Microbial activities were not correlated with the exchangeable fraction of heavy metals, indicating that microbial function is not strongly affected by these metals, likely due to the efficiency of the reclamation procedure to reduce metals toxicity. Changes in microbial community composition were largely explained by changes in pH, heavy metals availability and Corg

  12. Historic mills and mill tailings as potential sources of contamination in and near the Humboldt River basin, northern Nevada. Chapter D.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2003-01-01

    Reconnaissance field studies of 40 mining districts in and near the Humboldt River basin have identified 83 mills and associated tailings impoundments and several other kinds of mineral-processing facilities (smelters, mercury retorts, heap-leach pads) related to historic mining. The majority of the mills and tailings sites are not recorded in the literature. All tailings impoundments show evidence of substantial amounts of erosion. At least 11 tailings dams were breached by flood waters, carrying fluvial tailings 1 to 15 km down canyons and across alluvial fans. Most of the tailings sites are dry most of the year, but some are near streams. Tailings that are wet for part of the year do not appear to be reacting significantly with those waters because physical factors such as clay layers and hard-pan cement appear to limit permeability and release of metals to surface waters. The major impact of mill tailings on surface- water quality may be brief flushes of runoff during storm events that carry acid and metals released from soluble mineral crusts. Small ephemeral ponds and puddles that tend to collect in trenches and low areas on tailings impoundments tend to be acidic and extremely enriched in metals, in part through cycles of evaporation. Ponded water that is rich in salts and metals could be acutely toxic to unsuspecting animals. Rare extreme storms have the potential to cause catastrophic failure of tailings impoundments, carry away metals in stormwaters, and transport tailings as debris flows for 1 to 15 km. In most situations these stormwaters and transported tailings could impact wildlife but probably would impact few or no people or domes-tic water wells. Because all identified historic tailings sites are several kilometers or more from the Humboldt River and major tributaries, tailings probably have no measurable impact on water quality in the main stem of the Humboldt River.

  13. Investigation of indigenous water, salt and soil for solar ponds

    NASA Astrophysics Data System (ADS)

    Marsh, H. E.

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  14. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  15. Using combinations of metal isotopes as tracers of tailings pond discharges to subsurface aquifers in the Athabasca Oil Sands area, Canada.

    NASA Astrophysics Data System (ADS)

    Gammon, P. R.; Savard, M. M.; Ahad, J. M.; Girard, I.

    2016-12-01

    The Athabasca Oil Sands (AOS) industry in Alberta, Canada deposits voluminous waste streams in Earth's largest tailings ponds (TPs). Detecting and tracing contaminant discharge from TPs to subsurface aquifers has proven difficult because tailings have the same composition as the surrounding environment of unmined oil sand. To trace pond discharge to the subsurface therefore relies on the waste stream hosting additions or alterations induced by mining or industrial processes. Inorganic element or contaminant concentration data have proven ineffective at tracing because there is insufficient alteration of the chemical constituents or their ratios. Metal isotopes have not generally been applied to tracing emissions even though isotopic fractionation is likely induced via the high temperature and pH industrial process. We have generated Mg, Li, Pb and Zn isotopic data for a range of groundwater wells and TPs. Mg isotopes are excellent for distinguishing deep saline brines that are pumped into the waste stream during mine dewatering. Li isotopes appear to be heavily fractionated during processing, which produces a heavy isotopic signature that is an excellent tracer of production water. Pb isotopes discriminate Pb derived from oil-sand versus bedrock carbonate. Juxtapositions of TPs, carbonates and near-surface aquifers are common and of significant regulatory concern, making Pb isotopes particularly useful. Zn isotopic data indicates similarities to Pb isotopes, but are difficult to obtain due to low concentrations. Combining the isotopic data with concentration data and hydrologic models will assist in determining the fluxes of discharges from the TPs to near-surface aquifers. The range of environmental contexts of AOS TPs is limited and thus monitoring discharges to nearby aquifers from TPs could feasibly be accomplished using tailored suites of metal isotopes.

  16. Hydrogeology and chemical quality of water and bottom sediment at three stormwater detention ponds, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Hutchinson, C.B.

    1993-01-01

    An investigation of three detention ponds in Pinellas County, Florida indicated little potential for chemical contamination of surficial-aquifer ground water; however, concentrations of contami- nants in some sediments are sufficient to indicate possible hazardous levels of bioconcentration in benthic organisms. The general direction of ground- water movement at three pond sites indicates that the ponds are ground-water discharge points. Shallow ground water tends to move laterally toward these ponds, which have surface outflow, instead of from the ponds into the aquifer. Surface-water and pond-sediment samples from a 1-year-old pond were collected and analyzed for inorganic constituents and organic compounds. The concentrations were either near or below analytical detection limits. Surface-water and pond-sediment samples from the other two ponds, 20- and 30-years old, respectively, also were analyzed for inorganic constituents and organic compounds. The water quality of these older ponds was not significantly different from that of the 1-year-old pond. However, bottom sediments in the 20- and 30-year-old ponds contained 16 and 23 organic compounds, respectively. None of the organic compounds were in sufficient concentrations to cause concern about their chronic effects on aquatic life. Concentrations of dichlordiphenyl-trichlorethane, dieldrin, and heptachlor were above the hazardous level with respect to bioconcentration in the food chain.

  17. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    NASA Astrophysics Data System (ADS)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  18. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  19. Water-quality data from shallow pond-bottom groundwater in the Fishermans Cove area of Ashumet Pond, Cape Cod, Massachusetts, 2001–2010

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.

    2011-01-01

    The U.S. Geological Survey (USGS) collected water-quality data between 2001 and 2010 in the Fishermans Cove area of Ashumet Pond, Falmouth, Massachusetts, where the eastern portion of a treated-wastewater plume, created by more than 60 years of overland disposal, discharges to the pond. Temporary drive points were installed, and shallow pond-bottom groundwater was sampled, at 167 locations in 2001, 150 locations in 2003, and 120 locations in 2004 to delineate the distribution of wastewater-related constituents. In 2004, the Air Force Center for Engineering and the Environment (AFCEE) installed a pond-bottom permeable reactive barrier (PRB) to intercept phosphate in the plume at its discharge point to the pond. The USGS monitored the performance of the PRB by collecting samples from temporary drive points at multiple depth intervals in 2006 (200 samples at 76 locations) and 2009 (150 samples at 90 locations). During the first 5 years after installation of the PRB, water samples were collected periodically from five types of pore-water samplers that had been permanently installed in and near the PRB during the barrier's emplacement. The distribution of wastewater-related constituents in the pond-bottom groundwater and changes in the geochemistry of the pond-bottom groundwater after installation of the PRB have been documented in several published reports that are listed in the references.

  20. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  1. Emissions of organic compounds from produced water ponds I: Characteristics and speciation.

    PubMed

    Lyman, Seth N; Mansfield, Marc L; Tran, Huy N Q; Evans, Jordan D; Jones, Colleen; O'Neil, Trevor; Bowers, Ric; Smith, Ann; Keslar, Cara

    2018-04-01

    We measured fluxes of methane, a suite of non-methane hydrocarbons (C2-C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013-2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6-C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    PubMed

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. Copyright © 2015. Published by Elsevier B.V.

  4. Ozone Disinfection of Vibrio vulnificus in Shrimp Pond Water

    NASA Astrophysics Data System (ADS)

    Dyah Pita Rengga, Wara; Cahya Julyta Putri, Echa; Wulansarie, Ria; Suryanto, Agus

    2018-03-01

    One variety of shrimp, L.Vanamei, often uses brackish water during the operation in the shrimp pond. Chlorination and ultraviolet are usually used for disinfection of brackish water. However, it is ineffective and forms sediment in the water distribution. It can be a negative impact on the water quality cause a contamination on the shrimp, so the farmers might have loss of profit because Vibrio vulnificus causes infection and dead on the shrimp. It affects the safety of consumers and should be minimized. The purpose of this study is to reduce the number of V. vulnificus bacteria in the pond water. The water was put in the storage tanks then pumped to filter out the impurities of the water. Furthermore, the water set the flow rate in 1 LPM, 2 LPM, and 3 LPM. After that, the ozone was injected to the water flow to sterilize the V. vulnificus bacteria. Finally, the water was returned to the original tank. The water from the tank was taken through a valve and analyzed in 0, 3, 7, 12, 18, 24, 30 minutes. The sample was analyzed immediately using a Total Plate Count method to determine the number of V. vulnificus bacteria in the shrimp pond water. The flow rate shows that the longer time of ozone made a lower amount of Vibrio v. bacteria. In 2 LPM water, it shows the optimum results of V. vulnificus. bacteria reduction for 88.1% compared to the flow rate of 1 LPM and 3 LPM with the bacteria reduction of 68,8% and 70.6%. This study shows that the ozone with a flow rate of 2 LPM circulation is the most effective method to help reducing the number of V. vulnificus in brackish water distribution system in the shrimp environment and potentially as a disinfectant.

  5. The effect of beaver ponds on water quality in rural coastal plain streams

    USGS Publications Warehouse

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  6. Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond

    PubMed Central

    Rochman, Fauziah F.; Sheremet, Andriy; Tamas, Ivica; Saidi-Mehrabad, Alireza; Kim, Joong-Jae; Dong, Xiaoli; Sensen, Christoph W.; Gieg, Lisa M.; Dunfield, Peter F.

    2017-01-01

    Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of benzene and naphthalene in the surface layer of an oil sands tailings pond were measured. The potential oxidation rates were 4.3 μmol L−1 OSPW d−1 for benzene and 21.4 μmol L−1 OSPW d−1 for naphthalene. To identify benzene and naphthalene-degrading microbial communities, metagenomics was combined with stable isotope probing (SIP), high-throughput sequencing of 16S rRNA gene amplicons, and isolation of microbial strains. SIP using 13C-benzene and 13C-naphthalene detected strains of the genera Methyloversatilis and Zavarzinia as the main benzene degraders, while strains belonging to the family Chromatiaceae and the genus Thauera were the main naphthalene degraders. Metagenomic analysis revealed a diversity of genes encoding oxygenases active against aromatic compounds. Although these genes apparently belonged to many phylogenetically diverse taxa, only a few of these taxa were predominant in the SIP experiments. This suggested that many members of the community are adapted to consuming other aromatic compounds, or are active only under specific conditions. 16S rRNA gene sequence datasets have been submitted to the Sequence Read Archive (SRA) under accession number SRP109130. The Gold Study and Project submission ID number in Joint Genome Institute IMG/M for the metagenome is Gs0047444 and Gp0055765. PMID:29033909

  7. An innovative attached-growth biological system for purification of pond water.

    PubMed

    Chang, Chia-Yuan; Chang, Jing-Song; Chen, Chien-Min; Chiemchaisri, Chart; Vigneswaran, Saravanamuthu

    2010-03-01

    This study applied the non-woven material from used diaper as the carrier for bio-film process to purify the recycled water from a landscape pond at the Tainan City Municipal Culture Center (TCMCC), Taiwan. An on-site system was installed and the experiment was accomplished through three stages in 192 days with different time periods of 70 days, 63 days, and 59 days, respectively. The results showed that the non-woven media is functional for SS removal. The average SS removal of stages 1, 2, and 3 were 91%, 96%, and 95%, respectively. The highest SCOD removal efficiency of 90% occurred at stage 3. A significant color improvement of the pond water was achieved through this non-woven bio-carrier treatment system. Whole system can be without any maintenance for 139 days. The result indicated that the non-woven medium system was with a great potential in treating and recycling the pond water with stable operation and satisfactory removal performance. 2009 Elsevier Ltd. All rights reserved.

  8. On the risks from sediment and overlying water by replenishing urban landscape ponds with reclaimed wastewater.

    PubMed

    Ao, Dong; Chen, Rong; Wang, Xiaochang C; Liu, Yanzheng; Dzakpasu, Mawuli; Zhang, Lu; Huang, Yue; Xue, Tao; Wang, Nan

    2018-05-01

    The extensive use of reclaimed wastewater (RW) as a source of urban landscape pond replenishment, stimulated by the lack of surface water (SW) resources, has raised public concern. Greater attention should be paid to pond sediments, which act as 'sinks' and 'sources' of contaminants to the overlying pond water. Three ponds replenished with RW (RW ponds) in three Chinese cities were chosen to investigate 22 indices of sediment quality in four categories: eutrophication, heavy metal, ecotoxicity and pathogens risk. RW ponds were compared with other ponds of similar characteristics in the same cities that were replenished with SW (SW ponds). Our results show a strong impact of RW to the eutrophication and pathogenic risks, which are represented by organic matter, water content, total nitrogen, total phosphorus and phosphorus fractions, and pathogens. In particular, total phosphorus concentrations in the RW pond sediments were, on average, 50% higher than those of SW ponds. Moreover, the content of phosphorus, extracted by bicarbonate/dithionite (normally represented by BD-P) and NaOH (NaOH-P), were 2.0- and 2.83-times higher in RW ponds, respectively. For pathogens, the concentrations of norovirus and rotavirus in RW pond sediments were, on average, 0.52 and 0.30- log times those of SW ponds. The duration of RW replenishment was proved to have a marked impact on the eutrophication and pathogens risks from sediments. The continued use of RW for replenishment increases the eutrophication risk, and the pathogens risk, especially by viral pathogens, becomes greater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Forward osmosis as an approach to manage oil sands tailings water and on-site basal depressurization water.

    PubMed

    Zhu, Shu; Li, Mingyu; Gamal El-Din, Mohamed

    2017-04-05

    As the volume of oil sands process-affected water (OSPW) stored in tailings ponds increases, it is urgent to seek for water management approaches to alleviate the environmental impact caused by large quantity of toxic water. Forward osmosis (FO) utilizes osmotic pressure difference between two solutions, thereby giving a potential to manage two wastewaters. In this study, FO was proposed to manage OSPW, using on-site waste basal depressurization water (BDW) as draw solution. To investigate its feasibility, both short and long-term OSPW desalination experiments were carried out. By applying this process, the volume of OSPW was decreased>40% and high rejections were achieved, especially, the major organic toxicity source - naphthenic acids (NAs). Although comparative low water flux (≤3L/m 2 h) was obtained, water flux caused by membrane fouling can be completely recovered using water physical cleaning. Moreover, calcium carbonate precipitation was observed on the OSPW-oriented membrane side. With respect to flux decline, the active layer facing the feed solution (FO mode) and active layer facing draw solution (PRO mode) did not demonstrate a significant difference on anti-fouling performance. The advantages provided by this approach include zero draw solution cost, less reversible membrane fouling and beneficial reuse/recycle of diluted BDW. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects on ground-water quality of seepage from a phosphatic clayey waste settling pond, north-central Florida

    USGS Publications Warehouse

    Hunn, J.D.; Seaber, P.R.

    1986-01-01

    Water samples were taken from test wells drilled near an inactive phosphatic clayey waste storage settling pond, from the settling pond and its perimeter ditch, and from an active settling pond near White Springs, Hamilton County, in north-central Florida. The purpose was to document the seepage of chemical constituents from the inactive settling pond and ditch into the adjacent surficial groundwater system, and to assess the potential for movement of these constituents into the deeper Floridan aquifer system which is the major source of public supply in the area. The study area is underlain by a 2 ,500-ft-thick sequence of Coastal Plain sediments of Early Cretaceous to Holocene age. The rocks of Tertiary and Quaternary age that underlie the test site area can be grouped into three major geohydrologic units. In descending order, these units are: surficial aquifer, Hawthorn confining unit, and Floridan aquifer system. Phosphate deposits occur in the upper part of the surficial aquifer. Water in the active settling pond is a calcium magnesium sulfate type with a dissolved solids concentration of 250 mg/L, containing greater amounts of phosphorus, iron, aluminum, barium, zinc, and chromium than the other surface waters. Water in the perimeter ditch is a calcium sulfate type with a dissolved solids concentration of 360 to 390 mg/L, containing greater amounts of calcium, sulfate, nitrogen, and fluoride than other surface waters. Water from the inactive settling pond is a calcium magnesium bicarbonate type with a dissolved solids concentration of 140 mg/L, containing more bicarbonate than the other surface waters. Large amounts of chemical constituents in the phosphate waste disposal slurry are apparently trapped in the sediments of the settling ponds. The quality of water in the upper part of the surficial aquifer from wells within 200 to 400 ft of the inactive settling pond shows no signs of chemical contamination from phosphate industry operations. The horizontal

  11. A model to estimate hydrological processes and water budget in an irrigation farm pond

    Treesearch

    Ying Ouyang; Joel O. Paz; Gary Feng; John J. Read; Ardeshir Adeli; Johnie N. Jenkins

    2017-01-01

    With increased interest to conserve groundwater resources without reducing crop yield potential, more on-farm water storage ponds have been constructed in recent years in USA and around the world. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds have not yet been fully quantified. This study developed a...

  12. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  13. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  14. Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.

    2013-12-01

    Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.

  15. Monitoring water quality in Toronto's urban stormwater ponds: Assessing participation rates and data quality of water sampling by citizen scientists in the FreshWater Watch.

    PubMed

    Scott, Andrew B; Frost, Paul C

    2017-08-15

    From 2013 to 2015, citizen scientist volunteers in Toronto, Canada were trained to collect and analyze water quality in urban stormwater ponds. This volunteer sampling was part of the research program, FreshWater Watch (FWW), which aimed to standardize urban water sampling efforts from around the globe. We held training sessions for new volunteers twice yearly and trained a total of 111 volunteers. Over the course of project, ~30% of volunteers participated by collecting water quality data after the training session with 124 individual sampling events at 29 unique locations in Toronto, Canada. A few highly engaged volunteers were most active, with 50% of the samples collected by 5% of trainees. Stormwater ponds generally have poor water quality demonstrated by elevated phosphate concentrations (~30μg/L), nitrate (~427μg/L), and turbidity relative to Canadian water quality standards. Compared to other urban waterbodies in the global program, nutrient concentrations in Toronto's urban stormwater ponds were lower, while turbidity was not markedly different. Toronto FWW (FWW-TO) data was comparable to that measured by standard lab analyses and matched results from previous studies of stormwater ponds in Toronto. Combining observational and chemical data acquired by citizen scientists, macrophyte dominated ponds had lower phosphate concentrations while phytoplankton dominated ponds had lower nitrate concentrations, which indicates a potentially important and unstudied role of internal biogeochemical processes on pond nutrient dynamics. This experience in the FWW demonstrates the capabilities and constraints of citizen science when applied to water quality sampling. While analytical limits on in-field analyses produce higher uncertainty in water quality measurements of individual sites, rapid data collection is possible but depends on the motivation and engagement of the group of volunteers. Ongoing efforts in citizen science will thus need to address sampling effort

  16. Source or Sink: Investigating the role of storm water retention ponds in the urban landscape (Invited)

    NASA Astrophysics Data System (ADS)

    Lev, S.; Casey, R.; Ownby, D.; Snodgrass, J.

    2009-12-01

    The impact of human activities on surface water, groundwater and soil is nowhere more apparent than in urban and suburban systems. Dramatic changes to watersheds in urbanizing areas have led to changes in hydrology and an associated increase in the flux of sediment and contaminants to surface and ground waters. In an effort to mediate these impacts, Best Management Practices (BMP) have been established in order to increase infiltration of runoff and trap sediment and particulates derived from impervious surfaces before they enter surface waters. Perhaps the most ubiquitous BMP are storm water retention ponds. While these structures are designed to reduce runoff and particulate loading to urban streams, their addition to the urban landscape has created a large number of new wetland habitats. In the Red Run watershed, just outside of Baltimore, Maryland, 186 discrete natural or man-made wetland areas have been identified. Of these 186 wetland areas, 165 were created to manage stormwater and most were specifically designed as stormwater management ponds (i.e., human-created basins or depressions that hold runoff for some period during the annual hydrological year). Despite their abundance in the landscape, very little is known about how these systems impact the flux of stormwater pollutants or affect the organisms using these ponds as habitat. Results from a series of related projects in the Red Run watershed are presented here in an effort to summarize the range of issues associated with stormwater management ponds. The Red Run watershed is situated inside the Urban-Rural Demarcation Line (URDL) around Baltimore City and has been identified as a smart growth corridor by Baltimore County. This region is one of two areas in Baltimore County where new development is focused. In a series of investigations of soils, surface and ground waters, and amphibian and earthworm use of 68 randomly selected stormwater retention ponds from the Red Run watershed, a range of

  17. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  18. The microbiology of oil sands tailings: past, present, future.

    PubMed

    Foght, Julia M; Gieg, Lisa M; Siddique, Tariq

    2017-05-01

    Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Water-quality assessment of the Frank Lyon, Jr., nursery pond releases into Lake Maumelle, Arkansas, 1991-1996

    USGS Publications Warehouse

    Green, William Reed

    1998-01-01

    Releases of the Frank Lyon, Jr., Nursery Pond into Lake Maumelle were monitored during 1991 through 1996 to assess the impact that the releases have on the water quality of Lake Maumelle. Results indicated that the water-quality impact of the nursery pond release into Lake Maumelle is variable, and appears to be related to the volume of the nursery pond at release and the amount of fertilizer applied within the nursery pond earlier in the year. In 1991 through 1994 and in 1996, nursery pond release loads for nutrients (except for dissolved nitrite plus nitrate nitrogen), total and dissolved organic carbon, iron, and manganese were greater than what would be expected in the annual area load from that basin. In 1995, only ammonium nitrate was appliec to the nursery pond. As a result, the 1995 phosphorus load was lower than in other years, and was less than what would be expected in the annual areal load. Nutrient enrichment, on average, in Lake Maumelle from the nursery pond release resulted in what would be equivalent to an 8 percent increase in concentration of total phosphorus, 50 percent increase in dissolved orthophosphorus, 0.1 percent increase in dissolved nitrite plus nitrate nitrogen, 2.5 percent increase in total ammonia plus organic nitrogen, and 5.7 percent increase in dissolved ammonia nitrogen, assuming that the nutrient load was conservative and evenly distributed throughout the water body. Evidence of elevated turbidity, nutrient, and chlorphyll a concentrations in the epilimnetic water outside the receiving embayment were apparent for as long as 3 weeks after the 1995 and 1996 releases. In general, highest values were found at the site located where the receiving embayment meets the open water of Lake Maumelle. Much of the released material in the nursery pond originated in the cooler, anoxic hypolimnetic water. The initial release water was seen to plunge beneath the warmer water existing in the receiving embayment and was transported into the open

  1. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  2. Distribution and Migration of Ordnance-Related Compounds and Oxygen and Hydrogen Stable Isotopes in Ground Water near Snake Pond, Sandwich, Massachusetts

    USGS Publications Warehouse

    LeBlanc, Denis R.; Massey, Andrew J.; Cochrane, Jessica J.; King, Jonathan H.; Smith, Kirk P.

    2008-01-01

    Explosive compounds, such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and the propellant compound perchlorate are present in ground water near Snake Pond, a ground-water flow-through glacial kettle pond in the glacial sand and gravel aquifer on western Cape Cod near Camp Edwards on the Massachusetts Military Reservation. The contaminants originate from the J-3 Range ordnance training and testing area. Ground-water samples were collected at 10 sites near the pond to determine the paths of the contaminants as they underflow or completely or partially discharge into the pond. Water-quality profiles were developed for sites on opposite ends of a 200-foot-long intermittent island near the northern, upgradient end of the pond by collecting water samples from two temporary drive-point borings. RDX was detected at both locations between 60 and 90 feet below the pond level. The highest RDX concentration was 0.99 micrograms per liter. Perchlorate was detected at only one location on the island, between 95 and 100 feet below the pond level at a concentration of 0.61 micrograms per liter. Profiles of oxygen and hydrogen stable isotopes were developed for seven sites spaced 300 to 600 feet apart along the southern, downgradient shore of the pond. A transition from heavier to lighter oxygen and hydrogen isotopes was observed at an altitude of about -50 feet. This transition most likely is the boundary between evaporation-affected pond water that is seeping into the aquifer and ground water that has passed beneath the pond. RDX was not detected in the ground-water samples collected south of the pond. Perchlorate was detected only in one sample from a shallow depth in one boring. The results of these analyses indicate that the J-3 Range plume contains low concentrations of RDX and perchlorate (less than 1 microgram per liter) as it passes beneath the northern end of Snake Pond. Results of ground-water-flow modeling

  3. Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond.

    PubMed

    Lusk, Mary G; Toor, Gurpal S

    2016-04-05

    Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.

  4. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    PubMed

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  5. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice.

    PubMed

    Pućko, M; Stern, G A; Barber, D G; Macdonald, R W; Warner, K-A; Fuchs, C

    2012-11-06

    During the summer of 2009, we sampled 14 partially refrozen melt ponds and the top 1 m of old ice in the pond vicinity for α-hexachlorocyclohexane (α-HCH) concentrations and enantiomer fractions (EFs) in the Beaufort Sea. α-HCH concentrations were 3 - 9 times higher in melt ponds than in the old ice. We identify two routes of α-HCH enrichment in the ice over the summer. First, atmospheric gas deposition results in an increase of α-HCH concentration from 0.07 ± 0.02 ng/L (old ice) to 0.34 ± 0.08 ng/L, or ~20% less than the atmosphere-water equilibrium partitioning concentration (0.43 ng/L). Second, late-season ice permeability and/or complete ice thawing at the bottom of ponds permit α-HCH rich seawater (~0.88 ng/L) to replenish pond water, bringing concentrations up to 0.75 ± 0.06 ng/L. α-HCH pond enrichment may lead to substantial concentration patchiness in old ice floes, and changed exposures to biota as the surface meltwater eventually reaches the ocean through various drainage mechanisms. Melt pond concentrations of α-HCH were relatively high prior to the late 1980-s, with a Melt pond Enrichment Factor >1 (MEF; a ratio of concentration in surface meltwater to surface seawater), providing for the potential of increased biological exposures.

  6. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  7. Water quality of an urban wet detention pond in Madison, Wisconsin, 1987-88

    USGS Publications Warehouse

    House, L.B.; Waschbusch, R.J.; Hughes, P.E.

    1993-01-01

    A 5,670-sq m wet detention pond was monitored by the U.S. Geological Survey to determine its effect on the water quality of urban runoff. The pond has a drainage area of 0.96-sq km, composed primarily of single-family residential land use. Event-mean concentrations (EMC) were determined from samples collected for sediment, nutrients, and selected metals at the pond's inflow and outflow sites. EMC samples were collected for 64 runoff events during the study period from February 1987 to April 1988. Storm precipitation ranged from 1 to 51 mm during these events. Inflow and outflow EMC and constituent loads were compared to determine the trap efficiency of the pond. Trap efficiency varied considerably among water-quality constituents. In general, the detention pond decreased the EMC of sampled constituents at the outlet compared to the inlet. The median decrease in EMC for suspended solids was 88 percent, 60 percent for total chemical oxygen demand (COD), 43 percent for total phosphorus, 38 percent for total Kjeldahl nitrogen, 65 percent for total nitrite plus nitrate, and 71 percent for total lead. A notable exception to the general decrease in EMC is for chloride. The EMC for chloride was generally higher in outflow from the pond than in the inflow. This is attributed to an unmonitored influx of chloride to the pond during the winter that subsequently was flushed out during monitored runoff events. The total study-period loads of most constituents were less leaving the pond than the loads entering it. This decrease is attributed to the constituents transported on suspended sediment being deposited in the pond. The decrease in total load of suspended solids was 88 percent, 62 percent for total COD, 58 percent for total phosphorus, 46 percent for total Kjeldahl nitrogen, 62 percent for total nitrite plus nitrate, 97 percent for total copper, and 93 percent for total lead. (USGS)

  8. Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California March 1985 to March 1986

    USGS Publications Warehouse

    Fujii, Roger

    1988-01-01

    Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)

  9. Campus Ecology, Part 2 of a Series: Pond Water

    ERIC Educational Resources Information Center

    Bryan, R. C.

    1974-01-01

    Presents a series of activities which focus on the study of the physical characteristics of water, including temperatures, opacity, pH-values, oxygen concentrations, reagents, and free CO2 concentrations. Indicates that ponds can provide the students with opportunities to learn chemistry, geology, biology, botany, and the effects of weather. (CC)

  10. A model to estimate hydrological processes and water budget from an irrigation pond in Mississippi

    USDA-ARS?s Scientific Manuscript database

    With increased interest to conserve groundwater resources without adversely affecting crop yield potential, more irrigation farm ponds have been constructed in recent years in Mississippi. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds h...

  11. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C 5 -C 6 ; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL -1 ) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  13. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-02-01

    Methane emissions in oil sands tailings ponds are sustained by anaerobic biodegradation of unrecovered hydrocarbons. Naphtha (primarily C 6 -C 10 ; n- iso- and cycloalkanes) is commonly used as a solvent during bitumen extraction process and its residue escapes to tailings ponds during tailings deposition. To investigate biodegradability of hydrocarbons in naphtha, mature fine tailings (MFT) collected from Albian and CNRL tailings ponds were amended with CNRL naphtha at ∼0.2 wt% (∼2000 mg L -1 ) and incubated under methanogenic conditions for ∼1600 d. Microbial communities in both MFTs started metabolizing naphtha after a lag phase of ∼100 d. Complete biodegradation/biotransformation of all n-alkanes (except partial biodegradation of n-octane in CNRL MFT) followed by major iso-alkanes (2-methylpentane, 3-methylhexane, 2- and 4-methylheptane, iso-nonanes and 2-methylnonane) and a few cycloalkanes (derivatives of cyclopentane and cyclohexane) was observed during the incubation. 16S rRNA gene pyrosequencing showed dominance of Peptococcaceae and Anaerolineaceae in Albian MFT and Anaerolineaceae and Syntrophaceae in CNRL MFT bacterial communities with co-domination of Methanosaetaceae and "Candidatus Methanoregula" in archaeal populations during active biodegradation of hydrocarbons. The findings extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments and help refine existing kinetic model to predict greenhouse gas emissions from tailings ponds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation.

    PubMed

    Gołdyn, Bartłomiej; Chudzińska, Maria; Barałkiewicz, Danuta; Celewicz-Gołdyn, Sofia

    2015-08-01

    The contents of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) were analysed in the bottom sediments of 30 small, astatic ponds located in the agricultural landscape of Western Poland. The samples were collected from 118 stations located in patches of four vegetation types. Relationships between the contents of particular elements and four groups of factors (geomorphology, hydroperiod, water quality and vegetation) were tested using Redundancy Analysis (RDA). The most important factors influencing the heavy metal contents were the maximum depth and area of the pond, its hydroperiod, water pH and conductivity values. In general, low quantities of heavy metals were recorded in the sediments of kettle-like ponds (small but located in deep depressions) and high in water bodies of the shore-bursting type (large but shallow). Moreover, quantities of particular elements were influenced by the structure of the vegetation covering the pond. Based on the results, we show which types of astatic ponds are most exposed to contamination and suggest some conservation practices that may reduce the influx of heavy metals. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Contaminated Pond Water Favors Cholera Outbreak at Haibatpur Village, Purba Medinipur District, West Bengal, India

    PubMed Central

    Biswas, Dilip Kumar; Bhunia, Rama; Maji, Dipankar; Das, Palash

    2014-01-01

    Health workers reported an increased number of diarrhea cases at Haibatpur village on June 17, 2012. This outbreak was investigated with the following objectives: to confirm the existence of diarrhea outbreak, to find out the risk factors, and propose control measures. Cases were listed; spot map and epidemic curve were drawn. Attack rate was calculated by age and sex and risk factors were found out by calculating odds ratio (OR) with 95% confidence interval (CI). Rectal swabs were taken and water specimens were collected for laboratory test. Forty-one cases of patients were identified with overall attack rate (AR) was 5% (41/780). AR among men was higher 6% (25/404) than women. There was no death. V. cholerae 01 Eltor Ogawa was isolated from one (1/4) stool specimen. Spot map showed cases clustered around two ponds which were contaminated with coliform organisms. The underground water was a bit saline in nature. Using pond water for preparation of fermented rice (Panta Bhat) (OR 4.73, 95% CI 1.69–13.51), washing utensil in pond water (OR 7.31, 95% CI 1.77–42.29) were associated with cholera outbreak. Health education was done to villagers. Disinfection of two ponds with bleaching powder was done. We proposed supplying of safe drinking water and repairing defective deep tube well to village. PMID:24899903

  16. Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system

    USGS Publications Warehouse

    Gammons, C.H.; Grant, T.M.; Nimick, D.A.; Parker, S.R.; DeGrandpre, M.D.

    2007-01-01

    Arsenic concentrations are elevated in surface waters of the Warm Springs Ponds Operable Unit (WSPOU), located at the head of the upper Clark Fork River Superfund site, Montana, USA. Arsenic is derived from historical deposition of smelter emissions (Mill and Willow Creeks) and historical mining and milling wastes (Silver Bow Creek). Although long-term monitoring has characterized the general seasonal and flow-related trends in As concentrations in these streams and the pond system used to treat Silver Bow Creek water, little is known about solubility controls and sorption processes that influence diel cycles in As concentrations. Diel (24-h) sampling was conducted in July 2004 and August 2005 at the outlet of the treatment ponds, at two locations along a nearby reconstructed stream channel that diverts tributary water around the ponds, and at Silver Bow Creek 2??km below the ponds. Dissolved As concentration increased up to 51% during the day at most of the stream sites, whereas little or no diel change was displayed at the treatment-pond outlet. The strong cycle in streams is explained by pH- and temperature-dependent sorption of As onto hydrous metal oxides or biofilms on the streambed. Concentrations of dissolved Ca2+ and HCO3- at the stream sites showed a diel temporal pattern opposite to that of As, and geochemical modeling supports the hypothesis that the concentrations of Ca2+ and HCO3- were controlled by precipitation of calcite during the warm afternoon hours when pH rose above 9.0. Nightly increases in dissolved Mn and Fe(II) concentrations were out of phase with concentrations of other divalent cations and are more likely explained by redox phenomena. ?? 2007 Elsevier B.V. All rights reserved.

  17. Soluble sugar composition of pond-cypress: a potential hydroecological indicator of ground water perturbations

    Treesearch

    Sydney T. Bacchus; Toshihide Hamazaki; Bruce L. Haines

    2000-01-01

    Pond-cypress, a deciduous conifer , is a dominant canopy species in depressional wetlands of the southeastern Coastal Plain (SCP). Extensive premature decline and death of pond-cypress trees in central Florida have been attributed to hydroperiod alterations due to excessive withdrawals of ground water from the Floridan aquifer. One factor identified in the decline...

  18. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  19. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    PubMed

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  20. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.

    PubMed

    Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R

    2013-10-01

    The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.

  1. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  2. A new twist to a traditional approach to environmental monitoring: differentiation of oil sands process-affected waters and natural systems by comparison of individual organic acids

    NASA Astrophysics Data System (ADS)

    Scarlett, A.; Lengger, S.; West, C.; Rowland, S.

    2013-12-01

    Review panels of both the Canadian Federal and Alberta Provincial governments have recommended a complete overhaul of existing monitoring programs of the Athabasca oil sands industry and have called for a greater understanding of the potential impacts of mining activities to allow for future sustainable development. Due to the no release policy, it is critical that leakages of oil sands process-affected waters (OSPW) from tailings ponds can be differentiated from natural waters flowing through the McMurray formation into the Athabasca river system. Environmental monitoring of oil contamination usually entails profiling of known compounds, e.g. the US EPA list of priority Polycyclic Aromatic Hydrocarbons, but until now a similar approach has not been possible for OSPW due to its extreme complexity. It has been estimated that the number of carboxylic acids, historically referred to as ';naphthenic acids' (NA) in OSPW, to be in excess of 10000 compounds. Until recently, individual structures of these NA were unknown but analyses by tandem gas chromatography mass spectrometry (GCxGC-MS) have now begun to reveal the individual structures of alicyclic, aromatic and sulphur-containing acids within OSPWs stored in tailings ponds. Now that some individual structures present in OSPW are known and standards are available, a methodological approach similar to traditional oil monitoring can be developed using individual diamondoid NA and recently discovered diacids and applied to tailings pond OSPW and environmental waters. One obstacle to understanding whether the NA present in environmental groundwater samples are associated with particular tailings ponds is the lack of knowledge of the variability of OSPW within and between ponds. In the current study, GCxGC-MS analyses have been applied to statistically compare OSPWs of two industries, both temporally and spatially, using specific, known compounds as well as associated isomers. Although variation within individual ponds was

  3. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  4. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  5. Relation between species assemblages of fishes and water quality in salt ponds and sloughs in South San Francisco Bay

    USGS Publications Warehouse

    Mejia, F.; Saiki, M.K.; Takekawa, John Y.

    2008-01-01

    This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species

  6. New England Lakes & Ponds Project

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  7. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Emissions of organic compounds from produced water ponds II: Evaluation of flux chamber measurements with inverse-modeling techniques.

    PubMed

    Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-07-01

    In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.

  9. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  10. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Tang, Song; Xiao, Tangfu; Ning, Zengping; Lan, Xiaolong; Sun, Weimin

    2016-08-01

    Mining activities have introduced various pollutants to surrounding aquatic and terrestrial environments, causing adverse impacts to the environment. Indigenous microbial communities are responsible for the biogeochemical cycling of pollutants in diverse environments, indicating the potential for bioremediation of such pollutants. Antimony (Sb) has been extensively mined in China and Sb contamination in mining areas has been frequently encountered. To date, however, the microbial composition and structure in response to Sb contamination has remained overlooked. Sb and As frequently co-occur in sulfide-rich ores, and co-contamination of Sb and As is observed in some mining areas. We characterized, for the first time, the microbial community profiles and their responses to Sb and As pollution from a watershed heavily contaminated by Sb tailing pond in Southwest China. The indigenous microbial communities were profiled by high-throughput sequencing from 16 sediment samples (535,390 valid reads). The comprehensive geochemical data (specifically, physical-chemical properties and different Sb and As extraction fractions) were obtained from river water and sediments at different depths as well. Canonical correspondence analysis (CCA) demonstrated that a suite of in situ geochemical and physical factors significantly structured the overall microbial community compositions. Further, we found significant correlations between individual phylotypes (bacterial genera) and the geochemical fractions of Sb and As by Spearman rank correlation. A number of taxonomic groups were positively correlated with the Sb and As extractable fractions and various Sb and As species in sediment, suggesting potential roles of these phylotypes in Sb biogeochemical cycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    USGS Publications Warehouse

    LaBaugh, James W.; Rosenberry, Donald O.; Mushet, David M.; Neff, Brian; Nelson, Richard D.; Euliss, Ned H.

    2018-01-01

    Study RegionCottonwood Lake area wetlands, North Dakota, U.S.A.Study FocusFluctuations in pond permanence, size, and salinity are key features of prairie-pothole wetlands that provide a variety of wetland habitats for waterfowl in the northern prairie of North America. Observation of water-level and salinity fluctuations in a semi-permanent wetland pond over a 20-year period, included periods when the wetland occasionally was dry, as well as wetter years when the pond depth and surface extent doubled while volume increased 10 times.New hydrological insights for the study regionCompared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent) but the largest amount (>90 percent) of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  12. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  13. Opportunistic disease in yellow perch in response to decadal changes in the chemistry of oil sands-affected waters.

    PubMed

    Hogan, Natacha S; Thorpe, Karen L; van den Heuvel, Michael R

    2018-03-01

    Oil sands-affected water from mining must eventually be incorporated into the reclaimed landscape or treated and released. However, this material contains petrogenic organic compounds, such as naphthenic acids and traces of polycyclic aromatic hydrocarbons. This has raised concerns for impacts of oil sands process-affected waters on the heath of wildlife and humans downstream of receiving environments. The objective of this study was to evaluate the temporal association of disease states in fish with water chemistry of oil sands-affected waters over more than a decade and determine the pathogens associated with disease pathologies. Yellow perch (Perca flavescens) captured from nearby lakes were stocked into two experimental ponds during 1995-1997 and 2008-2010. South Bison Pond is a drainage basin that has received unextracted oil sands-contaminated material. Demonstration Pond is a constructed pond containing mature fine tailings capped with fresh water. Two disease pathologies, fin erosion for which a suspected bacterial pathogen (Acinetobacter Iwoffi) is identified, and lymphocystis (confirmed using a real-time PCR) were associated with oil sands-affected water exposure. From 1995 to 1997 pathologies were most prevalent in the South Bison Pond; however, from 2008 to 2009, disease was more frequently observed in the Demonstration Pond. CYP1A activity was 3-16 fold higher in fish from experimental ponds as compared to reference populations and this pattern was consistent across all sampling years. Bile fluorescence displayed a gradient of exposure with experimental ponds being elevated over local perch populations. Naphthenic acids decreased in the Bison Pond from approximately 12 mg/L to <4 mg/L while naphthenic acids increased in the Demonstration Pond from 6 mg/L to 12 mg/L due to tailings densification. Temporal changes in naphthenic acid levels, CYP1A activity and bile fluorescent metabolites correlate positively with incidence of disease pathologies

  14. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal

    2015-03-15

    Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Gas transfer velocities in small forested ponds

    NASA Astrophysics Data System (ADS)

    Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.

    2017-05-01

    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.

  16. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    USGS Publications Warehouse

    Storck, D.A.; Lacombe, Pierre

    1996-01-01

    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were

  17. Water level fluctuations in an urban pond: Climatic or anthropogenic impact?

    USGS Publications Warehouse

    Benton, S.E.

    2002-01-01

    In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements.

  18. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    PubMed

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  19. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that

  20. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms.

    PubMed

    Parker, D L; Kumar, H D; Rai, L C; Singh, J B

    1997-06-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed.

  1. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms

    PubMed Central

    Parker, D. L.; Kumar, H. D.; Rai, L. C.; Singh, J. B.

    1997-01-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed. PMID:16535629

  2. The role of rice fields, fish ponds and water canals for transmission of fish-borne zoonotic trematodes in aquaculture ponds in Nam Dinh Province, Vietnam.

    PubMed

    Madsen, Henry; Dung, Bui Thi; The, Dang Tat; Viet, Nguyen Khue; Dalsgaard, Anders; Van, Phan Thi

    2015-12-08

    Fish-borne zoonotic trematodes (FZT), such as Clonorchis sinensis, Opistorchis viverini (Opisthorchiidae) and intestinal trematodes of the family Heterophyidae, constitute a public health hazard in Vietnam and infections with these trematodes has been linked to consumption of raw or undercooked fish from aquaculture. The FZT transmission pathways, however, are more complicated than just the presence of intermediate snail hosts in aquaculture ponds as ponds may exchange water with surrounding habitats such as rice fields and irrigation canals and thereby these surrounding habitats may be a source of snails and cercariae and contribute to FZT infection in cultured fish. This is a longitudinal descriptive study on selected farms (n = 30) in Nam Dinh Province which is endemic for FZT. At each farm, we sampled one pond, a small irrigation canal used to supply the pond with water, and a nearby rice field. At each of these three sites, we estimated the density of the FZT intermediate snail hosts and determined their trematode infection status. Comparative analysis was performed for the prevalence and density of FZT infections in fish and snails. Species of the Thiaridae, and most notably Melanoides tuberculata, the most important host species for FZT belonging to the Heterophyidae, were particularly abundant in ponds and small canals, i.e. M. tuberculata was found in 27 ponds and 13 small canals. Bithynia fuchsiana, a potential host for both Heterophyidae and Opisthorchiidae, was rarely found in fish ponds but common in rice fields. A total of 12 types of cercariae were found in the snails and pleurolophocercous cercariae, primarily FZT, constituted about 40 % of all cercarial infections. The fish species cultured were mainly carp species and Haplorchis pumilio was the dominating trematode species infecting fish. Clonorchis spp. were not recorded in any of the ponds. FZT transmission to fish was intense during the summer period (May-June to November) but less intense

  3. Assessing Natural Radionuclide Migration in the Legacy Tailings of Uranium Production

    NASA Astrophysics Data System (ADS)

    Bondarenko, G.; Koliabina, I.; Marinich, O.

    2011-12-01

    The former Prydniprovsky Chemical Plant in Dniprodzerzhynsk, Ukraine, processed uranium ore from 1949 until 1991. Multiple tailing ponds containing solid residual waste products from the uranium leaching and processing of uranium were accumulated along the Dnieper River, including the largest, adjacent to the Dnieper Reservoir, containing over 12 million tons of tailings. Samples for this study were selected from a core recovered from the Dnieper tailing pit in 2009, and used to assess radionuclide migration from tailing ponds. Samples were selected from different depths of the tailing pit core, analyzed for total radionuclide concentrations [Marinich et al., 2009], and successively leached using distilled water, followed by 1N ammonium acetate solution, and finally by 1N HCl solution. Leaching times were ~24 h at 15.17 °C. 238U, 230Th and 226Ra leachate activities were measured by γ-spectrometry with a Ge(Li) detector. 210Pb activity was measured using a SEB-01 scintillation β-spectrometer. Errors depended on measuring method, radionuclide, activity and exposure time: 238U, 11.9%; 230Th, 10.9%; 226Ra, 9.3%; 210Pb ~30%. The average total 238U activity in the tailing profile was 4 Bq/g. The concentration of 238U in the water leachates increased with depth from 14.5% (7-7.5 m), to 43% (11-11.5 m). The concentration of 238U in the acid leachates behaved similarly, increasing from 5.5 % to 15.5% with depth. While the total 230Th activity in increased from 30 Bq/g (7-7.5 m) to 540 Bq/g (11-11.5 m), the 230Th concentration in ammonium acetate leachates decreased from ˜15% to ˜1%. The concentration of 226Ra in all leachates was <1%, indicating that, under conditions of the Dnieper tailing pit, 226Ra is essentially immobile. The concentration of 210Pb in the leachates was as high as 10%. In general, the magnitude of mobile activity from the Dnieper tailing pit core samples decreases in the order 238U>230Th≥210Pb> 226Ra. Secular radioactive equilibrium in the 238U

  4. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  5. Investigation of a Water-Pond Arresting of a Dynamic Model of a Jet Transport

    NASA Technical Reports Server (NTRS)

    Thompson, William C.

    1961-01-01

    Brief dynamic-model tests have been made at the request of the Federal Aviation Agency to investigate the use of a shallow pond of water at the end of a runway as a means of arresting jet-transport aircraft when they are forced to abort on take-off or overrun on landing. Such a scheme is of particular interest for civil aircraft because it requires no modifications or attachments to the airplane and no mechanical devices in the arresting system. A modification of this scheme that uses a flexible plastic cover over the water surface has also been tested. The purpose of this paper is to present the results of a dynamic model investigation which would aid in determining whether the water-pond arresting system could be used as a means of arresting airplane overrun.

  6. Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.

    PubMed

    Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno

    2013-10-15

    The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over

  7. Using on-farm sedimentation ponds to improve microbial quality of irrigation water in urban vegetable farming in Ghana.

    PubMed

    Keraita, B; Drechsel, P; Konradsen, F

    2008-01-01

    This paper presents an assessment of the potential of using on-farm ponds to reduce levels of microbial contamination in wastewater--contaminated irrigation water. The study involved observations on the use of ponds in urban agriculture in Kumasi, Ghana, and more than 300 irrigation water samples were taken for physico-chemical and microbial laboratory analysis. The study shows that while on-farm ponds are commonly used, their potential to remove pathogens through sedimentation has not been fully optimized. Two-thirds of helminth eggs were in the sediments and careful collection of irrigation water without disturbing sediments reduced helminth eggs in irrigation water by about 70%. Helminth eggs reduced from about 5 to less than 1 egg per litre in three days in both dry and wet seasons while thermotolerant coliforms took six days in the dry season to reduce from about 8 to 4 log units per 100 ml, to meet the WHO guidelines. For optimal pathogen removal, better pond designs, farmers' training on collection of water with minimal disturbance and any other means to enhance sedimentation and pathogen die-off can be essential components of a multiple-barrier approach complementing farm-based measures like simple filtration techniques, better irrigation methods and post-harvest contamination.

  8. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Assessing spatial and temporal variability of acid-extractable organics in oil sands process-affected waters.

    PubMed

    Frank, Richard A; Milestone, Craig B; Rowland, Steve J; Headley, John V; Kavanagh, Richard J; Lengger, Sabine K; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Hewitt, L Mark

    2016-10-01

    The acid-extractable organic compounds (AEOs), including naphthenic acids (NAs), present within oil sands process-affected water (OSPW) receive great attention due to their known toxicity. While recent progress in advanced separation and analytical methodologies for AEOs has improved our understanding of the composition of these mixtures, little is known regarding any variability (i.e., spatial, temporal) inherent within, or between, tailings ponds. In this study, 5 samples were collected from the same location of one tailings pond over a 2-week period. In addition, 5 samples were collected simultaneously from different locations within a tailings pond from a different mine site, as well as its associated recycling pond. In both cases, the AEOs were analyzed using SFS, ESI-MS, HRMS, GC×GC-ToF/MS, and GC- & LC-QToF/MS (GC analyses following conversion to methyl esters). Principal component analysis of HRMS data was able to distinguish the ponds from each other, while data from GC×GC-ToF/MS, and LC- and GC-QToF/MS were used to differentiate samples from within the temporal and spatial sample sets, with the greater variability associated with the latter. Spatial differences could be attributed to pond dynamics, including differences in inputs of tailings and surface run-off. Application of novel chemometric data analyses of unknown compounds detected by LC- and GC-QToF/MS allowed further differentiation of samples both within and between data sets, providing an innovative approach for future fingerprinting studies. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  11. New Anabaena and Nostoc cyanophages from sewage settling ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, N.; Thiel, T.; Giddings, T.H., Jr.

    1981-10-15

    We have isolated, from sewage settling ponds, 16 cyanophages for heterocyst forming, filamentous cyanobacteria of the genera Anabaena and Nostoc. These phages fall into three groups based on morphology, host range, one-step growth curves, and restriction digests. On the basis of these criteria they can be distinguished from cyanophages A-1(L), A-4(L), N-1, and AN-10 which we received from other laboratories. Certain of the newly described phages are similar in morphology to the short-tailed LPP cyanophages, and others to the long-tailed AS cyanophages.

  12. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Water fluxes through the ponds are a function of several factors, including the size, shape, and bathymetry of the pond, orientation of the pond relative to the regional hydraulic gradient, and hydrologic setting relative to the proximity of groundwater divides and discharge boundaries. Total steady-state fluxes through the ponds range from more than 3,300,000 to less than 2,000 cubic feet per day. For ponds without surface-water inlets or outlets, groundwater inflow accounts for 98 to 3 percent of total inflow; conversely, recharge onto the pond surface accounts for the remainder of inflow (between 2 and 97 percent). All natural flows from these ponds are through recharge from the pond into the aquifer. In one pond, about 94 percent of the total outflow is removed for water supply. For ponds that are connected to surface-water drainages, most inflow and outflow are through streams. Ponds that receive water from streams receive most (58 to 89 percent) of their water from those streams. Ponds that are drained by streams lose between 5 and 100 percent of their water to those streams.

  13. Hydrology, water quality, and simulation of ground-water flow at a taconite-tailings basin near Keewatin, Minnesota

    USGS Publications Warehouse

    Myette, C.F.

    1991-01-01

    Numerical-model simulations of ground-water flow near the vicinity of the tailings basin indicate that, if areal recharge were doubled during spring and fall, water levels in wells could average about 4 feet above 1983 levels during these periods. Model results indicate that water levels in the tailings could possibly remain about 5 feet above 1983 levels at the end of the year. Water levels in the tailings at the outlet of the basin could be about 1 foot above 1983 levels during the spring stress period and could be nearly 1.5 feet above 1983 levels during the fall stress period. Under these hypothetical climatic conditions, ground-water contribution to discharge at the outlet could be about 50 cubic feet per second during spring and about 80 cubic feet per second during fall.

  14. Naphthenic acids in athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids.

    PubMed

    Scott, Angela C; MacKinnon, Michael D; Fedorak, Phillip M

    2005-11-01

    Naphthenic acids (NAs) are natural constituents in many petroleum sources, including bitumen in the oil sands of Northern Alberta, Canada. Bitumen extraction processes produce tailings waters that cannot be discharged to the environment because NAs are acutely toxic to aquatic species. However, aerobic biodegradation reduces the toxic character of NAs. In this study, four commercial NAs and the NAs in two oil sands tailings waters were characterized by gas chromatography-mass spectrometry. These NAs were also incubated with microorganisms in the tailings waters under aerobic, laboratory conditions. The NAs in the commercial preparations had lower molecular masses than the NAs in the tailings waters. The commercial NAs were biodegraded within 14 days, but only about 25% of the NAs native to the tailings waters were removed after 40-49 days. These results show that low molecular mass NAs (C < or =17) are more readily biodegraded than high molecular mass NAs (C > or =18). Moreover, the results indicate that biodegradation studies using commercial NAs alone will not accurately reflect the potential biodegradability of NAs in the oil sands tailings waters.

  15. Thermal evolutions of two kinds of melt pond with different salinity

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  16. Assessment of the ecosystem services provided by ponds in hilly areas.

    PubMed

    Fu, Bin; Xu, Pei; Wang, Yukuan; Yan, Kun; Chaudhary, Suresh

    2018-06-18

    Ponds are an important ecosystem in rural landscapes. They play an important role in water retention, aquatic products supply and biodiversity conservation. By using a questionnaire-based survey of rural households in a small watershed in the Three Gorges Reservoir area, we analyzed the distribution of ponds, their size and current status. The Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model was used to evaluate the regulation, provision and culture services of the ponds. We found that pond density was high throughout hilly areas. About 20 ponds were within an area of 1 km 2 . They were mainly distributed in the middle and lower parts of the basin. The presence of such a large number of ponds was considered remarkable. Water retention was the primary ecosystem service. On average, each pond contained about 4500 mm depth of water, which was 10 times that of the surrounding forest. However, with the transformation of agriculture in mountainous areas, the irrigation and domestic water services provided by ponds have declined. In recent years, ponds have been used predominantly for fish farming and leisure services. Aquaculture and multi-function ponds accounted for 54.55% and 27.7% of the surveyed ponds, respectively. Multi-function ponds consumed more water, but fish farming ponds were the most economically valuable. Due to weak environmental management and the decreasing economic value of ponds, it is necessary to conduct ecological management of ponds in accordance with societal changes in mountainous areas and to promote the protection and use of ponds. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.

    PubMed

    Mkandawire, Martin; Taubert, Barbara; Dudel, E Gert

    2004-01-01

    The potential of Lemna gibba L. to clean uranium and arsenic contamination from mine surface waters was investigated in wetlands of two former uranium mines in eastern Germany and in laboratory hydroponic culture. Water and plants were sampled and L gibba growth and yield were monitored in tailing ponds from the field study sites. Contaminant accumulation, growth and yield experiments were conducted in the laboratory using synthetic tailing water. Mean background concentrations of the surface waters were 186.0+/-81.2 microg l(-1) uranium and 47.0+/-21.3 microg l(-1) arsenic in Site one and 293.7+/-121.3 microg l(-1) uranium and 41.37+/-24.7 microg l(-1) arsenic in Site two. The initial concentration of both uranium and arsenic in the culture solutions was 100 microg l(-1). The plant samples were either not leached, leached with deionized H2O or ethylenediaminetetracetic (EDTA). The results revealed high bioaccumulation coefficients for both uranium and arsenic. Uranium and arsenic content of L gibba dry biomass of the field samples were as follows: nonleached samples > deionized H2O leached (insignificant ANOVA p = 0.05) > EDTA leached. The difference in both arsenic and uranium enrichment were significantly high between the nonleached and the other two lead samples tested at ANOVA p > 0.001. Estimated mean L gibba density in surface water was 85,344.8+/-1843.4 fronds m(-2) (approximately 1319.7 g m(-2)). The maximum specific growth rate was 0.47+/-0.2 d(-1), which exceeded reported specific growth rates for L gibba in the literature. Average yield was estimated at 20.2+/-6.7 g m(-2) d(-1), giving approximately 73.6+/-21.4 t ha(-1) y(-1) as the annual yield. The highest accumulations observed were 896.9+/-203.8 mg kg(-1) uranium and 1021.7+/-250.8 mg kg(-1) arsenic dry biomass for a 21-d test period in the laboratory steady-state experiments. The potential extractions from surface waters with L gibba L. were estimated to be 662.7 kg uranium ha(-1) yr(-1) and 751

  18. UMTRA project water sampling and analysis plan, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

  19. Comparative survey of the influent and effluent water quality of shrimp ponds on Mexican farms.

    PubMed

    Ruiz-Fernández, A C; Páez-Osuna, F

    2004-01-01

    The influent and effluent water quality of two ponds at four aquaculture facilities (two intensive and two semiintensive growout systems) located on the Northwest coast of Mexico was monitored. Temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand (self-consumption in 48 hours), total suspended solids, particulate organic material, nitrite, nitrate, ammonium, reactive and total phosphate, and chlorophyll a were analyzed every 2 weeks during two consecutive growout cycles. Changes recorded in most of these water quality variables were not strongly related to the management practices of the ponds, but rather to environmental factors. The mean percent differences between inflowing and outflowing water that were observed indicated that water used for culture returned to the natural environment depleted of nutrients (inorganic nitrogen and reactive phosphate), and it was evident that the rearing activities promoted the exportation of particulate material to the surrounding environment.

  20. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  1. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.

  2. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  3. Rotenone persistence in freshwater ponds: Effects of temperature and sediment adsorption

    USGS Publications Warehouse

    Dawson, V.K.; Gingerich, W.H.; Davis, R.A.; Gilderhus, P.A.

    1991-01-01

    The persistence of rotenone was compared between a cement-lined pond (0.04 hectare) and an earthen-bottom pond (0.02 hectare) treated with 5 I?L Noxfish/L (250 I?g rotenone/L) during spring, summer, and fall. Water temperatures on the days of treatment in each season were 8, 22, and 15A?C, respectively. Both ponds were filled with pond water from a common source 1 week before each of the three treatments. Water samples (filtered and unfiltered) and sediment samples were analyzed by high-performance liquid chromatography to monitor the decrease of rotenone until residues were at or below the detection limit (<2.0 I?g/L for water and < 25 ng/g for sediments). The loss of rotenone from water generally followed a first-order rate ofdecay. Rotenone disappeared two to three times faster in the earthen pond than in the concrete pond. The rotenone half-life times in the spring, summer, and fall treatments were 3.7, 1.3, and 5.2 d, respectively, in the concrete pond, and 1.8, 0.7, and 1.8 d in the earthen pond. Rates of decay in both ponds were directly correlated with water temperature. Filtered water samples from both ponds contained less rotenone than unfiltered water, indicating that some rotenone was bound to suspended material. The highest concentration of rotenone in sediment samples was 102 ng/g; residues decreased to below the detection limit within 14 d in the spring treatment and within 3 d in the summer and fall treatments.

  4. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  5. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  6. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  7. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  8. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  9. The refreezing of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  10. Walden Pond, Massachusetts: Environmental Setting and Current Investigations

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.

    1998-01-01

    Introduction Walden Pond, in Concord, Massachusetts, is famous among lakes because of its unique social history. Walden was the setting for American naturalist Henry David Thoreau's well-known essay 'Walden; or, Life in the Woods,' first published in 1854. Thoreau lived and wrote at Walden Pond from July 1845 to September 1847. In 'Walden,' Thoreau combined highly admired writing on Transcendental philosophy with pioneering observations of aquatic ecology and physical aspects of limnology, the study of lakes. Because Thoreau also defended so effectively the value of living close to nature in the Walden woods, the pond is considered by many to be the birthplace of the American conservation movement. Visitors come from all over the world to the pond, which has been designated a National Historic Landmark, and its fame has resulted in a major fund drive to preserve the surrounding woods. Walden Pond has no surfacewater inflow or outflow, and much of its ground-water contributing area likely is preserved within the Walden Pond Reservation area (fig. 1). Only 15 miles from Boston, the pond is unusually clear and pristine for an urban-area lake. However, point sources of nutrients near the pond, and a large annual visitor attendance, concentrated during the summer when the swimming beach (fig. 2) is open, may contribute a nutrient load sufficient to change the pond environment. The occurrence of nuisance algal species, a recent beach closing, and an awareness of water-quality problems suffered by other ponds in the region raise concerns about the risk of ecological change at Walden Pond. Despite the role of Walden Pond as a cultural and environmental icon, little is known about the pond's ecological features, such as its internal nutrient cycling or the structure of its food web, nor have consistent measurements been made to determine whether these features are changing or are stable. Production rates of aquatic plants in lakes and ponds naturally undergo a slow increase

  11. Effects of detention on water quality of two stormwater detention ponds receiving highway surface runoff in Jacksonville, Florida

    USGS Publications Warehouse

    Hampson, P.S.

    1986-01-01

    Water and sediment samples were analyzed for major chemical constituents, nutrients, and heavy metals following ten storm events at two stormwater detention ponds that receive highway surface runoff in the Jacksonville, Florida, metropolitan area. The purpose of the sampling program was to detect changes in constituent concentration with time of detention within the pond system. Statistical inference of a relation with total rainfall was found in the initial concentrations of 11 constituents and with antecedent dry period for the initial concentrations of 3 constituents. Based on graphical examination and factor analysis , constituent behavior with time could be grouped into five relatively independent processes for one of the ponds. The processes were (1) interaction with shallow groundwater systems, (2) solubilization of bottom materials, (3) nutrient uptake, (4) seasonal changes in precipitation, and (5) sedimentation. Most of the observed water-quality changes in the ponds were virtually complete within 3 days following the storm event. (Author 's abstract)

  12. Improved US visualization of the pancreatic tail with simethicone, water, and patient rotation.

    PubMed

    Abu-Yousef, M M; El-Zein, Y

    2000-12-01

    To evaluate the effect of degassed water, simethicone, and patient rotation on ultrasonographic (US) visualization of the pancreatic tail. Seventy patients in whom visualization of the pancreatic tail was poor at US were reevaluated in the upright position after ingesting 2 cups (500 mL) of water with 80 mg of simethicone followed by rotating three times on the examination table. In a few patients, the right posterior oblique position was used. Pancreatic tail visualization and disbursement of gastric gas were evaluated. Seventy patients who received 500 mL of distilled water only served as control subjects. Pancreatic tail visualization in patients versus control subjects was complete in 55 (79%) versus five (7%) of 70 patients and control subjects, partial in 10 (14%) versus 38 (54%), and not improved in five (7%) versus 27 (39%). The effect on diminishing gastric air was closely correlated with the degree of improved visualization in most patients. All patients tolerated the procedure well, with no side effects. The technique added a mean of 8 versus 5 minutes to the examination in patients versus control subjects. The full acoustic window effect of the simethicone-water mixture lasted approximately 10 minutes. The simethicone-water-rotation technique is simple, safe, inexpensive, and effective for improving pancreatic tail visualization in ambulatory patients and is superior to the use of water alone.

  13. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  14. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  15. Utilization by fishes of the Alviso Island ponds and adjacent waters in south san francisco bay following restoration to tidal influence

    USGS Publications Warehouse

    Saiki, M.K.; Mejia, F.H.

    2009-01-01

    Earthen levees of three isolated salt ponds known locally as the Alviso Island Ponds were intentionally breached in March 2006 to allow tidal exchange of the ponds with water from Coyote Creek. The water exchange transformed the previously fishless hypersaline ponds into lower salinity habitats suitable for fish life. This study documented fish utilization of the ponds, adjacent reaches of Coyote Creek, and an upstream reach in nearby Artesian Slough during May-July 2006. By the time the study was initiated, water quality conditions in the ponds were similar to conditions in adjacent reaches of Coyote Creek. The only variable exhibiting a strong gradient within the study area was salinity, which increased progressively from upstream to downstream in Coyote Creek. A total of 4,034 fish represented by 18 species from 14 families was caught during the study. Judging from cluster analysis of presence-absence data that excluded rare fish species, the 10 sampling units (3 ponds, 6 reaches in Coyote Creek, and 1 reach in Artesian Slough) formed two clusters or groups, suggesting two species assemblages. The existence of two groups was also suggested by ordination with non-metric multidimensional scaling (NMS). One group, which was composed of the three ponds and four of the lowermost reaches of Coyote Creek, was characterized by mostly estuarine or marine species (e.g., topsmelt, Atherinops affinis; northern anchovy, Engraulis mordax; and longjaw mudsucker, Gillichthys mirabilis). The second group, which was composed of the two uppermost reaches of Coyote Creek and the one reach of Artesian Slough, was characterized by freshwater species (e.g., Sacramento sucker, Catostomus occidentalis) and by an absence of the estuarine/marine species noted in the first assemblage. Judging from a joint plot of selected water quality variables overlaying the ordination results, salinity was the only important variable associated with spatial distribution of fish species. Water

  16. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  17. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  18. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating at Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  19. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating Mat Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  20. Zoo-heleoplankton structure in three artificial ponds of North-eastern Argentina.

    PubMed

    Frutos, S M; Carnevali, R

    2008-09-01

    The aim of the present study was to compare the abundance and species richness of zoo-heleoplankton bigger than 53 microm in an annual cycle under similar climate conditions in three artificial ponds, in order to observe the changes during an annual cycle. Samples were taken monthly from June 1993 to July 1994 in Corrientes, Argentina. The first pond (A) was covered an 80% by Eichhornia crassipes (Mart.), the second one (B) with bloom of Microcystis aeruginosa (Kurtzing) and the last one (C) with organic matter deposited in the bottom. The water was more acidic at pond A, and the water at pond B contained more dissolved oxygen concentration than the water at the other two ponds. The zoo-heleoplankton densities varied between 20-1728 ind.l(-1) at pond A, 42-4082 ind.l(-1) at pond B and 148-2447 ind.l(-1) at pond C. The maximum zoo-heleoplankton abundance was found in the pond with cyanobacteria bloom during Autumn 1994 and the minimum abundance was found in the one with a predominance of E. crassipes. The rank of species richness was pond A > pond B > pond C. Rotifera was the most abundant group in pond A whereas the larval stages of Copepoda were abundant in the other two ponds. Anuraeopsis navicula Rousselt 1910 was the dominant population in the pond with macrophytes prevalence. Brachionus calyciflorus Pallas 1776 and larval stage of Copepoda had variable proportions in the pond with cyanobacteria bloom. Thermocyclops decipiens (Kiefer 1929) was present during the annual cycle only in the pond with organic matter deposited in the bottom. The succession of taxa was observed in the pond with coverage of aquatic macrophytes and with cyanobacteria bloom. Differences in species richness and low similarity in zoo-heleoplankton between ponds were determined by differences in the quality of the water in relation to the presence of macrophytes, cyanobacteria, organic matter deposited in the bottom and fish predation. Multiple regression analysis (stepwise) revealed that

  1. Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, X.; Yu, Q.; You, Y.

    2014-12-01

    Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.

  2. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    PubMed

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Use of diets formulated for summer water temperatures in pond production of hybrid striped bass

    USDA-ARS?s Scientific Manuscript database

    Elevated water temperatures are common in hybrid striped bass or Sunshine bass (HSB; Morone chrysops x M. saxatilis) production ponds during summer months in the southern US. Median daily water temperatures often exceed 30 C from June through September. This experiment was conducted to extend and re...

  4. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  5. The water quality and Cultivant enrichment potency of pond based on saprobic index at north coastal waters of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayat, Jafron W.

    2018-05-01

    Central Java is one of many areas which has long coastline, especially in the Northern Coast of Java Island. Intertidal activities occurred at this area may affect the transport of material and energy from surroundings. Cultivation activity supplies many inputs, i.e. feeds, chemicals (vitamin and mineral), including pollutants from feces and unconsumed feeds that affects the environment. One of water management is done through bioremediation by using vegetative agents (soft rehabilitation), such as seaweed and mangrove stands. The implementation of soft rehabilitation is highly depend on the existing environmental conditions of the ponds and surrounding waters. Therefore, it is very important to identify the condition of those waters first. The purpose of this study is to identify the quality of waters in the north coast of Central Java. Besides, it is also to analyze the potency of enriching cultivated commodity (cultivant), as well as a soft remediation mechanism using seaweed. The study was conducted in the coastal areas of Central Java, mainly to the locations commonly practicing cultivation in the pond waters; namely Brebes, Pemalang, Semarang, Demak, Pati and Jepara. Data were taken by sampling at least at 3 different sites as repetition, included ponds, public irrigations and coastline waters. The water sample was taken as much as 30 lt and filtered using plankton net no 25. Biodiversity of Shannon-Wiener Index (H'), evenness index (e) and Saprobic Index were used to analyze the plankton data. Result showed that plankton diversity in Central Java coasts were varied generally between 10 – 28 species. The most widely found species were Oscillatoria sp, Rhizosolenia styliformes, Surirella sp and Lyngbia conferoides. The diversity index varied from 1.83 to 2.9 with the stability status were between small to medium. The saprobic index showed a value between 0.33 up to 2.27; which indicated very small up to lightly contaminated status. The biggest stability

  6. Emissions of organic compounds from produced water ponds III: Mass-transfer coefficients, composition-emission correlations, and contributions to regional emissions.

    PubMed

    Mansfield, Marc L; Tran, Huy N Q; Lyman, Seth N; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-06-15

    A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10 -2 to 10 +3 mg m -2 h -1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO 2 . This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO 2 . Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Diffusion and drive-point sampling to detect ordnance-related compounds in shallow ground water beneath Snake Pond, Cape Cod, Massachusetts, 2001-02

    USGS Publications Warehouse

    LeBlanc, Denis R.

    2003-01-01

    Diffusion samplers and temporary drive points were used to test for ordnance-related compounds in ground water discharging to Snake Pond near Camp Edwards at the Massachusetts Military Reservation, Cape Cod, MA. The contamination resulted from artillery use and weapons testing at various ranges upgradient of the pond.The diffusion samplers were constructed with a high-grade cellulose membrane that allowed diffusion of explosive compounds, such as RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), into deionized water inside the samplers. Laboratory tests confirmed that the cellulose membrane was permeable to RDX and HMX. One transect of 22 diffusion samplers was installed and retrieved in August-September 2001, and 12 transects with a total of 108 samplers were installed and retrieved in September-October 2001. The diffusion samplers were buried about 0.5 feet into the pond-bottom sediments by scuba divers and allowed to equilibrate with the ground water beneath the pond bottom for 13 to 27 days before retrieval. Water samples were collected from temporary well points driven about 2-4 feet into the pond bottom at 21 sites in December 2001 and March 2002 for analysis of explosives and perchlorate to confirm the diffusion-sampling results. The water samples from the diffusion samplers exhibited numerous chromatographic peaks, but evaluation of the photo-diode-array spectra indicated that most of the peaks did not represent the target compounds. The peaks probably are associated with natural organic compounds present in the soft, organically enriched pond-bottom sediments. The presence of four explosive compounds at five widely spaced sites was confirmed by the photo-diode-array analysis, but the compounds are not generally found in contaminated ground water near the ranges. No explosives were detected in water samples obtained from the drive points. Perchlorate was detected at less than 1 microgram per liter in

  8. Withdrawal of ground water and pond water on Long Island from 1904 to 1949

    USGS Publications Warehouse

    Lusczynski, Norbert J.

    1950-01-01

    For more than 50 years the highly productive and readily replenishable water-bearing sands and gravels on Long Island -- capable of yielding an average of at least 1,000 million gallons a day -- and also some surface streams and ponds have been utilized on a large scale of public water supply and industrial, agricultural and domestic uses. During the drought months of 1949, when many surface and groundwater supplied were being depleted at an alarming rate in many localities in the Northeast, the abundant water resources of Long Island provided sufficient water for public water supply for a large number of private companies and municipalities, as well as for large emergency drafts by the City of New York. In addition they kept industrial concerns from curtailing production, saved millions of dollars of potato, cauliflower, and other Long Island crops, and even furnished, during the summer heat, comfort cooling and theatergoers.

  9. Water Quality Control for Shrimp Pond Using Adaptive Neuro Fuzzy Inference System : The First Project

    NASA Astrophysics Data System (ADS)

    Umam, F.; Budiarto, H.

    2018-01-01

    Shrimp farming becomes the main commodity of society in Madura Island East Java Indonesia. Because of Madura island has a very extreme weather, farmers have difficulty in keeping the balance of pond water. As a consequence of this condition, there are some farmers experienced losses. In this study an adaptive control system was developed using ANFIS method to control pH balance (7.5-8.5), Temperature (25-31°C), water level (70-120 cm) and Dissolved Oxygen (4-7,5 ppm). Each parameter (pH, temperature, level and DO) is controlled separately but can work together. The output of the control system is in the form of pump activation which provides the antidote to the imbalance that occurs in pond water. The system is built with two modes at once, which are automatic mode and manual mode. The manual control interface based on android which is easy to use.

  10. Survival of spotted salamander eggs in temporary woodland ponds of coastal Maryland

    USGS Publications Warehouse

    Albers, P.H.; Prouty, R.M.

    1987-01-01

    Temporary ponds on the Atlantic Coastal Plain in maryland were characterized according to water chemistry, rain input, phytoplankton, zooplankton and use by the spotted salamander Ambystoma maculatum during March-October 1983-1984. Neither the number of egg masses per unit of pond surface (abundance) nor the survival of spotted salamander embryos was significantly correlated (P>0.05) with pond pH. Rainfall during May-July significantly increased the hydrogen ion concentration of 5 of 11 ponds evaluated for the impact of rainfall during the previous 48h and the previous week. Survival of egg masses transferred among eight ponds with pH3.66-4.45 and one pond with pH5.18 was significantly reduced (Ppond water. The abundance of egg masses was positively correlated (Pwater temperature and magnesium concentration, and total chlorophyll during the larval period. Yearly variability of pond characteristics (e.g. water chemistry, pond longevity) and amphibian reproduction make it difficult to determine the effects of acidic deposition on the spotted salamander. At the present time, pond longevity, water temperature and possibly, oxygen content, seem more important to spotted salamander reproduction than chemical changes caused by annual acidic deposition.

  11. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.

    PubMed

    Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D

    2008-10-01

    The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.

  12. The study of recirculating aquaculture system in pond and its purification effect

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Zhang, Qingjing; Jia, Chengxia; Liu, Pan; Yang, Mu

    2017-05-01

    In this paper, a recirculating aquaculture purification system (RAPS) was designed to solve the problems of aquaculture pollution and shortage of freshwater resource according to the characteristic of northern freshwater ponds of China. The system were arranged in series and composed of high density culture pond, deposit pond, floating and submerged plant pond, ecological floating bed pond and biofilm filtrate pond. At the fish density of 20~30kg/m3 in the high density culture pond, the water quality parameters were monitored seasonally. The results indicated that the removal rate of total nitrogen, total phosphorus, ammonia nitrogen and nitrite nitrogen in the recirculating aquaculture system were 69.59%, 77.89%, 72.54% and 68.68%, respectively. The floating and submerged plant pond and ecological floating bed pond can remove TN and TP obviously, and increase dissolved oxygen and transparency significantly. And the biofilm filtrate pond has good effect of removing ammonium nitrogen and nitrite nitrogen, meanwhile, the microbial communities in the recirculating aquaculture system regulate on the water quality. Therefore, the RAPS show significant effects on water saving and pollution emission reducing.

  13. Investigating the Microbial Degradation Potential in Oil Sands Fluid Fine Tailings Using Gamma Irradiation: A Metagenomic Perspective.

    PubMed

    VanMensel, Danielle; Chaganti, Subba Rao; Boudens, Ryan; Reid, Thomas; Ciborowski, Jan; Weisener, Christopher

    2017-08-01

    Open-pit mining of the Athabasca oil sands has generated large volumes of waste termed fluid fine tailings (FFT), stored in tailings ponds. Accumulation of toxic organic substances in the tailings ponds is one of the biggest concerns. Gamma irradiation (GI) treatment could accelerate the biodegradation of toxic organic substances. Hence, this research investigates the response of the microbial consortia in GI-treated FFT materials with an emphasis on changes in diversity and organism-related stimuli. FFT materials from aged and fresh ponds were used in the study under aerobic and anaerobic conditions. Variations in the microbial diversity in GI-treated FFT materials were monitored for 52 weeks and significant stimuli (p < 0.05) were observed. Chemoorganotrophic organisms dominated in fresh and aged ponds and showed increased relative abundance resulting from GI treatment. GI-treated anaerobic FFT aged reported stimulus of organisms with biodegradation potential (e.g., Pseudomonas, Enterobacter) and methylotrophic capabilities (e.g., Syntrophus, Smithella). In comparison, GI-treated anaerobic FFT fresh stimulated Desulfuromonas as the principle genus at 52 weeks. Under aerobic conditions, GI-treated FFT aged showed stimulation of organisms capable of sulfur and iron cycling (e.g., Geobacter). However, GI-treated aerobic FFT fresh showed no stimulus at 52 weeks. This research provides an enhanced understanding of oil sands tailings biogeochemistry and the impacts of GI treatment on microorganisms as an effect for targeting toxic organics. The outcomes of this study highlight the potential for this approach to accelerate stabilization and reclamation end points. Graphical Abstract.

  14. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and

  15. Veggie Passive Orbital Nutrient Delivery System (PONDS)

    NASA Image and Video Library

    2018-02-27

    Project scientists, place seeds in Veggie Passive Orbital Nutrient Delivery System (PONDS) units inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  16. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  17. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    NASA Astrophysics Data System (ADS)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  18. Monitoring of coalbed water retention ponds in the Powder River Basin using Google Earth images and an Unmanned Aircraft System

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2016-12-01

    To extract methane from unminable seams of coal in the Powder River Basin of Montana and Wyoming, coalbed methane (CBM) water has to be pumped and kept in retention ponds rather than discharged to the vadose zone to mix with the ground water. The water areal coverage of these ponds changes due to evaporation and repetitive refilling. The water quality also changes due to growing of microalgae (unicellular or filamentous including green algae and diatoms), evaporation, and refilling. To estimate the water coverage changes and monitor water quality becomes important for monitoring the CBM water retention ponds to provide timely management plan for the newly pumped CBM water. Conventional methods such as various water indices based on multi-spectral satellite data such as Landsat because of the small pond size ( 100mx100m scale) and low spatial resolution ( 30m scale) of the satellite data. In this study we will present new methods to estimate water coverage and water quality changes using Google Earth images and images collected from an unmanned aircraft system (UAS) (Phantom 2 plus). Because these images have only visible bands (red, green, and blue bands), the conventional water index methods that involve near-infrared bands do not work. We design a new method just based on the visible bands to automatically extract water pixels and the intensity of the water pixel as a proxy for water quality after a series of image processing such as georeferencing, resampling, filtering, etc. Differential GPS positions along the water edges were collected the same day as the images collected from the UAS. Area of the water area was calculated from the GPS positions and used for the validation of the method. Because of the very high resolution ( 10-30 cm scale), the water areal coverage and water quality distribution can be accurately estimated. Since the UAS can be flied any time, water area and quality information can be collected timely.

  19. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from

  20. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry.

    PubMed

    Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi

    2007-01-01

    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.

  1. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    PubMed

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluating pond sand filter as sustainable drinking water supplier in the Southwest coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Harun, M. A. Y. A.; Kabir, G. M. M.

    2013-03-01

    This study investigates existing water supply scenario, and evaluates the performance of pond sand filter (PSF) in meeting drinking water demand of Dacope Upazila in southwest coastal Bangladesh. Questionnaire survey to the villagers reveals that PSF is the major drinking water sources (38 %) of the study area followed by tubewells (30.4 %), rainwater harvesting (RWH) systems (12.6 %), ponds (10.3 %) and others (8.7 %). The spot test and laboratory analysis show that odour, colour, pH, dissolved oxygen, hardness, calcium, magnesium, nitrate, sulphate and phosphate of the PSFs water meet Bangladesh standard. The efficiency of PSF in reducing total dissolved solids (TDS) (15 %) and potassium (8.2 %) is not enough to meet the standard of 20 % PSFs for TDS and one-third PSFs for potassium. The study proves that PSF is unable to remove coliform bacteria by 100 % from highly contaminated water. Hence, disinfection should be adopted before distribution to ensure safe drinking water. Majority of the PSF's users (80 %) are either partially satisfied or dissatisfied with the existing system. The beneficiary's willingness to pay for drinking water technologies seems that the combination of PSF and RWH could ensure sustainable drinking water in coastal region of Bangladesh.

  3. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    NASA Astrophysics Data System (ADS)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  4. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.

  5. Hydrogeochemical assessment of mine-impacted water and sediment of iron ore mining

    NASA Astrophysics Data System (ADS)

    Nur Atirah Affandi, Fatin; Kusin, Faradiella Mohd; Aqilah Sulong, Nur; Madzin, Zafira

    2018-04-01

    This study was carried out to evaluate the hydrogeochemical behaviour of mine-impacted water and sediment of a former iron ore mining area. Sampling of mine water and sediment were carried out at selected locations within the mine including the former mining ponds, mine tailings and the nearby stream. The water samples were analysed for their hydrochemical facies, major and trace elements including heavy metals. The water in the mining ponds and the mine tailings was characterised as highly acidic (pH 2.54-3.07), but has near-neutral pH in the nearby stream. Results indicated that Fe and Mn in water have exceeded the recommended guidelines values and was also supported by the results of geochemical modelling. The results also indicated that sediments in the mining area were contaminated with Cd and As as shown by the potential ecological risk index values. The total risk index of heavy metals in the sediment were ranked in the order of Cd>As>Pb>Cu>Zn>Cr. Overall, the extent of potential ecological risks of the mining area were categorised as having low to moderate ecological risk.

  6. An eco-friendly method for heavy metal removal from mine tailings.

    PubMed

    Arab, Fereshteh; Mulligan, Catherine N

    2018-06-01

    One of the serious environmental problems that society is facing today is mine tailings. These byproducts of the process of extraction of valuable elements from ores are a source of pollution and a threat to the environment. For example, mine tailings from past mining activities at Giant Mines, Yellowknife, are deposited in chambers, stopes, and tailing ponds close to the shores of The Great Slave Lake. One of the environmentally friendly approaches for removing heavy metals from these contaminated tailing is by using biosurfactants during the process of soil washing. The objective of this present study is to investigate the effect of sophorolipid (SL) concentration, the volume of washing solution per gram of medium, pH, and temperature on the efficiency of sophorolipids in removing heavy metals from mine tailings. It was found that the efficiency of the sophorolipids depends on its concentration, and is greatly affected by changes in pH, and temperature. The results of this experiment show that increasing the temperature from 15 to 23 °C, while using sophorolipids, resulted in an increase in the removal of iron, copper, and arsenic from the mine tailing specimen, from 0.25, 2.1, and 8.6 to 0.4, 3.3, and 11.7%. At the same time, increasing the temperature of deionized water (DIW) from 15 to 23 °C led to an increase in the removal of iron, copper, and arsenic from 0.03, 0.9, and 1.8 to 0.04, 1.1, and 2.1%, respectively. By increasing temperature from 23 to 35 °C, when using sophorolipids, 22% reduction in the removal of arsenic was observed. At the same time while using DI water as the washing solution, increasing temperature from 23 to 35 °C resulted in 6.2% increase in arsenic removal. The results from this present study indicate that sophorolipids are promising agents for replacing synthetic surfactants in the removal of arsenic and other heavy metals from soil and mine tailings.

  7. Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.

    2017-11-01

    Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.

  8. Response of Bighead Carp and Silver Carp to repeated water gun operation in an enclosed shallow pond

    USGS Publications Warehouse

    Romine, Jason G.; Jensen, Nathan; Parsley, Michael J.; Gaugush, Robert F.; Severson, Todd J.; Hatton, Tyson W.; Adams, Ryan F.; Gaikowski, Mark P.

    2015-01-01

    The Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix are nonnative species that pose a threat to Great Lakes ecosystems should they advance into those areas. Thus, technologies to impede Asian carp movement into the Great Lakes are needed; one potential technology is the seismic water gun. We evaluated the efficacy of a water gun array as a behavioral deterrent to the movement of acoustic-tagged Bighead Carp and Silver Carp in an experimental pond. Behavioral responses were evaluated by using four metrics: (1) fish distance from the water guns (D); (2) spatial area of the fish's utilization distribution (UD); (3) persistence velocity (Vp); and (4) number of times a fish transited the water gun array. For both species, average D increased by 10 m during the firing period relative to the pre-firing period. During the firing period, the spatial area of use within the pond decreased. Carp were located throughout the pond during the pre-firing period but were concentrated in the north end of the pond during the firing period, thus reducing their UDs by roughly 50%. Overall, Vp decreased during the firing period relative to the pre-firing period, as fish movement became more tortuous and confined, suggesting that the firing of the guns elicited a change in carp behavior. The water gun array was partially successful at impeding carp movement, but some fish did transit the array. Bighead Carp moved past the guns a total of 78 times during the pre-firing period and 15 times during the firing period; Silver Carp moved past the guns 96 times during the pre-firing period and 13 times during the firing period. Although the water guns did alter carp behavior, causing the fish to move away from the guns, this method was not 100% effective as a passage deterrent.

  9. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  10. Study on immobilization and migration of nuclide u in superficial soil of uranium tailings pond

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Zhou, Shukui

    2017-05-01

    The uranium tailings in southern China was used as the object of study to study the fixation and migration characteristics of nuclide U in shallow tailings. The results showed that the precipitation of tailings in the tailings soil was not linearly related to the depth during the acid rain leaching process. Tailings soil in the role of fixatives, when the lime as a fixative, the tailings of different soil uranium in 20 days after the re-precipitation. However, when lime and ammonium phosphate were used as fixing agents, the cumulative precipitation of U had a significant effect, and the migration of uranium was inhibited.

  11. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  12. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  13. Sport fishery potential of power plant cooling ponds: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidinger, R.C.; Lewis, W.M.

    1986-10-01

    This research was undertaken to determine if cooling ponds could serve as habitat for several coolwater fish species and also to evaluate the potential use of cooling ponds as nursery areas for receiving waters. The work was conducted on two cooling ponds in northern Illinois. Walleye (Stizostedion vitreum), muskellunge (Esox masquinongy), striped bass (Morone saxatilis) fingerlings, and adult threadfin shad (Dorosoma petenense) were stocked into both cooling ponds. The hybrids between the striped bass and white bass (M. chrysops) had been previously stocked into Collins Pond. Smallmouth bass (Micropterus dolomieui) fingerlings and larval striped bass and walleye were stocked inmore » Dresden Pond. Several sampling techniques including seining, electrofishing, and rotenoning were used to monitor growth and survival of stocked species. In addition, escapement of stocked and indigenous species was monitored at the Dresden Pond spillway. Walleye, muskellunge, striped bass and hybrid striped bass exhibited excellent growth in Collins Pond as did smallmouth bass in Dresden Pond. One of the primary differences between an open system (such as Dresden Pond) and a closed system (such as Collins Pond) is the potential that the open system has to serve as a fish nursery area for receiving waters. The stocking of ''coolwater'' species in a closed type system such as Collins Pond is an effective way to control and maintain selected sport species. Dresden Pond was not open to public fishing during this study, but Collins Pond developed an excellent sport fishery as a result of these stockings.« less

  14. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  15. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the

  16. Attributes of successful stock water ponds in southern Arizona

    Treesearch

    Barry L. Imler; Richard H. Wawkins; D. Phillip Guertin; Don W. Young

    2000-01-01

    The attributes of 20 ponds (or stock tanks) on the Nogales Ranger District of the Coronado National Forest were studied in detail by groups. Two contrasting groups, judged to be either functional (n = 11) or nonfunctional (n = 9) were used in the study. Differences between the groups were evaluated on the basis of attributes of the ponds themselves, the contributing...

  17. Persistence of DNA on clothes after exposure to water for different time periods-a study on bathtub, pond, and river.

    PubMed

    Helmus, Janine; Zorell, Sarah; Bajanowski, Thomas; Poetsch, Micaela

    2018-01-01

    DNA traces on clothes of drowned bodies can provide important evidence for police investigations, especially in cases of suspected suicides or homicides. However, it is generally assumed that the water "erodes" a large part of the DNA depending especially on the exposure time. In forensic casework, DNA of suspects could be found frequently on clothes of drowned bodies after hours, sometimes days of exposure to water. This study was conducted to attempt a general statement about the conditions under which sufficient DNA remains can be expected for molecular genetic analysis. For this purpose, different scenarios were designed including DNA from three to five people, different types of waters (tap, pond, bathtub and river) for various time periods, with higher water pressure, different temperature, and soapy water (bathtub). Epithelial cells and blood cells were mounted on cotton cloths, and the DNA left after exposure was analyzed using the Powerplex® ESX17fast kit. In the indoor experiments, complete profiles could be seen even after 10 min rinsing of clothes under the tap and after 1 week in the bathtub. Outdoors, the results differed considerably between summer and winter as well as between pond and river. The longest exposure time still resulting in a complete profile was 2 weeks for a sample with skin cells in the pond during winter. In summer, the time period for erasing the bulk of DNA was 4 hours regarding epithelial samples and more than 1 day for blood samples in pond and river environments. All in all, the results demonstrate that DNA could still be recovered from clothes exposed to water for more than 1 week.

  18. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  19. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  20. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  1. Effects of seepage from fly-ash settling ponds and construction dewatering on ground-water levels in the Cowles unit, Indiana Dunes National Lakeshore, Indiana

    USGS Publications Warehouse

    Meyer, William R.; Tucci, Patrick

    1979-01-01

    Part of the Indiana Dunes National Lakeshore shares a common boundary with the Northern Indiana Public Service Company (NIPSCO). This area is underlain by unconsolidated deposits approximately 180 feet thick. NIPSCO accumulates fly ash from the burning of coal in electric-power generating units in settling ponds. Seepage from the ponds has raised ground-water levels above natural levels approximately 15 feet under the ponds and more than 10 feet within the Lakeshore. NIPSCO is presently (1977) constructing a nuclear powerplant, and construction activities include pumping ground water to dewater the construction site. The company has installed a slurry wall around the site to prevent lowering of ground-water levels within the Lakeshore. Plans call for continuous pumping through at least December 1979. A multilayered digital flow model was constructed to simulate the ground-water system. The model was used to demonstrate the effects of seepage from the fly-ash ponds on ground-water levels. Also, the model indicated a decline of 3 feet or less in the upper sand unit and 5 feet or less in the lower sand unit within the Lakeshore.

  2. Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds

    NASA Astrophysics Data System (ADS)

    Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn

    2017-12-01

    Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely

  3. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  4. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Williams, P.; Edmundson, S.

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperaturemore » conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and

  5. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jop, K.; Putt, A.; Shepherd, S.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C.more » dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.« less

  6. Characterisation of MR reactor pond in nNRC 'Kurchatov institute' before dismantling work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirsky, Yury; Semin, Ilya

    2013-07-01

    In this work complex α-, β-, γ-spectrometric research of water, bottom slimes and deposits on walls of the reactor pond and the storage pond of the MR reactor was made. Identify, that the main dose forming radionuclide, during dismantling work on the reactor MR, is Cs-137. It is shown, that specific activity of radionuclides in bottom slimes considerably exceed specific activity of radionuclides in water from ponds, and near to high level radioactive waste. It is detected that decreasing the water level in reactor ponds on 1 m, increase the exposure dose rate at a distance 1 m from themore » pond in 2 times. The observed increase in exposure dose rate can be explained by contribution on dose rate the cesium-137 deposed on walls of the storage pond. Effectiveness of cleaning of walls of the pool of storage from deposits by a water jet of high pressure is investigated. (authors)« less

  7. Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia

    NASA Astrophysics Data System (ADS)

    Nejeschlebová, L.; Sracek, O.; Mihaljevič, M.; Ettler, V.; Kříbek, B.; Knésl, I.; Vaněk, A.; Penížek, V.; Dolníček, Z.; Mapani, B.

    2015-05-01

    Mine tailings at Rosh Pinah located in semiarid southern Namibia were investigated by the combination of mineralogical methods and leaching using water and simulated gastric solution. They are well-neutralized with leachate pH > 7 and neutralization potential ratios (NPR) up to 4. Neutralization is mainly due to abundant Mn-rich dolomite in the matrix. Concentrations of released contaminants in water leachate follow the order Zn > Pb > Cu > As. Relatively high leached concentrations of Zn and partly also of Pb are caused by their link to relatively soluble carbonates and Mn-oxyhydroxides. In contrast, As is almost immobile by binding into Fe-oxyhydroxides, which are resistant to dissolution. Barium is released by the dissolution of Ba-carbonate (norsethite) and precipitates in sulfate-rich pore water as barite. Dissolved concentrations in neutral mine drainage water collected in the southern pond are low, but when total concentrations including colloidal fraction are taken into account, more than 70% of Zn is in colloidal form. Groundwater upgradient of the mine tailings is of poor quality and there seems to be no negative impact on groundwater downgradient from mine tailings. Contaminant concentrations in simulated gastric leachates are in the order Ba > Pb > Zn > Cu > As with a maximum gastric bioaccessibility of 86.6% for Ba and a minimum of 3.3% for As. These results demonstrate that total contaminant content and toxicity in the solid phase are poor predictors of risk, and therefore mineralogical and bioavailability/bioaccessibility studies are necessary for evaluation of contaminant environmental impact.

  8. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  9. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  10. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site

  11. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  12. Reflective properties of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris

    2018-06-01

    Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo

  13. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.

    PubMed

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-04-30

    Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Prevalence of bacterial pathogens and their anti-microbial resistance in Tilapia and their pond water in Trinidad.

    PubMed

    Newaj-Fyzul, A; Mutani, A; Ramsubhag, A; Adesiyun, A

    2008-05-01

    In Trinidad, Tilapia (Oreonchromis spp.) is one of the most important fresh water food fish and the number of farms has been increasing annually. A study was conducted in the local tilapia industry to determine the microbial quality of pond water, prevalence of bacterial pathogens and their anti-microbial resistance using the disk diffusion method. Seventy-five apparently healthy fish and 15 pond water samples from three of the four commercial tilapia fish farms in the country were processed. The 202 bacterial isolates recovered from fish slurry and 88 from water, belonged to 13 and 16 genera respectively. The predominant bacteria from fish slurry were Pseudomonas spp. (60.0%), Aeromonas spp. (44.0%), Plesiomonas (41.3%) and Chromobacterium (36.0%) (P < 0.05; chi(2)) compared with isolates from pond water where Bacillus spp. (80.0%), Staphylococcus spp., Alcaligenes spp. and Aeromonas spp. (60.0%) were most prevalent (P < 0.05; chi(2)). Using eight anti-microbial agents, to test bacteria from five genera (Aeromonas, Chromobacterium, Enterobacter, Plesiomonas and Pseudomonas), 168 (97.1%) of 173 bacterial isolates from fish slurry exhibited resistance to one or more anti-microbial agents compared with 47 (90.4%) of 52 from water (P > 0.05; chi(2)). Resistance was high to ampicillin, 90.2% (158 of 173), erythromycin, 66.5% (115 of 173) and oxytetracycline, 52.6%, (91 of 173) but relatively low to chloramphenicol, 9.8% (17 of 173) and sulphamethoxazole/trimethoprim, 6.4% (11 of 173) (P < 0.05; chi(2)). For pond water isolates, the frequency of resistance across bacterial genera ranged from 75% (nine of 12) for Chromobacter spp. to 100% found amongst Enterobacter spp. (six of six), Plesiomonas spp. (nine of nine) and Pseudomonas spp. (eight of eight) (P < 0.05; chi(2)). Resistance was generally high to ampicillin, 78.8% (41 of 52), erythromycin, 51.9% (27 of 52) and oxytetracycline, 34.5% (18 of 52) but low to sulphamethoxazole/trimethoprim, 7.7% (four of 52) and

  15. Par Pond vegetation status 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into themore » early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.« less

  16. Tsukamoto fuzzy implementation to identify the pond water quality of koi

    NASA Astrophysics Data System (ADS)

    Qur'ania, A.; Verananda, D. I.

    2017-01-01

    The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.

  17. Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater.

    PubMed

    Chen, Rong; Ao, Dong; Ji, Jiayuan; Wang, Xiaochang C; Li, Yu-You; Huang, Yue; Xue, Tao; Guo, Hongbing; Wang, Nan; Zhang, Lu

    2017-02-15

    Increasing use of reclaimed wastewater (RW) for replenishing urban landscape ponds has aroused public concern about the water quality. Three ponds replenished with RW in three cities in China were chosen to investigate 22 indexes of water quality in five categories. This was achieved by comparing three pairs of ponds in the three different cities, where one pond in each pair was replenished with RW and the other with surface water (SW). The nutrients condition, heavy metal concentration and ecotoxicity did not differ significantly between RW- and SW-replenished ponds. By contrast, significant differences were observed in algal growth and pathogen risk. RW ponds presented a Cyanophyta-Chlorophyta-Bacillariophyta type with high algal diversity while SW ponds presented a Cyanophyta type with low diversity. Regrowth of bacterial pathogens and especially survival of viral pathogens in RW, was the main driver behind the higher risk for RW ponds compared with SW ones. The duration of RW replenishment was proved to have a marked impact on the algal growth and pathogen risk. With continued RW replenishment, non-dominant algal species subjected to decrease while dominant species were enhanced resulting in the biomass increasing but diversity declining, and the risk posed by viral pathogens might become greater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of aided phytostabilization of Pb and Zn in Santa Antonieta tailing pond two years after its remediation

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, Silvia; Neveu, Aurore; Acosta, Jose A.; Zornoza, Raúl; Gómez, M. Dolores; Faz, Ángel

    2017-04-01

    Mining and its subsequent activities have been found to degrade the land to a significant extent. Phytostabilization aims to generate a functional soil ecosystem that supports plant growth over contaminated wastes, lessening surface and subsurface water flow, providing stability to soil through the development of extensive root systems, and hastening successional development. A field experiment was carried out in Santa Antonieta tailing pond, located in Cartagena-La Unión mining district (SE Spain) in order to know the reasons why important differences in the percentage of plant cover were observed in the studied areas two years after the end of assisted phytostabilization. The main objectives of this research were to: a) determine the vegetation cover and biodiversity of the four plots selected; b) evaluate which soil physicochemical properties influence significant the growth and development of plant species and c) identify in which soil fractions are mostly retained Pb and Zn. The results of this study showed that the highest percentage of vegetation cover was registered in the plot 1 (85%), while the lowest percentage was observed in Plot 3 where no plant grew as in the control plot. The most influential physicochemical properties on the growth and development of the plant species that grew on the plots were: pH, electrical conductivity, inorganic carbon and bioavailable phosphorus.With regard to sequential extraction, Pb and Zn were in a very high percentage in the residual fraction. The highest concentration of bioavailable metal was observed with Zn in plot 3, around 15%, probably due to its acidity (pH value of 3.2) and this may be the cause of this plot is devoid of vegetation. For future research in the study area, a new sampling of plant species that continue growing on plots would need to be carried out to determine if metals continue to accumulate in the rhizosphere or are accumulating at the aerial part of the plant, and avoid possible environmental

  19. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  20. Remediation of an oily leachate pond in Estonia.

    PubMed

    Kriipsalu, Mait; Marques, Marcia; Hogland, William

    2005-12-01

    Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.

  1. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    USGS Publications Warehouse

    Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 ??g 1-1), and low bicarbonate concentrations (2 mg l4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system. ?? 1993.

  2. Treatment of piggery wastes in waste stabilization ponds.

    PubMed

    Estrada, V E E; Hernández, D E A

    2002-01-01

    The piggery industry produces high effluent loads. This is due to the high concentration of animals kept in a confined space, foods with high protein content that are not well assimilated by the animals, and poor on-farm water management. In this study, we present the characteristics, design, site selection, soil study, and the construction of a pilot pond system for a family farm located in a warm climate area. The design includes a solids sedimentation phase, an anaerobic pond, a facultative pond and three maturation ponds. Once the system had reached steady state, the organic and bacterial kinetic constants were determined for each pond. The control parameters were determined and the dissolved oxygen and removal efficiency profiles were obtained. The results indicate that the effluent from the second maturation pond complies with the Official Mexican Standard for reuse in agriculture ("1000 FC/100 ml).

  3. Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA

    USGS Publications Warehouse

    Shellenbarger, G.G.; Athearn, N.D.; Takekawa, John Y.; Boehm, A.B.

    2008-01-01

    Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.

  4. Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds

    NASA Astrophysics Data System (ADS)

    Zakonnova, Lyudmila; Nikishkin, Igor; Rostovzev, Alexandr

    2017-11-01

    One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton ("hyperflow") and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.

  5. Enteric luminous microflora of the pond-cultured milk fishChanos chanos (Forskal).

    PubMed

    Ramesh, A; Nandakumar, R; Venugopalan, V K

    1986-06-01

    Qualitative and quantitative investigations were made on the luminous bacteria associated with the gut of pond cultured milk fishChanos chanos. Significant differences in luminous bacterial numbers were found between gut and pond water and between gut and pond sediment, but not between pond water and sediment. No significant variation in luminous bacterial population among the gut regions was observed. The quantity of ingesta in the fish gut does not appear to influence the biomass of luminous bacteria.Vibrio harveyi andV. fischeri were the 2 most commonly encountered species, and of the 2 luminous species,V. harveyi was predominant.

  6. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  7. Par Pond vegetation status Summer 1995 -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar tomore » the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  8. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices.

    PubMed

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  9. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices

    NASA Astrophysics Data System (ADS)

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  10. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  11. Holocene Closure of Lib Pond, Marshall Islands

    PubMed Central

    Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  12. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds.

    PubMed

    Clark, Benton C; Kolb, Vera M

    2018-05-11

    In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.

  13. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    PubMed

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  15. NASA's Potential Contributions for Remediation of Retention Ponds Using Solar Ultraviolet Radiation and Photocatalysis

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren W.; Ryan, Robert E.

    2007-01-01

    This Candidate Solution uses NASA Earth science research on atmospheric ozone and aerosols data (1) to help improve the prediction capabilities of water runoff models that are used to estimate runoff pollution from retention ponds, and (2) to understand the pollutant removal contribution and potential of photocatalytically coated materials that could be used in these ponds. Models (the EPA's SWMM and the USGS SLAMM) exist that estimate the release of pollutants into the environment from storm-water-related retention pond runoff. UV irradiance data acquired from the satellite mission Aura and from the OMI Surface UV algorithm will be incorporated into these models to enhance their capabilities, not only by increasing the general understanding of retention pond function (both the efficacy and efficiency) but additionally by adding photocatalytic materials to these retention ponds, augmenting their performance. State and local officials who run pollution protection programs could then develop and implement photocatalytic technologies for water pollution control in retention ponds and use them in conjunction with existing runoff models. More effective decisions about water pollution protection programs could be made, the persistence and toxicity of waste generated could be minimized, and subsequently our natural water resources would be improved. This Candidate Solution is in alignment with the Water Management and Public Health National Applications.

  16. South Bay Salt Pond Mercury Studies Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  17. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    USGS Publications Warehouse

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    The July 2013 study consisted of three scenarios: fish behavior, single gun assessment, and experimental barrier evaluation. The fish behavior scenario simulated the pond conditions from previous studies. Two 80-in3 water guns were fired in the south end of the testing pond. Pressures essentially doubled from the testing of the single 80-in3 water gun. The single gun assessment scenario sought to replicate the setup of the 80-in3 scenario in September 2012, but with additional sensors to better define the pressure field. The 5-lb/in2 target pressure field continued to show a radius ranging from 40 to 45 feet, dependent on the pressure of the input air. The final scenario, the experimental barrier evaluation, showed that a two-dimensional continuous plane of 5 lb/in2 can be created between two 80-in3 water guns to a separation of 99 feet and a depth of 6.5 feet with 1,500 lb/in2 of input air.

  18. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.

    PubMed

    Wayland, Mark; Headley, John V; Peru, Kerry M; Crosley, Robert; Brownlee, Brian G

    2008-01-01

    An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands.

  19. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  20. Contraction of Spawning Areas in the Baksan River and Pollution of Superficial Water of Adjacent Territories

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Gurbanov, A. G.; Bogatikov, O. A.; Karamurzov, B. S.; Gazeev, V. M.; Shevchenko, A. V.; Sychkova, V. A.; Dolov, S. M.; Dudarov, Z. I.

    2018-02-01

    Geochemical study of water samples taken from the Malyi Mukulan and Bol'shoi Mukulan creeks and watercourses and trickling from the pile dike of tailing pond no. 3(1) of the Tyrnyauz tungsten-molybdenum plant has been carried out. Estimation of the degree of their polluting effect on the Baksan River was made.

  1. Management considerations to enhance use of stock ponds by waterfowl broods

    Treesearch

    Mark A. Rumble; Lester D. Flake

    1983-01-01

    Use of 36 livestock watering ponds by mallard (Anas playtrhynchos), blue-winged teal (A. discors), and total broods was tested against 32 habitat variables from 1977 and 1978. Pond size, shallow water areas with submersed vegetation, number of natural wetlands in a 1.6-km radius, and emersed vegetation composed of smartweed (

  2. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    NASA Astrophysics Data System (ADS)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  3. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.

    PubMed

    Romanova, Tamara E; Shuvaeva, Olga V; Belchenko, Ludmila A

    2016-01-01

    The ability of water hyacinth (Eichhornia crassipes) to uptake Ag, Ba, Cd, Mo, and Pb from waters in gold mine tailing area was studied. All experiments were carried out in the field conditions without using of model system. Bioconcentration (BCF) and translocation factors (TF) as well as elements accumulation by plant in different points of tailings-impacted area were evaluated. It has been shown that water hyacinth demonstrates high ability to accumulate Mo, Pb, and Ba with BCF values 24,360 ± 3600, 18,800 ± 2800 and 10,040 ± 1400, respectively and is efficient in translocation of Mo and Cd. The general trend of the plant accumulation ability in relation to the studied elements corresponds to their concentration in the medium. As the distance from tailings increases, concentration of Ag, Ba and Pb in plant decreases more clearly than that of Cd, while the amount of Mo accumulated by plant doesn't drop significantly in accordance with its concentration in water. Under the conditions of the confluence of river Ur and drainage stream Ba and Ag can be considered as potential candidates for phytomining.

  4. Source, movement, and effects of nitrogen and phosphorus in three ponds in the headwaters of Hop Brook, Marlborough, Massachusetts

    USGS Publications Warehouse

    Briggs, John C.; Silvey, William D.

    1984-01-01

    The headwaters of Hop Brook near Marlborough, Massachusetts, contain a series of three in-line ponds--Hager Pond, Brist Millpond, and Carding Millpond--which receive over half of their surface-water inflow as effluent from the Marlborough Easterly Wastewater Treatment Plant. These ponds have a history of summer algal blooms and fish kills. Water entering these ponds contains quantities of nitrogen and phosphorus far higher than the levels known to promote excessive growth of aquatic vegetation. As the water moves through the three ponds, nitrogen levels decrease. Although some nitrogen is lost to the atmosphere by denitrification, the bulk of the nitrogen probably is retained in the pond sediments. There is a net decrease in phosphorus in the water leaving Carding Millpond compared to the water entering Hager Pond. However, during most sampling periods, the phosphorus concentration of water leaving Carding Millpond is still above the level known to cause excessive growth of aquatic vegetation in lakes. During certain summer periods, there appears to be release of some phosphorus from the sediments in Carding and Grist Millponds. No improvement in water quality of the three ponds can be expected until the concentrations of nutrients entering Hager Pond are reduced to levels that will not support excessive growth of aquatic vegetation. (USGS)

  5. Cadmium tolerance and antibiotic resistance in Escherichia coli isolated from waste stabilization ponds.

    PubMed

    Patra, Sova; Das, T K; Avila, C; Cabello, V; Castillo, F; Sarkar, D; Lahiri, Susmita; Jana, B B

    2012-04-01

    The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.

  6. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  7. Influences of N-fixing and non-N-fixing vegetation and invasive fish on water chemistry of Hawaiian anchialine ponds

    Treesearch

    B. D. Dudley; Richard MacKenzie; T. S. Sakihara; H. Dulaiova; C. A. Waters; Flint Hughes; R. Ostertag

    2014-01-01

    In coastal waters, it remains unclear how terrestrial invasive species might alter nutrient availability and thus affect bottom-up control of primary production. Anchialine ponds are tidal- and groundwater-fed coastal water bodies without surface connections that provide convenient model systems in which to examine terrestrial to aquatic nutrient flow. To investigate...

  8. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  9. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-08-24

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  10. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  11. Effect of co-culture of Chinese shrimp ( Fenneropenaeus chinensis) and sea cucumber ( Apostichopus japonicus Selenka) on pond environment

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Sun, Yongjun; Wang, Fang

    2016-10-01

    Monoculture of sea cucumber (pond S) and polyculture of shrimp with sea cucumber (pond SS) were established to evaluate the effect of shrimp on the environmental conditions of sea cucumber farming pond. Contributions of sediment organic matter (SOM2) resuspended from benthic sediment and the suspended particulate organic matter (SPOM) deposited from the water column to the precipitated organic matter (SOM1) collected with sediment traps were estimated with carbon stable isotope analysis. The results showed that the levels of SPOM and SOM2 in pond SS significantly decreased in comparison with those in pond S at the end of experiment ( P < 0.05), indicating that co-culturing shrimp in sea cucumber farming pond could purify the farming water. Carbon stable isotope analysis showed that the proportion of SOM2 in SOM1 in pond SS (84.97% ± 0.38%) was significantly lower than that in pond S (95.20% ± 0.30%) ( P < 0.05), suggesting that the resuspension of organic matter from benthic sediment into overlying water was reduced in polyculture pond. In contrast, the proportion of SPOM in SOM1 in pond SS (15.03% ± 0.38%) was significantly higher than that in pond S (4.80% ± 0.30%) ( P < 0.05), indicating that the sedimentation of SPOM from water column was enhanced in pond SS owing to the biodeposition effect of shrimp.

  12. Dissolved Oxygen in Guadalupe Slough and Pond A3W, South San Francisco Bay, California, August and September 2007

    USGS Publications Warehouse

    Shellenbarger, Gregory; Schoellhamer, David H.; Morgan, Tara L.; Takekawa, John Y.; Athearn, Nicole D.; Henderson, Kathleen D.

    2008-01-01

    Initial restoration of former salt evaporation ponds under the South Bay Salt Pond Restoration Project in San Francisco Bay included the changing of water-flow patterns and the monitoring of water quality of discharge waters from the ponds. Low dissolved oxygen (DO) concentrations became evident in discharge waters when the ponds first were opened in 2004. This was a concern, because of the potential for low-DO pond discharge to decrease the DO concentrations in the sloughs that receive water from the ponds. However, as of summer 2007, only limited point-measurements of DO concentrations had been made in the receiving sloughs adjacent to the discharge ponds. In this report, we describe two short studies aimed at understanding the natural variability of slough DO and the effect of pond discharge on the DO concentrations in the sloughs. Pond A3W (a discharge pond) and the adjacent Guadalupe Slough were instrumented in August and September 2007 to measure DO, temperature, conductivity, and pH. In addition, Mowry and Newark Sloughs were instrumented during the August study to document DO variability in nearby sloughs that were unaffected by pond discharge. The results showed that natural tidal variability in the slough appeared to dominate and control the slough DO concentrations. Water-quality parameters between Guadalupe Slough and Mowry and Newark Sloughs could not be directly compared because deployment locations were different distances from the bay. Pond-discharge water was identified in Guadalupe Slough using the deployed instruments, but, counter to the previous assumption, the pond discharge, at times, increased DO concentrations in the slough. The effects of altering the volume of pond discharge were overwhelmed by natural spring-neap tidal variability in the slough. This work represents a preliminary investigation by the U.S. Geological Survey of the effects of pond discharge on adjacent sloughs, and the results will be used in designing a comprehensive DO

  13. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    DOE PAGES

    Huesemann, Michael; Dale, T.; Chavis, A.; ...

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  14. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  15. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  16. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  17. The Profile Quality of Pond In Kendal Regency to Diversification Aquaculture

    NASA Astrophysics Data System (ADS)

    Ayuniar, Ligar Novi; Hidayat, Jafron Wasiq

    2018-02-01

    Water quality, particularly coastal areas, is systematically tropogenic. The decline in water quality is caused by industrial waste pollution, soil erosion carried by the river, and the depletion of mangrove areas. The decrease of water quality can affect the fishery cultivation activities that exist in the region. It also affects the quality of the cultivated fish. Fish cultivated in ponds with poor water quality can be harmful to the health of the people who consume the fish. One effort to manage the feasibility of pond waters is by identifying the quality. The purpose of this research is to know the profile of pond water quality and to know the diversity potential of aquaculture. Based on the nature of the problem this research is a field research, while the purpose of this study is descriptive and explanatory research. The method used in this research is research by using survey method. Aquatic profile results are essential to improve the quality and quantity of Fisheries, especially in diversifying fisheries.

  18. Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.

    2017-01-01

    The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows.These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates.The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one

  19. Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho.

    PubMed

    Rattray, Gordon W

    2017-12-01

    The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows. These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates. The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one

  20. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.

    PubMed

    Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A

    2014-08-01

    Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

  1. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  2. Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Spivak, Amanda C.; Gosselin, Kelsey; Howard, Evan; Mariotti, Giulio; Forbrich, Inke; Stanley, Rachel; Sylva, Sean P.

    2017-06-01

    Integrating spatial heterogeneity into assessments of salt marsh biogeochemistry is becoming increasingly important because disturbances that reduce plant productivity and soil drainage may contribute to an expansion of shallow ponds. These permanently inundated and sometimes prominent landscape features can exist for decades, yet little is known about pond biogeochemistry or their role in marsh ecosystem functioning. We characterized three ponds in a temperate salt marsh (MA, USA) over alternating periods of tidal isolation and flushing, during summer and fall, by evaluating the composition of plant communities and organic matter pools and measuring surface water oxygen, temperature, and conductivity. The ponds were located in the high marsh and had similar depths, temperatures, and salinities. Despite this, they had different levels of suspended particulate, dissolved, and sediment organic matter and abundances of phytoplankton, macroalgae, and Ruppia maritima. Differences in plant communities were reflected in pond metabolism rates, which ranged from autotrophic to heterotrophic. Integrating ponds into landcover-based estimates of marsh metabolism resulted in slower rates of net production (-8.1 ± 0.3 to -15.7 ± 0.9%) and respiration (-2.9 ± 0.5 to -10.0 ± 0.4%), compared to rates based on emergent grasses alone. Seasonality had a greater effect on pond water chemistry, organic matter pools, and algal abundances than tidal connectivity. Alternating stretches of tidal isolation and flushing did not affect pond salinities or algal communities, suggesting that exchange between ponds and nearby creeks was limited. Overall, we found that ponds are heterogeneous habitats and future expansion could reduce landscape connectivity and the ability of marshes to capture and store carbon.

  3. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  4. Three-dimensionally spiral structure of the water stream induced by a centrifugal stirrer in large aqua-cultural ponds

    NASA Astrophysics Data System (ADS)

    Itano, Tomoaki; Inagaki, Taishi; Nakamura, Choji; Sugihara-Seki, Masako; Hyodo, Jinsuke

    2017-11-01

    We have conducted measurements of the water stream produced by a mechanical stirrer (diameter 2.4[m], electric power 50[W]) located in shallow rectangular reservoirs (small 0.7[ha], large 3.7[ha]), which may be employed as a cost-efficient aerator for the aqua-cultural purpose, with the aid of both particle tracking velocimetry by passive tracers floating on the surface and direct measurement by electro-magnetic velocimeter under the surface. The present measurements indicate that the stirrer drives primarily the horizontally rotating water stream and secondarily the vertical convection between the surface and the bottom of the reservoir, which results in the three-dimensionally spiral-shaped water streams scaled vertically by just a meter but horizontally by more than ten meters. It is suggested that the spiral structure driven by the stirrer may activate the underwater vertical mixing and enhance dissolved oxygen at the bottom of aqua-cultural pond more effectively than the paddle-wheel aerators commonly used in aqua-cultural ponds. This research was financially supported in part by the Kansai University Fund for Supporting Young Scholars, 2016-2017.

  5. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    PubMed

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  6. The color of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi < 1.5 m) and to pond depth Hp for thick ice (Hi > 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi < 1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  7. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland.

    PubMed

    O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electric Trees and Pond Creatures.

    ERIC Educational Resources Information Center

    Weaver, Helen; Hounshell, Paul B.

    1978-01-01

    Two learning activities are presented to develop observation and classification skills at the elementary level. The first is an electric box that associates tree names with leaf and bark specimens, and the second is a pond water observation and slide preparation activity. (BB)

  9. Utilization of surface mine ponds in East Tennessee by breeding amphibians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, L.J.; Fowler, D.K.

    1981-06-01

    Of 24 ponds examined on Ollis Creek Surface Mine, Campbell County, Tennessee, 21 contained breeding amphibians. Twelve species of amphibians were identified in ponds that ranged from 4.0 to 8.0 in pH. Although ponds with low pH values were used by breeding amphibians, significantly more amphibian species were found in ponds with higher pH values. The average pH of ponds occupied by each amphibian species varied. Spring peepers (Hyla crucifer) occupied ponds with the lowest average pH (5.22) while upland chorus frogs (Pseudacris triseriata feriarum) utilized ponds with the highest average pH (6.33). Findings indicated high biological productivity in surfacemore » mine ponds. Aquatic vegetation was present in 20 of the 24 ponds. Aquatic insects and a diverse wildlife fauna utilized the study ponds. Large mammals (3 species), waterbirds (17 species), and snakes (2 species) were among those species observed. Surface mine ponds were found to supply an important habitat component for a variety of wildlife species and therefore improve the quality of wildlife habitat on the surface mines. In some areas, mine ponds are the only source of surface water available for wildlife use. 23 references, 9 figures, 5 tables.« less

  10. Mutagenicity and cytotoxicity of liquid waste, press water and pond water, produced in the cassava flour industry, and of antitoxic sodium thiosulfate.

    PubMed

    Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta

    2014-02-01

    Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.

  11. PONDCALC - A Tool to Estimate Discharge from the Alviso Salt Ponds, California

    USGS Publications Warehouse

    Shellenbarger, Gregory; Schoellhamer, David H.; Lionberger, Megan A.

    2007-01-01

    Former commercial salt ponds in Alviso, California, now are operated by the U.S. Fish and Wildlife Service (USFWS) to provide habitat for birds. The USFWS has modified the operation of the ponds to prevent exceedingly high salinity. Ponds that were formerly hydraulically isolated from South San Francisco Bay and adjacent sloughs now are managed as flow-through ponds, and some are allowed to discharge to the Bay and sloughs. This discharge is allowed under a permit issued by the Regional Water Quality Control Board. As a requirement of the permit, the USFWS must estimate the amount of discharge from each discharge pond for the period May through November of each year. To facilitate the accurate estimation of pond discharge, a calculation methodology (hereafter referred to as 'calculator' or PONDCALC) for the discharging Alviso ponds has been developed as a Microsoft Excel file and is presented in this report. The presence of flap gates on one end of the discharge culverts, which allow only outflow from a pond, complicates the hydraulic analysis of flow through the culverts. The equation typically used for culvert flow contains an energy loss coefficient that had to be determined empirically using measured water discharge and head at the discharge structure of one of the ponds. A standard weir-flow equation is included in PONDCALC for discharge calculation in the ponds having weir box structures in addition to culverts. The resulting methodology is applicable only to the five Alviso ponds (A2W, A3W, A7, A14, and A16) that discharge to South San Francisco Bay or adjacent sloughs under the management practices for 2005.

  12. Metabarcoding of environmental DNA samples to explore the use of uranium mine containment ponds as a water source for wildlife

    USGS Publications Warehouse

    Klymus, Katy E.; Richter, Cathy; Thompson, Nathan; Hinck, Jo E.

    2017-01-01

    Understanding how anthropogenic impacts on the landscape affect wildlife requires a knowledge of community assemblages. Species surveys are the first step in assessing community structure, and recent molecular applications such as metabarcoding and environmental DNA analyses have been proposed as an additional and complementary wildlife survey method. Here, we test eDNA metabarcoding as a survey tool to examine the potential use of uranium mine containment ponds as water sources by wildlife. We tested samples from surface water near mines and from one mine containment pond using two markers, 12S and 16S rRNA gene amplicons, to survey for vertebrate species. We recovered large numbers of sequence reads from taxa expected to be in the area and from less common or hard to observe taxa such as the tiger salamander and gray fox. Detection of these two species is of note because they were not observed in a previous species assessment, and tiger salamander DNA was found in the mine containment pond sample. We also found that sample concentration by centrifugation was a more efficient and more feasible method than filtration in these highly turbid surface waters. Ultimately, the use of eDNA metabarcoding could allow for a better understanding of the area’s overall biodiversity and community composition as well as aid current ecotoxicological risk assessment work.

  13. Nitrogen Limitation of Pond Ecosystems on the Plains of Eastern Colorado

    PubMed Central

    Mischler, John A.; Taylor, Philip G.; Townsend, Alan R.

    2014-01-01

    Primary production in freshwater ecosystems is often limited by the availability of phosphorus (P), nitrogen (N), or a combination of both (NP co-limitation). While N fixation via heterocystous cyanobacteria can supply additional N, no comparable mechanism for P exists; hence P is commonly considered to be the predominant and ultimate limiting nutrient in freshwater ecosystems. However, N limitation can be maintained if P is supplied in stoichiometric excess of N (including N fixation). The main objective of this study was to examine patterns in nutrient limitation across a series of 21 vernal ponds in Eastern Colorado where high P fluxes are common. Across all ponds, water column dissolved inorganic N steadily decreased throughout the growth season due to biological demand while total dissolved P remained stable. The water column dissolved inorganic N to total dissolved P ratios suggested a transition from NP co-limitation to N limitation across the growth season. Periphyton and phytoplankton %C was strongly correlated with %N while %P was assimilated in excess of %N and %C in many ponds. Similarly, in nutrient addition bottle assays algae responded more strongly to N additions (11 out of 18 water bodies) than P additions (2 out of 18 water bodies) and responded most strongly when N and P were added in concert (12 out of 18 water bodies). Of the ponds that responded to nutrient addition, 92% exhibited some sort of N limitation while less than 8% were limited by P alone. Despite multiple lines of evidence for N limitation or NP co-limitation, N fixation rates were uniformly low across most ponds, most likely due to inhibition by water column nitrate. Within this set of 18 water bodies, N limitation or NP co-limitation is widespread due to the combination high anthropogenic P inputs and constrained N fixation rates. PMID:24824838

  14. The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal)

    NASA Astrophysics Data System (ADS)

    Soti, V.; Puech, C.; Lo Seen, D.; Bertran, A.; Vignolles, C.; Mondet, B.; Dessay, N.; Tran, A.

    2010-08-01

    In the Ferlo Region in Senegal, livestock depend on temporary ponds for water but are exposed to the Rift Valley Fever (RVF), a disease transmitted to herds by mosquitoes which develop in these ponds. Mosquito abundance is related to the emptying and filling phases of the ponds, and in order to study the epidemiology of RVF, pond modelling is required. In the context of a data scarce region, a simple hydrologic model which makes use of remote sensing data was developed to simulate pond water dynamics from daily rainfall. Two sets of ponds were considered: those located in the main stream of the Ferlo Valley whose hydrological dynamics are essentially due to runoff, and the ponds located outside, which are smaller and whose filling mechanisms are mainly due to direct rainfall. Separate calibrations and validations were made for each set of ponds. Calibration was performed from daily field data (rainfall, water level) collected during the 2001 and 2002 rainy seasons and from three different sources of remote sensing data: 1) very high spatial resolution optical satellite images to access pond location and surface area at given dates, 2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) data to estimate pond catchment area and 3) Tropical Rainfall Measuring Mission (TRMM) data for rainfall estimates. The model was applied to all ponds of the study area, the results were validated and a sensitivity analysis was performed. Water height simulations using gauge rainfall as input were compared to water level measurements from four ponds and Nash coefficients >0.7 were obtained. Comparison with simulations using TRMM rainfall data gave mixed results, with poor water height simulations for the year 2001 and good estimations for the year 2002. A pond map derived from a Quickbird satellite image was used to assess model accuracy for simulating pond water areas for all the ponds of the study area. The validation showed that

  15. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to Stormwater pond sediments.

    PubMed

    Brand, Adrianne B; Snodgrass, Joel W; Gallagher, Matthew T; Casey, Ryan E; Van Meter, Robin

    2010-02-01

    Stormwater ponds are common features of modern stormwater management practices. Stormwater ponds often retain standing water for extended periods of time, develop vegetative characteristics similar to natural wetlands, and attract wildlife. However, because stormwater ponds are designed to capture pollutants, wildlife that utilize ponds might be exposed to pollutants and suffer toxicological effects. To investigate the toxicity of stormwater pond sediments to Hyla versicolor, an anuran commonly found using retention ponds for breeding, we exposed embryos and larvae to sediments in laboratory microcosms. Exposure to pond sediments reduced survival of embryos by approximately 50% but did not affect larval survival. Larvae exposed to stormwater pond sediment developed significantly faster (x = 39 days compared to 42 days; p = 0.005) and were significantly larger at metamorphosis (x = 0.49 g compared to 0.36 g; p < 0.001) than controls that were exposed to clean sand. Substantial amounts (712-2215 mg/l) of chloride leached from pond sediments into the water column of treatment microcosms; subsequently, survival of embryos was negatively correlated (r (2) = 0.50; p < 0.001) with water conductivity during development. Our results, along with the limited number of other toxicological studies of stormwater ponds, suggest that road salt contributes to the degradation of stormwater pond habitat quality for amphibian reproduction and that future research should focus on understanding interactions among road salts and other pollutants and stressors characteristic of urban environments.

  16. Falling head ponded infiltration in the nonlinear limit

    NASA Astrophysics Data System (ADS)

    Triadis, D.

    2014-12-01

    The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.

  17. Two and three-dimensional quantitative neutron imaging of the water distribution during ponded infiltration

    NASA Astrophysics Data System (ADS)

    Sacha, Jan; Snehota, Michal; Jelinkova, Vladimira

    2016-04-01

    Information on spatial and temporal water and air distribution in a soil sample during hydrological processes is important for evaluating current and developing new water transport models. Modern imaging techniques such as neutron imaging (NI) allow relatively short acquisition times and high resolution of images. At the same time, the appropriate data processing has to be applied to obtain results free of bias and artifacts. In this study a ponded infiltration experiments were conducted on two soil samples packed into the quartz glass columns of inner diameter of 29 and 34 mm, respectively. First sample was prepared by packing of fine and coarse fractions of sand and the second sample was packed using coarse sand and disks of fine porous ceramic. Ponded infiltration experiments conducted on both samples were monitored by neutron radiography to produce two dimensional (2D) projection images during the transient phase of infiltration. During the steady state flow stage of experiments neutron tomography was utilized to obtain three-dimensional (3D) information on gradual water redistribution. The acquired radiographic images were normalized for background noise and spatial inhomogeneity of the detector, fluctuations of the neutron flux in time and for spatial inhomogeneity of the neutron beam. The radiograms of dry sample were subtracted from all subsequent radiograms to determine water thickness in the 2D projection images. All projections were corrected for beam hardening and neutron scattering by empirical method of Kang et al. (2013). Parameters of the correction method uses were identified by two different approaches. The first approach was based on fitting the NI derived water thickness representing the water filled region in the layer of water above the sample surface to actual water thickness. In the second approach the NI derived volume of water in the entire sample in given time was fitted to corresponding gravimetrically determined amount of water in the

  18. Decontamination and decommissioning of the BORAX-V leach pond. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.

    1985-01-01

    This report describes the decontamination and decommissioning (D and D) of the BORAX-V leach pond located at the Idaho National Engineering Laboratory (INEL). The leach pond became radioactively contaminated from the periodic discharge of low-level liquid waste during operation of the Boiling Water Reactor Experiments (BORAX) from 1954 to 1964. This report describes work performed to accomplish the D and D objectives of stabilizing the leach pond and preventing the spread of contamination. D and D of the BORAX-V leach pond consisted to backfilling the pond with clean soil, grading and seeding the area, and erecting a permanent marker tomore » identify very low-level subsurface contamination.« less

  19. Bioaccumulation of Uranium and Thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag Tailing Water.

    PubMed

    Sasmaz, Merve; Obek, Erdal; Sasmaz, Ahmet

    2016-12-01

    This study focused on the ability of Lemna minor and Lemna gibba to remove U and Th in the tailing water of Keban, Turkey. These plants were placed in tailing water and individually fed to the reactors designed for these plants. Water and plant samples were collected daily from the mining area. The plants were ashed at 300°C for 1 day and analyzed by ICP-MS for U and Th. U was accumulated as a function of time by these plants, and performances between 110 % and 483 % for L. gibba, and between 218 % and 1194 % for L. minor, were shown. The highest Th accumulations in L. minor and L. gibba were observed at 300 % and 600 % performances, respectively, on the second day of the experiment. This study indicated that both L. gibba and L. minor demonstrated a high ability to remove U and Th from tailing water polluted by trace elements.

  20. Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Candice; Bergren, Christopher; Blas, Susan

    Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runsmore » flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational

  1. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Ground-water contamination near a uranium tailings disposal site in Colorado

    USGS Publications Warehouse

    Goode, Daniel J.; Wilder, Russell J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination.

  3. Phosphorus loading to McGrath and Ellis ponds, Kennebec County, Maine

    USGS Publications Warehouse

    Nichols, Wallace J.; Sowles, J.W.; Lobao, J.J.

    1984-01-01

    McGrath and Ellis Ponds in south-central Maine have been identified as having nuisance algae blooms. In 1978, a cooperative study between the U.S. Geological Survey and the Maine Department Environmental Protection was begun to evaluate areas in which restoration effort would best improve water quality of the ponds. Streamflow and phosphorus data were collected from 28 tributaries to the ponds, April 1 through September 30, 1978 and 1979. Phosphorus yields from each tributary watershed were compared to determine their relative importance to the phosphorus budgets of the ponds. Three tributaries to the ponds were estimated to contribute 44 percent of the phosphorus load, yet drain only 22 percent of the watershed. Phosphorus input to the ponds likely would be most easily reduced by instituting phosphorus control practices in parts of the basin drained by the three tributaries. (USGS)

  4. Geo-engineering experiments in two urban ponds to control eutrophication.

    PubMed

    Waajen, Guido; van Oosterhout, Frank; Douglas, Grant; Lürling, Miquel

    2016-06-15

    Many urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended to switch the ponds from a turbid phytoplankton-dominated state to a clear-water state with a low phytoplankton biomass. Two eutrophic urban ponds were each divided into six compartments (300-400 m(2); 210-700 m(3)). In each pond the following treatments were tested: dredging in combination with biomanipulation (involving fish biomass control and the introduction of macrophytes) with and without the addition of the flocculant polyaluminiumchloride, interception and reduction of sediment phosphorus release with lanthanum-modified bentonite (Phoslock(®)) in combination with biomanipulation with and without polyaluminiumchloride; biomanipulation alone; and a control. Trial results support the hypothesis that the combination of biomanipulation and measures targeting the sediment phosphorus release can be effective in reducing the phytoplankton biomass and establishing and maintaining a clear-water state, provided the external phosphorus loading is limited. During the experimental period dredging combined with biomanipulation showed mean chlorophyll-a concentrations of 5.3 and 6.2 μg L(-1), compared to 268.9 and 52.4 μg L(-1) in the control compartments. Lanthanum-modified bentonite can be an effective alternative to dredging and in combination with biomanipulation it showed mean chlorophyll-a concentrations of 5.9 and 7.6 μg L(-1). Biomanipulation alone did not establish a clear-water state or only during a limited period. As the two experimental sites differed in their reaction to the treatments, it is important to choose the most promising treatment depending on site specific characteristics. In recovering the water quality status of urban ponds, continuing

  5. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less

  6. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  7. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structuresmore » in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.« less

  8. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  9. Water induced geohazards measured with spaceborne interferometry techniques

    NASA Astrophysics Data System (ADS)

    Poncos, V.; Serban, F.; Teleaga, D.; Ciocan, V.; Sorin, M.; Caranda, D.; Zamfirescu, F.; Andrei, M.; Copaescu, S.; Radu, M.; Raduca, V.

    2012-04-01

    subsidence process are performed using a Finite Element Method (FEM), which calculates the distribution of the state of strains and stresses in the rock masses, in an elasto-plastic behavior. The ground deformation is presently measured with leveling instrumentation and an effort is being made to adopt the InSAR results for a better spatial and temporal coverage that should refine the existing model. The third site is a number of 4 tailing retention ponds at different stages of their life. The tailing ponds are hydrotechnical structures of permeable type designed for the safe storage of mining detritus byproducts and disposal of the water contained in these byproducts. Starting in 1998 approximately 550 mines have been closed and introduced in a conservation process. In order to prevent ecological and human damage, all these mines and storage ponds for mining tailings are required to be under continuous monitoring. Using 15 high-resolution Spotlight TerraSAR-X images, the stability of the storage pond was monitored over a period of 5 months during 2011. Interferometric stacking techniques and PSI analysis were applied in order to generate deformation maps and deformation profiles. In the same time, GPS measurements and Electrical Tomography for water content were used as independent measurements.

  10. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  11. Transport of fecal-derived microorganisms from latrine ponds to aquifers in Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; McKay, L. D.; Layton, A.; Alam, M.; Williams, D.; Huq, M. R.; Mailloux, B. J.; Ferguson, A.; Feighery, J. E.; Culligan, P. J.; Escamilla, V.; Emch, M.; Akita, Y.; Serre, M. L.; Perfect, E.; Gentry, R. W.; Ahmed, K. M.; van Geen, A.

    2009-12-01

    Groundwater has been the principal source of drinking water for over 100 million people in rural Bangladesh for the past twenty years. The shallow depths and simple construction of the private wells has raised concern that these wells may be receiving fecal contamination from the densely populated rural areas with poor sanitation, contributing to high rates of diarrheal disease. Ponds are ubiquitous in Bangladesh, serving multiple purposes, including receiving fecal effluent from latrines, and private wells are frequently located in close proximity to these potential groundwater contamination sources. After detecting E. coli in up to 70% of private and monitoring wells throughout a village in Araihazar, the numerous ponds throughout the village were hypothesized to be sources of this contamination. To test this hypothesis 9 lateral transects of 4 monitoring wells each, 7 m deep and placed 1 m apart, were installed radiating away from four ponds of contrasting ages and near surface geology. These transects were monitored throughout the year to look for evidence that the ponds were contributing E. coli to the groundwater system. During the dry season from September 2008 to May 2009 no E. coli was observed in the shallow monitoring wells. In contrast, when the rains began in June 2009 several of the transects showed increasing water levels and E. coli with proximity to the pond, providing evidence that some ponds were acting as a contamination point source. A major rainfall event was simulated in June 2009 in each of the four ponds, raising the water level by 20 to 30 cm while adjacent transects were monitored. In two recently dug, deep ponds E. coli travelled up to 6 m into the medium sand aquifer within 24 hours as a result of the simulated rainfall event. In the two older ponds, which had well developed silt layers on the bottom or were emplaced in silty aquifers little E. coli was detected in the adjacent monitoring wells under natural or forced gradient

  12. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  13. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  14. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGES

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  15. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  16. Recovery of aquatic insect-mediated methylmercury flux from ponds following drying disturbance.

    PubMed

    Chumchal, Matthew M; Drenner, Ray W; Greenhill, Frank M; Kennedy, James H; Courville, Ashlyn E; Gober, Charlie A A; Lossau, Luke O

    2017-08-01

    Small ponds exist across a permanence gradient, and pond permanence is hypothesized to be a primary determinant of insect community structure and insect-mediated methylmercury (MeHg) flux from ponds to the surrounding terrestrial landscape. The present study describes the first experiment examining the recovery of insect-mediated MeHg flux following a drying disturbance that converted permanent ponds with insectivorous fish to semipermanent ponds without fish. Floating emergence traps were used to collect emergent insects for 10 wk in the spring and summer from 5 ponds with fish (permanent) and 5 ponds that were drained to remove fish, dried, and refilled with water (semipermanent). During the 73-d period after semipermanent ponds were refilled, total MeHg flux from semipermanent ponds was not significantly different than total MeHg flux from permanent ponds, indicating that insect-mediated MeHg flux had rapidly recovered in semipermanent ponds following the drying disturbance. Methylmercury fluxes from dragonflies (Odonata: Anisoptera) and phantom midges (Diptera: Chaoboridae) were significantly greater from newly refilled semipermanent ponds than permanent ponds, but the MeHg fluxes from the other 8 emergent insect taxa did not differ between treatments. The present study demonstrates the impact of drying disturbance and the effect of community structure on the cross-system transport of contaminants from aquatic to terrestrial ecosystems. Environ Toxicol Chem 2017;36:1986-1990. © 2017 SETAC. © 2017 SETAC.

  17. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  18. The identification of plankton, water quality, blood cell, and histology in culture pond of tilapia Oreochromis niloticus which infected by viral nervous necrosis (VNN)

    NASA Astrophysics Data System (ADS)

    Yanuhar, U.; Rahayu, D. T.; Musa, M.; Arfiati, D.

    2018-04-01

    Currently, Viral Nervous Necrotic (VNN) is not only attacking the marine fish but also the freshwater fish like tilapia (Oreochromis niloticus). The aims of study to identify the type of plankton, water quality status, blood cell status, also histology of VNN infected tilapia obtained in culture ponds. The methods included plankton identification and water quality analysis from the infected fish pond in the Krakal, Blitar. The quality of blood cells and the histology of tilapia infected by VNN observed using a microscope with Hematoxylin-Eosin staining. The result show plankton in a fish pond of infected tilapia includes 3 divisions: Chlorophyta, Cyanophyta, and Bacillariophyta and 2 phyla: Arthropoda, and Rotifera. The values of erythrocyte, hematocrit, and hemoglobin were smaller than normal tilapia, however, the leukocyte and macronucleus values of VNN-infected fish were higher than normal fish. The fish histology shows the vacuolation in the brain and eyes tissue. The water quality of the culture pond have the temperature, pH, turbidity, DO, CO2, NO3, PO4, TOM in the range of 30-32°C 7.0-9.0; 25cm; 6.082–7.44mg/L 3.98–9.08mg/L 1.039–1.139 mg/L; 0.051-0.054mg/L; and 11.377-13.905mg/L, respectively. VNN causing high leukocyte and macronuclei and the damaging in brain and eyes tissue in infected tilapia.

  19. [Evaluation of cultural service value of aquaculture pond ecosystem: a case study in a water conservation area of Shanghai].

    PubMed

    Li, Sheng; Guo, Zong-xiang; Yang, Huai-yu; Yang, Zheng-yong

    2009-12-01

    Pond aquaculture has existed in China for thousands of years, which has not only contributed great economic value, but also presented cultural value for human beings. With the development and upgrading of Chinese economy and culture, these values will be highlighted further. To evaluate the cultural service value of pond aquaculture ecosystem would provide a scientific base to the policy-making to avoid or reduce the wrong design-making or avoid the policy-malfunction, and also, to promote the development of aquaculture and related recreational fishing industry, increase the added value of aquaculture and the income of fish-farmers, and promote the economic development of rural area. Based on the survey data from the aquaculture ponds in the water conservation area of Dianshan Lake in Qingpu District of Shanghai and the related statistical data, the cultural service value including recreational value and existence value of the aquaculture pond ecosystem in the area was estimated by means of travel cost method (TCM) and contingent valuation method (CVM). The total cultural service value of this ecosystem was about 213 million Yuan x a(-1) or 231296. 69 Yuan x hm(-2) x a(-1), being 5. 25 times of the market value of aquaculture products, among which, recreational value was about 189 million Yuan x a(-1), and existence value was about 24 million Yuan x a(-1). It was suggested that in the construction of new rural areas of Shanghai, sufficient attention should be paid on the full play of the cultural service value of aquaculture pond ecosystem.

  20. Standing crops and ecology of aquatic invertebrates in agricultural drainwater ponds in California

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1991-01-01

    We examined standing crops and ecology of aquatic invertebrates in agricultural drainwater evaporation ponds in California from October 1982 to March 1983 and September 1983 to March 1984. Evaporation ponds supported low diversities but high standing crops of aquatic invertebrates. A water boatman (Trichocorixa reticulata) and a midge (Tanypus grodhausi) were the most abundant invertebrates, constituting 44.9% and 51.4% of total macroinvertebrate biomass. Regression models indicated that of 6 environmental variables measured, only electrical conductivity (EC) and Julian date affected biomass and density of water boatmen. EC was the only significant correlate of midge biomass in evaporation ponds.

  1. South Bay Salt Pond Restoration, Phase II at Ravenswood

    EPA Pesticide Factsheets

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  2. A highly sensitive underwater video system for use in turbid aquaculture ponds

    NASA Astrophysics Data System (ADS)

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-08-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  3. A highly sensitive underwater video system for use in turbid aquaculture ponds

    PubMed Central

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  4. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  5. Real time fish pond monitoring and automation using Arduino

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Reda, E.; Hashim, H.

    2018-03-01

    Investment and operating costs are the biggest obstacles in modernizing fish ponds in an otherwise very lucrative industry i.e. food production, in this region. Small-scale farmers running on small ponds could not afford to hire workers to man daily operations which usually consists of monitoring water levels, temperature and feeding fish. Bigger scale enterprises usually have some kinds of automation for water monitoring and replacement. These entities have to consider employing pH and dissolved oxygen (DO) sensors to ensure the health and growth of fish, sooner or later as their farms grow. This project identifies one of the sites, located in Malacca. In this project, water, temperature, pH and DO levels are measured and integrated with aerating and water supply pumps using Arduino. User could receive information at predetermined intervals on preferred communication or display gadgets as long as they have internet. Since integrating devices are comparatively not expensive; it usually consists of Arduino board, internet and relay frames and display system, farmer could source these components easily. A sample of two days measurements of temperature, pH and DO levels show that this farm has a high-quality water. Oxygen levels increases in the day as sunshine supports photosynthesis in the pond. With this integration system, farmer need not hire worker at their site, consequently drive down operating costs and improve efficiency.

  6. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments havemore » been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.« less

  7. Effects of a beaver pond on runoff processes: comparison of two headwater catchments

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.

    1998-01-01

    Natural variations in concentrations of 18O, D, and H4SiO4 in two tributary catchments of Woods Lake in the west-central Adirondack Mountains of New York were measured during 1989–1991 to examine runoff processes and their implications for the neutralization of acidic precipitation by calcium carbonate treatment. The two catchments are similar except that one contained a 1.3 ha beaver pond. Evaporation from the beaver pond caused a seasonal decrease in the slope of the meteoric water line in stream water from the catchment with a beaver pond (WO2). No corresponding change in slope of the meteoric water line was evident in stream water from the other catchment (WO4), nor in ground water nor soil water from either catchment, indicating that evaporative fractionation was not significant. Application of a best-fit sine curve to δ18O data indicated that base flow in both catchments had a residence time of about 100 days. Ground water from a well finished in thick till had the longest residence time (160 days); soil water from the O-horizon and B-horizon had residence times of 63 and 80 days, respectively. Water previously stored within each catchment (pre-event water) was the predominant component of streamflow during spring snowmelt and during spring and autumn rainfall events, but the proportion of streamflow that consisted of pre-event water differed significantly in the two catchments. The proportion of event water (rain and snowmelt) in WO2 was smaller than at WO4 early in the spring snowmelt of March 13–17, 1990, but the proportions of source water components for the two catchments were almost indistinguishable by the peak flow on the third day of the melt. The event water was further separated into surface-water and subsurface-water components by utilizing measured changes in H4SiO4 concentrations in stream water during the snowmelt. Results indicated that subsurface flow was the dominant pathway by which event water reached the stream except during the

  8. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.

    PubMed

    Schwartz, Daniel; Sample, David J; Grizzard, Thomas J

    2017-06-01

    This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

  9. Sulfide production kinetics and model of stormwater retention ponds.

    PubMed

    D'Aoust, P M; Pick, F R; Wang, R; Poulain, A; Rennie, C; Chen, L; Kinsley, C; Delatolla, R

    2018-06-01

    Stormwater retention ponds can play a critical role in mitigating the detrimental effects of urbanization on receiving waters that result from increases in polluted runoff. However, the benthic oxygen demand of stormwater facilities may cause significant hypoxia and trigger the production of hydrogen sulfide (H 2 S). This process is not well-documented and further research is needed to characterize benthic processes in stormwater retention ponds in order to improve their design and operation. In this study, sediment oxygen demand (SOD), sediment ammonia release (SAR) and sediment sulfide production (SSP) kinetics were characterized in situ and in the laboratory. In situ SOD and SSP data were utilized to develop a stormwater retention pond water sulfide concentration model which demonstrates strong correlation with sulfide concentrations observed in situ (r = 0.724, N = 91, p < 0.001) and in laboratory experiments (r = 0.691, N = 38, p < 0.001). At 4 °C, in situ rates of SOD, SAR and SSP were higher than those measured in laboratory. Sulfate-reducing bacteria (SRB) represented 4.99% of the bacteria present in the top 30 cm of the pond sediment, with Desulfobulbaceae spp., Desulfobacteraceae spp. and Desulfococcus spp. being the dominant SRB taxa identified.

  10. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  11. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    PubMed

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  12. [Effects of combined application of water retention agent and organic fertilizer on physico-chemical properties of iron tailings.

    PubMed

    Li, Xiang; Zhang, Bao Juan; Li, Ji Quan; Li, Yu Ling; Li, Chen Guang

    2017-02-01

    In order to analyze the effects of combined application of water retention agent and orga-nic fertilizer on physico-chemical properties of iron tailings and to find the optimal proportion of water retention agent and organic fertilizer for the improvement of iron tailings, the experimental plots of the combination trials with 2 factors in 4 levels were designed in the iron tailings of Qian'an Shougang through investigating some indexes of physico-chemical properties such as bulk density, moisture capacity, porosity, pH and the contents of organic matter, nitrogen, phosphorus and potas-sium. The biomasses of Medicago sativa and Amorpha fruticosa planted in the experimental plots were measured to verify the improvement effects. 4 levels of super absorbent polymers (L·m -3 ) used in treatments were 0 (B 0 ), 10 (B 1 ), 50 (B 2 ), 100 (B 3 ), and 4 levels of organic fertilizer (kg·m -2 ) were 0(N 0 ), 2.25 (N 1 ), 11.24 (N 2 ), 22.49 (N 3 ). The improving effects of different treatments on physico-chemical properties of iron tailings were mainly reflected in the surface layer of 0-20 cm. All the tested indexes were significantly different from control (CK) in the layer of 0-20 cm. The improvement effects of organic fertilizer on physical and chemical properties of iron tai-lings were better than that of water retention agent. In the 0-20 cm layer, the bulk density, non-capillary porosity, organic matter, rapidly available phosphorus, and available potassium under all treatments of adding water retention agent individually were not significantly different from the CK, while significant difference was observed when the organic fertilizer was solely applied in B 0 N 2 and B 0 N 3 treatments. The improvement synergy effect of organic fertilizer and water retention agent was better than that of organic fertilizer or water retention agent, respectively. In 0-20 cm layer, all the indexes obtained from treatment B 3 N 3 performed best and were significantly different from

  13. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    PubMed

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  14. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.

    PubMed

    Dold, Bernhard; Spangenberg, Jorge E

    2005-08-01

    Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments--Piuquenes, Cauquenes, and Salvador No. 1--formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(III) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes, the delta34S(SO4)values ranged from +0.5 per thousand to +2.0 per thousand and from -0.4 per thousand to +1.4 per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta34S(pyrite) = -1.1 per thousand and -0.9 per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8 per thousand to +0.3 per thousand and from +2.2 per thousand to +3.9 per thousand, respectively. At Cauquenes the 34S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (approximately +10.9 per thousand). At El Salvador No. 1, the delta34S(SO4) average value is -0.9 per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum

  15. Carbon, nitrogen, and phosphorus budget in scampi (Macrobrachium rosenbergii) culture ponds.

    PubMed

    Sahu, Bharat Chandra; Adhikari, Subhendu; Mahapatra, Abhijit S; Dey, Lambodar

    2013-12-01

    Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2-0.5 ha) in Orissa, India with a mean water depth of 1.0-1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75-5.0/m(2). The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60-90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85%) of added N, 10.09 to 10.97 (average 10.44%) of added P, and 7.57 to 17.12 (average 16.34%) of added OC, respectively.

  16. Effects of physical and morphometric factors on nutrient removal properties in agricultural ponds.

    PubMed

    Saito, M; Onodera, S; Okubo, K; Takagi, S; Maruyama, Y; Jin, G; Shimizu, Y

    2015-01-01

    Effects of physical and morphometric factors on nutrient removal properties were studied in small agricultural ponds with different depths, volumes, and residence times in western Japan. Average residence time was estimated to be >15 days, and it tended to decrease from summer to winter because of the increase in water withdrawal for agricultural activity. Water temperature was clearly different between the surface and bottom layers; this indicates that thermal stratification occurred in summer. Chlorophyll-a was significantly high (>20 μg/L) in the surface layer (<0.5 m) and influenced by the thermal stratification. Removal ratios of dissolved total nitrogen (DTN) and dissolved total phosphorus in the ponds were estimated to be 53-98% and 39-98% in August and 10-92% and 36-57% in December, respectively. Residence time of the ponds was longer in August than in December, and DTN removal, in particular, was more significant in ponds with longer residence time. Our results suggest residence time is an important factor for nitrogen removal in small agricultural ponds as well as large lakes.

  17. Analysis of heavy metals (Pb and Zn) concentration in sediment of Blanakan fish ponds, Subang, West Java

    NASA Astrophysics Data System (ADS)

    Wiriawan, A.; Takarina, N. D.; Pin, T. G.

    2017-07-01

    Blanakan fish ponds receive water resource from Kali Malang and Blanakan rivers. Industrial and domestic activities along the river can cause pollution, especially heavy metals. Zinc (Zn) is an essential element that needed by an organism, while Lead (Pb) is a nonessential element that is not needed. Discharge of waste water from industries and anthropogenic activities continuously not only pollute the water but also the sediment and biota live on it. This research was aimed to know the heavy metals content in the sediment of Blanakan fish ponds. Sediment samples were taken on July and August 2016 at three locations. Heavy metals were analyzed using Atomic Absorption Spectrophotometry (AAS) Shimadzu 6300. The result of Lead (Pb) measurement showed that Fish Pond 1 had higher average concentration compared Fish Pond 2 and Fish Pond 3 which was 0.55 ppm. Standard for Lead (Pb) in sediment according to Ontario Sediment Standards (2008) is 31 ppm. Based on Zinc (Zn) measurement, it was known that average of Zinc (Zn) concentration also higher on Fish Pond 1 compared to Fish Pond 2 and 3 which was 1.93 ppm. According to Ontario Sediment Standards (2008), a standard for Zinc (Zn) in sediment is 120 ppm. This indicated that heavy metals in the sediment of fish ponds were below standards. Statistical analysis using t-test showed that there was no significant difference of heavy metals content among fish ponds.

  18. How Circulation of Water Affects Freezing in Ponds

    ERIC Educational Resources Information Center

    Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel

    2007-01-01

    One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…

  19. Potential Re-utilization of Composted Mangrove Litters for Pond Environment Quality Improvement

    NASA Astrophysics Data System (ADS)

    Dwi Hastuti, Endah; Budi Hastuti, Rini; Hariyati, Riche

    2018-05-01

    Production of mangrove litter from pruning and thinning activities is potential source of organic materials which could be re-utilized to improve pond environment quality and fertility. This research aimed to analyze the nutrient composition compost produced from mangrove litter and to describe the effect of compost application on pond quality. This research was conducted through two phases, including composting trial and application of compost on pond trial. Composting process was conducted for 45-60 days on mangrove litter achieved from pruning activities in the silvofishery pond using composting container, while application of compost in pond was conducted by pouring 2 kg of compost in 25 m2 pond. Production of compost included solid compost and liquid compost. Nutrient concentration of solid compost was ranged from 0.47-0.52% for N; 0.36-0.44% for P; and 5.45-6.39% for organic C, while liquid compost provided 0.62-0.69%; 0.24-0.32%; and 3.98-4.45% respectively for N, P and organic C. While C/N ratio was ranged from 11.60-12.78 and 5.77-7.18 respectively for solid and liquid compost. Solid compost quality resulted that N, P and C/N ration had fulfilled the standart criteria defined by Indonesia National Standart for compost. Observed impact of compost application on pond water quality were the improvement of water clarity and increasing abundance of klekap (lab-lab). This showed that mangrove litters could be converted into a more productive materials to enhance pond environment quality and productivity, decrease management cost and increase benefit. Scheduled fertilization with compost is suggested to be conducted to provide best benefit on silvofishery management.

  20. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  1. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology

    NASA Astrophysics Data System (ADS)

    Vignoli, Leonardo; Bologna, Marco A.; Luiselli, Luca

    2007-03-01

    We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.

  2. Basal-topographic control of stationary ponds on a continuously moving landslide

    USGS Publications Warehouse

    Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.

    2009-01-01

    The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability

  3. Novel Polarization Techniques and Instrumentation for Glacial Melt Pond Laser Bathymetry

    NASA Astrophysics Data System (ADS)

    Barton-Grimley, R. A.; Gisler, A.; Thayer, J. P.; Stillwell, R. A.; Grigsby, S.; Crowley, G.

    2015-12-01

    Melt ponds contribute significantly to the feedback processes that serve to amplify the polar response to climate change. A substantial volume of melt water is found in shallow ponds during the Arctic summer on the Greenland Ice Sheet, which have consequences on glacial dynamics and ice loss, however, the water content and subsurface topography of the ponds has proven difficult to measure. The need for instrumentation to provide high-resolution depth measurements in shallow water is addressed by utilizing novel polarization discrimination techniques in a high repetition rate, low power, 532nm photon counting lidar system. Recent advances demonstrate the ability to achieve kHz acquisition rates with a depth precision of 1cm. Use of this technique eliminates the necessity for short laser pulses and high-bandwidth detectors and instead provides a less complex, smaller, and more economical solution to airborne lidar instrumentation. Recent deployment of the lidar system aboard the NASA DC-8 research aircraft, during the 2015 NASA SARP campaign, provided critical engineering data and experience to facilitate further advancement of an airborne bathymetric lidar system for melt pond studies. Signal performance from flight indicates a 50 cm horizontal ground resolution at nominal altitudes below 1000 feet above ground level, and also indicates that maintaining a vertical precision of 1cm is achievable, though these results will be further examined. Results from the DC-8 aircraft deployment are promising, and the modest system size opens up the possibility for future integration into a UAS. This presentation will highlight the measurement capabilities of this novel lidar system, and explore polarization scattering properties of laser light with snow, ice, liquid water. System performance metrics will be evaluated for operating during summer periods in the Polar Regions and discuss the scientific contribution to Cryosphere research - most notably the depth and subsurface ice

  4. Restoration of a shady urban pond - The pros and cons.

    PubMed

    Jurczak, Tomasz; Wojtal-Frankiewicz, Adrianna; Kaczkowski, Zbigniew; Oleksińska, Zuzanna; Bednarek, Agnieszka; Zalewski, Maciej

    2018-07-01

    The Bzura-7 pond (Łódź, Poland) is a typical shallow and shady urban reservoir situated on the Bzura River that is exposed to pollutants introduced mainly by internal loads and the supply from the catchment. In 2010-2012, the following characteristics were observed in the pond: a high allochthonous input of organic matter, high concentration of ammonium, low concentration of dissolved oxygen and low diversity of zooplankton, dominated mainly by Daphnia spp. From January to June 2013, restoration measures were performed, including sediment removal, increasing light access to the pond and construction of a sequential sedimentation-biofiltration system (SSBS). The aim of the present study was to investigate how the water quality in the Bzura-7 pond was affected by the restoration process, which included reducing pollutant inflows and enhancing habitat potential, thus increasing the diversity of this ecosystem. Restoration efforts improved the chemical and physical parameters of the water. The oxygen concentration increased, and the concentrations of TN and ammonium significantly decreased. Despite the increase in pond lighting, the growth of cyanobacteria was limited. However, we observed increased abundance of green algae and diatoms but less than adequate changes in the zooplankton community structures. Although we observed a significant increase in the zooplankton species richness after restoration, this increase was related to the small-bodied groups of zooplankton, rotifers and bosminiids, characteristic of eutrophic ecosystems. In addition, a planktivorous fish - sunbleak (Leucaspius delineatus) - was identified as an unintended side effect of the restoration effort. Further conservation efforts in the Bzura-7 pond and monitoring of results are still needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    USGS Publications Warehouse

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  6. A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond.

    PubMed

    MeGraw, Victoria E; Brown, Ashley R; Boothman, Christopher; Goodacre, Royston; Morris, Katherine; Sigee, David; Anderson, Lizzie; Lloyd, Jonathan R

    2018-06-26

    Geochemical analyses alongside molecular techniques were used to characterize the microbial ecology and biogeochemistry of an outdoor spent nuclear fuel storage pond at Sellafield, United Kingdom, that is susceptible to seasonal algal blooms that cause plant downtime. 18S rRNA gene profiling of the filtered biomass samples showed the increasing dominance of a species closely related to the alga Haematococcus pluvialis , alongside 16S rRNA genes affiliated with a diversity of freshwater bacteria, including Proteobacteria and Cyanobacteria High retention of 137 Cs and 90 Sr on pond water filters coincided with high levels of microbial biomass in the pond, suggesting that microbial colonization may have an important control on radionuclide fate in the pond. To interpret the unexpected dominance of Haematococcus species during bloom events in this extreme environment, the physiological response of H. pluvialis to environmentally relevant ionizing radiation doses was assessed. Irradiated laboratory cultures produced significant quantities of the antioxidant astaxanthin, consistent with pigmentation observed in pond samples. Fourier transform infrared (FT-IR) spectroscopy suggested that radiation did not have a widespread impact on the metabolic fingerprint of H. pluvialis in laboratory experiments, despite the 80-Gy dose. This study suggests that the production of astaxanthin-rich encysted cells may be related to the preservation of the Haematococcus phenotype, potentially allowing it to survive oxidative stress arising from radiation doses associated with the spent nuclear fuel. The oligotrophic and radiologically extreme conditions in this environment do not prevent extensive colonization by microbial communities, which play a defining role in controlling the biogeochemical fate of major radioactive species present. IMPORTANCE Spent nuclear fuel is stored underwater in large ponds prior to processing and disposal. Such environments are intensively radioactive but

  7. Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water.

    PubMed

    Levanoni, Oded; Bishop, Kevin; Mckie, Brendan G; Hartman, Göran; Eklöf, Karin; Ecke, Frauke

    2015-11-03

    Elevated concentrations of methylmercury (MeHg) in freshwater ecosystems are of major environmental concern in large parts of the northern hemisphere. Beaver ponds have been identified as a potentially important source of MeHg. The role of beavers might be especially pronounced in large parts of Europe, where beaver populations have expanded rapidly following near-extirpation. This study evaluates the role of the age and colonization history (encompassing patterns of use and reuse) of ponds constructed by the Eurasian beaver Castor fiber in regulating MeHg concentrations in Swedish streams. In 12 beaver systems located in three regions, we quantified MeHg concentrations together with other relevant parameters on five occasions per year in 2012-2013. Five were pioneer systems, inundated for the first time since beaver extirpation, and seven were recolonized, with dams reconstructed by newly recolonizing beavers. MeHg concentrations in pioneer but not in recolonized beaver systems were up to 3.5 fold higher downstream than upstream of the ponds, and varied between seasons and years. Our results show that pioneer inundation by beavers can increase MeHg concentrations in streams, but that this effect is negligible when dams are reconstructed on previously used ponds. We therefore expect that the recovery and expansion of beavers in the boreal system will only have a transitional effect on MeHg in the environment.

  8. Sensitivity to acidification of subalpine ponds and lakes in north-western Colorado

    USGS Publications Warehouse

    Campbell, D.H.; Muths, E.; Turk, J.T.; Corn, P.S.

    2004-01-01

    Although acidifying deposition in western North America is lower than in many parts of the world, many high-elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid-neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC < 100 µeq L−1), but none of them appeared to be threatened immediately by episodic or chronic acidification. In contrast, 22 ponds had minimum ANC < 30 µeq L−1, indicating that they are extremely sensitive to acidic deposition and could be damaged by episodic acidification, although net acidity (ANC < 0) was not measured in any of the ponds during the study. The lowest measured pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and

  9. A novel use of the caesium-137 technique to estimate human interference and historical water level in a Mediterranean Temporary Pond.

    PubMed

    Foteinis, Spyros; Mpizoura, Katerina; Panagopoulos, Giorgos; Chatzisymeon, Efthalia; Kallithrakas-Kontos, Nikolaos; Manutsoglu, Emmanouil

    2014-01-01

    The sustainability of, and the effects of human pressures on, Omalos Mediterranean Temporary Pond (MTP), Chanea, Greece was assessed. The (137)Cs technique was used to identify alleged anthropogenic interference (excavation) in the studied area. It was found that about one third of the ponds bed surface material had been removed and disposed of on the northeast edge, confirming unplanned excavations that took place in the MTP area some years ago. Nonetheless, five years after the excavation, the MTP's ecosystem (flora and fauna) had recovered, which indicates that these small ecosystems are resilient to direct human pressures, like excavations. Moreover, with the (137)Cs technique it was possible to identify the historical water level of Omalos MTP, when the fallout from the Chernobyl accident reached this area, in May of 1986. Therefore, the (137)Cs technique can be useful in the identification of the historical water level of small MTPs and other ephemeral water bodies. Applications include the verification and validation of hydrological models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Estimating the ratio of pond size to irrigated soybean land in Mississippi: a case study

    Treesearch

    Ying Ouyang; G. Feng; J. Read; T. D. Leininger; J. N. Jenkins

    2016-01-01

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of on-farm water storage pond size to irrigated crop land based on pond metric and its hydrogeological conditions.  In this study, two simulation scenarios were chosen to...

  11. Construction and startup performance of the Miamisburg salt-gradient solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Harris, M. J.

    1981-02-01

    An account is given of the construction and 1.5 years of operation of the Miamisburg, Ohio salt-gradient solar pond which, with 2020 sq m, is the largest solar collector in the U.S. The 18% sodium chloride solution pond has reached storage temperatures of 64 C in July and 28 C in February. Under steady-state conditions, conservative heat-yield estimates on the order of 962 million Btu have been made. The heat is used to warm-up a summer outdoor swimming pool and in winter a recreational building. Installation costs were only $35/sq m, and heat costs based on a 15-year depreciation of installation costs is below that of fuel oil heating, at $9.45 per million Btu. Further study is recommended for maintenance of water clarity, metallic component corrosion and assurance of pond water containment.

  12. SHOCKED AND SCORCHED: THE TAIL OF A TADPOLE IN AN INTERSTELLAR POND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, R.; Morris, M. R.; Claussen, M. J., E-mail: raghvendra.sahai@jpl.nasa.gov

    2012-05-20

    We report multi-wavelength observations of the far-infrared source IRAS 20324+4057, including high-resolution optical imaging with the Hubble Space Telescope, and ground-based near-infrared, millimeter-wave and radio observations. These data show an extended, limb-brightened, tadpole-shaped nebula with a bright, compact, cometary nebula located inside the tadpole head. Our molecular line observations indicate that the Tadpole is predominantly molecular with a total gas mass exceeding 3.7 M{sub Sun }. Our radio continuum imaging and archival Spitzer IRAC images show the presence of additional tadpole-shaped objects in the vicinity of IRAS 20324+4057 that share a common east-west head-tail orientation: we propose that these structuresmore » are small, dense molecular cores that originated in the Cygnus cloud and are now being (1) photoevaporated by the ultraviolet radiation field of the Cyg OB2 No. 8 cluster located to the northwest; and (2) shaped by ram pressure of a distant wind source or sources located to the west, blowing ablated and photoevaporated material from their heads eastward. The ripples in the tail of the Tadpole are interpreted in terms of instabilities at the interface between the ambient wind and the dense medium of the former.« less

  13. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  14. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  15. Temporal and spatial distributions of sediment mercury at salt pond wetland restoration sites, San Francisco Bay, CA, USA

    USGS Publications Warehouse

    Miles, A.K.; Ricca, M.A.

    2010-01-01

    Decommissioned agricultural salt ponds within south San Francisco Bay, California, are in the process of being converted to habitat for the benefit of wildlife as well as water management needs and recreation. Little is known of baseline levels of contaminants in these ponds, particularly mercury (Hg), which has a well established legacy in the Bay. In this study we described spatial and short-term temporal variations in sediment Hg species concentrations within and among the Alviso and Eden Landing salt ponds in the southern region of San Francisco Bay. We determined total Hg (Hgt) and methylmercury (MeHg) in the top 5 cm of sediment of most ponds in order to establish baseline conditions prior to restoration, sediment Hgt concentrations in a subset of these ponds after commencement of restoration, and variation in MeHg concentrations relative to sediment Hgt, pH, and total Fe concentrations and water depth and salinity in the subset of Alviso ponds. Inter-pond differences were greatest within the Alviso pond complex, where sediment Hgt concentrations averaged (arithmetic mean) 0.74 ??g/g pre and 1.03 ??g/g post-restoration activity compared to 0.11 ??g/g pre and post at Eden Landing ponds. Sediment Hgt levels at Alviso were fairly stable temporally and spatially, whereas MeHg levels were variable relative to restoration activities across time and space. Mean (arithmetic) sediment MeHg concentrations increased (2.58 to 3.03 ng/g) in Alviso and decreased (2.20 to 1.03 ng/g) in Eden Landing restoration ponds during the study. Differences in MeHg levels were related to water depth and pH, but these relationships were not consistent between years or among ponds and were viewed with caution. Factors affecting MeHg levels in these ponds (and in general) are highly complex and require in-depth study to understand.

  16. Limnology of Kharland (saline) ponds of Ratnagiri, Maharashtra in relation to prawn culture potential.

    PubMed

    Saksena, D N; Gaidhane, D M; Singh, H

    2006-01-01

    The coastal saline soils, Kharlands, have great potential for their use in aquaculture. This study has been taken up to understand the limnology of the ponds in Kharland area for assessing their prawn culture potential. This study was carried out during September, 1999 to August, 2001. Each Kharland pond has an area of 0.045 hectare. During the study, depth of pond water was 47.7 to 120.0 cm, temperature varied from 25.7 to 34.5 degrees C; transparency from nil to 65.0 cm; specific conductivity from 1.78 to 94.5 microS.cm(-1); total dissolved solids from 0.89 to 27.55 ppt; pH 5.42 to 8.25; dissolved oxygen 1.6 to 8 mg.l(-1); free carbon dioxide 10.00 to 44.00 mg.l(-1); total alkalinity 5.00 to 142.00 mg.l(-1); salinity 0.45 to 39.55 ppt; total hardness 245.00 to 5945.00; calcium 56.05 to 1827.6; magnesium 110.74 to 4507.75 mg.l(-1); dissolved organic matter 1.45 to 9.68 mg.l(-1); ammonia 1.00-8.00 microg.l(-1); nitrite nil to 20.00 micro l(-1) and nitrate 7.5 to 17.5 microg.l(-1). These Kharland ponds are unique in physio-chemical characteristics during their seasonal cycle. From July to October, these ponds have nearly freshwater while from November to May pond water becomes saline. Thus, there is a great possibility of taking up monoculture of both the freshwater and brackish water prawns as well as polyculture of prawns and fishes in the Kharland ponds.

  17. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communitiesmore » are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  18. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond

    NASA Technical Reports Server (NTRS)

    Wakeham, S. G.; Howes, B. L.; Dacey, J. W. H.; Schwarzenbach, R. P.; Zeyer, J.

    1987-01-01

    Dimethylsulfide (DMS) is the major volatile reduced organic sulfur compound in the water column of coastal Salt Pond, Cape Cod, MA. DMS concentration and vertical distributions vary seasonally in response to changing biogeochemical processes in the pond. When the pond is thermally stratified in summer, maximum DMS concentrations of up to 60 nmol/l were found in the oxygen-deficient metalimnion. DMS concentrations in the epilimnion (typically 5-10 nmol/l) were always an order of magnitude higher than in the hypolimnion (less than 0.2 nmol/l). The most likely precursor for DMS is algal dimethylsulfoniopropionate (DMSP), which showed vertical profiles similar to those of DMS. Laboratory experiments show that microorganisms in the pond, especially in the metalimnion, are capable of decomposing DMSP to DMS, while photosynthetic sulfur bacteria in the hypolimnion can consume DMS. Estimates of DMS production and consumption in Salt Pond have been made, considering production of DMS in the epilimnion and metalimnion and removal of DMS via gas exchange to the atmosphere, tidal exchange, and microbial consumption in the hypolimnion.

  19. Implementation of reactive and predictive real-time control strategies to optimize dry stormwater detention ponds

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Vanrolleghem, Peter A.; Pelletier, Geneviève

    2013-04-01

    Dry detention ponds have been widely implemented in U.S.A (National Research Council, 1993) and Canada (Shammaa et al. 2002) to mitigate the impacts of urban runoff on receiving water bodies. The aim of such structures is to allow a temporary retention of the water during rainfall events, decreasing runoff velocities and volumes (by infiltration in the pond) as well as providing some water quality improvement from sedimentation. The management of dry detention ponds currently relies on static control through a fixed pre-designed limitation of their maximum outflow (Middleton and Barrett 2008), for example via a proper choice of their outlet pipe diameter. Because these ponds are designed for large storms, typically 1- or 2-hour duration rainfall events with return periods comprised between 5 and 100 years, one of their main drawbacks is that they generally offer almost no retention for smaller rainfall events (Middleton and Barrett 2008), which are by definition much more common. Real-Time Control (RTC) has a high potential for optimizing retention time (Marsalek 2005) because it allows adopting operating strategies that are flexible and hence more suitable to the prevailing fluctuating conditions than static control. For dry ponds, this would basically imply adapting the outlet opening percentage to maximize water retention time, while being able to open it completely for severe storms. This study developed several enhanced RTC scenarios of a dry detention pond located at the outlet of a small urban catchment near Québec City, Canada, following the previous work of Muschalla et al. (2009). The catchment's runoff quantity and TSS concentration were simulated by a SWMM5 model with an improved wash-off formulation. The control procedures rely on rainfall detection and measures of the pond's water height for the reactive schemes, and on rainfall forecasts in addition to these variables for the predictive schemes. The automatic reactive control schemes implemented

  20. Geohydrology of the Flints Pond Aquifer, Hollis, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Flints pond has been subjected to accelerated eutrophication as a result of watershed development (building of new homes and conversion of summer cottages into permanent homes) since the 1930's. Ground-water flow is the primary recharge and discharge mechanism for Flints Pond. The saturated thickness, transmissive properties, and altitude of the water table were determined by use of surface geophysics, test drilling, and aquifer-test data. Information on the geohydrology of the adjacent Flints Pond aquifer can be used in developing a water and nutrient budget for the pond-aquifer system. Ground-penetrating-radar surveys were done over more than 4 miles of the study area and on Flints Pond. Three distinct reflection signatures were commonly identifiable on the radar profiles: (1) thin, relatively flat-lying, continuous reflectors that represent fine-grained lacustrine sediment; (2) subparallel to hummocky and chaotic, coarse-grained reflectors that possibly represent coarse-grained ice-contact deposits or deltaic sediments in a lacustrine environment; and (3) sharply diffracted, fine-grained, chaotic reflectors that represent till and (or) till over bedrock. The saturated thickness of the aquifer exceeds 90 feet in the northern end of the study area and averages 30 to 50 feet in the southern and eastern parts. The saturated thickness of the western part is generally less than 10 feet. Test borings were completed at 19 sites and 13 wells (6 of which were nested pairs) were installed in various lithologic units. A water-table map, constructed from data collected in November 1994, represents average water-table conditions in the aquifer. Horizontal hydraulic conductivities calculated from single-well aquifer test data for stratified drift range from 2.8 to 226 feet per day. Hydraulic conductivities were quantitatively correlated with the reflector signatures produced with ground-penetrating radar so that transmissivities could be inferred for areas where well data were

  1. Par Pond vegetation status summer 1995 - July survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-07-01

    A survey of the emergent shoreline aquatic plant, communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet (61 meters) above mean sea level, and continued with this July survey. Aquatic plant communities, similar to the pre-drawdown Par Pond communities, are becoming reestablished. Beds of maidencane (Panicum hemitomon), lotus (Nelumbo lutea), water lily (Nymphaea odorata), and watershield (Brasenia schreberi) are now extensive and well established. In addition, within isolated coves, extensive beds of water lilies and spike-rush (Eleocharis sp.) are common. Cattail occurrence has increased since refill, but large beds common to Parmore » Pond prior to the drawdown have not formed. Invasion of willow (Salix sp.) and red maple (Acer rubrum) occurred along the lake shoreline during drawdown. The red maples along the present shoreline are beginning to show evidence of stress and mortality from flooding over the past four months. Some of the willows appear to be stressed as well. The loblolly pines (Pinus taeda), which were flooded in all but the shallow shoreline areas, are now dead. Future surveys are planned for the growing seasons of 1995, 1996, and 1997, along with the evaluation of satellite data for mapping the areal extent of the macrophyte beds of Par Pond.« less

  2. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    PubMed Central

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  3. Purification of contaminated paddy fields by clean water irrigation over two decades.

    PubMed

    Tai, Yiping; Lu, Huanping; Li, Zhian; Zhuang, Ping; Zou, Bi; Xia, Hanping; Wang, Faming; Wang, Gang; Duan, Jun; Zhang, Jianxia

    2013-10-01

    Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg−1 of Pb and 810.3 mg kg−1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg−1 of Pb and 525.4 mg kg−1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulting from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.

  4. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  5. New factors in the design, operation and performance of waste-stabilization ponds

    PubMed Central

    Marais, G. v. R.

    1966-01-01

    In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235

  6. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images

    USGS Publications Warehouse

    Riordan, B.; Verbyla, D.; McGuire, A.D.

    2006-01-01

    Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased potential evapotranspiration, and permafrost warming. Research from the Seward Peninsula and Kenai Peninsula has demonstrated a substantial landscape-level trend in the reduction of surface water and number of closed-basin ponds. We investigated whether this drying trend occurred at nine other regions throughout Alaska. One study region was from the Arctic Coastal Plain where depp permafrost occurs continuously across the landscape. The other eight study regions were from the boreal forest regions where discontinuous permafrost occurs. Mean annual precipitation across the study regions ranged from 100 to over 700 min yr-1. We used remotely sensed imagery from the 1950s to 2002 to inventory over 10,000 closed-basin ponds from at least three periods from this time span. We found a reduction in the area and number of shallow, closed-basin ponds for all boreal regions. In contrast, the Arctic Coastal Plain region had negligible change in the area of closed-basin ponds. Since the 1950s, surface water area of closed-basin ponds included in this analysis decreased by 31 to 4 percent, and the total number of closed-basin ponds surveyed within each study region decreased from 54 to 5 percent. There was a significant increasing trend in annual mean temperature and potential evapotranspiration since the 1950s for all study regions. There was no significant trend in annual precipitation during the same period. The regional trend of shrinking ponds may be due to increased drainage as permafrost warms, or increased evapotranspiration during a warmer and extended growing season. Copyright 2006 by the American Geophysical Union.

  7. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    NASA Astrophysics Data System (ADS)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  8. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    NASA Technical Reports Server (NTRS)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  9. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    PubMed

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  10. Evaluation of the preservation value and location of farm ponds in Yunlin County, Taiwan.

    PubMed

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-12-31

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies.

  11. Evaluation of the Preservation Value and Location of Farm Ponds in Yunlin County, Taiwan

    PubMed Central

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-01-01

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies. PMID:24384776

  12. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails

    NASA Astrophysics Data System (ADS)

    Spyra, Aneta

    2017-10-01

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH < 6) were Anisus spirorbis and Aplexa hypnorum. The greatest distinct characterised alkaline ponds with the numerous appearance of alien Physa acuta. The most diverse gastropod fauna was found in neutral ponds, whereas the lowest degree of diversity was found in ponds with the lowest pH. Current knowledge of pH-associated changes in aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  13. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland

    NASA Astrophysics Data System (ADS)

    Polishchuk, Y. M.; Bogdanov, A. N.; Muratov, I. N.; Polishchuk, V. Y.; Lim, A.; Manasypov, R. M.; Shirokova, L. S.; Pokrovsky, O. S.

    2018-04-01

    Despite the potential importance of small (< 1000 m2) thaw ponds and thermokarst lakes in greenhouse gas (GHG) emissions from inland waters of high latitude and boreal regions, these features have not been fully inventoried and the volume of GHG and carbon in thermokarst lakes remains poorly constrained. This is especially true for the vast Western Siberia Lowland (WSL) which is subject to strong thermokarst activity. We assessed the number of thermokarst lakes and their size distribution for the permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2 × 108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers.

  14. Probiotic Candidates from Fish Pond Water in Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Harjuno Condro Haditomo, Alfabetian; Desrina; Sarjito; Budi Prayitno, S.

    2018-02-01

    Aeromonas hydrophilla is a major bacterial pathogen of intensive fresh water fish culture in Indonesia. An alternative method to control the pathogen is using probiotics. Probiotics is usually consist of live microorganisms which when administered in adequate amounts confer a health benefits on host. The aim of this research was to determine the probiotic candidates against A. hydrophilla which identified based on the 16S rDNA gene sequences. This research was started with field survey to obtained the probiotic candidate and continue with laboratory experiment. Probiotic candidates were isolated from fish pond water located in Boyolali, and Banjarnegara Regency, Central Java, Indonesia. A total of 133 isolates bacteria were isolated and cultured on to TSA, TSB and GSP medium. Out of 133 isolates only 30 isolates showed inhibition to A.hydrophilla activity. Three promising isolates were identified with PCR using primer for 16S rDNA. Based on 16S rDNA sequence analysis, all three isolates were belong to Bacillus genus. Isolate CKlA21, CKlA28, and CBA14 respectively were closely related to Bacillus sp. 13843 (GenBank accession no. JN874760.1 -100% homology), Bacillus subtilis strain H13 (GenBank accession no.KT907045.1 -- 99% homology), and Bacillus sp. strain 22-4 (GenBank accession no. KX816417.1 -- 97% homology).

  15. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  16. Internal nutrient sources and nutrient distributions in Alviso Pond A3W, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Garrett, Krista K.; Takekawa, John Y.; Parcheso, Francis; Piotter, Sara; Clearwater, Iris; Shellenbarger, Gregory

    2013-01-01

    Within the Alviso Salt Pond complex, California, currently undergoing avian-habitat restoration, pore-water profilers (U.S. Patent 8,051,727 B1) were deployed in triplicate at two contrasting sites in Pond A3W (“Inlet”, near the inflow, and “Deep”, near the middle of the pond; figs. 1 and 2; table 1, note that tables in this report are provided online only as a .xlsx workbook at http://pubs.usgs.gov/of/2013/1128/). Deployments were conducted in 2010 and 2012 during the summer algal-growth season. Specifically, three deployments, each about 7 weeks apart, were undertaken each summer. This study provides the first measurements of the diffusive flux of nutrients across the interface between the pond bed and water column (that is, benthic nutrient flux). These nutrient fluxes are crucial to pond restoration efforts because they typically represent a major (if not the greatest) source of nutrients to the water column in both ponds and other lentic systems. For soluble reactive phosphorus (SRP, the most biologically available form in solution), benthic flux was positive both years (that is, out of the sediment into the water column; table 2), with the exception of the August 2010 deployment, which exhibited nearly negligible but negative flux. Overall, the average SRP flux was significantly greater at Deep (23.9 ± 8.6 micromoles per square meter per hour (µmol-m-2-h-1); all errors shown reflect the 95-percent confidence interval) than Inlet (12.6 ± 4.9 µmol-m-2-h-1). There was much greater temporal variability in SRP flux in the pond than reported for the lower estuary (Topping and others, 2001). For dissolved ammonia, benthic flux was consistently positive on all six sampling trips, and similar to SRP, the fluxes at Deep (258 ± 49 µmol-m-2-h-1) were consistently greater than those at Inlet (28 ± 11 µmol-m-2-h-1). Dissolved ammonia fluxes reported for South San Francisco Bay by Topping and others (2001) fall in between these values. Once again, greater

  17. Monitoring of Water Quality and Microalgae Species Composition of Penaeus monodon Ponds in Pulau Pinang, Malaysia

    PubMed Central

    Shaari, Asma Liyana; Surif, Misni; Latiff, Faazaz Abd.; Omar, Wan Maznah Wan; Ahmad, Mohd Noor

    2011-01-01

    period diatoms were the dominant species. The Chlorophyta (Chlorella sp.) domination took place only twice, which was at week 2 and 13. The absence of some of the coastal water microalgae species in the shrimp pond was most likely due to the fact that they could not tolerate the physicochemical factors of harsh environment. In this study, Cylindrotheca closterium was regarded as the most tolerant species among the microalgae due to its ability to exist for 6 weeks out of the 15 weeks of cultivation. PMID:24575209

  18. Performance of a constructed wetland-pond system for treatment and reuse of wastewater from campus buildings.

    PubMed

    Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te

    2006-11-01

    A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.

  19. Pond culture of seaweed Sargassum hemiphyllum in southern China

    NASA Astrophysics Data System (ADS)

    Yu, Zonghe; Hu, Chaoqun; Sun, Hongyan; Li, Haipeng; Peng, Pengfei

    2013-03-01

    The seaweed Sargassum hemiphyllum is widely distributed throughout the coastal waters of Asia and has high commercial value. In recent years, its natural biomass has declined due to over-exploitation and environmental pollution. To seek for a feasible way to culture this seaweed efficiently, we designed a simple long-line system in a shrimp pond for the culture during winter, and the growth and nutritional composition of the seaweed were examined. Results show that the culture system was durable and flexible allowing S. hemiphyllum to grow vertically off the muddy bottom of the pond. Although the length of pondcultured S. hemiphyllum was inhibited by water depth, the weight-specific growth rate ((1.65±0.17)%/d) was nearly three times higher than that of wild plants ((0.62±0.19)%/d). The crude protein (6.92%±0.88%) and ash content (21.52%±0.07%) of the pond-cultured seaweed were significantly lower than those of the wild plants (9.38%±0.43% and 26.93%±0.07%, respectively); however, crude fat (1.01%±0.04%) was significantly higher than that of the wild plants (0.87%±0.02%). In addition, the nutritional composition of both pond-cultured and wild S. hemiphyllum was comparable to or even higher than those of other common seaweeds being used as food and/or aquaculture fodder. Future studies shall be focused on the impact of environmental parameters on its growth and nutritional composition.

  20. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity and nitrate.

    PubMed

    Yang, Ping; Zhang, Yifei; Lai, Derrick Y F; Tan, Lishan; Jin, Baoshi; Tong, Chuan

    2018-04-20

    While aquaculture pond is a dominant land use/cover type and a distinct aquatic ecosystem in the coastal zones of China and southeast Asia, their contributions to the fluxes of greenhouse gases (GHGs) have only been poorly quantified. Fluxes of CO 2 and CH 4 in the shrimp ponds with different salinities were simultaneously measured in situ using the floating chamber technique in two different subtropical estuaries, namely, the Min River Estuary (MRE) and Jiulong River Estuary (JRE). The average CO 2 and CH 4 fluxes in the shrimp ponds over the observation periods varied from -2.09 to 3.37mmol CO 2 m -2 h -1 and from 0.28 to 16.28mmol CH 4 m -2 h -1 , respectively, with higher fluxes being detected during the middle stage of aquaculture. The temporal variation of CO 2 and CH 4 fluxes in both estuaries ponds closely followed the seasonal cycle of temperature. Higher CH 4 emissions were observed in MRE ponds than in JRE ponds because of the lower water salinity and N-NO 3 - concentrations as well as a greater supply of carbon substrates. Our findings suggested that shrimp ponds were CH 4 emission "hotspots" in the subtropical estuaries of China. Based on a new global warming potential model, we conservatively estimated an anuual GHG emission rate of approximately 63.68Tg CO 2 -eq during the culture period from aquaculture ponds across the subtropical estuaries of China. Our results demonstrate the importance of aquaculture ponds as a major GHG source and a contributor to climate warming in the subtropical estuarine regions of China, and call for effective regulation of GHG emissions from these ponds for climate mitigation in future. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  2. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota

    Treesearch

    Darold P. Batzer; Brian J. Palik; Richard Buech

    2004-01-01

    We related macroinvertebrate communities and environmental variables in 66 small seasonal woodland ponds of northern Minnesota, USA. These wetlands were relatively pristine, being embedded in 50- to 100-y-old 2nd-growth forests. Macroinvertebrate taxon richness in ponds increased as hydroperiods lengthened, tree canopies opened, water pH declined, and litter input...

  3. Investigation of the environmental impacts of sedimentation in Anzali Pond

    NASA Astrophysics Data System (ADS)

    Barmal, Milad; Neshaei, Seyed Ahmad; Farzan, Niloofar

    2016-04-01

    Anzali harbor is the most essential transportation pole between Iran and other countries of the Caspian Sea basin. Anzali pond is an important ecosystem in the region due to its unique plant and animal species. In order to determine the effects of interaction between pond and sea, a series of in-depth studies and analysis on the pattern of sedimentation in Anzali harbor and pond were performed. The study area is Anzali harbor and pond which is located in southwest of the Caspian Sea in Iran. In recent years the economical importance and improvement program of this region has devoted many scientists and authorities attention to itself. In this paper, researches on environmental impact by sediment and pollution in this zone are performed. Analysis indicates that by disposal of sediment and pollution in this area, the physical and chemical quality of water has declined. Some practical suggestions are made to improve the quality of the studied region in terms of environmental aspects.

  4. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  5. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.

  6. Social Relation between Businessman and Community in Management of Intensive Shrimp Pond

    NASA Astrophysics Data System (ADS)

    Gumay Febryano, Indra; Sinurat, James; Lovinia Salampessy, Messalina

    2017-02-01

    Expansion of aquaculture, especially shrimp culture, is the primary cause of deforestation of mangrove along coastal zone. This phenomenon is pretty much related to social relation between businessman of intensive shrimp pond and community around coastal zone. The objective of this research is to explain social relation between businessman and community in managing intensive shrimp pond. This research is a kind of qualitative research and the method used is a case study. The result of this research shows that the behaviour of the majority of businessman of intensive shrimp pond is not accordingly with environmental concerns as they compelled conversion of mangrove and they disposed waste of shrimp pond into the sea. Such kind of behaviour caused degradation of water ecosystem and marginalizing local community. Corporate Social Responsibility (CSR) which was implemented by businessman of intensive shrimp pond in the area of social, religion, and education can downgrade the coming up of social turbulence. Otherwise, CSR in enabling economic community and environmental management was not conducted yet. CSR in environmental management can be conducted by businessman of intensive shrimp pond by considering the existence of mangrove and pond management and waste in a better way, so that environment around ponds is not polluted and the sustainability of shrimp pond business as well as income of community can be guaranteed. Accordingly with the result of this research, CSR is not only involving businessman of intensive shrimp pond and community, but also involving local government in terms of right and responsibility of citizen as well as management and development of community.

  7. Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Gourdal, Margaux; Lizotte, Martine; Massé, Guillaume; Gosselin, Michel; Poulin, Michel; Scarratt, Michael; Charette, Joannie; Levasseur, Maurice

    2018-05-01

    Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit ( < 0.01 nmol L-1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ˜ 3 up to ˜ 6 nmol L-1 (avg. 3.7 ± 1.6 nmol L-1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.

  8. Salt budget for West Pond, Utah, April 1987 to June 1989

    USGS Publications Warehouse

    Wold, S.R.; Waddell, K.M.

    1994-01-01

    During operation of the West Desert pumping project, April 10. 1987, to June 30, 1989, data were collected as part of a monitoring program to evaluate the effects of pumping brine from Great Salt Lake into West Pond in northern Utah. The removal of brine from Great Sail was part of an effort to lower the level of Great Salt Lake when the water level was at a high in 1986. These data were used to prepare a salt budget that indicates about 695 million tons of salt or about 14.2 percent of salt contained in Great Salt Lake was pumped into West Pond. Of the 695 million tons of salt pumped into West Pond, 315 million tons (45 percent) were dissolved in West Pond, 71 million tons (10.2 percent) formed a salt crust at the bottom of the pond, 10 million tons (1.4 percent) infiltrated the subsurface areas inundated by storage in the pond, 88 million tons (12.7 percent) were withdrawn by American Magnesium Corporation, and 123 million tons (17.7 percent) discharged from the pond through the Newfoundland weir. About 88 million tons (13 percent) of the salt pumped from the lake could not be accounted for in the salt budget. About 94 million tons of salt (1.9 percent of the total salt in Great Salt Lake) flowed back to Great Salt Lake.

  9. Analysis of trifluralin, methyl paraoxon, methyl parathion, fenvalerate and 2,4-D dimethylamine in pond water using solid-phase extraction

    USGS Publications Warehouse

    Swineford, D.M.; Belisle, A.A.

    1989-01-01

    A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.

  10. Fate of permethrin in model outdoor ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawn, G.P.; Webster, G.R.; Muir, D.C.

    1982-01-01

    In 1979 and 1980, outdoor artificial ponds were treated with /sup 14/C-permethrin (labelled at either the cyclopropyl or methylene position) at 0.028 kg/ha (15 ug/L). Uptake of permethrin by duckweed and hydrosoil was monitored by direct combustion, TLC-autoradiography, HPLC, and liquid scintillation counting. Rapid loss of permethrin from the water coincided with the detection of five degradation products in the water at concentrations below 2.0 ug/L. The products were cis- and trans-cyclopropyl acid, phenoxybenzoic acid, and phenoxybenzyl alcohol, and an unknown non-cleaved product of permethrin. Permethrin was readily sorbed by duckweed but was not persistent. Permethrin residues in the hydrosoil,more » which was the major sink for permethrin added to the ponds, were persistent and were detected at 420 days post-treatment. Cis-permethrin was more persistent in the hydrosoil than the trans-permethrin. The results indicated that permethrin in water was short-lived at an application rate of 15 ug/L because of the rapid degradation of permethrin in the water and sorption of permethrin by the hydrosoil and vegetation. However, at one year post-treatment, permethrin residues were still detected in the hydrosoil at 1.0 ug/kg.« less

  11. Chemical treatment costs reduced with in-pond receway systems comopared to traditional pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Production systems such as in-pond raceway systems (IPRS) and split ponds are providing an alternative to traditional pond culture for raising catfish in several southeastern states. One advantage noted by farmers utilizing these systems is the reduced cost associated with the chemical treatment of...

  12. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.

    PubMed

    Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G

    2016-02-01

    The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Review of samples of water, sediment, tailings, and biota at the Little Bonanza mercury mine, San Luis Obispo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; Goldstein, Daniel N.; Brussee, Brianne E.; May, Jason T.

    2011-01-01

    Sample Sites and Methods Samples were collected to assess the concentrations of Hg and biogeochemically relevant constituents in tailings and wasterock piles at the Little Bonanza Hg mine. Tailings are present adjacent to a three-pipe retort used to process the Hg ore. The tailings occur in the upper 15 cm of the soil adjacent to the retort and slag from the retort is present on the surface. An area of disturbed soil and rock uphill from the retort was likely formed during construction of a dam that provided water for mining activities. Wasterock in these piles was sampled. The largest amount of tailings is exposed to the west of the retort in the bank of WF Las Tablas Creek. Water, sediment, and biota were sampled from WF Las Tablas Creek, which flows through the mine area. Sample-site locations are shown in figures 10 and 11 and listed in table 1. Samples were collected when streamflow was low and no precipitation had occurred.

  14. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    The Athabasca region of northern Alberta, Canada, is home to deposits of oil sands containing vast amounts (~ 173 billion barrels) of heavily biodegraded petroleum. Oil sands are recovered by surface mining or by in situ steam injection. The extraction of bitumen from oil sands by caustic hot water processing results in large volumes of fluid tailings, which are stored in on-site settling basins. There the tailings undergo a compaction and dewatering process, producing a slowly densifying suspension. The released water is recycled for extraction. The fine tailings will be reclaimed as either dry or wet landscapes. [1] To produce 1 barrel of crude oil, 2 tons of oil sand and 2 - 3 tons of water (including recycled water) are required. [2] Open pit mining and the extraction of the bitumen from the oil sands create large and intense disturbances of different landscapes. The area currently disturbed by mining operations covers about 530 km2 and the area of tailing ponds surpasses 130 km2. An issue of increasing importance is the land remediation and reclamation of oil sand areas in Canada and the reconstruction of these disturbed landscapes back to working ecosystems similar to those existing prior to mining operations. An important issue in this context is the identification of oil sand-derived organic compounds in the tailings, their environmental behaviour and the resulting chances and limitations with respect to land reclamation. Furthermore the biodegradation processes that occur in the tailings and that could lead to a decrease in hazardous organic compounds are important challenges, which need to be investigated. This presentation will give a detailed overview of our compositional and quantitative characterisation of the organic matter in oil sand, unprocessed and processed mature fine tailings samples as well as in tailings sands used as part of land reclamation. The analytical characterisation is based on the extraction of the soluble organic matter, its

  15. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    PubMed

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails.

    PubMed

    Spyra, Aneta

    2017-08-22

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH < 6) were Anisus spirorbis and Aplexa hypnorum. The greatest distinct characterised alkaline ponds with the numerous appearance of alien Physa acuta. The most diverse gastropod fauna was found in neutral ponds, whereas the lowest degree of diversity was found in ponds with the lowest pH. Current knowledge of pH-associated changes in aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  17. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.

    PubMed

    Dold, Bernhard; Diaby, Nouhou; Spangenberg, Jorge E

    2011-06-01

    We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahía de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydraulic gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (∼500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (δ(2)H(water) and δ(18)O(water), δ(34)S(sulfate), δ(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to ∼1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH ∼7, Eh ∼100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(III) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These

  18. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonablemore » effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project

  19. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.

    PubMed

    Fernández, Pilar; Sommer, Irene; Cram, Silke; Rosas, Irma; Gutiérrez, Margarita

    2005-09-15

    Dehydrogenase activity (DHA) in soils contaminated by arsenic-bearing tailings was correlated with total arsenic and total water-soluble arsenic (As(III)+As(V)) to evaluate the impact of tailings dispersion on the oxidative capacity of soil microorganisms. Georeferenced surface soil samples (0-10 cm depth) were collected at different distances from a tailings dam. In the samples farthest from the dam, all water-soluble arsenic (avg. 0.6+/-0.1 mg kg(-1)) was As(V). The highest concentration of water-soluble As(III)+As(V) (>1.9 mg kg(-1)) was found where As(III) was present. DHA averaged 438.9+/-79.3 microg INTF g(-1) h(-1) at the greatest distance from the dam and decreased to 92.3+/-27.1 microg INTF g(-1) h(-1) with decreasing distance from the dam. Pearson correlation coefficient between DHA and samples containing water-soluble As(V) (r=-0.87) was greater than that between DHA and total water-soluble arsenic (r=-0.57). The correlation between DHA and soluble arsenic containing both As(V) and As(III) was not significant (r=0.24). In soils with detectable As(III) concentrations where wet conditions prevail (i.e., reducing conditions), there is an abiotic response in addition to a biotic one. The correlation between DHA and total water-soluble As(III)+ As(V) was higher (r=-0.79) when the abiotic response was excluded. Our study demonstrated the importance of distinguishing between total and available fraction and its species and the need to evaluate biological functions in addition to purely geochemical analyses. DHA bioassay combined with other microbial properties offers a good tool for evaluating soil microbial activity and status and is a suitable indicator of the oxidative capacity of soil microorganisms affected by tailings in an oxidizing environment; however, under reducing conditions, abiotic responses must also be studied.

  20. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  1. Estimated ground-water use in Becker, Clay, Douglas, Grant, Otter Tail, and Wilkin Counties, Minnesota, for 2030 and 2050

    USGS Publications Warehouse

    Winterstein, Thomas A.

    2007-01-01

    The estimated recharge to the Buffalo aquifer, Otter Tail surficial aquifer, and Pelican River sand-plain aquifer is 3,707, 51,000, and 4,900–8,900 Mgal/yr, respectively. The range of the estimated 2050 ground-water withdrawals from the Buffalo, Otter Tail surficial, and Pelican River sand-plain aquifers is 1,234–1,776 Mgal/yr from the Buffalo aquifer, 11,728–14,820 Mgal/yr from the Otter Tail surficial aquifer, and 3,385–4,298 Mgal/yr from the Pelican River sand-plain aquifer.

  2. 77 FR 130 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Intercontinental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... issues: Water availability; Impacts from subsidence; Impacts to oil and gas exploration and operation in... processing facilities, including the ore process plant, dry stack tailings pile, evaporation ponds, water...

  3. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm.

    PubMed

    Zhang, J S; Li, Z J; Wen, G L; Wang, Y L; Luo, L; Zhang, H J; Dong, H B

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH 4 -N, and NO 2 -N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases' outbreak after the landfall of tropical storm.

  4. Environmental risks of abandoning a mining project already started: Romaltyn Mining Baia Mare

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2016-08-01

    The history of mining activity, which has been the economy engine in the region and has contributed to the formation of many localities, has been deleted too quickly. During all this time, in the world countries which have invested in mining sector have made considerable progress. The paper brings in question, within the framework of the theme, the implications arising from the abandonment of the Romaltyn project which mainly affects two objectives: Central Tailing Pond and Aurul Tailing Pond. The Central tailing pond constitutes an unfortunate source of pollution for groundwater, surface water, soil and air on a large area around it, because its location upstream of Baia Mare city and in the vicinity of a agricultural production zone. The consequences of the tailing pond maintenance in the current situation are: presence of sclerozing dust with sulphurs content scattered over large agricultural area; soil pollution by acidification; heavy metals release which enter in food chain and will be found in food. The final disposal of the pollution source is the only solution really safe in long term. Abandoning Aurul tailing pond in the current phase of construction involves high environmental risks. Taking in consideration the potential and the huge soil volume which are necessary for rehabilitation, isolation and rehabilitation of this area involve extremely high costs and the realization is, technically, almost impossible in the current context.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.J.

    Mining activity in the vicinity of Lynn Lake in north-west Manitoba resulted in development of a number of tailings ponds that are potential sources of acid drainage. Observations such as the presence of dead trees in the vicinity of tailings pond dikes and a distinctive green coloration in one effluent pond raised concerns that confinement of acid drainage in the tailings area may be compromised and causing renewed detrimental impacts to the Lynn River and surrounding area. This report presents results of water quality and sediment surveys conducted in the Lynn Lake area. Parameters studied include pH, conductivity, calcium, sulfate,more » iron, nickel, zinc, copper, cyanide, and presence of benthos. Comparisons of the results are made with results from earlier surveys in order to determine temporal trends.« less

  6. Simulated responses of streams and ponds to groundwater withdrawals and wastewater return flows in southeastern Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Walter, Donald A.; Barbaro, Jeffrey R.

    2015-12-21

    The percentages of the total number of ponds affected by pumping with wastewater return flows under long-term average conditions in the modeled areas were 28 percent for the Plymouth-Carver region, 67 percent for western Cape Cod, and 75 percent for eastern Cape Cod. Pond-level alterations ranged from a decrease of 4.6 feet at Great South Pond in the Plymouth Carver region to an increase of 0.9 feet at Wequaquet Lake in western Cape Cod. The magnitudes of monthly alterations to pond water levels were fairly consistent throughout the year.

  7. Breeding biology of the spotted salamander Ambystoma maculatum (Shaw) in acidic temporary ponds at Cape Cod, USA

    USGS Publications Warehouse

    Portnoy, J.W.

    1990-01-01

    The relationship between water chemistry and breeding success of spotted salamanders Ambystoma maculatum (Shaw) was examined in temporary woodland ponds on outer Cape Cod, Massachusetts in 1985 and 1986. Most pond waters were dilute (3median coductivity = 57 umhos cm-1 (1 umhos cm-1 = 0?1 mSm-1)), acidic (median pH = 4?82), and highly colored (median = 140 Pt-Co units). Most acidity was due to abundant organic acids. Salamander survival to hatching was over 80% at 8 of 12 ponds monitored. Complete mortality, preceded by gross abnormalities, was observed only among embryos in the most acidic spawning pond (pH 4?3-4?5) in both years. Embryo transfers between ponds and laboratory studies indicated that reduced survival was due to the interaction of low pH with high tannin-lignin concentration. The use of amphibian embryonic survival to indicate acid rain effects is complicated by multiple habitat parameters and should only be attempted in conjunction with long-term population monitoring.

  8. Mineralogy and geochemistry of efflorescent minerals on mine tailings and their potential impact on water chemistry.

    PubMed

    Grover, B P C; Johnson, R H; Billing, D G; Weiersbye, I M G; Tutu, H

    2016-04-01

    In the gold mining Witwatersrand Basin of South Africa, efflorescent mineral crusts are a common occurrence on and nearby tailings dumps during the dry season. The crusts are readily soluble and generate acidic, metal- and sulphate-rich solutions on dissolution. In this study, the metal content of efflorescent crusts at an abandoned gold mine tailings dump was used to characterise surface and groundwater discharges from the site. Geochemical modelling of the pH of the solution resulting from the dissolution of the crusts was used to better understand the crusts' potential impact on water chemistry. The study involved two approaches: (i) conducting leaching experiments on oxidised and unoxidised tailings using artificial rainwater and dilute sulphuric acid and correlating the composition of crusts to these leachates and (ii) modelling the dissolution of the crusts in order to gain insight into their mineralogy and their potential impact on receiving waters. The findings suggested that there were two chemically distinct discharges from the site, namely an aluminium- and magnesium-rich surface water plume and an iron-rich groundwater plume. The first plume was observed to originate from the oxidised tailings following leaching with rainwater while the second plume originated from the underlying unoxidised tailings with leaching by sulphuric acid. Both groups of minerals forming from the respective plumes were found to significantly lower the pH of the receiving water with simulations of their dissolution found to be within 0.2 pH units of experimental values. It was observed that metals in a low abundance within the crust (for example, iron) had a stronger influence on the pH of the resulting solutions than metals in a greater abundance (aluminium or magnesium). Techniques such as powder X-ray diffraction (PXRD) and in situ mineral determination techniques such as remote sensing can effectively determine the dominant mineralogy. However, the minerals or metals

  9. Freshwater oligochaeta in mining subsidence ponds in the Upper Silesia region of southern Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krodkiewska, M.

    I surveyed the benthic oligochaetes in three coal mining subsidence ponds in a heavily industrialized region of Upper Silesia, southern Poland. The fauna present differed in many respects from that living in natural and unpolluted water bodies. Nineteen species (11 Naididae and eight Tubificidae) were found. The two most consistently abundant species in all three ponds were Limnodrilus hoffimeisteri and Tubifex tubifex, both of which are ubiquitous and common in Poland. Polamothrix bavaricus, which is considered a rare species in Poland, was found consistently in the ponds.

  10. Flow cytometry used to assess genetic damage in frogs from farm ponds

    USGS Publications Warehouse

    Bly, B.L.; Knutson, M.G.; Sandheinrich, M.B.; Gray, B.R.; Jobe, D.A.

    2004-01-01

    Flow cytometry (FC) is a laboratory method used to detect genetic damage induced by environmental contaminants and other stressors in animals, including amphibians. We tested FC methods on three species of ranid frogs collected from farm ponds and natural wetlands in southeastern Minnesota. We compared FC metrics for Rana clamitans between ponds with direct exposure to agricultural contaminants and reference (unexposed) ponds. Concentrations of atrazine in water from our farm ponds ranged from 0.04 to 0.55 ppb. We found that R. clamitans from exposed ponds had DNA content similar to frogs from unexposed ponds. Pond-averaged C-values (a measure of DNA content) ranged from 6.53 to 7.08 for R. pipiens (n . 13), 6.55 to 6.60 for R. clamitans (n . 40) and 6.74 for R. palustris (n . 5). Among all species, the mean sample CVs ranged from 1.91 (R. palustris) to 6.31 (R. pipiens). Deformities were observed in only 2 of 796 individuals among all species and occurred in both reference and exposed ponds. Although we did not detect evidence of DNA damage associated with agriculture in our study, we demonstrated the potential of FC for screening amphibian populations for genetic damage. Metrics from a variety of amphibian species and locations as well as laboratory studies are needed to further assess the value of FC for monitoring amphibian genetic integrity in contaminated sites.

  11. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    NASA Astrophysics Data System (ADS)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  12. European perspectives on regional estimates of standing water bodies and the relevance of man-made ponds

    NASA Astrophysics Data System (ADS)

    Terasmaa, Jaanus; Bartout, Pascal; Marzecova, Agata; Touchart, Laurent; Koff, Tiiu; Choffel, Quentin; Kapanen, Galina; Maleval, Véronique; Millot, Camille; Qsair, Zoubida; Vandel, Egert

    2015-04-01

    threshold limit 0.01 ha which will illustrate the quantitative importance of very small often man-made ponds, which are however, abundant cultural heritage in many parts of Europe. Secondly, by comparing detailed national inventories compiled for France and Estonia, we will introduce usefulness of the the 'local to global' approach in which the local databases may significantly strengthen the precision of the regional (EU) level analysis. Overall, we will disss that all standing water bodies - including small and man-made ponds - play an important role in ecosystem services and require careful management to avoid hydrological and environmental deterioration. References: Verpoorter et al. (2014) Geophysical Research Letters, 41. Bartout & Touchart,(2013) Annales de Géographie, 691. Downing et al., (2006) Limnology and Oceanography, 51(5). Kuusisto & Raatikainen, (1988) Terra, 102. Meybeck, (1995) in Lerman et al., Physics and chemistry of lakes. Rjanžin, (2005) Priroda, 4.

  13. Dry habitats sustain high CO2 emissions from temporary ponds across seasons.

    PubMed

    Obrador, Biel; von Schiller, Daniel; Marcé, Rafael; Gómez-Gener, Lluís; Koschorreck, Matthias; Borrego, Carles; Catalán, Núria

    2018-02-14

    Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO 2 and CH 4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO 2 emitters irrespective of the presence or absence of water. While the CO 2 fluxes were in the upper range of emissions for freshwater lentic systems, CH 4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO 2 , whereas inundated habitats acted either as a source or a sink of atmospheric CO 2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO 2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO 2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH 4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.

  14. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  15. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed tomore » its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 °C, the water temperature was 18 °C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  16. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    USGS Publications Warehouse

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  17. Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions

    PubMed Central

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, L. Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark P.; Topping, Brent R.; Shellenbarger, Gregory G.; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  18. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    PubMed

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log 10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  19. Low Concentration of Salmonella enterica and Generic Escherichia coli in Farm Ponds and Irrigation Distribution Systems Used for Mixed Produce Production in Southern Georgia.

    PubMed

    Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T

    2016-10-01

    Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution

  20. Site-Specific Research Conducted in Support of the Salton Sea Solar Pond Project - FY 1982 Report

    NASA Technical Reports Server (NTRS)

    French, R. L.; Marsh, H. E.; Roschke, E. J.; Wu, Y. C.

    1984-01-01

    The design and operation of a salt-gradient solar pond power plant at the Salton Sea presents problems not encountered at small research ponds that were built in the United States. The specific characteristics of the Salton Sea site and the desire to construct the pond using the local clay as a sealant represent major deviations from previous solar pond experience. The site-specific research in support of the plant design is described. The research activity included validation of the spectrophotometric light transmission measurement technique, a search for options for clarifying the turbid and colored water of the Salton Sea, development of water clarification specifications in terms common to industry practice, quantification of gas production from microbiological reactions in the ground, a determination of the combined effects of temperature and salinity on the permeation of the local clays, and a preliminary evaluation of material corrosion.

  1. Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds

    USGS Publications Warehouse

    Karouna-Renier, N.K.; Sparling, D.W.

    2001-01-01

    Stormwater treatment ponds receive elevated levels of metals from urban runoff, but the effects of these pollutants on organisms residing in the ponds are unknown. We investigated the accumulation of Cu, Zn, and Pb by macroinvertebrates collected from stormwater treatment ponds in Maryland serving commercial, highway, residential and open-space watersheds, and determined whether watershed land-use classification influences metal concentrations in macroinvertebrates, sediments, and water. Three types of invertebrate samples were analyzed for molluscs, odonates, and composite. Zn concentrations in odonates from ponds draining watersheds with commercial development (mean=113.82 ug/g) were significantly higher than concentrations in the other land-use categories. Similarly, Cu levels in odonates from commercial ponds (mean=27.12 ug/g) were significantly higher than from highway (mean=20.23 ug/g) and open space (mean=17.79 ug/g) ponds. However, metal concentrations in sediments and water did not differ significantly among land-uses. The results suggest that despite the high variation in ambient metal concentrations within each land-use category, macroinvertebrates in ponds serving commercial watersheds accumulate higher levels of Cu and Zn. The levels of Cu, Zn, and Pb in invertebrates from all ponds were less than dietary concentrations considered toxic to fish.

  2. Evidence of low toxicity of oil sands process-affected water to birds invites re-evaluation of avian protection strategies.

    PubMed

    Beck, Elizabeth M; Smits, Judit E G; St Clair, Colleen Cassady

    2015-01-01

    Exposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported following contact with bitumen on the ponds, but a new monitoring programme demonstrated that many thousands of birds land annually without apparent harm. This new insight creates an urgent need for more information on the sublethal effects on birds from non-bitumen toxicants that occur in the water, including naphthenic acids, polycyclic aromatic hydrocarbons, heavy metals and salts. Ten studies have addressed the effects of oil sands process-affected water (OSPW), and none reported acute or substantial adverse health effects. Interpretive caution is warranted, however, because nine of the studies addressed reclaimed wetlands that received OSPW, not OSPW ponds per se, and differences between experimental and reference sites may have been reduced by shared sources of pollution in the surrounding air and water. Two studies examined eggs of birds nesting >100 km from the mine sites. Only one study exposed birds directly and repeatedly to OSPW and found no consistent differences between treated and control birds in blood-based health metrics. If it is true that aged forms of OSPW do not markedly affect the health of birds that land briefly on the ponds, then the extensiveness of current bird-deterrent programmes is unwarranted and could exert negative net environmental effects. More directed research on bird health is urgently needed, partly because birds that land on these ponds subsequently migrate to destinations throughout North America where they are consumed by both humans and wildlife predators.

  3. Evidence of low toxicity of oil sands process-affected water to birds invites re-evaluation of avian protection strategies

    PubMed Central

    Beck, Elizabeth M.; Smits, Judit E. G.; St Clair, Colleen Cassady

    2015-01-01

    Exposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported following contact with bitumen on the ponds, but a new monitoring programme demonstrated that many thousands of birds land annually without apparent harm. This new insight creates an urgent need for more information on the sublethal effects on birds from non-bitumen toxicants that occur in the water, including naphthenic acids, polycyclic aromatic hydrocarbons, heavy metals and salts. Ten studies have addressed the effects of oil sands process-affected water (OSPW), and none reported acute or substantial adverse health effects. Interpretive caution is warranted, however, because nine of the studies addressed reclaimed wetlands that received OSPW, not OSPW ponds per se, and differences between experimental and reference sites may have been reduced by shared sources of pollution in the surrounding air and water. Two studies examined eggs of birds nesting >100 km from the mine sites. Only one study exposed birds directly and repeatedly to OSPW and found no consistent differences between treated and control birds in blood-based health metrics. If it is true that aged forms of OSPW do not markedly affect the health of birds that land briefly on the ponds, then the extensiveness of current bird-deterrent programmes is unwarranted and could exert negative net environmental effects. More directed research on bird health is urgently needed, partly because birds that land on these ponds subsequently migrate to destinations throughout North America where they are consumed by both humans and wildlife predators. PMID:27293723

  4. Persistence of rotenone in ponds at different temperatures

    USGS Publications Warehouse

    Gilderhus, P.A.; Allen, J.L.; Dawson, V.K.

    1986-01-01

    Two ponds were treated with liquid rotenone (5% rotenone), one with 3 mg/L at 24°C and the other with 2 mg/L at 0°C (concentrations of active rotenone were 0.15 and 0.10 mg/L, respectively). Water samples were collected and analyzed by high-performance liquid chromatography. The concentration of rotenone declined to 0.02 mg/L in 48 h in warm water and in 11 d in cold water. The half-life of rotenone was calculated at 13.9 h in warm water and 83.9 h in cold water.

  5. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm

    PubMed Central

    Zhang, J. S.; Li, Z. J.; Wen, G. L.; Wang, Y. L.; Luo, L.; Zhang, H. J.; Dong, H. B.

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH4-N, and NO2-N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases’ outbreak after the landfall of tropical storm. PMID:27822254

  6. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  7. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determinemore » what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.« less

  9. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  10. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  11. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    USGS Publications Warehouse

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  12. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  13. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    USGS Publications Warehouse

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow ground water in areas unaffected by settling-pond seepage.

  14. Methyl Mercury Production In Tropical Hydromorphic Soils: Impact Of Gold Mining.

    NASA Astrophysics Data System (ADS)

    Guedron, S.; Charlet, L.; Harris, J.; Grimaldi, M.; Cossa, D.

    2007-12-01

    Artisanal alluvial gold mining is important in many tropical developing countries and several million people are involved worldwide. The dominant use of mercury for gold amalgamation in this activity leads to mercury accumulation in soils, to sediment contamination and to methyl mercury (MMHg) bioaccumulation along the food chain. In this presentation we will present recent data on methyl mercury production in hydromorphic soils and tailing ponds from a former gold mining area located in French Guiana (South America). Comparison of specific fluxes between a pristine sub watershed and the contaminated watershed shows that former mining activities lead to a large enhancement of dissolved and particulate MMHg emissions at least by a factor of 4 and 6, respectively. MMHg production was identified in sediments from tailing ponds and in surrounding hydromorphic soils. Moreover, interstitial soil water and tailing pond water profiles sampled in an experimental tailing pond demonstrate the presence of a large MMHg production in the suboxic areas. Both tailing ponds and hydromorphic soils present geochemical conditions that are favorable to bacterial mercury methylation (high soil Hg content, high aqueous ferric iron and dissolved organic carbon concentrations). Although sulfate-reducing bacteria have been described as being the principal mercury methylating bacteria, the positive correlation between dissolved MMHg and ferrous iron concentrations argue for a significant role of iron-reducing bacteria. Identifications by sequencing fragments of 16S rRNA from total soil DNA support these interpretations. This study demonstrates that current and past artisanal gold mining in the tropics lead to methyl mercury production in contaminated areas. As artisanal activities are increasing with increasing gold prices, the bio- magnification of methyl mercury in fish presents an increasing threat to local populations whose diet relies on fish consumption.

  15. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  16. Chemical treatment costs reduced with use of in-pond raceway systems compared to traditional pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Production systems such as in-pond raceway systems (IPRS) and split ponds are providing an alternative to traditional pond culture for raising catfish in several southeastern states. One advantage noted by farmers utilizing these systems is the reduced cost associated with the chemical treatment of ...

  17. Arsenic geochemistry of alluvial sediments and pore waters affected by mine tailings along the Belle Fourche and Cheyenne River floodplains

    USGS Publications Warehouse

    Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.

    2018-01-01

    Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.

  18. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; ...

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L -1day -1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m -2day -1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  19. The Geomorphology, Hydrology and Evolution of a Chain of Ponds River System: A Poorly Recognised and Unique River Planform Type.

    NASA Astrophysics Data System (ADS)

    Williams, R.; Fryirs, K.

    2016-12-01

    Chain-of-ponds river types are alluvial, discontinuous watercourses that contain irregularly spaced, deep, steep-sided ponds separated by an ephemeral flow path. Despite being widespread, chains of ponds are now rare in Australia, having experienced extensive channelisation since European settlement and landuse intensification. The Mulwaree system is one of the largest remaining chain of ponds systems in the country. Little is known about its geomorphic structure, Quaternary evolution or hydrological function. The valley fill of the Mulwaree River contains layers of gravel and cobble clast-supported sediments at a depth of 20 m. Atop, silt and fine sand sediments are 1-3 m deep. The ponds, which sit in this valley-fill, are large (1000-4000 m2 and up to 8 m deep), and are relic form from a much larger and more energetic gravel-bed river that occurred in this valley in the past. Optically-stimulated luminescence ages date the change from high-energy gravel bed to the very low energy system seen today at approximately 20-25 ka. The oldest dates for the gravel bed system at 5-7 m deep are 60-90 ka. The coarser substrate beneath the fine-grained floodplain is mostly saturated, forming a near-surface aquifer in the valley fill/floodplain. The water levels in the floodplain are similar to the level of the adjacent ponds (within 0.2 m) and this water level adjusts readily (within 0.5-2 days) to rain/flow. There is significant hydrological connectivity between the ponds and adjacent floodplain. During high flow conditions, stable isotope (δ18O and δ2H) results from the ponds show no deviation through the profile as the water column is being mixed. However, during low-flow conditions, water in the ponds is enriched near the surface due to evaporation, and has a similar signal to the adjacent near-surface, floodplain aquifer below a weak thermocline. This shows that these systems have a dual function, behaving more as groundwater dependent systems during low flow

  20. Dynamics of manganese, cadmium, and lead in experimental power plant ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, B.J.; Cummings, T.F.; Gower, M.

    1977-06-01

    This study was designed to determine the effect of heated power plant cooling water on the compartmentalization of manganese, lead, and cadmium in experimental ponds. Caged channel catfish and green sunfish were kept in an experimental pond and a control pond. Periodically, whole fishes, gill, heart, kidney, liver, and musculature were analyzed for the three metals. Concentrations of the three metals in fishes were not affected by the temperature differential maintained during the study. There was no correlation in concentrations of cadmium and lead with age (weight and length) of fishes but manganese concentrations declined slightly with age. Aquatic organismsmore » such as snails, fingernail clams, leeches, tubificid annelids, and dragonfly nymphs exhibited concentrations of cadmium higher than sediments while snails and duckweed more closely reflected concentrations of manganese in sediments.« less

  1. Mathematical Analysis for the Optimization of Wastewater Treatment Systems in Facultative Pond Indicator Organic Matter

    NASA Astrophysics Data System (ADS)

    Sunarsih; Widowati; Kartono; Sutrisno

    2018-02-01

    Stabilization ponds are easy to operate and their maintenance is simple. Treatment is carried out naturally and they are recommended in developing countries. The main disadvantage of these systems is large land area they occupy. The aim of this study was to perform an optimization of the wastewater treatment systems in a facultative pond, considering a mathematical analysis of the methodology to determine the model constrains organic matter. Matlab optimization toolbox was used for non linear programming. A facultative pond with the method was designed and then the optimization system was applied. The analyse meet the treated water quality requirements for the discharge to the water bodies. The results show a reduction of hydraulic retention time by 4.83 days, and the efficiency of of wastewater treatment of 84.16 percent.

  2. Redhead duck behavior on lower Laguna Madre and adjacent ponds of southern Texas

    USGS Publications Warehouse

    Mitchell, C.A.; Custer, T.W.; Zwank, P.J.

    1992-01-01

    Behavior of redheads (Aythya americana) during winter was studied on the hypersaline lower Laguna Madre and adjacent freshwater to brackish water ponds of southern Texas. On Laguna Madre, feeding (46%) and sleeping (37%) were the most common behaviors. Redheads fed more during early morning (64%) than during the rest of the day (40%); feeding activity was negatively correlated with temperature. Redheads fed more often by dipping (58%) than by tipping (25%), diving (16%), or gleaning (0.1%). Water depth was least where they fed by dipping (16 cm), greatest where diving (75 cm), and intermediate where tipping (26 cm). Feeding sequences averaged 5.3 s for dipping, 8.1 s for tipping, and 19.2 s for diving. Redheads usually were present on freshwater to brackish water ponds adjacent to Laguna Madre only during daylight hours, and use of those areas declined as winter progressed. Sleeping (75%) was the most frequent behavior at ponds, followed by preening (10%), swimming (10%), and feeding (0.4%). Because redheads fed almost exclusively on shoalgrass while dipping and tipping in shallow water and shoalgrass meadows have declined in the lower Laguna Madre, proper management of the remaining shoalgrass habitat is necessary to ensure that this area remains the major wintering area for redheads.

  3. Comparison of Adjective vs. Benthic Sources of Nutrients to a Former Salt Pond under Restoration

    NASA Astrophysics Data System (ADS)

    Topping, B.; Kuwabara, J. S.; Garrett, K.; Takekawa, J.; Piotter, S.; Parchaso, F.

    2013-12-01

    With the implementation of the South Bay Restoration Program in 2008, water quality in the Alviso Salt Ponds, California, has been monitored to document the effects of changing hydrologic connections among the ponds and the adjacent pond, slough and estuary. In 2010 and 2012, pore-water profilers (U.S. Patent 8,051,727 B1) were deployed in Pond A3W, a former salt pond just north of Moffett Federal Airfield that mixes hydrologically through culverts and weirs with Guadalupe Slough and neighboring ponds, to assess the magnitude of diffusive benthic flux, generated primarily by remobilization of surface-reactive solutes in bed sediment accumulated over annual to decadal time scales. The study, focusing on macronutrient sources that may stimulate harmful algal blooms, revealed that orthophosphate, ammonia, and silica benthic flux were consistently positive (out of the sediment) in both 2010 and 2012, while nitrate and nitrite fluxes were negligible. Because tidal height can affect the size and direction of flow, a diurnal study of nutrient advective flux into and out of the pond was measured during neap and spring tides. These advective fluxes (kg/yr) were compared to benthic flux estimates for the pond extrapolated over the 2.27 (km2) pond surface. Benthic flux of inorganic nitrogen species, averaged over all sites and dates, was about 80,000 + 48,000 kilograms per year (kg/yr), well above the adjective flux range of -50 to 1,500 kg/yr. By contrast, the average benthic flux of orthophosphate was about 12,000 + 4,400 kg/yr, well below the advective flux range of 21,500 to 30,000 kg/yr. Benthic flux estimates determined by porewater gradients do not include enhancement processes such as bioturbation, bioirrigation, wind resuspension, and potential groundwater inflows. However, they provide a conservative measure and can be an effective management screening tool. These results indicate that benthic transport may be an important source of biologically reactive solutes for

  4. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  5. Evidence for ponding and catastrophic floods in central Valles Marineris, Mars

    USGS Publications Warehouse

    Harrison, K.P.; Chapman, M.G.

    2008-01-01

    The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (-3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation. ?? 2008 Elsevier Inc.

  6. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    PubMed

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  7. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.

    PubMed

    DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H

    2012-01-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with

  8. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel

    NASA Astrophysics Data System (ADS)

    Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.

    2017-08-01

    This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region

  9. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds.

    PubMed

    Goetz, D; Kröger, R; Miranda, L E

    2014-05-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (<1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  10. Decommissioning of magnox Ltd fuel cooling pond facilities in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoncini, Carlo

    2013-07-01

    Magnox reactors were the first generation of nuclear power stations built in the UK; ten sites in total, of which, nine had wet fuel routes with cooling ponds. Five ponds are currently in a decommissioning phase; this paper will focus primarily on Hunterston-A (HNA) Site and the central programme of work which governs its management. During its operation, the Cartridge Cooling Pond at HNA was used to receive the spent fuel discharged from the Site's two reactors, it was then stored for cooling purposes prior to dispatch off site. The current decommissioning phase focusses on draining the 6500 m{sup 3}more » pond. Due to the Site's limited caesium removal facilities, a stand-alone effluent treatment plant was constructed to improve abatement and reduce the pond activity from 200 to 0.7 Bq/ml (β). This was necessary due to increased environmental standards introduced since the site had ceased generation ten years previously. Early characterisation and experience from other sites concluded that if the pond were to be drained without any treatment to the walls, doses to the Operators, during subsequent decommissioning works, would routinely be in excess of 1 mSv.hr{sup -1}(γ). An opportunity was realised within the Ponds Programme that if the surface layer of the pond walls were to be removed during drain-down, ambient dose rates would be reduced by a factor of 10; this would allow for more cost-effective decommissioning options in the future. Ultrahigh pressure water jetting was tested and proved to yield a ∼95% total-activity reduction on treated surfaces. Challenges were overcome in providing safe and secure access to Decommissioning Operators to perform this operation by means of floating platforms on the surface of the pond. As strategies to clear facilities to exemption levels are becoming both cost prohibitive and not reasonably practicable, work is now underway in the Programme to determine the optimum condition for entry into long-term quiescent storage

  11. Water quality characterization and mathematical modeling of dissolved oxygen in the East and West Ponds, Jamaica Bay Wildlife Refuge.

    PubMed

    Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J

    2003-09-01

    The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.

  12. Release behavior of uranium in uranium mill tailings under environmental conditions.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sampling Melt Ponds

    NASA Image and Video Library

    2017-12-08

    On July 10, 2011, Jens Ehn of Scripps Institution of Oceanography (left), and Christie Wood of Clark University (right), scooped water from melt ponds on sea ice in the Chukchi Sea. The water was later analyzed from the Healy's onboard science lab. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Linkage between seasonal hydrology and carbon flux dynamics in tundra ponds: Samoylov Island, Lena River Delta, Siberia

    NASA Astrophysics Data System (ADS)

    Abnizova, Anna; Bornemann, Niko; Boike, Julia

    2010-05-01

    Arctic ponds have been recently recognized as being highly sensitive to changing climate. To date, ponds and lakes are disappearing in Alaska, Siberia and Canadian High Arctic because of climate warming (Fitzgerald et al. 2003; Smith et al. 2005; and Smol et al. 2007). While numerous limnological studies have been done on arctic ponds located in the Canadian High Arctic (Douglas and Smol, 1994; Hamilton et al. 2001; Lim et al., 2001), there is a limited number of studies on tundra ponds located in other circumpolar environments (e.g. Northern Siberia). Duff et al. (1999) describes tundra lakes in northern Russia as clear, dilute, oligotrophic lakes with low nutrients and dissolved organic carbon concentration. While numerous ponds and lakes exists in the Lena River Delta averaging to 2120 lakes of all sizes for every 1000 km2, no studies have been done to understand carbon flux dynamics of these freshwater ecosystems. In this study hydrological monitoring based on water balance framework was applied to a series of ponds and lakes located on Samoylov Island, 120 km south of the Arctic Ocean in the southern central Lena River Delta (72° 22' N, 126 ° 30' E) from July to September 2008. To better understand spatial differences in pond hydrology and carbon flux dynamics, the physical and biochemical data was collected from 42 tundra ponds. The selection of the ponds was based on their size (small, medium, large) and depth values ranging from 10 to 120 cm. The estimation of the seasonal water budget in 2008 showed that losses through evapotranspiration were offset by similar precipitation inputs and resulted in the equilibrium storage values in the study ponds prior to the freeze-back. Preliminary analysis showed that more than 50% of the ponds had DOC > 6.5 mg/l which exceeds average value of other Arctic ponds reported in literature (Duff et al. 1999 and Hamilton et al. 2001). Elevated DOC concentrations (> 8 mg/l) were found in the small and medium ponds with depth

  16. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    NASA Astrophysics Data System (ADS)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  17. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Specia...

  18. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  20. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications.

    PubMed

    Han, F X; Hargreaves, J A; Kingery, W L; Huggett, D B; Schlenk, D K

    2001-01-01

    Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.

  1. Acid-base chemistry and aluminum transport in an acidic watershed and pond in New Hampshire

    Treesearch

    Scott W. Bailey; Charles T. Driscoll; James W. Hornbeck

    1995-01-01

    Cone Pond is one of the few acidic, clear-water ponds in the White Mountains of New Hampshire, a region dominated by high inputs of strong acids from atmospheric deposition and low base content of bedrock. Monitoring was conducted for 13 months to compare and contrast the acid-base chemistry of the terrestrial and aquatic portions of the watershed. Variations in Al...

  2. Avian botulism E=epizootiology on sewage oxidation ponds in Utah

    USGS Publications Warehouse

    Moulton, Daniel W.; Jensen, Wayne I.; Stewart, Sondra K.

    1976-01-01

    In the microenvironment concept of avian botulism epizootiology, it is hypothesized that invertebrate carcasses may serve both as a substrate for toxin production by Clostridium botulinum type C and as a vehicle for toxin transmission to water birds. We field-tested that hypothesis by attempting to induce botulism in wing-clipped mallard ducks (Anas platyrhynchos) on sewage oxidation ponds in Utah. The experimental ponds were inoculated with C. botulinum spores in June 1974. Aquatic insect populations were monitored throughout the summer. Rotenone was used in August to kill insects in two ponds (one served as control), thereby providing potential substrate for clostridial growth and toxin production. Botulism was not detected among the birds even though they routinely ingested invertebrate carcasses. Samples of dead invertebrates contained no botulinum toxin. We concluded that the microenvironment concept, as it now stands, cannot always be a sufficient explanation of how type C botulism epizootics are initiated in nature. Other microbes may inhibit the growth of clostridial cells or destroy botulinum toxin.

  3. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  4. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  5. Quantification of N2O and NO emissions from a small-scale pond-ditch circulation system for rural polluted water treatment.

    PubMed

    Ma, Lin; Tong, Weijun; Chen, Hongguang; Sun, Jian; Wu, Zhenbin; He, Feng

    2018-04-01

    The pond-ditch circulation system (PDCS) is an efficient and economical solution for the restoration of degraded rural water environments. However, little is known about nitrous oxide (N 2 O) and nitric oxide (NO) emissions in the microbial removal process of nitrogen in PDCSs, and their contribution to nitrogen removal. The aim of this study was to quantify N 2 O and NO emissions from the PDCS, evaluate their capacities, and elucidate the key environmental factors controlling them. The results showed that N 2 O and NO fluxes were in the ranges 1.1-2055.1μgNm -2 h -1 and 0.1-6.8μgNm -2 h -1 for the PDCS, respectively. Meanwhile, the N 2 O and NO fluxes from the two ponds in the PDCS were significantly higher than those in the static system. Moreover, the amount of N 2 O and NO emissions in the PDCS accounted for 0.17-4.32% of the total nitrogen (TN) removal. According to the partial least squares (PLS) approach and Pearson's correlation coefficients, nitrate nitrogen in water (W-NO 3 - -N), dissolved oxygen in water (W-DO), dissolved oxygen in sediment (DO), pH in water (W-pH), pH in sediment (pH), total kjeldahl nitrogen (TKN), and soil organic carbon (SOC) significantly affected the N 2 O flux (p<0.05), whereas W-NO 3 - -N, DO, and nitrite nitrogen in sediment (NO 2 - -N) significantly affected the NO emission (p<0.05). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    PubMed

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies

  7. OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND MINE MANAGER'S HOME, LOOKING SOUTH SOUTHEAST. RIGHT, TAILINGS PILES ARE AT CENTER WITH CYANIDE PLANT FOUNDATIONS TO THE LEFT OF THE PILES. PARKING LOT IS AT UPPER LEFT. THE AREA BETWEEN THE COLLAPSED TANK AT CENTER LEFT AND THE REMAINS OF THE MANAGER'S HOUSE AT LOWER RIGHT IS A TAILINGS HOLDING AREA. TAILINGS FROM THE MILL WERE HELD HERE. THE LARGE SETTLING TANKS WERE CHARGED FROM THIS HOLDING AREA BY A TRAM ON RAILS AND BY A SLUICEWAY SEEN AS THE DARK SPOT ON THE CENTER LEFT EDGE OF THE FRAME. AFTER THE TAILINGS WERE LEACHED, THEY WERE DEPOSITED ON THE LARGE WASTE PILE AT CENTER RIGHT. THE TANK AT CENTER RIGHT EDGE IS WHERE THE WATER PIPELINE ENTERED THE WORKS. A STRAIGHT LINE OF POSTS IN THE GROUND GO ACROSS THE CENTER FROM LEFT TO RIGHT, WHICH ORIGINALLY SUSPENDED THE WATER PIPELINE GOING FROM THE WATER HOLDING TANK AT RIGHT UP TO THE SECONDARY WATER TANKS ABOVE THE MILL. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  8. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  9. Water quality of stormwater generated from an airport in a cold climate, function of an infiltration pond, and sampling strategy with limited resources.

    PubMed

    Jia, Yu; Ehlert, Ludwig; Wahlskog, Cecilia; Lundberg, Angela; Maurice, Christian

    2017-12-05

    Monitoring pollutants in stormwater discharge in cold climates is challenging. An environmental survey was performed by sampling the stormwater from Luleå Airport, Northern Sweden, during the period 2010-2013, when urea was used as a main component of aircraft deicing/anti-icing fluids (ADAFs). The stormwater collected from the runway was led through an oil trap to an infiltration pond to store excess water during precipitation periods and enhance infiltration and water treatment. Due to insufficient capacity, an emergency spillway was established and equipped with a flow meter and an automatic sampler. This study proposes a program for effective monitoring of pollutant discharge with a minimum number of sampling occasions when use of automatic samplers is not possible. The results showed that 90% of nitrogen discharge occurs during late autumn before the water pipes freeze and during snow melting, regardless of the precipitation during the remaining months when the pollutant discharge was negligible. The concentrations of other constituents in the discharge were generally low compared to guideline values. The best data quality was obtained using flow controlled sampling. Intensive time-controlled sampling during late autumn (few weeks) and snow melting (2 weeks) would be sufficient for necessary information. The flow meters installed at the rectangular notch appeared to be difficult to calibrate and gave contradictory results. Overall, the spillway was dry, as water infiltrated into the pond, and stagnant water close to the edge might be registered as flow. Water level monitoring revealed that the infiltration capacity gradually decreased with time.

  10. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality.

    PubMed

    Abraham, Mwesigye R; Susan, Tumwebaze B

    2017-02-01

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg -1 ) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L -1 ) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L -1 ) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L -1 , Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L -1 in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L -1 . The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ISOTOPIC EVIDENCE FOR NATURALLY OCCURRING SULFATE PONDS IN THE KANKAKEE RIVER BASIN, ILLINOIS-INDIANA

    EPA Science Inventory

    Design of constructed wetlands in the Kankakee watershed, Indiana, include pumping and distribution ditches leaving former channelized river levees intact. Resultant changes in shallow ground water - surface water interactions may be contributing elevated sulfate to wetland ponds...

  12. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications.

    PubMed

    Ganesh, S; Arumugam, S

    2016-12-01

    The thermal performance of a shallow solar pond with and without the single transparent glass cover has been investigated experimentally. This experiment has been performed during the summer season of 2014 under the operational condition for five different storage volumes of water upto a maximum of 10liter. The pond performance is investigated in terms of the rate of energy collected and its collection efficiency. A Low Density Polyethylene (LDPE) black sheet liner of 200μm thickness was laid on all the interior sides of the pond for solar energy absorption. A clear transparent PVC plastic sheet of 150μm thickness was laid over the water surface as evaporation suppressing membrane. Calibrated Copper constantan thermocouples were used to measure the temperatures of the system. A highest temperature of 81.5°C has been achieved for the stored volume of 2liter of water, when the pond was used with a single transparent glass cover of 5mm thickness. When the shallow solar pond was used without the transparent glass cover the system attained a maximum temperature of 62°C for the same stored volume of 2liter. A comparison between the two conditions of with and without the transparent glass cover, on the thermal performance of the SSP has been reported. A shallow solar pond system of the present type could be used us a source of warm water, of desired temperature, below 10°C which are required for the domestic and industrial utilities. The global warming is increased day by day; inorder to reduce global warming a typical method of small scale shallow solar pond has been used to absorb the radiation from the sun to convert it to useful heat energy by the source of water. The SSP is an eco friendly way to generate energy without polluting our environment and in an environment safety manner. Based on environmental safety this study has experimentally investigated the thermal performance of the shallow solar pond. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Using Multiple Watershed-scale Dye Tracing Tests to Study Water and Solute Transport in Naturally Obstructed Stream Channels

    NASA Astrophysics Data System (ADS)

    Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.

    2007-12-01

    Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address

  14. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    PubMed

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  15. Evaluation of historical and analytical data on the TAN TSF-07 Disposal Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, S.M.

    1993-07-01

    The Technical Support Facility (TSF)-07 Disposal Pond, located at Test Area North at the Idaho National Engineering Laboratory, has been identified as part of Operable Unit 1-06 under the Comprehensive Environmental Response, Compensation, and Liability Act. The Environmental Restoration and Waste Management Department is conducting an evaluation of existing site characterization data for the TSF-07 Disposal Pond Track 1 investigation. The results from the site characterization data will be used to determine whether the operable unit will undergo a Track 2 investigation, an interim action, a remedial investigation/feasibility study, or result in a no-action decision. This report summarizes activities relevantmore » to wastewaters discharged to the pond and characterization efforts conducted from 1982 through 1991. Plan view and vertical distribution maps of the significant contaminants contained in the pond are included. From this evaluation it was determined that cobalt-60, cesium-137, americium-241, mercury, chromium, and thallium are significant contaminants for soils. This report also evaluates the migration tendencies of the significant contaminants into the perched water zone under the pond and the surrounding terrain to support the investigation.« less

  16. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    NASA Astrophysics Data System (ADS)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km-2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including

  17. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana.

    PubMed

    Pandey, Vimal Chandra

    2012-08-01

    Abundance of naturally growing Azolla caroliniana (water fern) on the surface of metal enriched fly ash (FA) pond reflects its toxitolerant characteristics. Results indicate the efficiency of A. caroliniana for phytoremediation of FA pond because of its higher bioconcentration factor. The metal concentration ranged from 175 to 538 and 86 to 753mgkg(-1) in roots and fronds, respectively. Bioconcentration factor (BCF) values of all metals in root and frond ranged from 1.7 to18.6 and 1.8 to 11.0, respectively, which were greater than one and indicates the metal accumulation potential of A. caroliniana. Translocation factor (TF) ranged from 0.37 to 1.4 for various heavy metals. The field result proved that A. caroliniana is a potential accumulator for the examined heavy metals and can be used for phytoremediation of FA pond. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1

  19. Performance comparisons between diploid and triploid sunshine bass in fresh water ponds

    USGS Publications Warehouse

    Kerby, J.H.; Everson, J.M.; Harrell, R.M.; Geiger, J.G.; Starling, C.C.; Revels, H.

    2002-01-01

    Diploid and triploid sunshine bass (white bass ??? x striped bass ???) were produced in 1990 at Florida's Richloam Fish Hatchery. Triploidy was induced with hydrostatic pressure. Fry were cultured to phase I in earthen ponds in Webster and Gainesville, FL, and transported to Leetown, WV, where they were held in circular flow-through fiberglass tanks. Ploidy of treated fish was determined with a Coulter counter and triploids were segregated from diploids. In April 1991, control diploid and triploid populations were graded to remove the largest and smallest individuals, and four 0.2-ha hypalon-lined ponds were stocked with 600 fish each; two ponds contained triploids and two contained diploids. Triploids and diploids were not significantly different in average fork length (FL) or weight at stocking. Triploids averaged 231 mm and 181.2 g, compared to diploid averages of 233 mm and 188.9 g. Monthly samples indicated that diploids grew faster than triploids; mean weights and lengths were both significantly different after 3 months. When harvested in October, triploids averaged 358 mm and 867.9 g, whereas diploids averaged 381 mm and 1153.5 g. Survival of triploids and diploids was 97.0% and 95.9%, respectively. Mean standing crop was 2496.3 kg/ha for triploids and 3280.6 kg/ha for diploids. Male diploids and most female diploids were sexually mature at 2 years of age. Sterility of triploids was confirmed as gonads remained reduced and dysfunctional at 5 years of age. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    PubMed

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Monitoring induced denitrification during managed aquifer recharge in an infiltration pond

    NASA Astrophysics Data System (ADS)

    Grau-Martínez, Alba; Folch, Albert; Torrentó, Clara; Valhondo, Cristina; Barba, Carme; Domènech, Cristina; Soler, Albert; Otero, Neus

    2018-06-01

    Managed aquifer recharge (MAR) is a well-known technique for improving water quality and increasing groundwater resources. Denitrification (i.e. removal of nitrate) can be enhanced during MAR by coupling an artificial recharge pond with a permeable reactive layer (PRL). In this study, we examined the suitability of a multi-isotope approach for assessing the long-term effectiveness of enhancing denitrification in a PRL containing vegetal compost. Batch laboratory experiments confirmed that the PRL was still able to enhance denitrification two years after its installation in the infiltration pond. At the field scale, changes in redox indicators along a flow path and below the MAR-PRL system were monitored over 21 months during recharge and non-recharge periods. Results showed that the PRL was still releasing non-purgeable dissolved organic carbon five years after its installation. Nitrate concentration coupled with isotopic data collected from the piezometer network at the MAR system indicated that denitrification was occurring in the saturated zone immediately beneath the infiltration pond, where recharged water and native groundwater mix. Furthermore, longer operational periods of the MAR-PRL system increased denitrification extent. Multi-isotope analyses are therefore proved to be useful tools in identifying and quantifying denitrification in MAR-PRL systems.

  2. 100-D Ponds closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit ismore » clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.« less

  3. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J

    2011-05-01

    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new

  4. Abandoned Rayrock uranium mill tailings in the Northwest Territories: Environmental conditions and radiological impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veska, E.; Eaton, R.S.

    Field and laboratory investigations were undertaken of the environment surrounding abandoned U mill tailings at Rayrock, Northwest Territories, Canada, to examine the extent of 226Ra and U contamination. Samples of ground water, surface water, and unconsolidated geological material from the Rayrock area were collected for chemical and radiochemical analyses. Results indicated that the surface waters contained levels of 226Ra as high as 20 Bq L-1, 210Pb as high as 1.1 Bq L-1, and ground water U as high as 2800 micrograms L-1. Lower levels of 226Ra, 210Pb, and U, 3.6 Bq L-1, 0.5 Bq L-1, and 4 micrograms L-1, respectively,more » were found in a small lake adjacent to the tailings area. Analysis of tailings and soil in the immediate vicinity indicates that the radionuclides and U are mobilized and can move within the tailings. Some of the mobilized radionuclides will be bound by the surrounding peat. The remainder may move to Lake Alpha in ground water. Surface water flow also transports some contaminants both in the water of Alpha Creek and by washing tailings into Lake Alpha. The potential annual external and internal dose equivalents to a hypothetical resident were calculated based on exposure from the abandoned U mill tailings, drinking water, and fish caught in the lakes in the vicinity of the tailings. While Alpha Creek and Lake Alpha water showed evidence of contamination, the rest of the water system and the fish were at natural background levels of radioactivity.« less

  5. Clustered streamlined forms in Athabasca Valles, Mars: Evidence for sediment deposition during floodwater ponding

    USGS Publications Warehouse

    Burr, D.

    2005-01-01

    A unique clustering of layered streamlined forms in Athabasca Valles is hypothesized to reflect a significant hydraulic event. The forms, interpreted as sedimentary, are attributed to extensive sediment deposition during ponding and then streamlining of this sediment behind flow obstacles during ponded water outflow. These streamlined forms are analogous to those found in depositional basins and other loci of ponding in terrestrial catastrophic flood landscapes. These terrestrial streamlined forms can provide the best opportunity for reconstructing the history of the terrestrial flooding. Likewise, the streamlined forms in Athabasca Valles may provide the best opportunity to reconstruct the recent geologic history of this young Martian outflow channel. ?? 2005 Elsevier B.V. All rights reserved.

  6. Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...

  7. Visible and thermal imaging of sea ice and open water from Coast Guard Arctic Domain Awareness flights

    NASA Astrophysics Data System (ADS)

    Chickadel, C. C.; Lindsay, R. W.; Clark, D.

    2014-12-01

    An uncooled thermal camera (microbolometer) and RGB camera were mounted in the tail section of a US Coast Guard HC-130 to observe sea ice, open water, and cloud tops through the open rear cargo doors during routine Arctic Domain Awareness (ADA) flights. Recent flights were conducted over the Beaufort Sea in June, July, and August of 2014, with flights planned for September and October. Thermal and visible images were collected at low altitude (100m) during times when the cargo doors were open and recorded high resolution information on ice floes, melt ponds, and surface temperature variability associated with the marginal ice zone (MIZ). These observations of sea ice conditions and surface water temperatures will be used to characterize floe size development and the temperature and albedo of ice ponds and leads. This information will allow for a detailed characterization of sea ice that can be used in process studies and for model evaluation, calibration of satellite remote sensing products, and initialization of sea ice prediction schemes.

  8. Bioreactors for oil sands process-affected water (OSPW) treatment: A critical review.

    PubMed

    Xue, Jinkai; Huang, Chunkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2018-06-15

    Canada has the world's largest oil sands reservoirs. Surface mining and subsequent caustic hot water extraction of bitumen lead to an enormous quantity of tailings (volumetric ratio bitumen:water=9:1). Due to the zero-discharge approach and the persistency of the complex matrix, oil producers are storing oil sands tailings in vast ponds in Northern Alberta. Oil sands tailings are comprised of sand, clay and process-affected water (OSPW). OSPW contains an extremely complex matrix of organic contaminants (e.g., naphthenic acids (NAs), residual bitumen, and polycyclic aromatic hydrocarbons (PAHs)), which has proven to be toxic to a variety of aquatic species. Biodegradation, among a variety of examined methods, is believed to be one of the most cost effective and practical to treat OSPW. A number of studies have been published on the removal of oil sands related contaminants using biodegradation-based practices. This review focuses on the treatment of OSPW using various bioreactors, comparing bioreactor configurations, operating conditions, performance evaluation and microbial community dynamics. Effort is made to identify the governing biotic and abiotic factors in engineered biological systems receiving OSPW. Generally, biofilms and elevated suspended biomass are beneficial to the resilience and degradation performance of a bioreactor. The review therefore suggests that a hybridization of biofilms and membrane technology (to ensure higher suspended microbial biomass) is a more promising option to remove OSPW organic constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms.

    PubMed

    Mohr, S; Berghahn, R; Feibicke, M; Meinecke, S; Ottenströer, T; Schmiedling, I; Schmiediche, R; Schmidt, R

    2007-05-01

    The chloroacetamide metazachlor is a commonly used pre-emergent herbicide to inhibit growth of plants especially in rape culture. It occurs in surface and ground water due to spray-drift or run-off in concentrations up to 100 microgL(-1). Direct and indirect effects of metazachlor on aquatic macrophytes were investigated at oligo- to mesotrophic nutrient levels employing eight stream and eight pond indoor mesocosms. Five systems of each type were dosed once with 5, 20, 80, 200 and 500 microgL(-1) metazachlor and three ponds and three streams served as controls. Pronounced direct negative effects on macrophyte biomass of Potamogeton natans, Myriophyllum verticillatum and filamentous green algae as well as associated changes in water chemistry were detected in the course of the summer 2003 in both pond and stream mesocosms. Filamentous green algae dominated by Cladophora glomerata were the most sensitive organisms in both pond and stream systems with EC(50) ranging from 3 (streams) to 9 (ponds) microgL(-1) metazachlor. In the contaminated pond mesocosms with high toxicant concentrations (200 and 500 microgL(-1)), a species shift from filamentous green algae to the yellow-green alga Vaucheria spec. was detected. The herbicide effects for the different macrophyte species were partly masked by interspecific competition. No recovery of macrophytes was observed at the highest metazachlor concentrations in both pond and stream mesocosms until the end of the study after 140 and 170 days. Based on the lowest EC(50) value of 4 microgL(-1) for total macrophyte biomass, it is argued that single exposure of aquatic macrophytes to metazachlor to nominal concentrations >5 microgL(-1) is likely to have pronounced long-term effects on aquatic biota and ecosystem function.

  10. Seasonal changes in submarine groundwater discharge to coastal salt ponds estimated using 226Ra and 228Ra as tracers

    USGS Publications Warehouse

    Hougham, A.L.; Moran, S.B.; Masterson, J.P.; Kelly, R.P.

    2008-01-01

    Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600??y) and 228Ra (t1/2 = 5.75??y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12-83??dpm 100??L- 1 (60??dpm = 1??Bq) and 21-256??dpm 100??L- 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16-736??dpm 100??L- 1 (2002-2003) and 95-815??dpm 100??L- 1 (2005), while porewater 228Ra activities ranged from 23-1265??dpm 100??L- 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11-159??L m- 2 d- 1 and average 228Ra-derived fluxes of 15-259??L m- 2 d- 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30-472??L m- 2 d- 1 (Winnapaug Pond), 6-20??L m- 2 d- 1 (Quonochontaug Pond), 36-273??L m- 2 d- 1 (Ninigret Pond), 29-76??L m- 2 d- 1 (Green Hill Pond), and 19-83??L m- 2 d- 1 (Pt. Judith-Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity. ?? 2007 Elsevier B.V. All rights reserved.

  11. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    PubMed

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. Published by Elsevier Ltd.

  13. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge (Presentation)

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speci...

  14. The Spectrophotometric Method of Determining the Transmission of Solar Energy in Salt Gradient Solar Ponds

    NASA Technical Reports Server (NTRS)

    Giulianelli, J.

    1984-01-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  15. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    USGS Publications Warehouse

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  16. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    PubMed

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  17. Optical characteristics of waste stabilization ponds: recommendations for monitoring.

    PubMed

    Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W

    2005-01-01

    The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.

  18. Velocity field measurements in tailings dam failure experiments using a combined PIV-PTV approach

    USDA-ARS?s Scientific Manuscript database

    Tailings dams are built to impound mining waste, also called tailings, which consists of a mixture of fine-sized sediments and water contaminated with some hazardous chemicals used for extracting the ore by leaching. Non-Newtonian flow of sediment-water mixture resulting from a failure of tailings d...

  19. Comparative evaluation of thermal stress of fish in a small pond with a fish shelter

    NASA Astrophysics Data System (ADS)

    Ahn, Chang Hyuk; Song, Ho Myeon; Park, Jae Ro; Park, Joon-Ha; Jo, Gyu-Hong; Park, Jum-Ok

    2018-06-01

    This study analyzed the water quality parameters in a fish shelter, which is an artificial structure built in a shallow pond, during early summer. The results of the water quality parameter analyses measured at St. 1 (open water space) and St. 2 (fish shelter) indicated that the fish shelter provides a stable space for fish, with lower water temperatures and less daily water quality variations in the early summer season than the open water space. Due to the temperature reduction and stable effects of these fish shelters, in this study, we found that there was an effect of reducing thermal stress for the Acheilognathinae during early summer. As such, if the fish shelter is introduced into the small pond applied to the urban area, it can be effective for reducing the thermal stress of the Acheilognathinae. In the future, we will need to carry out more detailed research based on this data.

  20. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    USGS Publications Warehouse

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.